151
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
152
|
Archer D, Perez-Muñoz ME, Tollenaar S, Veniamin S, Cheng CC, Richard C, Barreda DR, Field CJ, Walter J. The importance of the timing of microbial signals for perinatal immune system development. MICROBIOME RESEARCH REPORTS 2023; 2:11. [PMID: 38047281 PMCID: PMC10688825 DOI: 10.20517/mrr.2023.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 12/05/2023]
Abstract
Background: Development and maturation of the immune system begin in utero and continue throughout the neonatal period. Both the maternal and neonatal gut microbiome influence immune development, but the relative importance of the prenatal and postnatal periods is unclear. Methods: In the present study, we characterized immune cell populations in mice in which the timing of microbiome colonization was strictly controlled using gnotobiotic methodology. Results: Compared to conventional (CONV) mice, germ-free (GF) mice conventionalized at birth (EC mice) showed few differences in immune cell populations in adulthood, explaining only 2.36% of the variation in immune phenotypes. In contrast, delaying conventionalization to the fourth week of life (DC mice) affected seven splenic immune cell populations in adulthood, including dendritic cells and regulatory T cells (Tregs), explaining 29.01% of the variation in immune phenotypes. Early life treatment of DC mice with Limosilactobacillus reuteri restored splenic dendritic cells and Tregs to levels observed in EC mice, and there were strain-specific effects on splenic CD4+ T cells, CD8+ T cells, and CD11c+ F4/80+ mononuclear phagocytes. Conclusion: This work demonstrates that the early postnatal period, compared to the prenatal period, is relatively more important for microbial signals to influence immune development in mice. Our findings further show that targeted microbial treatments in early life can redress adverse effects on immune development caused by the delayed acquisition of the neonatal gut microbiome.
Collapse
Affiliation(s)
- Dale Archer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Simona Veniamin
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Christopher C. Cheng
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Caroline Richard
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Catherine J. Field
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
153
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and immune system non-genetically affect offspring phenotypes transgenerationally. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535940. [PMID: 37066207 PMCID: PMC10104111 DOI: 10.1101/2023.04.06.535940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The host-microbiota relationship has evolved to shape mammalian processes, including immunity, metabolism, and development 1-3 . Host phenotypes change in direct response to microbial exposures by the individual. Here we show that the microbiota induces phenotypic change not only in the individual but also in their succeeding generations of progeny. We found that germ-free mice exhibit a robust sebum secretion defect and transcriptional changes in various organs, persisting across multiple generations despite microbial colonization and breeding with conventional mice. Host-microbe interactions could be involved in this process, since T cell-deficient mice, which display defective sebum secretion 4 , also transgenerationally transmit their phenotype to progeny. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that epigenetic information in the gametes is required for phenotypic transmission. Accordingly, small non-coding RNAs that can regulate embryonic gene expression 5 were strikingly and similarly altered in gametes of germ-free and T cell-deficient mice. Thus, we have uncovered a novel mechanism whereby the microbiota and immune system induce phenotypic changes in successive generations of offspring. This epigenetic form of inheritance could be advantageous for host adaptation to environmental perturbation, where phenotypic diversity can be introduced more rapidly than by genetic mutation.
Collapse
|
154
|
Ito Y, Amagai M. Dissecting skin microbiota and microenvironment for the development of therapeutic strategies. Curr Opin Microbiol 2023; 74:102311. [PMID: 37019058 DOI: 10.1016/j.mib.2023.102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
The skin is a pivotal barrier between the human body and the environment, and is a habitat for numerous microorganisms. While host-microbiota interactions in the skin are essential for homeostasis, disturbances in microbial composition and the abnormal growth of certain bacteria are associated with various diseases. Here, we identify strains and communities of skin commensals that contribute to or impair skin barrier function. Furthermore, we discuss the skin microenvironments suitable for specific microbiota that exert therapeutic effects and suggest focus areas for the prospective development of therapeutic strategies using bacterial agents. Finally, we highlight recent efforts to treat skin diseases associated with live bacteria.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
155
|
Si Y, Zhang Y, Zuloaga K, Yang Q. The role of innate lymphocytes in regulating brain and cognitive function. Neurobiol Dis 2023; 179:106061. [PMID: 36870457 PMCID: PMC11194859 DOI: 10.1016/j.nbd.2023.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Mounting evidence indicates complex interaction between the immune system and the nervous system, challenging the traditional view about the immune privilege of the brain. Innate lymphoid cells (ILCs) and innate-like T cells are unique families of immune cells that functionally mirror traditional T cells but may function via antigen- and T cell antigen receptor (TCR)-independent mechanisms. Recent work indicates that various ILCs and innate-like T cell subsets are present in the brain barrier tissue, where they play important roles in regulating brain barrier integrity, brain homeostasis and cognitive function. In this review, we discuss recent advances in understanding the intricate roles for innate and innate-like lymphocytes in regulating brain and cognitive function.
Collapse
Affiliation(s)
- Youwen Si
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Kristen Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
156
|
Frascoli M, Ferraj E, Miu B, Malin J, Spidale NA, Cowan J, Shissler SC, Brink R, Xu Y, Cyster JG, Bhandoola A, Kang J, Reboldi A. Skin γδ T cell inflammatory responses are hardwired in the thymus by oxysterol sensing via GPR183 and calibrated by dietary cholesterol. Immunity 2023; 56:562-575.e6. [PMID: 36842431 PMCID: PMC10306310 DOI: 10.1016/j.immuni.2023.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 02/27/2023]
Abstract
Dietary components and metabolites have a profound impact on immunity and inflammation. Here, we investigated how sensing of cholesterol metabolite oxysterols by γδ T cells impacts their tissue residency and function. We show that dermal IL-17-producing γδ T (Tγδ17) cells essential for skin-barrier homeostasis require oxysterols sensing through G protein receptor 183 (GPR183) for their development and inflammatory responses. Single-cell transcriptomics and murine reporter strains revealed that GPR183 on developing γδ thymocytes is needed for their maturation by sensing medullary thymic epithelial-cell-derived oxysterols. In the skin, basal keratinocytes expressing the oxysterol enzyme cholesterol 25-hydroxylase (CH25H) maintain dermal Tγδ17 cells. Diet-driven increases in oxysterols exacerbate Tγδ17-cell-mediated psoriatic inflammation, dependent on GPR183 on γδ T cells. Hence, cholesterol-derived oxysterols control spatially distinct but biologically linked processes of thymic education and peripheral function of dermal T cells, implicating diet as a focal parameter of dermal Tγδ17 cells.
Collapse
Affiliation(s)
- Michela Frascoli
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Enxhi Ferraj
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Bing Miu
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Justin Malin
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas A Spidale
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer Cowan
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susannah C Shissler
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
157
|
Torow N, Hand TW, Hornef MW. Programmed and environmental determinants driving neonatal mucosal immune development. Immunity 2023; 56:485-499. [PMID: 36921575 PMCID: PMC10079302 DOI: 10.1016/j.immuni.2023.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
The mucosal immune system of neonates goes through successive, non-redundant phases that support the developmental needs of the infant and ultimately establish immune homeostasis. These phases are informed by environmental cues, including dietary and microbial stimuli, but also evolutionary developmental programming that functions independently of external stimuli. The immune response to exogenous stimuli is tightly regulated during early life; thresholds are set within this neonatal "window of opportunity" that govern how the immune system will respond to diet, the microbiota, and pathogenic microorganisms in the future. Thus, changes in early-life exposure, such as breastfeeding or environmental and microbial stimuli, influence immunological and metabolic homeostasis and the risk of developing diseases such as asthma/allergy and obesity.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Timothy W Hand
- Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
158
|
Dou Y, Shan S, Zhang J. UcTCRdb: An unconventional T cell receptor sequence database with online analysis functions. Front Immunol 2023; 14:1158295. [PMID: 36993970 PMCID: PMC10040587 DOI: 10.3389/fimmu.2023.1158295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Unlike conventional major histocompatibility complex (MHC) class I and II molecules reactive T cells, the unconventional T cell subpopulations recognize various non-polymorphic antigen-presenting molecules and are typically characterized by simplified patterns of T cell receptors (TCRs), rapid effector responses and ‘public’ antigen specificities. Dissecting the recognition patterns of the non-MHC antigens by unconventional TCRs can help us further our understanding of the unconventional T cell immunity. The small size and irregularities of the released unconventional TCR sequences are far from high-quality to support systemic analysis of unconventional TCR repertoire. Here we present UcTCRdb, a database that contains 669,900 unconventional TCRs collected from 34 corresponding studies in humans, mice, and cattle. In UcTCRdb, users can interactively browse TCR features of different unconventional T cell subsets in different species, search and download sequences under different conditions. Additionally, basic and advanced online TCR analysis tools have been integrated into the database, which will facilitate the study of unconventional TCR patterns for users with different backgrounds. UcTCRdb is freely available at http://uctcrdb.cn/.
