151
|
Alencar-Silva T, Díaz-Martín RD, Sousa Dos Santos M, Saraiva RVP, Leite ML, de Oliveira Rodrigues MT, Pogue R, Andrade R, Falconi Costa F, Brito N, Dias SC, Carvalho JL. Screening of the Skin-Regenerative Potential of Antimicrobial Peptides: Clavanin A, Clavanin-MO, and Mastoparan-MO. Int J Mol Sci 2024; 25:6851. [PMID: 38999961 PMCID: PMC11241485 DOI: 10.3390/ijms25136851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/14/2024] Open
Abstract
Skin wound healing is coordinated by a delicate balance between proinflammatory and anti-inflammatory responses, which can be affected by opportunistic pathogens and metabolic or vascular diseases. Several antimicrobial peptides (AMPs) possess immunomodulatory properties, suggesting their potential to support skin wound healing. Here, we evaluated the proregenerative activity of three recently described AMPs (Clavanin A, Clavanin-MO, and Mastoparan-MO). Human primary dermal fibroblasts (hFibs) were used to determine peptide toxicity and their capacity to induce cell proliferation and migration. Furthermore, mRNA analysis was used to investigate the modulation of genes associated with skin regeneration. Subsequently, the regenerative potential of the peptides was further confirmed using an ex vivo organotypic model of human skin (hOSEC)-based lesion. Our results indicate that the three molecules evaluated in this study have regenerative potential at nontoxic doses (i.e., 200 μM for Clavanin-A and Clavanin-MO, and 6.25 μM for Mastoparan-MO). At these concentrations, all peptides promoted the proliferation and migration of hFibs during in vitro assays. Such processes were accompanied by gene expression signatures related to skin regenerative processes, including significantly higher KI67, HAS2 and CXCR4 mRNA levels induced by Clavanin A and Mastoparan-MO. Such findings translated into significantly accelerated wound healing promoted by both Clavanin A and Mastoparan-MO in hOSEC-based lesions. Overall, the data demonstrate the proregenerative properties of these peptides using human experimental skin models, with Mastoparan-MO and Clavanin A showing much greater potential for inducing wound healing compared to Clavanin-MO.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Rubén D Díaz-Martín
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Mickelly Sousa Dos Santos
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Rivaldo Varejão Pasqual Saraiva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil
| | | | - Robert Pogue
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Rosângela Andrade
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Fabrício Falconi Costa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Nicolau Brito
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília 71966-700, Brazil
| | - Simoni Campos Dias
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
- Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília, Brasília 71966-700, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
152
|
Gansau J, Grossi E, Rodriguez L, Wang M, Laudier DM, Chaudhary S, Hecht AC, Fu W, Sebra R, Liu C, Iatridis JC. TNFR1-mediated senescence and lack of TNFR2-signaling limit human intervertebral disc cell repair in back pain conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581620. [PMID: 38948728 PMCID: PMC11212922 DOI: 10.1101/2024.02.22.581620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Poor intervertebral disc (IVD) healing causes IVD degeneration (IVDD) and progression to herniation and back pain. This study identified distinct roles of TNFα-receptors (TNFRs) in contributing to poor healing in painful IVDD. We first isolated IVDD tissue of back pain subjects and determined the complex pro-inflammatory mixture contained many chemokines for recruiting inflammatory cells. Single-cell RNA-sequencing of human IVDD tissues revealed these pro-inflammatory cytokines were dominantly expressed by a small macrophage-population. Human annulus fibrosus (hAF) cells treated with IVDD-conditioned media (CM) underwent senescence with greatly reduced metabolic rates and limited inflammatory responses. TNFR1 inhibition partially restored hAF cell metabolism sufficiently to enable a robust chemokine and cytokine response to CM. We showed that the pro-reparative TNFR2 was very limited on hIVD cell membranes so that TNFR2 inhibition with blocking antibodies or activation using Atsttrin had no effect on hAF cells with CM challenge. However, TNFR2 was expressed in high levels on macrophages identified in scRNA-seq analyses, suggesting their role in repair responses. Results therefore point to therapeutic strategies for painful IVDD involving immunomodulation of TNFR1 signaling in IVD cells to enhance metabolism and enable a more robust inflammatory response including recruitment or delivery of TNFR2 expressing immune cells to enhance IVD repair.
Collapse
Affiliation(s)
- Jennifer Gansau
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Levon Rodriguez
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Damien M. Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Saad Chaudhary
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Andrew C. Hecht
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Wenyu Fu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chuanju Liu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
153
|
Shen L, Li Y, Zhao H. Fibroblast growth factor signaling in macrophage polarization: impact on health and diseases. Front Immunol 2024; 15:1390453. [PMID: 38962005 PMCID: PMC11219802 DOI: 10.3389/fimmu.2024.1390453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Fibroblast growth factors (FGFs) are a versatile family of peptide growth factors that are involved in various biological functions, including cell growth and differentiation, embryonic development, angiogenesis, and metabolism. Abnormal FGF/FGF receptor (FGFR) signaling has been implicated in the pathogenesis of multiple diseases such as cancer, metabolic diseases, and inflammatory diseases. It is worth noting that macrophage polarization, which involves distinct functional phenotypes, plays a crucial role in tissue repair, homeostasis maintenance, and immune responses. Recent evidence suggests that FGF/FGFR signaling closely participates in the polarization of macrophages, indicating that they could be potential targets for therapeutic manipulation of diseases associated with dysfunctional macrophages. In this article, we provide an overview of the structure, function, and downstream regulatory pathways of FGFs, as well as crosstalk between FGF signaling and macrophage polarization. Additionally, we summarize the potential application of harnessing FGF signaling to modulate macrophage polarization.
Collapse
Affiliation(s)
- Luyao Shen
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
154
|
Zhao C, Yang Z, Li Y, Wen Z. Macrophages in tissue repair and regeneration: insights from zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:12. [PMID: 38861103 PMCID: PMC11166613 DOI: 10.1186/s13619-024-00195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Macrophages play crucial and versatile roles in regulating tissue repair and regeneration upon injury. However, due to their complex compositional heterogeneity and functional plasticity, deciphering the nature of different macrophage subpopulations and unraveling their dynamics and precise roles during the repair process have been challenging. With its distinct advantages, zebrafish (Danio rerio) has emerged as an invaluable model for studying macrophage development and functions, especially in tissue repair and regeneration, providing valuable insights into our understanding of macrophage biology in health and diseases. In this review, we present the current knowledge and challenges associated with the role of macrophages in tissue repair and regeneration, highlighting the significant contributions made by zebrafish studies. We discuss the unique advantages of the zebrafish model, including its genetic tools, imaging techniques, and regenerative capacities, which have greatly facilitated the investigation of macrophages in these processes. Additionally, we outline the potential of zebrafish research in addressing the remaining challenges and advancing our understanding of the intricate interplay between macrophages and tissue repair and regeneration.
Collapse
Affiliation(s)
- Changlong Zhao
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Yang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunbo Li
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zilong Wen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
155
|
Wu Z, Guo S, Yue H, Huang H, Zhang Z, Chen X, Lan C, Ren L, Hei P, Wang X, Wang N, Li X. Effect of M2-macrophage treated lymphatic endothelial cells on angiogenesis that promoted osteointegration. Exp Cell Res 2024; 439:114096. [PMID: 38768700 DOI: 10.1016/j.yexcr.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Early vascularization plays an essential role during the whole process in bone regeneration because of the function of secreting cytokines, transporting nutrients and metabolic wastes. As the preliminary basis of bone repair, angiogenesis is regulated by immune cells represented by macrophages to a great extent. However, with the discovery of the endolymphatic circulation system inside bone tissue, the role of vascularization became complicated and confusing. Herein, we developed a macrophage/lymphatic endothelial cells (LECs)/human umbilical vein endothelial cells (HUVECs) co-culture system to evaluate the effect of macrophage treated lymphatic endothelial cells on angiogenesis in vitro and in vivo. In this study, we collected the medium from macrophage (CM) for LECs culture. We found that CM2 could promote the expression of LECs markers and migration ability, which indicated the enhanced lymphogenesis. In addition, the medium from LECs was collected for culturing HUVECs. The CM2-treated LECs showed superior angiogenesis property including the migration capacity and expression of angiogenetic markers, which suggested the superior vascularization. Rat femoral condyle defect model was applied to confirm the hypothesis in vivo. Generally, M2-macrophage treated LECs showed prominent angiogenetic potential coupling with osteogenesis.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China; Department of Orthopaedics, The 63750 Hospital of People's Liberation Army, Xi'an, 710043, Shaanxi, China
| | - Shuo Guo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China; Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Haixia Yue
- Physical Education Department, Xi 'an University of Science and Technology, Xi'an, 710054, China
| | - Hai Huang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Ziru Zhang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xuexue Chen
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China; Graduate School, Xi'an Physical Education University, Xi'an, 710068, China
| | - Chaoyu Lan
- Graduate School, Xi'an Physical Education University, Xi'an, 710068, China
| | - Lu Ren
- Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Hei
- Graduate School, Xi'an Physical Education University, Xi'an, 710068, China
| | - Xinyu Wang
- Graduate School, Xi'an Physical Education University, Xi'an, 710068, China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
156
|
Amoedo-Leite C, Parv K, Testini C, Herrera-Hidalgo C, Xu F, Giraud A, Malaquias M, Fasterius E, Holl D, Seignez C, Göritz C, Christoffersson G, Phillipson M. Macrophages upregulate mural cell-like markers and support healing of ischemic injury by adopting functions important for vascular support. NATURE CARDIOVASCULAR RESEARCH 2024; 3:685-700. [PMID: 39196227 PMCID: PMC11358018 DOI: 10.1038/s44161-024-00478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/25/2024] [Indexed: 08/29/2024]
Abstract
Sterile inflammation after injury is important for tissue restoration. In injured human and mouse tissues, macrophages were recently found to accumulate perivascularly. This study investigates if macrophages adopt a mural cell phenotype important for restoration after ischemic injury. Single-cell RNA sequencing of fate-mapped macrophages from ischemic mouse muscles demonstrates a macrophage-toward-mural cell switch of a subpopulation of macrophages with downregulated myeloid cell genes and upregulated mural cell genes, including PDGFRβ. This observation was further strengthened when including unspliced transcripts in the analysis. The macrophage switch was proven functionally relevant, as induction of macrophage-specific PDGFRβ deficiency prevented their perivascular macrophage phenotype, impaired vessel maturation and increased vessel leakiness, which ultimately reduced limb function. In conclusion, macrophages in adult ischemic tissue were demonstrated to undergo a cellular program to morphologically, transcriptomically and functionally resemble mural cells while weakening their macrophage identity. The macrophage-to-mural cell-like phenotypic switch is crucial for restoring tissue function and warrants further exploration as a potential target for immunotherapies to enhance healing.
