151
|
Cinar B, Al-Mathkour MM, Khan SA, Moreno CS. Androgen attenuates the inactivating phospho-Ser-127 modification of yes-associated protein 1 (YAP1) and promotes YAP1 nuclear abundance and activity. J Biol Chem 2020; 295:8550-8559. [PMID: 32376689 DOI: 10.1074/jbc.ra120.013794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Indexed: 11/06/2022] Open
Abstract
The transcriptional coactivator YAP1 (yes-associated protein 1) regulates cell proliferation, cell-cell interactions, organ size, and tumorigenesis. Post-transcriptional modifications and nuclear translocation of YAP1 are crucial for its nuclear activity. The objective of this study was to elucidate the mechanism by which the steroid hormone androgen regulates YAP1 nuclear entry and functions in several human prostate cancer cell lines. We demonstrate that androgen exposure suppresses the inactivating post-translational modification phospho-Ser-127 in YAP1, coinciding with increased YAP1 nuclear accumulation and activity. Pharmacological and genetic experiments revealed that intact androgen receptor signaling is necessary for androgen's inactivating effect on phospho-Ser-127 levels and increased YAP1 nuclear entry. We also found that androgen exposure antagonizes Ser/Thr kinase 4 (STK4/MST1) signaling, stimulates the activity of protein phosphatase 2A, and thereby attenuates the phospho-Ser-127 modification and promotes YAP1 nuclear localization. Results from quantitative RT-PCR and CRISPR/Cas9-aided gene knockout experiments indicated that androgen differentially regulates YAP1-dependent gene expression. Furthermore, an unbiased computational analysis of the prostate cancer data from The Cancer Genome Atlas revealed that YAP1 and androgen receptor transcript levels correlate with each other in prostate cancer tissues. These findings indicate that androgen regulates YAP1 nuclear localization and its transcriptional activity through the androgen receptor-STK4/MST1-protein phosphatase 2A axis, which may have important implications for human diseases such as prostate cancer.
Collapse
Affiliation(s)
- Bekir Cinar
- Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, USA .,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Marwah M Al-Mathkour
- Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, USA
| | - Shafiq A Khan
- Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Carlos S Moreno
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine and Biomedical Informatics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
152
|
Samavarchi-Tehrani P, Samson R, Gingras AC. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches. Mol Cell Proteomics 2020; 19:757-773. [PMID: 32127388 PMCID: PMC7196579 DOI: 10.1074/mcp.r120.001941] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation.
Collapse
Affiliation(s)
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
153
|
Carias KV, Zoeteman M, Seewald A, Sanderson MR, Bischof JM, Wevrick R. A MAGEL2-deubiquitinase complex modulates the ubiquitination of circadian rhythm protein CRY1. PLoS One 2020; 15:e0230874. [PMID: 32315313 PMCID: PMC7173924 DOI: 10.1371/journal.pone.0230874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/10/2020] [Indexed: 01/15/2023] Open
Abstract
MAGEL2 encodes the L2 member of the MAGE (melanoma antigen) protein family. Protein truncating mutations in MAGEL2 cause Schaaf-Yang syndrome, and MAGEL2 is one of a small set of genes deleted in Prader-Willi syndrome. Excessive daytime sleepiness, night-time or early morning waking, and narcoleptic symptoms are seen in people with Prader-Willi syndrome and Schaaf-Yang syndrome, while mice carrying a gene-targeted Magel2 deletion have disrupted circadian rhythms. These phenotypes suggest that MAGEL2 is important for the robustness of the circadian rhythm. However, a cellular role for MAGEL2 has yet to be elucidated. MAGEL2 influences the ubiquitination of substrate proteins to target them for further modification or to alter their stability through proteasomal degradation pathways. Here, we characterized relationships among MAGEL2 and proteins that regulate circadian rhythm. The effect of MAGEL2 on the key circadian rhythm protein cryptochrome 1 (CRY1) was assessed using in vivo proximity labelling (BioID), immunofluorescence microscopy and ubiquitination assays. We demonstrate that MAGEL2 modulates the ubiquitination of CRY1. Further studies will clarify the cellular role MAGEL2 normally plays in circadian rhythm, in part through ubiquitination and regulation of stability of the CRY1 protein.