Collapse
|
159
|
Trompette A, Ubags ND. Skin barrier immunology from early life to adulthood. Mucosal Immunol 2023; 16:194-207. [PMID: 36868478 DOI: 10.1016/j.mucimm.2023.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Our skin has a unique barrier function, which is imperative for the body's protection against external pathogens and environmental insults. Although interacting closely and sharing many similarities with key mucosal barrier sites, such as the gut and the lung, the skin also provides protection for internal tissues and organs and has a distinct lipid and chemical composition. Skin immunity develops over time and is influenced by a multiplicity of different factors, including lifestyle, genetics, and environmental exposures. Alterations in early life skin immune and structural development may have long-term consequences for skin health. In this review, we summarize the current knowledge on cutaneous barrier and immune development from early life to adulthood, with an overview of skin physiology and immune responses. We specifically highlight the influence of the skin microenvironment and other host intrinsic, host extrinsic (e.g. skin microbiome), and environmental factors on early life cutaneous immunity.
Collapse
Affiliation(s)
- Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
160
|
Li YR, Zhou K, Wilson M, Kramer A, Zhu Y, Dawson N, Yang L. Mucosal-associated invariant T cells for cancer immunotherapy. Mol Ther 2023; 31:631-646. [PMID: 36463401 PMCID: PMC10014234 DOI: 10.1016/j.ymthe.2022.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Human mucosal-associated invariant T (MAIT) cells are characterized by their expression of an invariant TCR α chain Vα7.2-Jα33/Jα20/Jα12 paired with a restricted TCR β chain. MAIT cells recognize microbial peptides presented by the highly conserved MHC class I-like molecule MR1 and bridge the innate and acquired immune systems to mediate augmented immune responses. Upon activation, MAIT cells rapidly proliferate, produce a variety of cytokines and cytotoxic molecules, and trigger efficient antitumor immunity. Administration of a representative MAIT cell ligand 5-OP-RU effectively activates MAIT cells and enhances their antitumor capacity. In this review, we introduce MAIT cell biology and their importance in antitumor immunity, summarize the current development of peripheral blood mononuclear cell-derived and stem cell-derived MAIT cell products for cancer treatment, and discuss the potential of genetic engineering of MAIT cells for off-the-shelf cancer immunotherapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Niels Dawson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
161
|
New insights into MAIT cells in autoimmune diseases. Biomed Pharmacother 2023; 159:114250. [PMID: 36652733 DOI: 10.1016/j.biopha.2023.114250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are resident T cells that express semi-invariant TCR chains and are restricted by monomorphic major histocompatibility complex (MHC) class I-related molecules (MR1). MAIT cells can be activated by microbial-specific metabolites (MR1-dependent mode) or cytokines (MR1-independent mode). Activated MAIT cells produce chemokines, cytotoxic molecules (granzyme B and perforin), and proinflammatory cytokines (IFN-γ, TNF-α, and IL-17), to clear pathogens and target infected cells involved in the pro-inflammatory, migratory, and cytolytic properties of MAIT cells. MAIT cells produce pro-inflammatory cytokines in the target organs of autoimmune diseases and contribute to the development and progression of autoimmune diseases. This article reviews the biological characteristics, activation mechanism, dynamic migration, and dual functions of MAIT cells, and focuses on the mechanism and potential application of MAIT cells in the early diagnosis, disease activity monitoring, and therapeutic targets of autoimmune diseases, to lay a foundation for future research.
Collapse
|
162
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
163
|
Enamorado M, Kulalert W, Han SJ, Rao I, Delaleu J, Link VM, Yong D, Smelkinson M, Gil L, Nakajima S, Linehan JL, Bouladoux N, Wlaschin J, Kabat J, Kamenyeva O, Deng L, Gribonika I, Chesler AT, Chiu IM, Le Pichon CE, Belkaid Y. Immunity to the microbiota promotes sensory neuron regeneration. Cell 2023; 186:607-620.e17. [PMID: 36640762 PMCID: PMC11512587 DOI: 10.1016/j.cell.2022.12.037] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Tissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury. Mechanistically, our data reveal that the cytokine interleukin-17A (IL-17A) released by commensal-specific Th17 cells upon injury directly signals to sensory neurons via IL-17 receptor A, the transcription of which is specifically upregulated in injured neurons. Collectively, our work reveals that in the context of tissue damage, preemptive immunity to the microbiota can rapidly bridge biological systems by directly promoting neuronal repair, while also identifying IL-17A as a major determinant of this fundamental process.
Collapse
Affiliation(s)
- Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Warakorn Kulalert
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Indira Rao
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jérémie Delaleu
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Yong
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis Gil
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saeko Nakajima
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan L Linehan
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josette Wlaschin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juraj Kabat
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olena Kamenyeva
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Inta Gribonika
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
164
|
Wang WB, Lin YD, Zhao L, Liao C, Zhang Y, Davila M, Sun J, Chen Y, Xiong N. Developmentally programmed early-age skin localization of iNKT cells supports local tissue development and homeostasis. Nat Immunol 2023; 24:225-238. [PMID: 36624165 DOI: 10.1038/s41590-022-01399-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023]
Abstract
Skin is exposed to various environmental assaults and undergoes morphological changes immediately after birth. Proper localization and function of immune cells in the skin is crucial for protection and establishment of skin tissue homeostasis. Here we report the discovery of a developmentally programmed process that directs preferential localization of invariant natural killer T (iNKT) cells to the skin for early local homeostatic regulation. We show that iNKT cells are programmed predominantly with a CCR10+ skin-homing phenotype during thymic development in infant and young mice. Early skin localization of iNKT cells is critical for proper commensal bacterial colonization and tissue development. Mechanistically, skin iNKT cells provide a local source of transferrin that regulates iron metabolism in hair follicle progenitor cells and helps hair follicle development. These findings provide molecular insights into the establishment and physiological functions of iNKT cells in the skin during early life.
Collapse
Affiliation(s)
- Wei-Bei Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Luming Zhao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Chang Liao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Micha Davila
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jasmine Sun
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yidong Chen
- Department of Population Health Sciences, and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
- Department of Medicine-Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
165
|
Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 2023; 21:97-111. [PMID: 36042296 PMCID: PMC9903335 DOI: 10.1038/s41579-022-00780-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
The coagulase-negative bacterium Staphylococcus epidermidis is a member of the human skin microbiota. S. epidermidis is not merely a passive resident on skin but actively primes the cutaneous immune response, maintains skin homeostasis and prevents opportunistic pathogens from causing disease via colonization resistance. However, it is now appreciated that S. epidermidis and its interactions with the host exist on a spectrum of potential pathogenicity derived from its high strain-level heterogeneity. S. epidermidis is the most common cause of implant-associated infections and is a canonical opportunistic biofilm former. Additional emerging evidence suggests that some strains of S. epidermidis may contribute to the pathogenesis of common skin diseases. Here, we highlight new developments in our understanding of S. epidermidis strain diversity, skin colonization dynamics and its multifaceted interactions with the host and other members of the skin microbiota.
Collapse
|
166
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
167
|
Kedia-Mehta N, Hogan AE. MAITabolism 2 - the emerging understanding of MAIT cell metabolism and their role in metabolic disease. Front Immunol 2023; 13:1108071. [PMID: 36741413 PMCID: PMC9892190 DOI: 10.3389/fimmu.2022.1108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Mucosal associated invariant T (MAIT) cells are a population of unconventional innate T cells due to their non-MHC restriction and rapid effector responses. MAIT cells can recognise bacterial derived antigens presented on the MHC-like protein via their semi-restricted T cell receptor (TCR). Upon TCR triggering MAIT cells rapidly produce a range of effector molecules including cytokines, lytic granules and chemokines. This rapid and robust effector response makes MAIT cells critical in host responses against many bacterial pathogens. MAIT cells can also respond independent of their TCR via innate cytokines such as interleukin (IL)-18, triggering cytokine production, and are important in anti-viral responses. In addition to their protective role, MAIT cells have been implicated in numerous inflammatory diseases, including metabolic diseases often contributing to the pathogenesis via their robust cytokine production. Effector cells such as MAIT cells require significant amounts of energy to support their potent responses, and the type of nutrients available can dictate the functionality of the cell. Although data on MAIT cell metabolism is just emerging, several recent studies are starting to define the intrinsic metabolic requirements and regulators of MAIT cells. In this review we will outline our current understanding of MAIT cell metabolism, and outline their role in metabolic disease, and how disease-related changes in extrinsic metabolism can alter MAIT cell responses.