Collapse
Affiliation(s)
| | - Kristel Parv
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Chiara Testini
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Feifei Xu
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Antoine Giraud
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Marta Malaquias
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erik Fasterius
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Daniel Holl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cedric Seignez
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Gustaf Christoffersson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
157
|
Li H, Dong J, Wang Z, Cui L, Liu K, Guo L, Li J, Wang H. Development potential of selenium in the prevention and treatment of bovine endometritis. Reprod Domest Anim 2024; 59:e14647. [PMID: 38924282 DOI: 10.1111/rda.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Endometritis is a common postpartum disease in cows. It delays uterine involution and impairs normal physiological function. This can result in long-term or even lifelong infertility and cause significant losses to the dairy farming industry. Traditional treatments like antibiotics possess certain shortcomings, such as antibiotic residues, the abuse of antibiotics, and increased antimicrobial resistance of pathogens. Alternative treatment strategies are needed to minimize the utilization of antibiotics in dairy production. As an essential trace element in animals, selenium (Se) plays a vital role in regulating immune function, the inflammatory response, and oxidative stress, affecting the speed and completeness of tissue repair. This paper reviewed previous studies to analyse the potential of Se in the prevention and treatment of bovine endometritis, aiming to provide a new direction to increase production capacity in the future.
Collapse
Affiliation(s)
- Hanqing Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Junsheng Dong
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Zi Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Kangjun Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Long Guo
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| |
Collapse
|
158
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
159
|
He J, Zhang W, Cui Y, Cheng L, Chen XL, Wang X. Multifunctional Cu 2Se/F127 Hydrogel with SOD-Like Enzyme Activity for Efficient Wound Healing. Adv Healthc Mater 2024; 13:e2303599. [PMID: 38331398 DOI: 10.1002/adhm.202303599] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Free radicals are secreted following skin damage and cause oxidative stress and inflammatory reactions that increase the difficulty of wound healing. In this study, copper-based nanozyme Cu2Se nanosheets (NSs) are synthesized by an anion-exchange strategy and apply to wounds with F127 hydrogels to investigate the healing effect of this nanozyme composite hydrogels on wounds. Cu2Se NSs have a large number of catalytically active centers, are simple to synthesize, require few reaction conditions and have a short synthesis cycle. In vitro experiments have shown that Cu2Se NSs possess superoxide dismutase (SOD)-like activity and nitrogen radical scavenging activity and promote angiogenesis and fibroblast migration. The doping of Cu2Se NSs into the F127 hydrogel does not have a significantly affect on the properties of the hydrogel. This hybridized hydrogel not only adapts to the irregular and complex morphology of acute wounds but also prolongs the duration of nanozyme action on the wound, thus promoting wound healing. Transcriptomic analysis further reveals the potential therapeutic mechanism of the Cu2Se/F127 hydrogel in promoting acute wound healing. Animal experiments have shown that the Cu2Se/F127 hydrogel has good biosafety. The Cu2Se/F127 hydrogel provides an innovative idea for the development of hydrogel dressings for the treatment of acute wounds.
Collapse
Affiliation(s)
- Jia He
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Wei Zhang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Yuyu Cui
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
- College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
160
|
Quni S, Zhang Y, Liu L, Liu M, Zhang L, You J, Cui J, Liu X, Wang H, Li D, Zhou Y. NF-κB-Signaling-Targeted Immunomodulatory Nanoparticle with Photothermal and Quorum-Sensing Inhibition Effects for Efficient Healing of Biofilm-Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25757-25772. [PMID: 38738757 DOI: 10.1021/acsami.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.
Collapse
Affiliation(s)
- Sezhen Quni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
- School of Stomatology, Jilin University, Jilin 130021, Changchun, China
| |
Collapse
|
161
|
Hasan Maleki M, Siri M, Jafarabadi A, Rajabi M, Amirhossein Mazhari S, Noori Z, Koohpeyma F, Dehghanian A, Esmaeili N, Aryanian Z, Dastghaib S. Boosting wound healing in diabetic rats: The role of nicotinamide riboside and resveratrol in UPR modulation and pyroptosis inhibition. Int Immunopharmacol 2024; 132:112013. [PMID: 38583241 DOI: 10.1016/j.intimp.2024.112013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Diabetes-related skin ulcers provide a substantial therapeutic issue, sometimes leading to amputation, needing immediate practical treatments for efficient wound care. While the exact mechanisms are unknown, pyroptosis and deregulation of the unfolded protein response (UPR) are known to exacerbate inflammation. Nicotinamide Riboside (NR) and Resveratrol (RV), which are known for their Nicotinamide adenine dinucleotide (NAD+) boosting and anti-inflammatory properties, are being studied as potential treatments. The purpose of this study was to shed light on the underlying molecular mechanisms and explore the medical application of NR and RV in diabetic wound healing. METHODS 54 male Sprague-Dawley rats divided into control, diabetic (DM), Gel Base, DM-NR, DM-RV, and DM-NR + RV. Rats were orally administered 50 mg/kg/day of RV and 300 mg/kg/day of NR for 5 weeks. Following diabetes induction, their wounds were topically treated with 5 % NR and RV gel for 15 days. The wound closure rate, body weight, and serum lipid profiles were examined. Gene expression study evaluated UPR and pyroptosis-related genes (BIP, PERK, ATF6, IRE1α, sXBP1, CHOP, NLRP3, caspase-1, NFκB, and IL1-β) in wound tissues, alongside histological assessment of cellular changes. RESULTS NR and RV treatments greatly enhanced wound healing. Molecular investigation demonstrated UPR and pyroptosis marker modifications, suggesting UPR balance and anti-inflammatory effects. Histological investigation demonstrated decreased inflammation and increased re-epithelialization. The combination of NR and RV therapy had better results than either treatment alone. CONCLUSION This study shows that NR and RV have therapeutic promise in treating diabetic wounds by addressing UPR dysregulation, and pyroptosis. The combination therapy is a viable strategy to improving the healing process, providing a multimodal intervention for diabetic skin ulcers. These findings pave the way for additional investigation and possible therapeutic applications, giving hope for better outcomes in diabetic wound care.
Collapse
Affiliation(s)
- Mohammad Hasan Maleki
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Morvarid Siri
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Amirhossein Jafarabadi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahsa Rajabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Noori
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Molecular Pathology and Cytogenetics Division, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Esmaeili
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Dermatology, Razi Hospital, School of Medicine, Tehran University of Medical Sciences, Iran
| | - Zeinab Aryanian
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Dermatology, Babol University of Medical Sciences, Babol, Iran.
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran; Autophagy Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
162
|
Mirkov I, Tucovic D, Kulas J, Malesevic A, Kataranovski D, Kataranovski M, Popov Aleksandrov A. Physiological strategies in wild rodents: immune defenses of commensal rats. Integr Zool 2024; 19:350-370. [PMID: 37814602 DOI: 10.1111/1749-4877.12766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The importance of issues associated with urban/commensal rats and mice (property damage, management costs, and health risks) press upon research on these animals. While the demography of commensal rodents is mostly studied, the need for understanding factors influencing their natural morbidity/mortality is also stressed. In this respect, more attention is expected to be paid to immunity, the physiological mechanism of defense against host survival threats (pathogens, parasites, diseases). Commensal rats and mice carry numerous pathogens that evoke diverse immune responses. The state of immunity in commensal house mice is studied in great detail, owing to the use of laboratory strains in biomedical research. Because commensal rats are, compared to mice, carriers of more zoonotic agents, rats' immunity is studied mainly in that context. Some of these zoonotic agents cause chronic, asymptomatic infections, which justified studies of immunological mechanisms of pathogen tolerance versus clearance regulation in rats. Occurrence of some infections in specific tissues/organs pressed upon analysis of local/regional immune responses and/or immunopathology. A survey of immunological activity/responses in commensal rats is given in this review, with mention of existing data in commensal mice. It should throw some light on the factors relevant to their morbidity and lifespan, supplementing the knowledge of commensal rodent ecology.