Collapse
Affiliation(s)
- K. Vanessa Carias
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Mercedes Zoeteman
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Abigail Seewald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | | | - Jocelyn M. Bischof
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
154
|
Zhang X, Zhang Q, Wu Q, Tang H, Ye L, Zhang Q, Hua D, Zhang Y, Li F. Integrated analyses reveal hsa_circ_0028883 as a diagnostic biomarker in active tuberculosis. INFECTION GENETICS AND EVOLUTION 2020; 83:104323. [PMID: 32305357 DOI: 10.1016/j.meegid.2020.104323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are known to be closely involved in various diseases progression. Nevertheless, their function and underlying mechanisms in tuberculosis (TB) remain largely unknown. The aim of the present study was to explore their potential diagnostic values in TB. We downloaded the gene expression datasets of circRNA (GSE117563 and GSE106953), microRNA (miRNA, dataset GSE29190) and mRNA (GSE54992) from Gene Expression Omnibus (GEO) database. A competing endogenous RNAs (ceRNA) network was constructed based on circRNA-miRNA-mRNA potential interaction. We also constructed a circRNA-miRNA-hub gene regulatory module by using the Cytohubba. Gene ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to predict their biological functions. By further validation, the expression level of hsa_circ_0028883 and hsa-miR-409-5p were detected by qRT-PCR in 20 active TB patients and 20 healthy donors. Then, Receiver Operating Characteristic (ROC) was constructed to evaluate the diagnostic values of hsa_circ_0028883. 1 differentially expressed circRNA (DE-circRNA), 1 differentially expressed miRNA (DE-miRNA), and 44 differentially expressed mRNAs (DE-mRNAs) were selected for the construction of ceRNA network in TB. A circRNA-miRNA-hub gene (mRNA) sub-network was constructed based on 1 DE-circRNA, 1 DE-miRNA, and 8 DE-mRNAs. Hsa_circ_0028883/hsa-miR-409-5p/mRNA interactions may provide some novel mechanisms for active TB. GO and KEGG pathway analysis indicated the possible function of hsa_circ_0028883 with TB. ROC analysis revealed that hsa_circ_0028883 had potential value for TB diagnosis. Hsa_circ_0028883 is a potentially reliable biomarker to diagnose active TB, but there remains a need to further study the mechanism in TB.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qian Zhang
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Qingguo Wu
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Haicheng Tang
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Linxiong Ye
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Qilong Zhang
- Department of Critical Care Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Demi Hua
- Department of Tuberculosis, The Third People's Hospital of Tibet Autonomous Region, Lhasa 850000, China
| | - Yunbin Zhang
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Feng Li
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| |
Collapse
|
155
|
Kovar H, Bierbaumer L, Radic-Sarikas B. The YAP/TAZ Pathway in Osteogenesis and Bone Sarcoma Pathogenesis. Cells 2020; 9:E972. [PMID: 32326412 PMCID: PMC7227004 DOI: 10.3390/cells9040972] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Abstract
YAP and TAZ are intracellular messengers communicating multiple interacting extracellular biophysical and biochemical cues to the transcription apparatus in the nucleus and back to the cell/tissue microenvironment interface through the regulation of cytoskeletal and extracellular matrix components. Their activity is negatively and positively controlled by multiple phosphorylation events. Phenotypically, they serve an important role in cellular plasticity and lineage determination during development. As they regulate self-renewal, proliferation, migration, invasion and differentiation of stem cells, perturbed expression of YAP/TAZ signaling components play important roles in tumorigenesis and metastasis. Despite their high structural similarity, YAP and TAZ are functionally not identical and may play distinct cell type and differentiation stage-specific roles mediated by a diversity of downstream effectors and upstream regulatory molecules. However, YAP and TAZ are frequently looked at as functionally redundant and are not sufficiently discriminated in the scientific literature. As the extracellular matrix composition and mechanosignaling are of particular relevance in bone formation during embryogenesis, post-natal bone elongation and bone regeneration, YAP/TAZ are believed to have critical functions in these processes. Depending on the differentiation stage of mesenchymal stem cells during endochondral bone development, YAP and TAZ serve distinct roles, which are also reflected in bone tumors arising from the mesenchymal lineage at different developmental stages. Efforts to clinically translate the wealth of available knowledge of the pathway for cancer diagnostic and therapeutic purposes focus mainly on YAP and TAZ expression and their role as transcriptional co-activators of TEAD transcription factors but rarely consider the expression and activity of pathway modulatory components and other transcriptional partners of YAP and TAZ. As there is a growing body of evidence for YAP and TAZ as potential therapeutic targets in several cancers, we here interrogate the applicability of this concept to bone tumors. To this end, this review aims to summarize our current knowledge of YAP and TAZ in cell plasticity, normal bone development and bone cancer.