Collapse
Affiliation(s)
- Nidhi Kedia-Mehta
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- Obesity Immunology Group, Education and Research Centre, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- Obesity Immunology Group, Education and Research Centre, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
- National Children's Research Centre, Dublin, Ireland
| |
Collapse
|
168
|
du Halgouet A, Darbois A, Alkobtawi M, Mestdagh M, Alphonse A, Premel V, Yvorra T, Colombeau L, Rodriguez R, Zaiss D, El Morr Y, Bugaut H, Legoux F, Perrin L, Aractingi S, Golub R, Lantz O, Salou M. Role of MR1-driven signals and amphiregulin on the recruitment and repair function of MAIT cells during skin wound healing. Immunity 2023; 56:78-92.e6. [PMID: 36630919 PMCID: PMC9839364 DOI: 10.1016/j.immuni.2022.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Tissue repair processes maintain proper organ function following mechanical or infection-related damage. In addition to antibacterial properties, mucosal associated invariant T (MAIT) cells express a tissue repair transcriptomic program and promote skin wound healing when expanded. Herein, we use a human-like mouse model of full-thickness skin excision to assess the underlying mechanisms of MAIT cell tissue repair function. Single-cell RNA sequencing analysis suggested that skin MAIT cells already express a repair program at steady state. Following skin excision, MAIT cells promoted keratinocyte proliferation, thereby accelerating healing. Using skin grafts, parabiosis, and adoptive transfer experiments, we show that MAIT cells migrated into the wound in a T cell receptor (TCR)-independent but CXCR6 chemokine receptor-dependent manner. Amphiregulin secreted by MAIT cells following excision promoted wound healing. Expression of the repair function was probably independent of sustained TCR stimulation. Overall, our study provides mechanistic insights into MAIT cell wound healing function in the skin.
Collapse
Affiliation(s)
| | - Aurélie Darbois
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Mansour Alkobtawi
- Cutaneous Biology, Institut Cochin, Inserm 1016, and Université de Paris Cité, 75014 Paris, France
| | - Martin Mestdagh
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Aurélia Alphonse
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Virginie Premel
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Thomas Yvorra
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005 Paris, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005 Paris, France
| | - Raphaël Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005 Paris, France
| | - Dietmar Zaiss
- Department of Immune Medicine, University of Regensburg, Regensburg, Germany,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany,Institute of Pathology, University Regensburg, Regensburg, Germany,Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Yara El Morr
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Hélène Bugaut
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - François Legoux
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Laetitia Perrin
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Selim Aractingi
- Cutaneous Biology, Institut Cochin, Inserm 1016, and Université de Paris Cité, 75014 Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, 75015 Paris, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, 75005 Paris, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, 75005 Paris, France.
| | - Marion Salou
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France.
| |
Collapse
|
169
|
Jakob J, Kröger A, Klawonn F, Bruder D, Jänsch L. Translatome analyses by bio-orthogonal non-canonical amino acid labeling reveal that MR1-activated MAIT cells induce an M1 phenotype and antiviral programming in antigen-presenting monocytes. Front Immunol 2023; 14:1091837. [PMID: 36875139 PMCID: PMC9977998 DOI: 10.3389/fimmu.2023.1091837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
MAIT cells are multifunctional innate-like effector cells recognizing bacterial-derived vitamin B metabolites presented by the non-polymorphic MHC class I related protein 1 (MR1). However, our understanding of MR1-mediated responses of MAIT cells upon their interaction with other immune cells is still incomplete. Here, we performed the first translatome study of primary human MAIT cells interacting with THP-1 monocytes in a bicellular system. We analyzed the interaction between MAIT and THP-1 cells in the presence of the activating 5-OP-RU or the inhibitory Ac-6-FP MR1-ligand. Using bio-orthogonal non-canonical amino acid tagging (BONCAT) we were able to enrich selectively those proteins that were newly translated during MR1-dependent cellular interaction. Subsequently, newly translated proteins were measured cell-type-specifically by ultrasensitive proteomics to decipher the coinciding immune responses in both cell types. This strategy identified over 2,000 MAIT and 3,000 THP-1 active protein translations following MR1 ligand stimulations. Translation in both cell types was found to be increased by 5-OP-RU, which correlated with their conjugation frequency and CD3 polarization at MAIT cell immunological synapses in the presence of 5-OP-RU. In contrast, Ac-6-FP only regulated a few protein translations, including GSK3B, indicating an anergic phenotype. In addition to known effector responses, 5-OP-RU-induced protein translations uncovered type I and type II Interferon-driven protein expression profiles in both MAIT and THP-1 cells. Interestingly, the translatome of THP-1 cells suggested that activated MAIT cells can impact M1/M2 polarization in these cells. Indeed, gene and surface expression of CXCL10, IL-1β, CD80, and CD206 confirmed an M1-like phenotype of macrophages being induced in the presence of 5-OP-RU-activated MAIT cells. Furthermore, we validated that the Interferon-driven translatome was accompanied by the induction of an antiviral phenotype in THP-1 cells, which were found able to suppress viral replication following conjugation with MR1-activated MAIT cells. In conclusion, BONCAT translatomics extended our knowledge of MAIT cell immune responses at the protein level and discovered that MR1-activated MAIT cells are sufficient to induce M1 polarization and an anti-viral program of macrophages.
Collapse
Affiliation(s)
- Josefine Jakob
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Frank Klawonn
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
170
|
Shim JA, Ryu JH, Jo Y, Hong C. The role of gut microbiota in T cell immunity and immune mediated disorders. Int J Biol Sci 2023; 19:1178-1191. [PMID: 36923929 PMCID: PMC10008692 DOI: 10.7150/ijbs.79430] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota was only considered as a commensal organism that aids in digestion, but recent studies revealed that the microbiome play a critical role in both physiological and pathological immune system. The gut microbiome composition is altered by environmental factors such as diet and hygiene, and the alteration affects immune cells, especially T cells. Advanced genomic techniques in microbiome research defined that specific microbes regulate T cell responses and the pathogenesis of immune-mediated disorders. Here, we review features of specific microbes-T cell crosstalk and relationship between the microbes and immunopathogenesis of diseases including in cancers, autoimmune disorders and allergic inflammations. We also discuss the limitations of current experimental animal models, cutting-edge developments and current challenges to overcome in the field, and the possibility of considering gut microbiome in the development of new drug.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jeong Ha Ryu
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
171
|
Treiner E. Mucosal-associated invariant T cells in hematological malignancies: Current knowledge, pending questions. Front Immunol 2023; 14:1160943. [PMID: 37020559 PMCID: PMC10067713 DOI: 10.3389/fimmu.2023.1160943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Non-classical HLA restricted T cell subsets such as γδ T and NK-T cells are showing promises for immune-based therapy of hematological malignancies. Mucosal-Associated Invariant T cells (MAIT) belong to this family of innate-like T cell subsets and are the focus of many studies on infectious diseases, owing to their unusual recognition of bacterial/fungal metabolites. Their ability to produce type 1 cytokines (IFNγ, TNFα) as well as cytotoxic effector molecules endows them with potential anti-tumor functions. However, their contribution to tumor surveillance in solid cancers is unclear, and only few studies have specifically focused on MAIT cells in blood cancers. In this review, we wish to recapitulate our current knowledge on MAIT cells biology in hematological neoplasms, at diagnosis and/or during treatment, as well as tentative approaches to target them as therapeutic tools. We also wish to take this opportunity to briefly elaborate on what we think are important question to address in this field, as well as potential limitations to overcome in order to make MAIT cells the basis of future, novel therapies for hematological cancers.