Collapse
Affiliation(s)
- Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anastasija Malesevic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragan Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
163
|
Liu X, Wan X, Sui B, Hu Q, Liu Z, Ding T, Zhao J, Chen Y, Wang ZL, Li L. Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation. Bioact Mater 2024; 35:346-361. [PMID: 38379699 PMCID: PMC10876489 DOI: 10.1016/j.bioactmat.2024.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tingting Ding
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Jiao Zhao
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Yuxiao Chen
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
164
|
Wang S, Xiao Y, Tian J, Dai B, Tao Z, Liu J, Sun Z, Liu X, Li Y, Zhao G, Cui Y, Wang F, Liu S. Targeted Macrophage CRISPR-Cas13 mRNA Editing in Immunotherapy for Tendon Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311964. [PMID: 38302097 DOI: 10.1002/adma.202311964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Indexed: 02/03/2024]
Abstract
CRISPR-Cas13 holds substantial promise for tissue repair through its RNA editing capabilities and swift catabolism. However, conventional delivery methods fall short in addressing the heightened inflammatory response orchestrated by macrophages during the acute stages of tendon injury. In this investigation, macrophage-targeting cationic polymers are systematically screened to facilitate the entry of Cas13 ribonucleic-protein complex (Cas13 RNP) into macrophages. Notably, SPP1 (OPN encoding)-producing macrophages are recognized as a profibrotic subtype that emerges during the inflammatory stage. By employing ROS-responsive release mechanisms tailored for macrophage-targeted Cas13 RNP editing systems, the overactivation of SPP1 is curbed in the face of an acute immune microenvironment. Upon encapsulating this composite membrane around the tendon injury site, the macrophage-targeted Cas13 RNP effectively curtails the emergence of injury-induced SPP1-producing macrophages in the acute phase, leading to diminished fibroblast activation and mitigated peritendinous adhesion. Consequently, this study furnishes a swift RNA editing strategy for macrophages in the inflammatory phase triggered by ROS in tendon injury, along with a pioneering macrophage-targeted carrier proficient in delivering Cas13 into macrophages efficiently.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Xiao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Tian
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingwen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanhao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gang Zhao
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
165
|
Xu X, Wang J, Xia Y, Yin Y, Zhu T, Chen F, Hai C. Autophagy, a double-edged sword for oral tissue regeneration. J Adv Res 2024; 59:141-159. [PMID: 37356803 PMCID: PMC11081970 DOI: 10.1016/j.jare.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Oral health is of fundamental importance to maintain systemic health in humans. Stem cell-based oral tissue regeneration is a promising strategy to achieve the recovery of impaired oral tissue. As a highly conserved process of lysosomal degradation, autophagy induction regulates stem cell function physiologically and pathologically. Autophagy activation can serve as a cytoprotective mechanism in stressful environments, while insufficient or over-activation may also lead to cell function dysregulation and cell death. AIM OF REVIEW This review focuses on the effects of autophagy on stem cell function and oral tissue regeneration, with particular emphasis on diverse roles of autophagy in different oral tissues, including periodontal tissue, bone tissue, dentin pulp tissue, oral mucosa, salivary gland, maxillofacial muscle, temporomandibular joint, etc. Additionally, this review introduces the molecular mechanisms involved in autophagy during the regeneration of different parts of oral tissue, and how autophagy can be regulated by small molecule drugs, biomaterials, exosomes/RNAs or other specific treatments. Finally, this review discusses new perspectives for autophagy manipulation and oral tissue regeneration. KEY SCIENTIFIC CONCEPTS OF REVIEW Overall, this review emphasizes the contribution of autophagy to oral tissue regeneration and highlights the possible approaches for regulating autophagy to promote the regeneration of human oral tissue.
Collapse
Affiliation(s)
- Xinyue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Jia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Yunlong Xia
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Tianxiao Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Faming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Chunxu Hai
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
166
|
Fischer AM, Lechea N, Coxson HO. This Is What Metabolic Dysfunction-Associated Steatotic Liver Disease Looks Like: Potential of a Multiparametric MRI Protocol. Semin Liver Dis 2024; 44:226-238. [PMID: 38806158 DOI: 10.1055/a-2334-8525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent condition with a broad spectrum defined by liver biopsy. This gold standard method evaluates three features: steatosis, activity (ballooning and lobular inflammation), and fibrosis, attributing them to certain grades or stages using a semiquantitative scoring system. However, liver biopsy is subject to numerous restrictions, creating an unmet need for a reliable and reproducible method for MASLD assessment, grading, and staging. Noninvasive imaging modalities, such as magnetic resonance imaging (MRI), offer the potential to assess quantitative liver parameters. This review aims to provide an overview of the available MRI techniques for the three criteria evaluated individually by liver histology. Here, we discuss the possibility of combining multiple MRI parameters to replace liver biopsy with a holistic, multiparametric MRI protocol. In conclusion, the development and implementation of such an approach could significantly improve the diagnosis and management of MASLD, reducing the need for invasive procedures and paving the way for more personalized treatment strategies.
Collapse
Affiliation(s)
- Anja M Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Nazim Lechea
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Harvey O Coxson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
167
|
Chen J, Luo J, Su D, Lu N, Zhao J, Luo Z. A Rapid Self-Assembling Peptide Hydrogel for Delivery of TFF3 to Promote Gastric Mucosal Injury Repair. Molecules 2024; 29:1944. [PMID: 38731435 PMCID: PMC11085398 DOI: 10.3390/molecules29091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Self-assembled peptide-based nanobiomaterials exhibit promising prospects for drug delivery applications owing to their commendable biocompatibility and biodegradability, facile tissue uptake and utilization, and minimal or negligible unexpected toxicity. TFF3 is an active peptide autonomously secreted by gastric mucosal cells, possessing multiple biological functions. It acts on the surface of the gastric mucosa, facilitating the repair process of gastric mucosal damage. However, when used as a drug, TFF3 faces significant challenges, including short retention time in the gastric mucosal cavity and deactivation due to degradation by stomach acid. In response to this challenge, we developed a self-assembled short peptide hydrogel, Rqdl10, designed as a delivery vehicle for TFF3. Our investigation encompasses an assessment of its properties, biocompatibility, controlled release of TFF3, and the mechanism underlying the promotion of gastric mucosal injury repair. Congo red/aniline blue staining revealed that Rqdl10 promptly self-assembled in PBS, forming hydrogels. Circular dichroism spectra indicated the presence of a stable β-sheet secondary structure in the Rqdl10 hydrogel. Cryo-scanning electron microscopy and atomic force microscopy observations demonstrated that the Rqdl10 formed vesicle-like structures in the PBS, which were interconnected to construct a three-dimensional nanostructure. Moreover, the Rqdl10 hydrogel exhibited outstanding biocompatibility and could sustainably and slowly release TFF3. The utilization of the Rqdl10 hydrogel as a carrier for TFF3 substantially augmented its proliferative and migratory capabilities, while concurrently bolstering its anti-inflammatory and anti-apoptotic attributes following gastric mucosal injury. Our findings underscore the immense potential of the self-assembled peptide hydrogel Rqdl10 for biomedical applications, promising significant contributions to healthcare science.
Collapse
Affiliation(s)
- Jialei Chen
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Jing Luo
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing 400016, China;
| | - Di Su
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Na Lu
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Jiawei Zhao
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Zhongli Luo
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| |
Collapse
|
168
|
Lv D, Fei Y, Chen H, Wang J, Han W, Cui B, Feng Y, Zhang P, Chen J. Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front Immunol 2024; 15:1340702. [PMID: 38690275 PMCID: PMC11058664 DOI: 10.3389/fimmu.2024.1340702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex three-dimensional structure composed of proteins, glycans, and proteoglycans, constituting a critical component of the tumor microenvironment. Complex interactions among immune cells, extracellular matrix, and tumor cells promote tumor development and metastasis, consequently influencing therapeutic efficacy. Hence, elucidating these interaction mechanisms is pivotal for precision cancer therapy. T lymphocytes are an important component of the immune system, exerting direct anti-tumor effects by attacking tumor cells or releasing lymphokines to enhance immune effects. The ECM significantly influences T cells function and infiltration within the tumor microenvironment, thereby impacting the behavior and biological characteristics of tumor cells. T cells are involved in regulating the synthesis, degradation, and remodeling of the extracellular matrix through the secretion of cytokines and enzymes. As a result, it affects the proliferation and invasive ability of tumor cells as well as the efficacy of immunotherapy. This review discusses the mechanisms underlying T lymphocyte-ECM interactions in the tumor immune microenvironment and their potential application in immunotherapy. It provides novel insights for the development of innovative tumor therapeutic strategies and drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiao Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
169
|
Wang Y, Yao Y, Zhang Y, Qian X, Guo D, Coates BS. A chromosome-level genome assembly of the soybean pod borer: insights into larval transcriptional response to transgenic soybean expressing the pesticidal Cry1Ac protein. BMC Genomics 2024; 25:355. [PMID: 38594617 PMCID: PMC11005160 DOI: 10.1186/s12864-024-10216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.