Collapse
Affiliation(s)
- Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Lisa Bierbaumer
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
| | - Branka Radic-Sarikas
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
| |
Collapse
|
156
|
Bae SJ, Ni L, Luo X. STK25 suppresses Hippo signaling by regulating SAV1-STRIPAK antagonism. eLife 2020; 9:e54863. [PMID: 32292165 PMCID: PMC7182433 DOI: 10.7554/elife.54863] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
The MST-LATS kinase cascade is central to the Hippo pathway that controls tissue homeostasis, development, and organ size. The PP2A complex STRIPAKSLMAP blocks MST1/2 activation. The GCKIII family kinases associate with STRIPAK, but the functions of these phosphatase-associated kinases remain elusive. We previously showed that the scaffolding protein SAV1 promotes Hippo signaling by counteracting STRIPAK (Bae et al., 2017). Here, we show that the GCKIII kinase STK25 promotes STRIPAK-mediated inhibition of MST2 in human cells. Depletion of STK25 enhances MST2 activation without affecting the integrity of STRIPAKSLMAP. STK25 directly phosphorylates SAV1 and diminishes the ability of SAV1 to inhibit STRIPAK. Thus, STK25 as the kinase component of STRIPAK can inhibit the function of the STRIPAK inhibitor SAV1. This mutual antagonism between STRIPAK and SAV1 controls the initiation of Hippo signaling.
Collapse
Affiliation(s)
- Sung Jun Bae
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Lisheng Ni
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
157
|
Loganathan SK, Schleicher K, Malik A, Quevedo R, Langille E, Teng K, Oh RH, Rathod B, Tsai R, Samavarchi-Tehrani P, Pugh TJ, Gingras AC, Schramek D. Rare driver mutations in head and neck squamous cell carcinomas converge on NOTCH signaling. Science 2020; 367:1264-1269. [PMID: 32165588 DOI: 10.1126/science.aax0902] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
In most human cancers, only a few genes are mutated at high frequencies; most are mutated at low frequencies. The functional consequences of these recurrent but infrequent "long tail" mutations are often unknown. We focused on 484 long tail genes in head and neck squamous cell carcinoma (HNSCC) and used in vivo CRISPR to screen for genes that, upon mutation, trigger tumor development in mice. Of the 15 tumor-suppressor genes identified, ADAM10 and AJUBA suppressed HNSCC in a haploinsufficient manner by promoting NOTCH receptor signaling. ADAM10 and AJUBA mutations or monoallelic loss occur in 28% of human HNSCC cases and are mutually exclusive with NOTCH receptor mutations. Our results show that oncogenic mutations in 67% of human HNSCC cases converge onto the NOTCH signaling pathway, making NOTCH inactivation a hallmark of HNSCC.
Collapse
Affiliation(s)
- Sampath K Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Krista Schleicher
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ellen Langille
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Katie Teng
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Robin H Oh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bhavisha Rathod
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Payman Samavarchi-Tehrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
158
|
Ardestani A, Maedler K. STRIPAK Is a Regulatory Hub Initiating Hippo Signaling. Trends Biochem Sci 2020; 45:280-283. [DOI: 10.1016/j.tibs.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 01/27/2023]
|
159
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 DOI: 10.3389/fcell.2020.00161/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 05/26/2023] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
160
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 PMCID: PMC7096357 DOI: 10.3389/fcell.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
| | - Laurel A. Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
161
|
Lechermeier CG, D'Orazio A, Romanos M, Lillesaar C, Drepper C. Distribution of transcripts of the GFOD gene family members gfod1 and gfod2 in the zebrafish central nervous system. Gene Expr Patterns 2020; 36:119111. [PMID: 32197942 DOI: 10.1016/j.gep.2020.119111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
The glucose-fructose oxidoreductase domain containing gene family (GFOD) is small and contains only two members in human (GFOD1 and GFOD2). Information about its function is scarce. As the name implies the proteins contain an enzyme-defining domain, however, if this is functional and has enzymatic activity remains to be shown. A single nucleotide polymorphism situated in an intron of GFOD1 was found to be associated with inattentive symptomology in patients with attention-deficit/hyperactivity disorder. Further, in a large schizophrenia genome-wide association study the GFOD2 locus was found to be associated with the psychiatric condition. Until now, however, it is unclear what specific functions are associated with the two GFOD-family members, if they might be involved in neurodevelopment and how this may relate to the development of psychiatric disorders. In order to gain first insights into the hypothesis that GFOD-family members are involved in brain development and/or function we performed RNA in situ hybridization on zebrafish (Danio rerio) tissues at different developmental stages. We found that both family members are expressed in the central nervous system at embryonic, larvae and adult stages. We were able to define subtle differences of expression of the two gfod genes and we showed that a subset of GABAergic neurons express gfod1. Taken together, we conclude that both gfod gene family members are expressed in overlapping as well as in distinct regions in the zebrafish central nervous system. Our data suggest that gfod1 and gfod2 are relevant both for the developing and adult zebrafish brain. This study paves the way for further functional analyses of this yet unexplored gene family.