Collapse
Affiliation(s)
- Emmanuel Treiner
- Infinity, Inserm UMR1291, Toulouse, France
- University Toulouse 3, Toulouse, France
- Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
- *Correspondence: Emmanuel Treiner,
| |
Collapse
|
172
|
Labuz DR, Lewis G, Fleming ID, Thompson CM, Zhai Y, Firpo MA, Leung DT. Targeted multi-omic analysis of human skin tissue identifies alterations of conventional and unconventional T cells associated with burn injury. eLife 2023; 12:82626. [PMID: 36790939 PMCID: PMC9931389 DOI: 10.7554/elife.82626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Burn injuries are a leading cause of unintentional injury, associated with a dysfunctional immune response and an increased risk of infections. Despite this, little is known about the role of T cells in human burn injury. In this study, we compared the activation and function of conventional T cells and unconventional T cell subsets in skin tissue from acute burn (within 7 days from initial injury), late phase burn (beyond 7 days from initial injury), and non-burn patients. We compared T cell functionality by a combination of flow cytometry and a multi-omic single-cell approach with targeted transcriptomics and protein expression. We found a significantly lower proportion of CD8+ T cells in burn skin compared to non-burn skin, with CD4+ T cells making up the bulk of the T cell population. Both conventional and unconventional burn tissue T cells show significantly higher IFN-γ and TNF-α levels after stimulation than non-burn skin T cells. In sorted T cells, clustering showed that burn tissue had significantly higher expression of homing receptors CCR7, S1PR1, and SELL compared to non-burn skin. In unconventional T cells, including mucosal-associated invariant T (MAIT) and γδ T cells, we see significantly higher expression of cytotoxic molecules GZMB, PRF1, and GZMK. Multi-omics analysis of conventional T cells suggests a shift from tissue-resident T cells in non-burn tissue to a circulating T cell phenotype in burn tissue. In conclusion, by examining skin tissue from burn patients, our results suggest that T cells in burn tissue have a pro-inflammatory rather than a homeostatic tissue-resident phenotype, and that unconventional T cells have a higher cytotoxic capacity. Our findings have the potential to inform the development of novel treatment strategies for burns.
Collapse
Affiliation(s)
- Daniel R Labuz
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| | - Giavonni Lewis
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Irma D Fleming
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Callie M Thompson
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Yan Zhai
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Matthew A Firpo
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Daniel T Leung
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
173
|
Bisphenols, but not phthalate esters, modulate gene expression in activated human MAIT cells in vitro. Toxicol Rep 2023; 10:348-356. [PMID: 36923442 PMCID: PMC10008924 DOI: 10.1016/j.toxrep.2023.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
One route of human exposure to environmental chemicals is oral uptake. This is primarily true for chemicals that may leach from food packaging materials, such as bisphenols and phthalate esters. Upon ingestion, these compounds are transported along the intestinal tract, from where they can be taken up into the blood stream or distributed to mucosal sites. At mucosal sites, mucosal immune cells and in the blood stream peripheral immune cells may be exposed to these chemicals potentially modulating immune cell functions. In the present study, we investigated the impact of three common bisphenols and two phthalate esters on mucosal-associated invariant T (MAIT) cells in vitro, a frequent immune cell type in the intestinal mucosae and peripheral blood of humans. All compounds were non-cytotoxic at the chosen concentrations. MAIT cell activation was only slightly affected as seen by flow cytometric analysis. Phthalate esters did not affect MAIT cell gene expression, while bisphenol-exposure induced significant changes. Transcriptional changes occurred in ∼ 25 % of genes for BPA, ∼ 22 % for BPF and ∼ 8 % for BPS. All bisphenols down-modulated expression of CCND2, CCL20, GZMB and IRF4, indicating an effect on MAIT cell effector function. Further, BPA and BPF showed a high overlap in modulated genes involved in cellular stress response, activation signaling and effector function suggesting that BPF may not be safe substitute for BPA.
Collapse
Key Words
- BPA, bisphenol A
- BPF, bisphenol F
- BPS, bisphenol S
- Bisphenols
- CD, cluster of differentiation
- DEHP, di(2-ethylhexyl) phthalate
- DINP, diisononyl phthalate
- DMSO, dimethyl sulfoxide
- EFSA, European Food Safety Agency
- EU, European Union
- FCS, fetal calf serum
- IFNg, interferon gamma
- IMDM, Iscove Modified Dulbecco Medium
- Immunomodulation
- In vitro model
- MAIT cells
- MAIT cells, mucosal-associated invariant T cells
- MeOH, methanol
- NHANES, National Health and Nutrition Examination Survey
- PBMC, peripheral blood mononuclear cell
- PE, phthalate ester
- Phthalate ester
- Plasticizers
- RT, room temperature
- SVHC, substance of very high concern
- TDI, tolerable daily intake
- TNF, tumor necrosis factor
- bpc, bacteria per cell
- bw, body weight
Collapse
|
174
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
175
|
Zhao X, Yang X, Hang HC. Chemoproteomic Analysis of Microbiota Metabolite-Protein Targets and Mechanisms. Biochemistry 2022; 61:2822-2834. [PMID: 34989554 PMCID: PMC9256862 DOI: 10.1021/acs.biochem.1c00758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The microbiota have emerged as an important factor in host physiology, disease, and response to therapy. These diverse microbes (bacteria, virus, fungi, and protists) encode unique functions and metabolites that regulate intraspecies and interspecies interactions. While the mechanisms of some microbiota species and metabolites have been elucidated, the diversity and abundance of different microbiota species and their associated pathways suggest many more metabolites and mechanisms of action remain to be discovered. In this Perspective, we highlight how the advances in chemical proteomics have provided new opportunities to elucidate the molecular targets of specific microbiota metabolites and reveal new mechanisms of action. The continued development of specific microbiota metabolite reporters and more precise proteomic methods should reveal new microbiota mechanisms of action, therapeutic targets, and biomarkers for a variety of human diseases.
Collapse
|
176
|
Gherardin NA, Legoux F, Consonni M, Paget C. CD1 and MR1: An update after a long-awaited reunion. Immunity 2022; 55:2211-2216. [PMID: 36516812 DOI: 10.1016/j.immuni.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
CD1 molecules and the MHC-related protein 1 (MR1) present lipid and small molecule antigens, respectively, for T cell surveillance. The biology of these molecules, the antigens they present, and the T cells that respond to them were recently discussed during the 12th International CD1-MR1 Meeting held in Gothenburg, Sweden.
Collapse
Affiliation(s)
- Nicholas A Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia.
| | - Francois Legoux
- INSERM ERL1305, CNRS UMR6290, Université de Rennes 1, Institut de Génétique & Développement de Rennes, France
| | - Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Christophe Paget
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Faculté de Médecine de Tours, 37000, Tours, France
| |
Collapse
|
177
|
Lim HJ, Wubben JM, Garcia CP, Cruz-Gomez S, Deng J, Mak JY, Hachani A, Anderson RJ, Painter GF, Goyette J, Amarasinghe SL, Ritchie ME, Roquilly A, Fairlie DP, Gaus K, Rossjohn J, Villadangos JA, McWilliam HE. A specialized tyrosine-based endocytosis signal in MR1 controls antigen presentation to MAIT cells. J Cell Biol 2022; 221:213489. [PMID: 36129434 PMCID: PMC9499830 DOI: 10.1083/jcb.202110125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
MR1 is a highly conserved microbial immune-detection system in mammals. It captures vitamin B-related metabolite antigens from diverse microbes and presents them at the cell surface to stimulate MR1-restricted lymphocytes including mucosal-associated invariant T (MAIT) cells. MR1 presentation and MAIT cell recognition mediate homeostasis through host defense and tissue repair. The cellular mechanisms regulating MR1 cell surface expression are critical to its function and MAIT cell recognition, yet they are poorly defined. Here, we report that human MR1 is equipped with a tyrosine-based motif in its cytoplasmic domain that mediates low affinity binding with the endocytic adaptor protein 2 (AP2) complex. This interaction controls the kinetics of MR1 internalization from the cell surface and minimizes recycling. We propose MR1 uses AP2 endocytosis to define the duration of antigen presentation to MAIT cells and the detection of a microbial metabolic signature by the immune system.