Collapse
Affiliation(s)
- Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yunyue Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, 532 Science II, 2310 Pammel Dr., Ames, IA, 50011, USA.
| |
Collapse
|
170
|
Wang X, Wang D, Yin G, Pu X. Integrated GelMA and interleukin 8-loaded liposome composite scaffold for endogenous BMSCs recruitment in bone repair. Biochem Biophys Res Commun 2024; 703:149614. [PMID: 38359611 DOI: 10.1016/j.bbrc.2024.149614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Bone repair strategies, based on endogenous stem cell recruitment, can effectively avoid immune rejection and the low utilization of exogenous stem cells. Endogenous stem cells can be recruited to the implantation site by loading chemokines onto bone tissue-engineered scaffolds. However, challenges such as unstable chemokine activity and easy inactivation after implantation remain significant. In the present study, composite fiber scaffolds ((IL8@LIP)-GelMA) consisting of Interleukin 8 (IL8) -loaded liposomes and GelMA were constructed by electrospinning and photocrosslinking, and its ability to recruit bone marrow-derived mesenchymal stem cells (BMSCs) and immunomodulatory effect was investigated. Compared to GelMA loaded directly with IL8, scaffolds of (IL8@LIP)-GelMA demonstrated superior protection of IL8 activity, ensuring a slow and continuous release. Both in vivo and in vitro experiments demonstrated that the (IL8@LIP)-GelMA scaffolds effectively recruited BMSCs to the desired sites. Additionally, the (IL8@LIP)-GelMA scaffolds exhibited the capacity to recruit more macrophages to the implantation site. Importantly, they promoted the polarization of macrophages toward the M2 anti-inflammatory phenotype, facilitating the transition from the inflammatory stage to the tissue repair stage. Therefore, (IL8@LIP)-GelMA scaffolds show great potential for cell-free tissue engineering applications and provide insights into the loading mode of growth factors in scaffolds.
Collapse
Affiliation(s)
- Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Danni Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
171
|
Zhang T, Sang J, Hoang PH, Zhao W, Rosenbaum J, Johnson KE, Klimczak LJ, McElderry J, Klein A, Wirth C, Bergstrom EN, Díaz-Gay M, Vangara R, Colon-Matos F, Hutchinson A, Lawrence SM, Cole N, Zhu B, Przytycka TM, Shi J, Caporaso NE, Homer R, Pesatori AC, Consonni D, Imielinski M, Chanock SJ, Wedge DC, Gordenin DA, Alexandrov LB, Harris RS, Landi MT. APOBEC shapes tumor evolution and age at onset of lung cancer in smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587805. [PMID: 38617360 PMCID: PMC11014539 DOI: 10.1101/2024.04.02.587805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H. Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Wirth
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Frank Colon-Matos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M. Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Angela C. Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C. Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
172
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
173
|
Li S, Gu B, Meng J, Zhu J, Wang J, Wang W, Ding J, Qiu T, Wang W, Liu J, Wu Y, Li K. TCM formula for trauma treatment screening and its role of promoting infectious wound coalescence investigating. Res Vet Sci 2024; 170:105178. [PMID: 38402660 DOI: 10.1016/j.rvsc.2024.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
In pet clinics, the number of cases using trauma drugs accounts for >10% of the total number of cases, and most wounds are healing by second intention. The prolongation of wound healing time causes inconvenience and burden to pets and pet owners. Therefore, how to reduce wound healing time and achieve maximum recovery of tissue function and aesthetics is one of the focuses of veterinary clinical practice. Wound suppuration caused by Staphylococcus aureus and Pseudomonas aeruginosa is the main cause of delaying wound healing. Clinically, available antimicrobial treatments are almost exhausted due to the production of large numbers of resistant bacteria. At present, there are no bacteria resistant to traditional Chinese medicine (TCM), which makes TCM have the potential to become an effective drug for the treatment of bacterial infections, so the use of TCM in the treatment of traumatic infections has broad prospects. Based on the characteristics of infection syndrome, three different prescriptions were formulated in our laboratory, and the most effective prescription and dosage form was screened and named Lianrong Healing Cream (LRHC). The results showed that LRHC regulated the expression of fibroblast growth factor-2 (FGF-2), epidermal growth factor-1 (EGF-1), transforming growth factor-β (TGF-β) and vascular endothelial growth factor-1 (VEGF-1) genes in wound tissues and fibroblasts, thereby accelerating wound healing and repairing wound appearance and function. The results of this study may be help to develop TCM formulation for traumatic infections.
Collapse
Affiliation(s)
- Siya Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bolin Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinyue Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinli Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianxin Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
174
|
Uchikawa H, Uekawa K, Hasegawa Y. Perivascular macrophages in cerebrovascular diseases. Exp Neurol 2024; 374:114680. [PMID: 38185314 DOI: 10.1016/j.expneurol.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cerebrovascular diseases are a major cause of stroke and dementia, both requiring long-term care. These diseases involve multiple pathophysiologies, with mitochondrial dysfunction being a crucial contributor to the initiation of inflammation, apoptosis, and oxidative stress, resulting in injuries to neurovascular units that include neuronal cell death, endothelial cell death, glial activation, and blood-brain barrier disruption. To maintain brain homeostasis against these pathogenic conditions, brain immune cells, including border-associated macrophages and microglia, play significant roles as brain innate immunity cells in the pathophysiology of cerebrovascular injury. Although microglia have long been recognized as significant contributors to neuroinflammation, attention has recently shifted to border-associated macrophages, such as perivascular macrophages (PVMs), which have been studied based on their crucial roles in the brain. These cells are strategically positioned around the walls of brain vessels, where they mainly perform critical functions, such as perivascular drainage, cerebrovascular flexibility, phagocytic activity, antigen presentation, activation of inflammatory responses, and preservation of blood-brain barrier integrity. Although PVMs act as scavenger and surveillant cells under normal conditions, these cells exert harmful effects under pathological conditions. PVMs detect mitochondrial dysfunction in injured cells and implement pathological changes to regulate brain homeostasis. Therefore, PVMs are promising as they play a significant role in mitochondrial dysfunction and, in turn, disrupt the homeostatic condition. Herein, we summarize the significant roles of PVMs in cerebrovascular diseases, especially ischemic and hemorrhagic stroke and dementia, mainly in correlation with inflammation. A better understanding of the biology and pathobiology of PVMs may lead to new insights on and therapeutic strategies for cerebrovascular diseases.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA; Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Ken Uekawa
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Yu Hasegawa
- Department of Pharmaceutical Science, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan.
| |
Collapse
|
175
|
Muhlenhaupt E, Stauss HM. Higher risk of Achilles tendon ruptures at competition than training sites in female collegiate gymnasts. J Sports Med Phys Fitness 2024; 64:392-401. [PMID: 38193754 DOI: 10.23736/s0022-4707.23.15558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Reportedly, 17.2% of collegiate female gymnasts experience Achilles tendon ruptures (ATRs). Cumulative microtraumas resulting in chronic tendinopathy/tendinitis may contribute to this high injury risk. We hypothesized that the risk of ATRs in female collegiate gymnasts increases with years of competitive gymnastics, that non-steroidal anti-inflammatory drug (NSAID) use is associated with less ATRs, and that the risk is larger during competition than training. METHODS Female gymnasts from 78 USA collegiate teams completed a survey assessing the prevalence of ATRs, NSAID use, age at which competitive gymnastics started and age at which ATR occurred, and whether ATRs occurred during training or competition. RESULTS Twenty-one of 103 gymnasts (20.4%, 95% CI: 13.6% to 29.4%) experienced ATRs. Eighteen of 21 ruptures (85.7%, 95% CI: 61.3% to 95.8%) occurred after more than ten years of competitive gymnastics (mean: 14.0±2.6 years, 95% CI: 12.8 to 15.2 years). ATRs occurred 0.08±0.01 (95% CI: 0.06 to 0.11) times per 1000 hours at training versus 1.85±0.11 (95% CI: 1.60 to 2.10) times per 1000 hours at competition (P<0.05). Prevalence of NSAID use was 27.6% (95% CI: 18.6% to 39.0%) in gymnasts without ATR but only 5.5% (95% CI: 0.6% to 35.5%, P=0.09) in gymnasts with ATR. Multiple regression analysis demonstrated a negative association between NSAID use and incidence of ATRs (P<0.05). CONCLUSIONS Female collegiate gymnasts are at high risk for ATRs, especially after more than ten years of competitive gymnastics and during competition.
Collapse
Affiliation(s)
- Emily Muhlenhaupt
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Harald M Stauss
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA -
| |
Collapse
|
176
|
Caballero-Sánchez N, Alonso-Alonso S, Nagy L. Regenerative inflammation: When immune cells help to re-build tissues. FEBS J 2024; 291:1597-1614. [PMID: 36440547 PMCID: PMC10225019 DOI: 10.1111/febs.16693] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Inflammation is an essential immune response critical for responding to infection, injury and maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue repair by a timed and coordinated infiltration of diverse cell types and the secretion of growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as mammalian development, this type of physiological inflammation is highly associated with immunosuppression. For instance, regenerative inflammation is the consequence of an in situ macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes allowing the transition and dictating the initiation of the regenerative phase. Differences between a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy (DMD), highlight the importance of a coordinated response orchestrated by immune cells. During regenerative inflammation, these cells interact with others and alter the niche, affecting the character of inflammation itself and, therefore, the progression of tissue repair. Comparing acute muscle injury and chronic inflammation in DMD, we review how the same cells and molecules in different numbers, concentration and timing contribute to very different outcomes. Thus, it is important to understand and identify the distinct functions and secreted molecules of macrophages, and potentially other immune cells, during tissue repair, and the contributors to the macrophage switch leveraging this knowledge in treating diseases.