Collapse
Affiliation(s)
- Carina G Lechermeier
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Andrea D'Orazio
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Marcel Romanos
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Christina Lillesaar
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.
| | - Carsten Drepper
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
162
|
Rodriguez-Cupello C, Dam M, Serini L, Wang S, Lindgren D, Englund E, Kjellman P, Axelson H, García-Mariscal A, Madsen CD. The STRIPAK Complex Regulates Response to Chemotherapy Through p21 and p27. Front Cell Dev Biol 2020; 8:146. [PMID: 32258031 PMCID: PMC7089963 DOI: 10.3389/fcell.2020.00146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
The STRIPAK complex has been linked to a variety of biological processes taking place during embryogenesis and development, but its role in cancer has only just started to be defined. Here, we expand on previous work indicating a role for the scaffolding protein STRIP1 in cancer cell migration and metastasis. We show that cell cycle arrest and decreased proliferation are seen upon loss of STRIP1 in MDA-MB-231 cells due to the induction of cyclin dependent kinase inhibitors, including p21 and p27. We demonstrate that p21 and p27 induction is observed in a subpopulation of cells having low DNA damage response and that the p21high/γH2AXlow ratio within single cells can be rescued by depleting MST3&4 kinases. While the loss of STRIP1 decreases cell proliferation and tumor growth, cells treated with low dosage of chemotherapeutics in vitro paradoxically escape therapy-induced senescence and begin to proliferate after recovery. This corroborates with already known research on the dual role of p21 and indicates that STRIP1 also plays a contradictory role in breast cancer, suppressing tumor growth, but once treated with chemotherapeutics, allowing for possible recurrence and decreased patient survival.
Collapse
Affiliation(s)
- Carmen Rodriguez-Cupello
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Monica Dam
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Laura Serini
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Shan Wang
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Emelie Englund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pontus Kjellman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alberto García-Mariscal
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Chris D Madsen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
163
|
Budayeva HG, Kirkpatrick DS. Monitoring protein communities and their responses to therapeutics. Nat Rev Drug Discov 2020; 19:414-426. [PMID: 32139903 DOI: 10.1038/s41573-020-0063-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Most therapeutics are designed to alter the activities of proteins. From metabolic enzymes to cell surface receptors, connecting the function of a protein to a cellular phenotype, to the activity of a drug and to a clinical outcome represents key mechanistic milestones during drug development. Yet, even for therapeutics with exquisite specificity, the sequence of events following target engagement can be complex. Interconnected communities of structural, metabolic and signalling proteins modulate diverse downstream effects that manifest as interindividual differences in efficacy, adverse effects and resistance to therapy. Recent advances in mass spectrometry proteomics have made it possible to decipher these complex relationships and to understand how factors such as genotype, cell type, local environment and external perturbations influence them. In this Review, we explore how proteomic technologies are expanding our understanding of protein communities and their responses to large- and small-molecule therapeutics.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
164
|
Ali H, Braga L, Giacca M. Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS J 2020; 287:417-438. [PMID: 31743572 DOI: 10.1111/febs.15146] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/27/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Adult mammals are unable to regenerate their hearts after cardiac injury, largely due to the incapacity of cardiomyocytes (CMs) to undergo cell division. However, mammalian embryonic and fetal CMs, similar to CMs from fish and amphibians during their entire life, exhibit robust replicative activity, which stops abruptly after birth and never significantly resumes. Converging evidence indicates that formation of the highly ordered and stable cytoarchitecture of mammalian mature CMs is coupled with loss of their proliferative potential. Here, we review the available information on the role of the cardiac cytoskeleton and sarcomere in the regulation of CM proliferation. The actin cytoskeleton, the intercalated disc, the microtubular network and the dystrophin-glycoprotein complex each sense mechanical cues from the surrounding environment. Furthermore, they participate in the regulation of CM proliferation by impinging on the yes-associated protein/transcriptional co-activator with PDZ-binding motif, β-catenin and myocardin-related transcription factor transcriptional co-activators. Mastering the molecular mechanisms regulating CM proliferation would permit the development of innovative strategies to stimulate cardiac regeneration in adult individuals, a hitherto unachieved yet fundamental therapeutic goal.