Collapse
Affiliation(s)
- Hui Jing Lim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacinta M. Wubben
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia
| | - Cristian Pinero Garcia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Sebastian Cruz-Gomez
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jieru Deng
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jeffrey Y.W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Shanika L. Amarasinghe
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew E. Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Roquilly
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064; F-44000, Nantes, France
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Jose A. Villadangos:
| | - Hamish E.G. McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Correspondence to Hamish E.G. McWilliam:
| |
Collapse
|
178
|
Hackstein CP, Costigan D, Drexhage L, Pearson C, Bullers S, Ilott N, Akther HD, Gu Y, FitzPatrick MEB, Harrison OJ, Garner LC, Mann EH, Pandey S, Friedrich M, Provine NM, Uhlig HH, Marchi E, Powrie F, Klenerman P, Thornton EE. A conserved population of MHC II-restricted, innate-like, commensal-reactive T cells in the gut of humans and mice. Nat Commun 2022; 13:7472. [PMID: 36463279 PMCID: PMC9719512 DOI: 10.1038/s41467-022-35126-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Interactions with commensal microbes shape host immunity on multiple levels and play a pivotal role in human health and disease. Tissue-dwelling, antigen-specific T cells are poised to respond to local insults, making their phenotype important in the relationship between host and microbes. Here we show that MHC-II restricted, commensal-reactive T cells in the colon of both humans and mice acquire transcriptional and functional characteristics associated with innate-like T cells. This cell population is abundant and conserved in the human and murine colon and endowed with polyfunctional effector properties spanning classic Th1- and Th17-cytokines, cytotoxic molecules, and regulators of epithelial homeostasis. T cells with this phenotype are increased in ulcerative colitis patients, and their presence aggravates pathology in dextran sodium sulphate-treated mice, pointing towards a pathogenic role in colitis. Our findings add to the expanding spectrum of innate-like immune cells positioned at the frontline of intestinal immune surveillance, capable of acting as sentinels of microbes and the local cytokine milieu.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dana Costigan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Linnea Drexhage
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claire Pearson
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Samuel Bullers
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yisu Gu
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, 750 Republican St, Seattle, WA, 98108, USA
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, and Biomedical Research Centre, and Department of Paediatrics, University of Oxford, Oxford, OX39DU, UK
| | - Emanuele Marchi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Emily E Thornton
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
179
|
Elkjaer ML, Simon L, Frisch T, Bente LM, Kacprowski T, Thomassen M, Reynolds R, Baumbach J, Röttger R, Illes Z. Hypothesis of a potential BrainBiota and its relation to CNS autoimmune inflammation. Front Immunol 2022; 13:1043579. [PMID: 36532064 PMCID: PMC9756883 DOI: 10.3389/fimmu.2022.1043579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Infectious agents have been long considered to play a role in the pathogenesis of neurological diseases as part of the interaction between genetic susceptibility and the environment. The role of bacteria in CNS autoimmunity has also been highlighted by changes in the diversity of gut microbiota in patients with neurological diseases such as Parkinson's disease, Alzheimer disease and multiple sclerosis, emphasizing the role of the gut-brain axis. We discuss the hypothesis of a brain microbiota, the BrainBiota: bacteria living in symbiosis with brain cells. Existence of various bacteria in the human brain is suggested by morphological evidence, presence of bacterial proteins, metabolites, transcripts and mucosal-associated invariant T cells. Based on our data, we discuss the hypothesis that these bacteria are an integral part of brain development and immune tolerance as well as directly linked to the gut microbiome. We further suggest that changes of the BrainBiota during brain diseases may be the consequence or cause of the chronic inflammation similarly to the gut microbiota.
Collapse
Affiliation(s)
- Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- BRIDGE, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lukas Simon
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tobias Frisch
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Lisa-Marie Bente
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunchweig, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunchweig, Germany
| | - Mads Thomassen
- BRIDGE, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College, London, United Kingdom
- Centre for Molecular Neuropathology, LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- BRIDGE, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
180
|
Akuzum B, Lee JY. Context-Dependent Regulation of Type17 Immunity by Microbiota at the Intestinal Barrier. Immune Netw 2022; 22:e46. [PMID: 36627936 PMCID: PMC9807962 DOI: 10.4110/in.2022.22.e46] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022] Open
Abstract
T-helper-17 (Th17) cells and related IL-17-producing (type17) lymphocytes are abundant at the epithelial barrier. In response to bacterial and fungal infection, the signature cytokines IL-17A/F and IL-22 mediate the antimicrobial immune response and contribute to wound healing of injured tissues. Despite their protective function, type17 lymphocytes are also responsible for various chronic inflammatory disorders, including inflammatory bowel disease (IBD) and colitis associated cancer (CAC). A deeper understanding of type17 regulatory mechanisms could ultimately lead to the discovery of therapeutic strategies for the treatment of chronic inflammatory disorders and the prevention of cancer. In this review, we discuss the current understanding of the development and function of type17 immune cells at the intestinal barrier, focusing on the impact of microbiota-immune interactions on intestinal barrier homeostasis and disease etiology.
Collapse
Affiliation(s)
- Begum Akuzum
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
181
|
Zhang Y, Bailey JT, Xu E, Singh K, Lavaert M, Link VM, D'Souza S, Hafiz A, Cao J, Cao G, Sant'Angelo DB, Sun W, Belkaid Y, Bhandoola A, McGavern DB, Yang Q. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat Immunol 2022; 23:1714-1725. [PMID: 36411380 PMCID: PMC10202031 DOI: 10.1038/s41590-022-01349-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Increasing evidence indicates close interaction between immune cells and the brain, revising the traditional view of the immune privilege of the brain. However, the specific mechanisms by which immune cells promote normal neural function are not entirely understood. Mucosal-associated invariant T cells (MAIT cells) are a unique type of innate-like T cell with molecular and functional properties that remain to be better characterized. In the present study, we report that MAIT cells are present in the meninges and express high levels of antioxidant molecules. MAIT cell deficiency in mice results in the accumulation of reactive oxidative species in the meninges, leading to reduced expression of junctional protein and meningeal barrier leakage. The presence of MAIT cells restricts neuroinflammation in the brain and preserves learning and memory. Together, our work reveals a new functional role for MAIT cells in the meninges and suggests that meningeal immune cells can help maintain normal neural function by preserving meningeal barrier homeostasis and integrity.
Collapse
Affiliation(s)
- Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jacob T Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, USA
| | - En Xu
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kunal Singh
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanti D'Souza
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Alex Hafiz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Wei Sun
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
182
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
183
|
Caldwell R, Zhou W, Oh J. Strains to go: interactions of the skin microbiome beyond its species. Curr Opin Microbiol 2022; 70:102222. [PMID: 36242896 PMCID: PMC9701184 DOI: 10.1016/j.mib.2022.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
An extraordinary biodiversity of bacteria, fungi, viruses, and even small multicellular eukaryota inhabit the human skin. Genomic innovations have accelerated characterization of this biodiversity both at a species as well as the subspecies, or strain level, which further imparts a tremendous genetic diversity to an individual's skin microbiome. In turn, these advances portend significant species- and strain-specificity in the skin microbiome's functional impact on cutaneous immunity, barrier integrity, aging, and other skin physiologic processes. Future advances in defining strain diversity, spatial distribution, and metabolic diversity for major skin species will be foundational for understanding the microbiome's essentiality to the skin ecosystem and for designing topical therapeutics that leverage or target the skin microbiome.
Collapse
Affiliation(s)
- Ryan Caldwell
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Wei Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.
| |
Collapse
|
184
|
Maladaptive consequences of inflammatory events shape individual immune identity. Nat Immunol 2022; 23:1675-1686. [PMID: 36411382 DOI: 10.1038/s41590-022-01342-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
The vertebrate immune system develops in layers, as modes of immunity have evolved on top of each other through time with the expansion of organismal complexity. The maturation timing of immune cell subsets, such as innate immune cells, innate-like cells and adaptive cells, corresponds to their physiological roles in protective immunity. While various cell subsets have specialized roles, they also complement each other to clear pathogens, resolve inflammation and maintain homeostasis, especially at barrier sites with high microbial density. Immune cells adapt to inflammatory insults through mechanisms including epigenetic and metabolic reprogramming, clonal expansion and enhanced communication with the surrounding tissue environment. Over time, these adaptations shape an individual immune identity, reflective of the overlay between the genetic predisposition and the antigenic and environmental exposures of each individual. While some aspects of this immune shaping are natural consequences of immune maturation over time, others are maladaptive and predispose to irreversible pathology. In this Perspective, we provide a framework for categorizing the shaping events of the immune response, in terms of mechanisms, contexts and functional outcomes. We aim to clarify how these terms can be appropriately applied to future findings that impact immune function.
Collapse
|
185
|
Lett MJ, Mehta H, Keogh A, Jaeger T, Jacquet M, Powell K, Meier MA, Fofana I, Melhem H, Vosbeck J, Cathomas G, Heigl A, Heim MH, Burri E, Mertz KD, Niess JH, Kollmar O, Zech CJ, Ivanek R, Duthaler U, Klenerman P, Stroka D, Filipowicz Sinnreich M. Stimulatory MAIT cell antigens reach the circulation and are efficiently metabolised and presented by human liver cells. Gut 2022; 71:2526-2538. [PMID: 35058274 PMCID: PMC9664123 DOI: 10.1136/gutjnl-2021-324478] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/08/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease.