Collapse
Affiliation(s)
- Noemí Caballero-Sánchez
- Doctoral School of Molecular Cell and Immunobiology, Faculty of Medicine, University of Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
| | - Sergio Alonso-Alonso
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
- Departments Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| |
Collapse
|
177
|
Shu Y, Li K, Li J, Ding Y, Yang G, Zheng X. Ferrocene-functionalized polydopamine film timely mediates M1-to-M2 macrophage polarization through adaptive wettability. Colloids Surf B Biointerfaces 2024; 236:113825. [PMID: 38422668 DOI: 10.1016/j.colsurfb.2024.113825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Dynamical control of macrophage polarization from M1 (pro-inflammatory) to M2 (anti-inflammatory) at implant surfaces is essential for balancing innate immunity and tissue repair. In this aspect, the design of orthopedic implant that can response to inflammation microenvironment with transformation in surface properties has shown promising in timely driving M1-to-M2 macrophage transition. Considering excessive reactive oxygen species (ROS) contribute to macrophage M1 polarization and progression of inflammation, in this study, ferrocene modified polydopamine (PDA-Fc) films were deposited on plasma sprayed Ti coatings to endow the implants with ROS-responsive and -scavenging abilities. Plasma sprayed Ti (PST) coating and PDA modified PST coating (PST/PDA) served as control. The presence of PDA endowed PST/PDA and PST/PDA-Fc with free-radical scavenging abilities. Moreover, PST/PDA-Fc showed adaptive wettability as evidenced by increased hydrophilicity under H2O2 treatment. With respect to PST/PDA, PST/PDA-Fc exerted greater effects on inducing lipopolysaccharides-induced M1 macrophages to adopt M2-type macrophage phenotype, characterized by higher percentage of CD206-positive cells, increased cell elongation rate and higher expression level of anti-inflammatory cytokine arginase type 1. The results obtained in our study may provide a prospective approach for manipulating an appropriate immune response at implant surfaces.
Collapse
Affiliation(s)
- Ying Shu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China; Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, China.
| | - Jieping Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, China
| | - Yi Ding
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, China
| | - Guangzhi Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China.
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, China.
| |
Collapse
|
178
|
Deng X, Wu Y, Tang Y, Ge Z, Wang D, Zheng C, Zhao R, Lin W, Wang G. Microenvironment-responsive smart hydrogels with antibacterial activity and immune regulation for accelerating chronic wound healing. J Control Release 2024; 368:518-532. [PMID: 38462042 DOI: 10.1016/j.jconrel.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Current therapeutic strategies for chronic refractory wounds remain challenge owing to their unfavorable wound microenvironment and poor skin regeneration ability. Thus far, a regimen for effective chronic refractory wounds management involves bacterial elimination, alleviation of oxidative stress, inhibition of inflammatory response, and promotion of angiogenesis. In this work, an injectable glycopeptide hydrogel based on phenylboronic acid-grafted ϵ-polylysine (EPBA) and poly (vinyl alcohol) (PVA) with pH/reactive oxygen species (ROS) dual-responsive properties was prepared, which exerted intrinsic antibacterial and antioxidant properties. ROS-responsive micelles (MIC) loaded with herb-derived Astragaloside IV (AST) are introduced into the hydrogel before gelation. Attributed to the acidic condition and oxidative stress microenvironment of wound bed, the hydrogel gradually disintegrates, and the released EPBA could help to eliminate bacterial. Meanwhile, the subsequential release of AST could help to achieve anti-oxidation, anti-inflammatory, proangiogenic effects, and regulation of macrophage polarization to accelerate chronic wound healing. In addition, the wound repair mechanism of composite hydrogel accelerating skin regeneration was assessed by RNA-sequencing, exploring a range of potential targets and pathway for further study. Collectively, this multifunctional hydrogel dressing, matching different healing stages of tissue remodeling, holds a great potential for the treatment of chronic refractory wounds.
Collapse
Affiliation(s)
- Xiangtian Deng
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Wu
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China
| | - YunFeng Tang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zilu Ge
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Renliang Zhao
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
179
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
180
|
Kong Q, Gao S, Li P, Sun H, Zhang Z, Yu X, Deng F, Wang T. Calcitonin gene-related peptide-modulated macrophage phenotypic alteration regulates angiogenesis in early bone healing. Int Immunopharmacol 2024; 130:111766. [PMID: 38452411 DOI: 10.1016/j.intimp.2024.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of calcitonin gene-related peptide (CGRP) on the temporal alteration of macrophage phenotypes and macrophage-regulated angiogenesis duringearlybonehealing and preliminarily elucidate the mechanism. METHODS In vivo, the rat mandibular defect models were established with inferior alveolar nerve transection (IANT) or CGRP receptor antagonist injection. Radiographicandhistologic assessments for osteogenesis, angiogenesis, and macrophage phenotypic alteration within bone defects were performed. In vitro, the effect and mechanism of CGRP on macrophage polarization and phenotypic alteration were analyzed. Then the conditioned medium (CM) from CGRP-treated M1 or M2 macrophages was used to culture human umbilical vein endothelial cells (HUVECs), and the CGRP's effect on macrophage-regulated angiogenesis was detected. RESULTS Comparable changes following IANT and CGRP blockade within bone defects were observed, including the suppression of early osteogenesis and angiogenesis, the prolonged M1 macrophage infiltration and the prohibited transition toward M2 macrophages around vascular endothelium. In vitro experiments showed that CGRP promoted M2 macrophage polarization while upregulating the expression of interleukin 6 (IL-6), a major cytokine that facilitates the transition from M1 to M2-dominant stage, in M1 macrophages via the activation of Yes-associated protein 1. Moreover, CGRP-treated macrophage-CM showed an anabolic effect on HUVECs angiogenesis compared with macrophage-CM and might prevail over the direct effect of CGRP on HUVECs. CONCLUSIONS Collectively, our results reveal the effect of CGRP on M1 to M2 macrophage phenotypic alteration possibly via upregulating IL-6 in M1 macrophages, and demonstrate the macrophage-regulated pro-angiogenic potential of CGRP in early bone healing.
Collapse
Affiliation(s)
- Qingci Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Siyong Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Pugeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hanyu Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaolin Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Tianlu Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
181
|
Xu Y, Ying L, Lang JK, Hinz B, Zhao R. Modeling mechanical activation of macrophages during pulmonary fibrogenesis for targeted anti-fibrosis therapy. SCIENCE ADVANCES 2024; 10:eadj9559. [PMID: 38552026 PMCID: PMC10980276 DOI: 10.1126/sciadv.adj9559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Pulmonary fibrosis is an often fatal lung disease. Immune cells such as macrophages were shown to accumulate in the fibrotic lung, but their contribution to the fibrosis development is unclear. To recapitulate the involvement of macrophages in the development of pulmonary fibrosis, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissues became mechanically activated. The resulting co-alignment of macrophages, collagen fibers, and fibroblasts promoted widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMβ2 and Rho-associated kinase 2. These results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by macrophages. The cocultured microtissue model is a powerful tool to study the immune-stromal cell interactions and the anti-fibrosis drug mechanism.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Linxuan Ying
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jennifer K. Lang
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York; Veterans Affairs Western New York Health Care System, University at Buffalo, State University of New York; Department of Biomedical Engineering, University at Buffalo, State University of New York; Department of Medicine, University at Buffalo, State University of New York; Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
182
|
Peng Y, Guo Y, Ge X, Gong Y, Wang Y, Ou Z, Luo G, Zhan R, Zhang Y. Construction of programmed time-released multifunctional hydrogel with antibacterial and anti-inflammatory properties for impaired wound healing. J Nanobiotechnology 2024; 22:126. [PMID: 38519957 PMCID: PMC10960406 DOI: 10.1186/s12951-024-02390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
The successful reprogramming of impaired wound healing presents ongoing challenges due to the impaired tissue microenvironment caused by severe bacterial infection, excessive oxidative stress, as well as the inappropriate dosage timing during different stages of the healing process. Herein, a dual-layer hydrogel with sodium alginate (SA)-loaded zinc oxide (ZnO) nanoparticles and poly(N-isopropylacrylamide) (PNIPAM)-loaded Cu5.4O ultrasmall nanozymes (named programmed time-released multifunctional hydrogel, PTMH) was designed to dynamically regulate the wound inflammatory microenvironment based on different phases of wound repairing. PTMH combated bacteria at the early phase of infection by generating reactive oxygen species through ZnO under visible-light irradiation with gradual degradation of the lower layer. Subsequently, when the upper layer was in direct contact with the wound tissue, Cu5.4O ultrasmall nanozymes were released to scavenge excessive reactive oxygen species. This neutralized a range of inflammatory factors and facilitated the transition from the inflammatory phase to the proliferative phase. Furthermore, the utilization of Cu5.4O ultrasmall nanozymes enhanced angiogenesis, thereby facilitating the delivery of oxygen and nutrients to the impaired tissue. Our experimental findings indicate that PTMHs promote the healing process of diabetic wounds with bacterial infection in mice, exhibiting notable antibacterial and anti-inflammatory properties over a specific period of time.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yicheng Guo
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin Ge
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yali Gong
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuhan Wang
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zelin Ou
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
183
|
He J, Zhou S, Wang J, Sun B, Ni D, Wu J, Peng X. Anti-inflammatory and anti-oxidative electrospun nanofiber membrane promotes diabetic wound healing via macrophage modulation. J Nanobiotechnology 2024; 22:116. [PMID: 38493156 PMCID: PMC10943854 DOI: 10.1186/s12951-024-02385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND In the inflammatory milieu of diabetic chronic wounds, macrophages undergo substantial metabolic reprogramming and play a pivotal role in orchestrating immune responses. Itaconic acid, primarily synthesized by inflammatory macrophages as a byproduct in the tricarboxylic acid cycle, has recently gained increasing attention as an immunomodulator. This study aims to assess the immunomodulatory capacity of an itaconic acid derivative, 4-Octyl itaconate (OI), which was covalently conjugated to electrospun nanofibers and investigated through in vitro studies and a full-thickness wound model of diabetic mice. RESULTS OI was feasibly conjugated onto chitosan (CS), which was then grafted to electrospun polycaprolactone/gelatin (PG) nanofibers to obtain P/G-CS-OI membranes. The P/G-CS-OI membrane exhibited good mechanical strength, compliance, and biocompatibility. In addition, the sustained OI release endowed the nanofiber membrane with great antioxidative and anti-inflammatory activities as revealed in in vitro and in vivo studies. Specifically, the P/G-CS-OI membrane activated nuclear factor-erythroid-2-related factor 2 (NRF2) by alkylating Kelch-like ECH-associated protein 1 (KEAP1). This antioxidative response modulates macrophage polarization, leading to mitigated inflammatory responses, enhanced angiogenesis, and recovered re-epithelization, finally contributing to improved healing of mouse diabetic wounds. CONCLUSIONS The P/G-CS-OI nanofiber membrane shows good capacity in macrophage modulation and might be promising for diabetic chronic wound treatment.
Collapse
Affiliation(s)
- Jibing He
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Shasha Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.
| |
Collapse
|
184
|
Liu J, Chen Z, Liu H, Qin S, Li M, Shi L, Zhou C, Liao T, Li C, Lv Q, Liu M, Zou M, Deng Y, Wang Z, Wang L. Nickel-Based Metal-Organic Frameworks Promote Diabetic Wound Healing via Scavenging Reactive Oxygen Species and Enhancing Angiogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305076. [PMID: 37909382 DOI: 10.1002/smll.202305076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Chronic diabetic wounds remain a worldwide challenge for both the clinic and research. Given the vicious circle of oxidative stress and inflammatory response as well as the impaired angiogenesis of the diabetic wound tissues, the wound healing process is disturbed and poorly responds to the current treatments. In this work, a nickel-based metal-organic framework (MOF, Ni-HHTP) with excellent antioxidant activity and proangiogenic function is developed to accelerate the healing process of chronic diabetic wounds. The Ni-HHTP can mimic the enzymatic catalytic activities of antioxidant enzymes to eliminate multi-types of reactive species through electron transfer reactions, which protects cells from oxidative stress-related damage. Moreover, this Ni-based MOF can promote cell migration and angiogenesis by activating transforming growth factor-β1 (TGF-β1) in vitro and reprogram macrophages to the anti-inflammatory phenotype. Importantly, Ni-HHTP effectively promotes the healing process of diabetic wounds by suppressing the inflammatory response and enhancing angiogenesis in vivo. This study reports a versatile and promising MOF-based nanozyme for diabetic wound healing, which may be extended in combination with other wound dressings to enhance the management of diabetic or non-healing wounds.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhongyin Chen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huan Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sumei Qin
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mingyi Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Liao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
185
|
Yang P, Lu Y, Gou W, Qin Y, Tan J, Luo G, Zhang Q. Glycosaminoglycans' Ability to Promote Wound Healing: From Native Living Macromolecules to Artificial Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305918. [PMID: 38072674 PMCID: PMC10916610 DOI: 10.1002/advs.202305918] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/25/2023] [Indexed: 03/07/2024]
Abstract
Glycosaminoglycans (GAGs) are important for the occurrence of signaling molecules and maintenance of microenvironment within the extracellular matrix (ECM) in living tissues. GAGs and GAG-based biomaterial approaches have been widely explored to promote in situ tissue regeneration and repair by regulating the wound microenvironment, accelerating re-epithelialization, and controlling ECM remodeling. However, most approaches remain unacceptable for clinical applications. To improve insights into material design and clinical translational applications, this review highlights the innate roles and bioactive mechanisms of native GAGs during in situ wound healing and presents common GAG-based biomaterials and the adaptability of application scenarios in facilitating wound healing. Furthermore, challenges before the widespread commercialization of GAG-based biomaterials are shared, to ensure that future designed and constructed GAG-based artificial biomaterials are more likely to recapitulate the unique and tissue-specific profile of native GAG expression in human tissues. This review provides a more explicit and clear selection guide for researchers designing biomimetic materials, which will resemble or exceed their natural counterparts in certain functions, thereby suiting for specific environments or therapeutic goals.
Collapse
Affiliation(s)
- Peng Yang
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yifei Lu
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Weiming Gou
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yiming Qin
- Department of Dermatology and Laboratory of DermatologyClinical Institute of Inflammation and ImmunologyFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengdu610041China
| | - Jianglin Tan
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Qing Zhang
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| |
Collapse
|
186
|
Liu J, Li F, Ouyang Y, Su Z, Chen D, Liang Z, Zhang Z, Lin R, Luo T, Guo L. Naringin-induced M2 macrophage polarization facilitates osteogenesis of BMSCs and improves cranial bone defect healing in rat. Arch Biochem Biophys 2024; 753:109890. [PMID: 38246327 DOI: 10.1016/j.abb.2024.109890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Osteoimmunology has uncovered the critical role of the immune microenvironment in the bone healing process, with macrophages playing a central part in generating immune responses via chemokine production. Naringin, a flavanone glycoside extracted from various plants, has been shown to promote osteoblast differentiation, thereby enhancing bone formation and mitigating osteoporosis progression. Current research on the osteogenic mechanism primarily focuses on the direct impact of naringin on mesenchymal stem cells, while its indirect immunoregulatory effects remain elusive. In this study, we investigated the bone defect-enhancing effects of varying naringin concentrations in vivo using a cranial bone defect model in Sprague-Dawley rats. We assessed the osteoimmune modulation capacity of naringin by exposing lipopolysaccharide (LPS)-induced RAW 264.7 macrophages to different doses of naringin. To further elucidate the underlying osteogenic enhancement mechanism, Bone Marrow Stromal Cells (BMSCs) derived from mice were treated with conditioned media from naringin-treated macrophages. Our findings indicated that naringin promotes M2 phenotype polarization in macrophages, as evidenced by the downregulation of pro-inflammatory cytokines Inducible Nitric Oxide Synthase (iNOS), interleukin (IL)-1β, and Tumor Necrosis Factor (TNF)-α, and the upregulation of anti-inflammatory cytokine Transforming growth factor (TGF)-β. Transcriptome analysis revealed that differentially expressed genes were significantly enriched in osteoblast differentiation and anti-inflammatory response pathways in naringin-pretreated macrophages, with the cytokines signaling pathway being upregulated. The conditioned media from naringin-treated macrophages stimulated the expression of osteogenic-related genes Alkaline phosphatase (Alp), osteocalcin (Ocn), osteopontin (Opn), and Runt-related transcription factor (Runx) 2, as well as protein expression in BMSCs. In conclusion, naringin alleviates macrophage inflammation by promoting M2 phenotype polarization, which in turn enhances the osteogenic differentiation of BMSCs, contributing to its bone healing effects in vivo. These results suggest that naringin holds significant potential for improving bone defect healing through osteoimmune modulation.
Collapse
Affiliation(s)
- Jiaohong Liu
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Fuyao Li
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yuanting Ouyang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhikang Su
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ding Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zitian Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhiyi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ruofei Lin
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Luo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| | - Lvhua Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
187
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
188
|
Zhang B, Chen J, Zhu Z, Zhang X, Wang J. Advances in Immunomodulatory MOFs for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307299. [PMID: 37875731 DOI: 10.1002/smll.202307299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Indexed: 10/26/2023]
Abstract
Given the crucial role of immune system in the occurrence and progression of various diseases such as cancer, wound healing, bone defect, and inflammation-related diseases, immunomodulation is recognized as a potential solution for treatment of these diseases. Immunomodulation includes both immunosuppression in hyperactive immune conditions and immune activation in hypoactive conditions. For these purposes, metal-organic frameworks (MOFs) are investigated to modulate immune responses either by their own bioactivities or by delivering immunomodulatory agents due to their excellent biodegradability and high delivery capacity. This review starts with an overview of the synthesis strategies of immunomodulatory MOFs, followed by a summarization on the latest applications of immunomodulatory MOFs in cancer immunomodulatory, wound healing, inflammatory disease, and bone tissue engineering. A variety of design considerations, in order to optimize immunomodulatory properties and efficacy of MOFs, is also involved. Last, the challenges and perspectives of future research, which are expected to provide researchers with new insight into the design and application of immunomodulatory MOFs, are discussed.
Collapse
Affiliation(s)
- Binjing Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
189
|
Su DB, Zhao ZX, Yin DC, Ye YJ. Promising application of pulsed electromagnetic fields on tissue repair and regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:36-50. [PMID: 38280492 DOI: 10.1016/j.pbiomolbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.