Collapse
Affiliation(s)
- Martin J Lett
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hema Mehta
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian Keogh
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Tina Jaeger
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Maxime Jacquet
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Kate Powell
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Anne Meier
- Department of Biomedicine, Hepatology, University Hospital Basel and University of Basel, Basel, Switzerland,Division of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Isabel Fofana
- Department of Biomedicine, Hepatology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hassan Melhem
- Department of Biomedicine, Gastroenterology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jürg Vosbeck
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Andres Heigl
- Department of Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology, University Hospital Basel and University of Basel, Basel, Switzerland,Division of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emanuel Burri
- Gastroenterology and Hepatology, University Department of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jan Hendrik Niess
- Division of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland,Department of Biomedicine, Gastroenterology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Otto Kollmar
- Division of Visceral Surgery, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christoph J Zech
- Radiology and Nuclear Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel and University of Basel, Basel, Switzerland,DBM Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Urs Duthaler
- Department of Biomedicine, Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Magdalena Filipowicz Sinnreich
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland .,Gastroenterology and Hepatology, University Department of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
186
|
Whitley SK, Li M, Kashem SW, Hirai T, Igyártó BZ, Knizner K, Ho J, Ferris LK, Weaver CT, Cua DJ, McGeachy MJ, Kaplan DH. Local IL-23 is required for proliferation and retention of skin-resident memory T H17 cells. Sci Immunol 2022; 7:eabq3254. [PMID: 36367947 PMCID: PMC9847353 DOI: 10.1126/sciimmunol.abq3254] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cytokine interleukin-23 (IL-23) is critical for development and maintenance of autoimmune inflammation in nonlymphoid tissues; however, the mechanism through which IL-23 supports tissue-specific immunity remains unclear. In mice, we found that circulating memory T cells were dispensable for anamnestic protection from Candida albicans skin infection, and tissue-resident memory (TRM) cell-mediated protection from C. albicans reinfection required IL-23. Administration of anti-IL-23 receptor antibody to mice after resolution of primary C. albicans infection resulted in loss of CD69+ CD103+ tissue-resident memory T helper 17 (TRM17) cells from skin, and clinical anti-IL-23 therapy depleted TRM17 cells from skin of patients with psoriasis. IL-23 receptor blockade impaired TRM17 cell proliferation but did not affect apoptosis susceptibility or tissue egress. IL-23 produced by CD301b+ myeloid cells was required for TRM17 maintenance in skin after C. albicans infection, and CD301b+ cells were necessary for TRM17 expansion during the development of imiquimod dermatitis. This study demonstrates that locally produced IL-23 promotes in situ proliferation of cutaneous TRM17 cells to support their longevity and function and provides mechanistic insight into the durable efficacy of IL-23 blockade in the treatment of psoriasis.
Collapse
Affiliation(s)
- Sarah K. Whitley
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Mushi Li
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Sakeen W. Kashem
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| | - Toshiro Hirai
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Kelley Knizner
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Jonhan Ho
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Laura K. Ferris
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Mandy J. McGeachy
- Rheumatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| | - Daniel H. Kaplan
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| |
Collapse
|
187
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
188
|
Blanco DB, Chapman NM, Raynor JL, Xu C, Su W, Kc A, Li W, Lim SA, Schattgen S, Shi H, Risch I, Sun Y, Dhungana Y, Kim Y, Wei J, Rankin S, Neale G, Thomas PG, Yang K, Chi H. PTEN directs developmental and metabolic signaling for innate-like T cell fate and tissue homeostasis. Nat Cell Biol 2022; 24:1642-1654. [PMID: 36302969 PMCID: PMC10080469 DOI: 10.1038/s41556-022-01011-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/12/2022] [Indexed: 01/18/2023]
Abstract
Phosphatase and tensin homologue (PTEN) is frequently mutated in human cancer, but its roles in lymphopoiesis and tissue homeostasis remain poorly defined. Here we show that PTEN orchestrates a two-step developmental process linking antigen receptor and IL-23-Stat3 signalling to type-17 innate-like T cell generation. Loss of PTEN leads to pronounced accumulation of mature IL-17-producing innate-like T cells in the thymus. IL-23 is essential for their accumulation, and ablation of IL-23 or IL-17 signalling rectifies the reduced survival of female PTEN-haploinsufficient mice that model human patients with PTEN mutations. Single-cell transcriptome and network analyses revealed the dynamic regulation of PTEN, mTOR and metabolic activities that accompanied type-17 cell programming. Furthermore, deletion of mTORC1 or mTORC2 blocks PTEN loss-driven type-17 cell accumulation, and this is further shaped by the Foxo1 and Stat3 pathways. Collectively, our study establishes developmental and metabolic signalling networks underpinning type-17 cell fate decisions and their functional effects at coordinating PTEN-dependent tissue homeostasis.
Collapse
Affiliation(s)
- Daniel Bastardo Blanco
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chengxian Xu
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Su
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wei Li
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefan Schattgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Isabel Risch
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yunjung Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Wei
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherri Rankin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kai Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
189
|
Darrigues J, Almeida V, Conti E, Ribot JC. The multisensory regulation of unconventional T cell homeostasis. Semin Immunol 2022; 61-64:101657. [PMID: 36370671 DOI: 10.1016/j.smim.2022.101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Unconventional T cells typically group γδ T cells, invariant Natural Killer T cells (NKT) and Mucosal Associated Invariant T (MAIT) cells. With their pre-activated status and biased tropism for non-lymphoid organs, they provide a rapid (innate-like) and efficient first line of defense against pathogens at strategical barrier sites, while they can also trigger chronic inflammation, and unexpectedly contribute to steady state physiology. Thus, a tight control of their homeostasis is critical to maintain tissue integrity. In this review, we discuss the recent advances of our understanding of the factors, from neuroimmune to inflammatory regulators, shaping the size and functional properties of unconventional T cell subsets in non-lymphoid organs. We present a general overview of the mechanisms common to these populations, while also acknowledging specific aspects of their diversity. We mainly focus on their maintenance at steady state and upon inflammation, highlighting some key unresolved issues and raising upcoming technical, fundamental and translational challenges.
Collapse
Affiliation(s)
- Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Vicente Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Eller Conti
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
190
|
Metcalf CJE, Tepekule B, Bruijning M, Koskella B. Hosts, microbiomes, and the evolution of critical windows. Evol Lett 2022; 6:412-425. [PMID: 36579161 PMCID: PMC9783423 DOI: 10.1002/evl3.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/31/2022] Open
Abstract
The absence of microbial exposure early in life leaves individuals vulnerable to immune overreaction later in life, manifesting as immunopathology, autoimmunity, or allergies. A key factor is thought to be a "critical window" during which the host's immune system can "learn" tolerance, and beyond which learning is no longer possible. Animal models indicate that many mechanisms have evolved to enable critical windows, and that their time limits are distinct and consistent. Such a variety of mechanisms, and precision in their manifestation suggest the outcome of strong evolutionary selection. To strengthen our understanding of critical windows, we explore their underlying evolutionary ecology using models encompassing demographic and epidemiological transitions, identifying the length of the critical window that would maximize fitness in different environments. We characterize how direct effects of microbes on host mortality, but also indirect effects via microbial ecology, will drive the optimal length of the critical window. We find that indirect effects such as magnitude of transmission, duration of infection, rates of reinfection, vertical transmission, host demography, and seasonality in transmission all have the effect of redistributing the timing and/or likelihood of encounters with microbial taxa across age, and thus increasing or decreasing the optimal length of the critical window. Declining microbial population abundance and diversity are predicted to result in increases in immune dysfunction later in life. We also make predictions for the length of the critical window across different taxa and environments. Overall, our modeling efforts demonstrate how critical windows will be impacted over evolution as a function of both host-microbiome/pathogen interactions and dispersal, raising central questions about potential mismatches between these evolved systems and the current loss of microbial diversity and/or increases in infectious disease.
Collapse
Affiliation(s)
- C. Jessica E. Metcalf
- Department of Ecology and EvolutionaryPrinceton UniversityPrincetonNew Jersey08544,Wissenschaftskolleg zu BerlinDE‐14193BerlinGermany
| | - Burcu Tepekule
- Department of Ecology and EvolutionaryPrinceton UniversityPrincetonNew Jersey08544
| | - Marjolein Bruijning
- Department of Ecology and EvolutionaryPrinceton UniversityPrincetonNew Jersey08544
| | - Britt Koskella
- Wissenschaftskolleg zu BerlinDE‐14193BerlinGermany,Department of Integrative BiologyUC BerkeleyBerkeleyCalifornia94720
| |
Collapse
|
191
|
Abstract
The skin microbiome is a key player in human health, with diverse functions ranging from defense against pathogens to education of the immune system. While recent studies have begun to shed light on the valuable role that skin microorganisms have in maintaining the skin barrier, a detailed understanding of the complex interactions that shape healthy skin microbial communities is limited. Cobamides, the vitamin B12 class of cofactor, are essential for organisms across the tree of life. Because this vitamin is only produced by a limited fraction of prokaryotes, cobamide sharing is predicted to mediate community dynamics within microbial communities. Here, we provide the first large-scale metagenomic assessment of cobamide biosynthesis and utilization in the skin microbiome. We show that while numerous and diverse taxa across the major bacterial phyla on the skin encode cobamide-dependent enzymes, relatively few species encode de novo cobamide biosynthesis. We show that cobamide producers and users are integrated into the network structure of microbial communities across the different microenvironments of the skin and that changes in microbiome community structure and diversity are associated with the abundance of cobamide producers in the Corynebacterium genus, for both healthy and diseased skin states. Finally, we find that de novo cobamide biosynthesis is enriched only in Corynebacterium species associated with hosts, including those prevalent on human skin. We confirm that the cofactor is produced in excess through quantification of cobamide production by human skin-associated species isolated in the laboratory. Taken together, our results reveal the potential for cobamide sharing within skin microbial communities, which we hypothesize mediates microbiome community dynamics and host interactions. IMPORTANCE The skin microbiome is essential for maintaining skin health and function. However, the microbial interactions that dictate microbiome structure, stability, and function are not well understood. Here, we investigate the biosynthesis and use of cobamides, a cofactor needed by many organisms but only produced by select prokaryotes, within the human skin microbiome. We found that while a large proportion of skin taxa encode cobamide-dependent enzymes, only a select few encode de novo cobamide biosynthesis. Further, the abundance of cobamide-producing Corynebacterium species is associated with skin microbiome diversity and structure, and within this genus, de novo biosynthesis is enriched in host-associated species compared to environment-associated species. These findings identify cobamides as a potential mediator of skin microbiome dynamics and skin health.
Collapse
|
192
|
Matsuzawa-Ishimoto Y, Yao X, Koide A, Ueberheide BM, Axelrad JE, Reis BS, Parsa R, Neil JA, Devlin JC, Rudensky E, Dewan MZ, Cammer M, Blumberg RS, Ding Y, Ruggles KV, Mucida D, Koide S, Cadwell K. The γδ IEL effector API5 masks genetic susceptibility to Paneth cell death. Nature 2022; 610:547-554. [PMID: 36198790 PMCID: PMC9720609 DOI: 10.1038/s41586-022-05259-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Loss of Paneth cells and their antimicrobial granules compromises the intestinal epithelial barrier and is associated with Crohn's disease, a major type of inflammatory bowel disease1-7. Non-classical lymphoid cells, broadly referred to as intraepithelial lymphocytes (IELs), intercalate the intestinal epithelium8,9. This anatomical position has implicated them as first-line defenders in resistance to infections, but their role in inflammatory disease pathogenesis requires clarification. The identification of mediators that coordinate crosstalk between specific IEL and epithelial subsets could provide insight into intestinal barrier mechanisms in health and disease. Here we show that the subset of IELs that express γ and δ T cell receptor subunits (γδ IELs) promotes the viability of Paneth cells deficient in the Crohn's disease susceptibility gene ATG16L1. Using an ex vivo lymphocyte-epithelium co-culture system, we identified apoptosis inhibitor 5 (API5) as a Paneth cell-protective factor secreted by γδ IELs. In the Atg16l1-mutant mouse model, viral infection induced a loss of Paneth cells and enhanced susceptibility to intestinal injury by inhibiting the secretion of API5 from γδ IELs. Therapeutic administration of recombinant API5 protected Paneth cells in vivo in mice and ex vivo in human organoids with the ATG16L1 risk allele. Thus, we identify API5 as a protective γδ IEL effector that masks genetic susceptibility to Paneth cell death.
Collapse
Affiliation(s)
- Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Akiko Koide
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016,Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Beatrix M. Ueberheide
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA,Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA,Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jordan E. Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bernardo S. Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Jessica A. Neil
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene Rudensky
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - M Zahidunnabi Dewan
- Experimental Pathology, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA 17822, USA
| | - Kelly V. Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA,Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel Mucida
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Shohei Koide
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016,Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA,Corresponding author: Ken Cadwell, Address: 430 East 29th street, 4th Floor, New York, NY 10016, , Phone: 212-263-8891, Fax: 212-263-5711, Shohei Koide, Address: 522 1st Avenue, Smilow Research Center, 8th floor, New York, NY 10016, , Phone: 646-501-4601
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA,Corresponding author: Ken Cadwell, Address: 430 East 29th street, 4th Floor, New York, NY 10016, , Phone: 212-263-8891, Fax: 212-263-5711, Shohei Koide, Address: 522 1st Avenue, Smilow Research Center, 8th floor, New York, NY 10016, , Phone: 646-501-4601
| |
Collapse
|
193
|
A self-sustaining layer of early-life-origin B cells drives steady-state IgA responses in the adult gut. Immunity 2022; 55:1829-1842.e6. [PMID: 36115337 DOI: 10.1016/j.immuni.2022.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/20/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022]
Abstract
The adult immune system consists of cells that emerged at various times during ontogeny. We aimed to define the relationship between developmental origin and composition of the adult B cell pool during unperturbed hematopoiesis. Lineage tracing stratified murine adult B cells based on the timing of output, revealing that a substantial portion originated within a restricted neonatal window. In addition to B-1a cells, early-life time-stamped B cells included clonally interrelated IgA plasma cells in the gut and bone marrow. These were actively maintained by B cell memory within gut chronic germinal centers and contained commensal microbiota reactivity. Neonatal rotavirus infection recruited recurrent IgA clones that were distinct from those arising by infection with the same antigen in adults. Finally, gut IgA plasma cells arose from the same hematopoietic progenitors as B-1a cells during ontogeny. Thus, a complex layer of neonatally imprinted B cells confer unique antibody responses later in life.
Collapse
|
194
|
Evolution of the Gut Microbiome in HIV-Exposed Uninfected and Unexposed Infants during the First Year of Life. mBio 2022; 13:e0122922. [PMID: 36073815 PMCID: PMC9600264 DOI: 10.1128/mbio.01229-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-exposed uninfected infants (HEU) have abnormal immunologic functions and increased infectious morbidity in the first 6 months of life, which gradually decreases thereafter. The mechanisms underlying HEU immune dysfunctions are unknown. We hypothesized that unique characteristics of the HEU gut microbiota associated with maternal HIV status may underlie the HEU immunologic dysfunctions. We characterized the infant gut, maternal gut, and breast milk microbiomes of mother-infant pairs, including 123 with HEU and 117 with HIV-uninfected infants (HUU), from South Africa. Pan-bacterial 16S rRNA gene sequencing was performed on (i) infant stool at 6, 28, and 62 weeks; (ii) maternal stool at delivery and 62 weeks; and (iii) breast milk at 6 weeks. Infant gut alpha and beta diversities were similar between groups. Microbial composition significantly differed, including 12 genera, 5 families and 1 phylum at 6 weeks; 12 genera and 2 families at 28 weeks; and 2 genera and 2 families at 62 weeks of life. Maternal gut microbiomes significantly differed in beta diversity and microbial composition, and breast milk microbiomes differed in microbial composition only. Infant gut microbiotas extensively overlapped with maternal gut and minimally with breast milk microbiotas. Nevertheless, exclusively breastfed HEU and HUU had less divergent microbiomes than nonexclusively breastfed infants. Feeding pattern and maternal gut microbiome imprint the HEU gut microbiome. Compared to HUU, the HEU gut microbiome prominently differs in early infancy, including increased abundance of taxa previously observed to be present in excess in adults with HIV. The HEU and HUU gut microbiome compositions converge over time, mirroring the kinetics of HEU infectious morbidity risk.
Collapse
|
195
|
Polakova A, Hudemann C, Wiemers F, Kadys A, Gremke N, Lang M, Zwiorek L, Pfützner W, Hertl M, Möbs C, Zimmer CL. Isolation of Lymphocytes from Human Skin and Murine Tissues: A Rapid and Epitope-Preserving Approach. JID INNOVATIONS 2022; 3:100155. [PMID: 36866120 PMCID: PMC9974185 DOI: 10.1016/j.xjidi.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue-resident immune cells have been shown to play an important role in skin health and disease. However, owing to limited access to human skin samples and time-consuming, technically demanding protocols, the characterization of tissue-derived cells remains challenging. For this reason, blood-derived leukocytes are frequently used as a surrogate specimen, although they do not necessarily reflect local immune responses in the skin. Therefore, we aimed to establish a rapid protocol to isolate a sufficient number of viable immune cells from 4-mm skin biopsies that can be directly used for a deeper characterization such as comprehensive phenotyping and functional studies of T cells. In this optimized protocol, only two enzymes, type IV collagenase and DNase I, were used to achieve both the highest possible cellular yield and marker preservation of leukocytes stained for multicolor flow cytometry. We further report that the optimized protocol may be used in the same manner for murine skin and mucosa. In summary, this study allows a rapid acquisition of lymphocytes from human or mouse skin suitable for comprehensive analysis of lymphocyte subpopulations, for disease surveillance, and for identification of potential therapeutic targets or other downstream applications.