Collapse
Affiliation(s)
- Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
190
|
Huang M, Shao H, Zhang S, Gao H, Feng S, Sun L, Yu C, Du X, Chen J, Li Y. Single-Dose Radial Extracorporeal Shock Wave Therapy Modulates Inflammation During Meniscal Tear Healing in the Avascular Zone. Am J Sports Med 2024; 52:710-720. [PMID: 38353544 DOI: 10.1177/03635465231221725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND Extracorporeal shock wave therapy (ESWT) promotes tissue healing by modulating inflammation, which has implications for meniscal tear healing in the avascular zone. PURPOSE To evaluate the effects of a single dose of radial ESWT on the healing process and inflammation of the meniscus and knee joints after meniscal tears in the avascular zone. STUDY DESIGN Controlled laboratory study. METHODS Avascular tears were induced in the medial meniscus (MM) of 72 Sprague-Dawley rats. One week postoperatively, the rats received a single session of radial ESWT with a Power+ handpiece (ESWT group; n = 36) or with a fake handpiece (sham-ESWT group; n = 36). The rats were then euthanized at 2, 4, or 8 weeks postoperatively. The MMs were harvested for analysis of healing (hematoxylin-eosin, safranin O-Fast Green, and collagen type 2 staining) and inflammation (interleukin [IL]-1β and IL-6 staining). Lateral menisci and synovia were obtained to evaluate knee joint inflammation (enzyme-linked immunosorbent assay of IL-1β and IL-6). Cartilage degeneration was assessed in the femurs and tibial plateaus using safranin O-Fast Green staining. RESULTS The ESWT group showed significantly better meniscal healing scores than the sham-ESWT group at 4 (P = .0066) and 8 (P = .0050) weeks postoperatively. The IL-1β level was significantly higher in the sham-ESWT group than in the ESWT group at 2 (MM: P = .0009; knee joint: P = .0160) and 8 (MM: P = .0399; knee joint: P = .0001) weeks. The IL-6 level was significantly lower in the sham-ESWT group than in the ESWT group at 2 (knee joint: P = .0184) and 4 (knee joint: P = .0247) weeks but higher at 8 weeks (MM: P = .0169; knee joint: P = .0038). The sham group had significantly higher osteoarthritis scores than the ESWT group at 4 (tibial plateau: P = .0157) and 8 (femur: P = .0048; tibial plateau: P = .0359) weeks. CONCLUSION A single dose of radial ESWT promoted meniscal tear healing in the avascular zone, modulated inflammatory factors in the menisci and knee joints in rats, and alleviated cartilage degeneration. CLINICAL RELEVANCE Radial ESWT can be considered a potential option for improving meniscal tear healing in the avascular zone because of its ability to modulate inflammation.
Collapse
Affiliation(s)
- Mingru Huang
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Shao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shurong Zhang
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Han Gao
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Sijia Feng
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Luyi Sun
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chengxuan Yu
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiner Du
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunxia Li
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
191
|
Liu W, Yang Y, Li M, Mo J. Double cross-linked graphene oxide hydrogel for promoting healing of diabetic ulcers. Front Chem 2024; 12:1355646. [PMID: 38456184 PMCID: PMC10917884 DOI: 10.3389/fchem.2024.1355646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
This study explores the synthesis and characterization of a novel double cross-linked hydrogel composed of polyvinyl alcohol (PVA), sodium alginate (SA), graphene oxide (GO), and glutathione (GSH), henceforth referred to as PVA/SA/GO/GSH. This innovative hydrogel system incorporates two distinct types of cross-linking networks and is meticulously engineered to exhibit sensitivity to high glucose and/or reactive oxygen species (ROS) environments. A sequential approach was adopted in the hydrogel formation. The initial phase involved the absorption of GSH onto GO, which was subsequently functionalized with boric acid and polyethylene glycol derivatives via a bio-orthogonal click reaction. This stage constituted the formation of the first chemically cross-linked network. Subsequently, freeze-thaw cycles were utilized to induce a secondary cross-linking process involving PVA and SA, thereby forming the second physically cross-linked network. The resultant PVA/SA/GO/GSH hydrogel retained the advantageous hydrogel properties such as superior water retention capacity and elasticity, and additionally exhibited the ability to responsively release GSH under changes in glucose concentration and/or ROS levels. This feature finds particular relevance in the therapeutic management of diabetic ulcers. Preliminary in vitro evaluation affirmed the hydrogel's biocompatibility and its potential to promote cell migration, inhibit apoptosis, and exhibit antibacterial properties. Further in vivo studies demonstrated that the PVA/SA/GO/GSH hydrogel could facilitate the healing of diabetic ulcer sites by mitigating oxidative stress and regulating glucose levels. Thus, the developed PVA/SA/GO/GSH hydrogel emerges as a promising candidate for diabetic ulcer treatment, owing to its specific bio-responsive traits and therapeutic efficacy.
Collapse
Affiliation(s)
- Wenxu Liu
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Yunfang Yang
- Health Management Centre, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Meiying Li
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Jingxin Mo
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
192
|
Zhang W, Zhao S, Guan Q, Li P, Fan Y. Enhancing Chronic Wound Healing through Engineering Mg 2+-Coordinated Asiatic Acid/Bacterial Cellulose Hybrid Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8238-8249. [PMID: 38345938 DOI: 10.1021/acsami.3c14690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Infectious chronic wounds have gradually become a major clinical problem due to their high prevalence and poor treatment outcomes. The urgent need for wound dressings with immune modulatory, antibacterial, and angiogenic properties has led to the development of innovative solutions. Asiatic acid (AA), derived from herbs, has demonstrated excellent antibacterial, anti-inflammatory, and angiogenic effects, making it a promising candidate for incorporation into hydrogel carriers for wound healing. However, there is currently no available report on AA-based self-assembled hydrogels. Here, a novel hybrid hydrogel dressing consists of interpenetrating polymer networks composed of self-assembled magnesium ion (Mg2+) coordinated asiatic acid (AA-Mg) and bacterial cellulose (BC) is developed to promote infected chronic wound healing. A natural carrier-free self-assembled AA-Mg hydrogel with good injectable and self-healing properties could maintain the sustained release of AA and Mg2+ over an extended period. Notably, the introduction of Mg2+ boosted some pharmacological effects of self-assembled hydrogels due to its excellent anti-inflammatory and angiogenesis. In vitro studies confirmed the exceptional biocompatibility, antibacterial efficacy, and anti-inflammatory potential of the AA-Mg/BC hybrid hydrogel, which also exhibited a commendable mechanical strength. Furthermore, in vivo biological results displayed that the hybrid hydrogel significantly accelerated the wound healing process by boosting dense and organized collagen deposition and the granulation tissue and benefiting revascularization. The introduced self-assembled AA-Mg-based hydrogel offers a promising solution for the effective management of chronic wounds. This universal strategy for the preparation of self-assembled hydrogels modulated with bioactive divalent metal ions is able to excavate more herbal small molecules to construct new self-assembled biomaterials.
Collapse
Affiliation(s)
- Wenxin Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Centerfor Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
| | - Shubi Zhao
- Department of Critical Care Medicine, Shenzhen People's Hospital, No. 3046 Shennan East Road, Shenzhen 518020, China
| | - Qifeng Guan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Centerfor Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Centerfor Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Centerfor Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
- School of Medical Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
193
|
Li J, Gao X, Li S, Zhang X, Guo J, Wang B, Jin Y, Zhang J, Yang X, Wang E. Wound microenvironment self-adaptive all-in-one hydrogel for rapid healing of the diabetic wound. J Mater Chem B 2024; 12:2070-2082. [PMID: 38305057 DOI: 10.1039/d3tb02426a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The natural healing of diabetic wounds is collectively impeded by multiple factors, including hyperglycemia, angiogenesis disorders, acute oxidative stress, and prolonged inflammation. Although considerable effort has been devoted to solving these problems, the treatment of diabetic wounds remains a major clinical obstacle. In light of this, we developed an innovative wound microenvironment self-adaptive hydrogel to promote the healing of diabetic wounds. The hydrogel was constructed by the crosslinking of 3-aminobenzeneboronic acid (PBA)-modified gelatin (Gel) and polyvinyl alcohol (PVA) by borate ester bonds, which showed high responsiveness to glucose. Meanwhile, the liposomes that encapsulated metformin, L-arginine, and L(+)-ascorbic acid were incorporated into the hydrogel framework. The hydrogel@lipo composite demonstrated shape adaptability, glucose responsiveness, and all-in-one capability, thereby effectively improving the intricate microenvironment of diabetic wounds. In vitro and in vivo experiments demonstrated the ability of hydrogel@lipo to mitigate oxidative stress, enhance angiogenesis, and attenuate inflammatory responses. Consequently, the hydrogel@lipo could accelerate diabetic wound healing (within two weeks). The cumulative findings strongly suggest the potential of hydrogel@lipo as a highly promising therapeutic dressing for advancing diabetic wound recovery.
Collapse
Affiliation(s)
- Jingjing Li
- College of Nursing, Hebei University, Baoding 071002, P. R. China.
| | - Xin Gao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
| | - Shaochun Li
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Baoding 071002, P. R. China
| | - Xinyu Zhang
- College of Nursing, Hebei University, Baoding 071002, P. R. China.
| | - Jiamin Guo
- College of Nursing, Hebei University, Baoding 071002, P. R. China.
| | - Bei Wang
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Baoding 071002, P. R. China
| | - Yi Jin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Baoding 071002, P. R. China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
| | - Xinjian Yang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
| | - Enjun Wang
- College of Nursing, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
194
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
195
|
Wu Y, Li L, Ning Z, Li C, Yin Y, Chen K, Li L, Xu F, Gao J. Autophagy-modulating biomaterials: multifunctional weapons to promote tissue regeneration. Cell Commun Signal 2024; 22:124. [PMID: 38360732 PMCID: PMC10868121 DOI: 10.1186/s12964-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 02/17/2024] Open
Abstract
Autophagy is a self-renewal mechanism that maintains homeostasis and can promote tissue regeneration by regulating inflammation, reducing oxidative stress and promoting cell differentiation. The interaction between biomaterials and tissue cells significantly affects biomaterial-tissue integration and tissue regeneration. In recent years, it has been found that biomaterials can affect various processes related to tissue regeneration by regulating autophagy. The utilization of biomaterials in a controlled environment has become a prominent approach for enhancing the tissue regeneration capabilities. This involves the regulation of autophagy in diverse cell types implicated in tissue regeneration, encompassing the modulation of inflammatory responses, oxidative stress, cell differentiation, proliferation, migration, apoptosis, and extracellular matrix formation. In addition, biomaterials possess the potential to serve as carriers for drug delivery, enabling the regulation of autophagy by either activating or inhibiting its processes. This review summarizes the relationship between autophagy and tissue regeneration and discusses the role of biomaterial-based autophagy in tissue regeneration. In addition, recent advanced technologies used to design autophagy-modulating biomaterials are summarized, and rational design of biomaterials for providing controlled autophagy regulation via modification of the chemistry and surface of biomaterials and incorporation of cells and molecules is discussed. A better understanding of biomaterial-based autophagy and tissue regeneration, as well as the underlying molecular mechanisms, may lead to new possibilities for promoting tissue regeneration. Video Abstract.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zuojun Ning
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Changrong Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Kaiyuan Chen
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Lu Li
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Fei Xu
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
196
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
197
|
Wei H, Deng M, Ding R, Wei L, Yuan H. Macrophage β2-AR activation amplifies inflammation in wound healing by upregulating Trem1 via the cAMP/PKA/CREB pathway. Int Immunopharmacol 2024; 128:111463. [PMID: 38190789 DOI: 10.1016/j.intimp.2023.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Inflammation is an important part of the wound healing process. The stress hormone epinephrine has been demonstrated to modulate the inflammatory response via its interaction with β2-adrenergic receptor (β2-AR). However, the precise molecular mechanism through which β2-AR exerts its influence on inflammation during the wound healing process remains an unresolved question. METHODS Transcriptome datasets of wound and macrophages from the GEO database were reanalyzed using bioinformatics. The role of β2-AR in wound healing was explored by a mouse hind paw plantar wound model, and histological analyses were performed to assess wound healing. In vivo and in vitro assays were performed to elucidate the role of β2-AR on the inflammatory response. Triggering receptor expressed on myeloid cells 1 (Trem1) was knocked down with siRNA on RAW cells and western blot and qPCR assays were performed. RESULTS Trem1 was upregulated within 24 h of wounding, and macrophage β2-AR activation also upregulated Trem1. In vivo experiments demonstrated that β2-AR agonists impaired wound healing, accompanied by upregulation of Trem1 and activation of cAMP/PKA/CREB pathway, as well as by a high level of pro-inflammatory cytokine production. In vitro experiments showed that macrophage β2-AR activation amplified LPS-induced inflammation, and knockdown of Trem1 reversed this effect. Using activator and inhibitor of cAMP, macrophage β2-AR activation was confirmed to upregulate Trem1 via the cAMP/PKA/CREB pathway. CONCLUSION Our study found that β2-AR agonists increase Trem1 expression in wounds, accompanied by amplification of the inflammatory response, impairing wound healing. β2-AR activation in RAW cells induces Trem1 upregulation via the cAMP/PKA/CREB pathway and amplifies LPS-induced inflammatory responses.
Collapse
Affiliation(s)
- Huawei Wei
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Liangtian Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
198
|
Bhar B, Ranta P, Samudrala PK, Mandal BB. Omentum Extracellular Matrix-Silk Fibroin Hydroscaffold Promotes Wound Healing through Vascularization and Tissue Remodeling in the Diabetic Rat Model. ACS Biomater Sci Eng 2024; 10:1090-1105. [PMID: 38275123 DOI: 10.1021/acsbiomaterials.3c01877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Nonhealing diabetic wounds are often associated with significant mortality and cause economic and clinical burdens to the healthcare system. Herein, a biomimetic hydroscaffold is developed using omentum tissue-derived decellularized-extracellular matrix (dECM) and silk fibroin (SF) proteins that associate the behavior of a collagenous fibrous scaffold and a hydrogel to reproduce all aspects of the provisional skin tissue matrix. The chemical cross-linker-free in situ gelation property of the two types of SF proteins from Bombyx mori and Antheraea assamensis ensures the adherence of dECM with surrounding tissue on the wound bed, circumventing further suturing. The physicochemical and mechanical properties of the composite hydroscaffold (SF-dECM) were thoroughly evaluated. The hydroscaffolds were found to support the growth and proliferation of human dermal fibroblasts and influence the angiogenic potential of endothelial cells under in vitro conditions. Furthermore, the healing efficacy of the composites was evaluated by generating full-thickness wounds on a streptozotocin-induced diabetic rat model. The presence of dECM components in the composite facilitated the rate of wound closure, granulation tissue formation, and re-epithelialization by providing intrinsic cues to advance the inflammatory stage and stimulating angiogenesis. Collectively, as an off-the-shelf wound dressing requiring only a single topical administration, the SF-dECM hydroscaffold is a promising, cost-effective dressing for the management of chronic diabetic wounds.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyanka Ranta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
199
|
Li W, Xiang Z, Yu W, Huang X, Jiang Q, Abumansour A, Yang Y, Chen C. Natural compounds and mesenchymal stem cells: implications for inflammatory-impaired tissue regeneration. Stem Cell Res Ther 2024; 15:34. [PMID: 38321524 PMCID: PMC10848428 DOI: 10.1186/s13287-024-03641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/21/2024] [Indexed: 02/08/2024] Open
Abstract
Inflammation is a common and important pathological process occurring in any part of the body and relating to a variety of diseases. Effective tissue repair is critical for the survival of impaired organisms. Considering the side effects of the currently used anti-inflammatory medications, new therapeutic agents are urgently needed for the improvement of regenerative capacities of inflammatory-impaired tissues. Mesenchymal stromal stem/progenitor cells (MSCs) are characterized by the capabilities of self-renewal and multipotent differentiation and exhibit immunomodulatory capacity. Due to the ability to modulate inflammatory phenotypes and immune responses, MSCs have been considered as a potential alternative therapy for autoimmune and inflammatory diseases. Natural compounds (NCs) are complex small multiple-target molecules mostly derived from plants and microorganisms, exhibiting therapeutic effects in many disorders, such as osteoporosis, diabetes, cancer, and inflammatory/autoimmune diseases. Recently, increasing studies focused on the prominent effects of NCs on MSCs, including the regulation of cell survival and inflammatory response, as well as osteogenic/adipogenic differentiation capacities, which indicate the roles of NCs on MSC-based cytotherapy in several inflammatory diseases. Their therapeutic effects and fewer side effects in numerous physiological processes, compared to chemosynthetic drugs, made them to be a new therapeutic avenue combined with MSCs for impaired tissue regeneration. Here we summarize the current understanding of the influence of NCs on MSCs and related downstream signaling pathways, specifically in pathological inflammatory conditions. In addition, the emerging concepts through the combination of NCs and MSCs to expand the therapeutic perspectives are highlighted. A promising MSC source from oral/dental tissues is also discussed, with a remarkable potential for MSC-based therapy in future clinical applications.
Collapse
Affiliation(s)
- Wen Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zichao Xiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenjing Yu
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
| | - Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
| | - Arwa Abumansour
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Yang
- Research and Innovation Oral Care, Colgate-Palmolive Company, Piscataway, NJ, USA
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA.
- Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
200
|
Hsu WL, Lin YC, Lin MJ, Wang YW, Lee SJ. Macrophages enhance regeneration of lateral line neuromast derived from interneuromast cells through TGF-β in zebrafish. Dev Growth Differ 2024; 66:133-144. [PMID: 38281811 DOI: 10.1111/dgd.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Macrophages play a pivotal role in the response to injury, contributing significantly to the repair and regrowth of damaged tissues. The external lateral line system in aquatic organisms offers a practical model for studying regeneration, featuring interneuromast cells connecting sensory neuromasts. Under normal conditions, these cells remain dormant, but their transformation into neuromasts occurs when overcoming inhibitory signals from Schwann cells and posterior lateral line nerves. The mechanism enabling interneuromast cells to evade inhibition by Schwann cells remains unclear. Previous observations suggest that macrophages physically interact with neuromasts, nerves, and Schwann cells during regeneration. This interaction leads to the regeneration of neuromasts in a subset of zebrafish with ablated neuromasts. To explore whether macrophages achieve this effect through secreted cytokines, we conducted experiments involving tail amputation in zebrafish larvae and tested the impact of cytokine inhibitors on neuromast regeneration. Most injured larvae remarkably regenerated a neuromast within 4 days post-amputation. Intriguingly, removal of macrophages and inhibition of the anti-inflammatory cytokine transforming growth factor-beta (TGF-β) significantly delayed neuromast regeneration. Conversely, inhibition of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) had minor effects on the regeneration process. This study provides insights into how macrophages activate interneuromast cells, elucidating the pathways underlying neuromast regeneration.
Collapse
Affiliation(s)
- Wei-Lin Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Meng-Ju Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Wang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|