Collapse
Affiliation(s)
- Alexandra Polakova
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Felix Wiemers
- Department of Gynecology and Obstetrics, Philipps-Universität Marburg, Marburg, Germany
| | - Arturas Kadys
- Department of Gynecology and Obstetrics, Philipps-Universität Marburg, Marburg, Germany
| | - Niklas Gremke
- Department of Gynecology and Obstetrics, Philipps-Universität Marburg, Marburg, Germany
| | - Manuel Lang
- Center for Human Genetics, Philipps-Universität Marburg, Marburg, Germany
| | - Lutz Zwiorek
- Department of Gynecology and Obstetrics, Philipps-Universität Marburg, Marburg, Germany
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christine L. Zimmer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany,Correspondence: Christine L. Zimmer, Department of Dermatology and Allergology, Philipps-Universität Marburg, Baldingerstraße, Marburg 35043, Germany.
| |
Collapse
|
196
|
Juarez VM, Montalbine AN, Singh A. Microbiome as an immune regulator in health, disease, and therapeutics. Adv Drug Deliv Rev 2022; 188:114400. [PMID: 35718251 PMCID: PMC10751508 DOI: 10.1016/j.addr.2022.114400] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
New discoveries in drugs and drug delivery systems are focused on identifying and delivering a pharmacologically effective agent, potentially targeting a specific molecular component. However, current drug discovery and therapeutic delivery approaches do not necessarily exploit the complex regulatory network of an indispensable microbiota that has been engineered through evolutionary processes in humans or has been altered by environmental exposure or diseases. The human microbiome, in all its complexity, plays an integral role in the maintenance of host functions such as metabolism and immunity. However, dysregulation in this intricate ecosystem has been linked with a variety of diseases, ranging from inflammatory bowel disease to cancer. Therapeutics and bacteria have an undeniable effect on each other and understanding the interplay between microbes and drugs could lead to new therapies, or to changes in how existing drugs are delivered. In addition, targeting the human microbiome using engineered therapeutics has the potential to address global health challenges. Here, we present the challenges and cutting-edge developments in microbiome-immune cell interactions and outline novel targeting strategies to advance drug discovery and therapeutics, which are defining a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Valeria M Juarez
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Alyssa N Montalbine
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Ankur Singh
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
197
|
Souter MN, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JY, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SB. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J Exp Med 2022; 219:213423. [PMID: 36018322 PMCID: PMC9424912 DOI: 10.1084/jem.20210828] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
Collapse
Affiliation(s)
- Michael N.T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zehua Tian
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Adam Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacinta Wubben
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George O. Lovrecz
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam P. Uldrich
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
198
|
Wolfe AE, Markey KA. The contribution of the intestinal microbiome to immune recovery after HCT. Front Immunol 2022; 13:988121. [PMID: 36059482 PMCID: PMC9434312 DOI: 10.3389/fimmu.2022.988121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Allogenic hematopoietic stem-cell transplantation (allo-HCT) is a curative-intent immunotherapy for high-risk hematological malignancies and immune deficiencies. Allo-HCT carries a high risk of treatment-related mortality (TRM), largely due to infection or graft-versus-host disease (GVHD). Robust immune recovery is essential for optimal patient outcomes, given the immunologic graft-versus-leukemia effect prevents relapse, and functional innate and adaptive immunity are both needed for the prevention and control of infection. Most simply, we measure immune recovery by enumerating donor lymphocyte subsets in circulation. In functional terms, ideal immune recovery is more difficult to define, and current lab techniques are limited to the measurement of specific vaccine-responses or mitogens ex vivo. Clinically, poor immune function manifests as problematic infection with viral, bacterial and fungal organisms. Furthermore, the ideal recovering immune system is capable of exerting graft-versus-tumor effects to prevent relapse, and does not induce graft-versus-host disease. Large clinical observational studies have linked loss of diversity within the gut microbiome with adverse transplant outcomes including decreased overall survival and increased acute and chronic GVHD. Furthermore, the correlation between intestinal microbial communities and numeric lymphocyte recovery has now been reported using a number of approaches. Large sets of clinically available white blood cell count data, clinical flow cytometry of lymphocyte subsets and bespoke flow cytometry analyses designed to capture microbiota-specific T cells (e.g. Mucosal-associated invariant T cells, subsets of the gd T cells) have all been leveraged in an attempt to understand links between the microbiota and the recovering immune system in HCT patients. Additionally, preclinical studies suggest an immunomodulatory role for bacterial metabolites (including butyrate, secondary bile acids, and indole derivatives from tryptophan metabolism) in transplant outcomes, though further studies are needed to unravel mechanisms relevant to the post-HCT setting. An understanding of mechanistic relationships between the intestinal microbiome and post-transplant outcomes is necessary for reduction of risk associated with transplant, to inform prophylactic procedures, and ensure optimal immune reconstitution without alloreactivity. Here, we summarize the current understanding of the complex relationship between bacterial communities, their individual members, and the metabolites they produce with immune function in both the allo-HCT and steady-state setting.
Collapse
Affiliation(s)
- Alex E. Wolfe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kate A. Markey
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
199
|
Ataide MA, Knöpper K, Cruz de Casas P, Ugur M, Eickhoff S, Zou M, Shaikh H, Trivedi A, Grafen A, Yang T, Prinz I, Ohlsen K, Gomez de Agüero M, Beilhack A, Huehn J, Gaya M, Saliba AE, Gasteiger G, Kastenmüller W. Lymphatic migration of unconventional T cells promotes site-specific immunity in distinct lymph nodes. Immunity 2022; 55:1813-1828.e9. [PMID: 36002023 DOI: 10.1016/j.immuni.2022.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 07/27/2022] [Indexed: 12/31/2022]
Abstract
Lymphatic transport of molecules and migration of myeloid cells to lymph nodes (LNs) continuously inform lymphocytes on changes in drained tissues. Here, using LN transplantation, single-cell RNA-seq, spectral flow cytometry, and a transgenic mouse model for photolabeling, we showed that tissue-derived unconventional T cells (UTCs) migrate via the lymphatic route to locally draining LNs. As each tissue harbored a distinct spectrum of UTCs with locally adapted differentiation states and distinct T cell receptor repertoires, every draining LN was thus populated by a distinctive tissue-determined mix of these lymphocytes. By making use of single UTC lineage-deficient mouse models, we found that UTCs functionally cooperated in interconnected units and generated and shaped characteristic innate and adaptive immune responses that differed between LNs that drained distinct tissues. Lymphatic migration of UTCs is, therefore, a key determinant of site-specific immunity initiated in distinct LNs with potential implications for vaccination strategies and immunotherapeutic approaches.
Collapse
Affiliation(s)
- Marco A Ataide
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany.
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Paulina Cruz de Casas
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Sarah Eickhoff
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Mangge Zou
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Haroon Shaikh
- Department of Medicine II and Pediatrics, Würzburg University Hospital, ZEMM, 97078 Würzburg, Germany
| | - Apurwa Trivedi
- Centre d'Immunologie de Marseille-Luminy (CIML), Department of Immunology, 13288 Marseille, France
| | - Anika Grafen
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Tao Yang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB), 97078 Würzburg, Germany
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Andreas Beilhack
- Department of Medicine II and Pediatrics, Würzburg University Hospital, ZEMM, 97078 Würzburg, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Mauro Gaya
- Centre d'Immunologie de Marseille-Luminy (CIML), Department of Immunology, 13288 Marseille, France
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
200
|
Gao MG, Zhao XS. Mining the multifunction of mucosal-associated invariant T cells in hematological malignancies and transplantation immunity: A promising hexagon soldier in immunomodulatory. Front Immunol 2022; 13:931764. [PMID: 36052080 PMCID: PMC9427077 DOI: 10.3389/fimmu.2022.931764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-like T cells capable of recognizing bacterial and fungal ligands derived from vitamin B biosynthesis. Under different stimulation conditions, MAIT cells can display different immune effector phenotypes, exerting immune regulation and anti-/protumor responses. Based on basic biological characteristics, including the enrichment of mucosal tissue, the secretion of mucosal repair protective factors (interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora, MAIT cells may play an important role in the immune regulation effect of mucosal lesions or inflammation. At the same time, activated MAIT cells secrete granzyme B, perforin, interferon γ, and other toxic cytokines, which can mediate anti-tumor effects. In addition, since a variety of hematological malignancies express the targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially attractive target for cell therapy or immunotherapy for hematological malignancies. In this review, we will provide an overview of MAIT research related to blood system diseases and discuss the possible immunomodulatory or anti-tumor roles that unique biological characteristics or effector phenotypes may play in hematological diseases.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- *Correspondence: Xiao-Su Zhao,
| |
Collapse
|