Collapse
Affiliation(s)
- Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| |
Collapse
|
165
|
Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ 2020; 27:2158-2175. [PMID: 31969690 DOI: 10.1038/s41418-020-0492-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Neonatal mammalian heart maintains a transient regeneration capacity after birth, whereas this regeneration ability gradually loses in the postnatal heart. Thus, the reactivation of cardiomyocyte proliferation is emerging as a key strategy for inducing heart regeneration in adults. We have reported that a highly conserved long noncoding RNA (lncRNA) LncDACH1 was overexpressed in the failing hearts. Here, we found that LncDACH1 was gradually upregulated in the postnatal hearts. Cardiac-specific overexpression of LncDACH1 (TG) in mice suppressed neonatal heart regeneration and worsened cardiac function after apical resection. Conversely, in vivo cardiac conditional knockout of LncDACH1 (CKO) and adenovirus-mediated silencing of endogenous LncDACH1 reactivated cardiomyocyte-proliferative potential and promoted heart regeneration after myocardial infarction (MI) in juvenile and adult mice. Mechanistically, LncDACH1 was found to directly bind to protein phosphatase 1 catalytic subunit alpha (PP1A), and in turn, limit its dephosphorylation activity. Consistently, PP1A siRNA or pharmacological blockers of PP1A abrogated cardiomyocyte mitosis induced by LncDACH1 silencing. Furthermore, LncDACH1 enhanced yes-associated protein 1 (YAP1) phosphorylation and reduced its nuclear translocation by binding PP1A. Verteporfin, a YAP1 inhibitor decreased LncDACH1 silencing-induced cardiomyocyte proliferation. In addition, targeting a conserved fragment of LncDACH1 caused cell cycle re-entry of human iPSC-derived cardiomyocytes. Collectively, LncDACH1 governs heart regeneration in postnatal and ischemic hearts via regulating PP1A/YAP1 signal, which confers a novel therapeutic strategy for ischemic heart diseases.
Collapse
|
166
|
Kim JW, Berrios C, Kim M, Schade AE, Adelmant G, Yeerna H, Damato E, Iniguez AB, Florens L, Washburn MP, Stegmaier K, Gray NS, Tamayo P, Gjoerup O, Marto JA, DeCaprio J, Hahn WC. STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. eLife 2020; 9:e53003. [PMID: 31913126 PMCID: PMC6984821 DOI: 10.7554/elife.53003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations involving serine-threonine phosphatase PP2A subunits occur in a range of human cancers, and partial loss of PP2A function contributes to cell transformation. Displacement of regulatory B subunits by the SV40 Small T antigen (ST) or mutation/deletion of PP2A subunits alters the abundance and types of PP2A complexes in cells, leading to transformation. Here, we show that ST not only displaces common PP2A B subunits but also promotes A-C subunit interactions with alternative B subunits (B''', striatins) that are components of the Striatin-interacting phosphatase and kinase (STRIPAK) complex. We found that STRN4, a member of STRIPAK, is associated with ST and is required for ST-PP2A-induced cell transformation. ST recruitment of STRIPAK facilitates PP2A-mediated dephosphorylation of MAP4K4 and induces cell transformation through the activation of the Hippo pathway effector YAP1. These observations identify an unanticipated role of MAP4K4 in transformation and show that the STRIPAK complex regulates PP2A specificity and activity.
Collapse
Affiliation(s)
- Jong Wook Kim
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Division of Medical Genetics, School of MedicineUniversity of California, San DiegoSan DiegoUnited States
- Moores Cancer CenterUniversity of California, San DiegoSan DiegoUnited States
| | - Christian Berrios
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Program in Virology, Graduate School of Arts and SciencesHarvard UniversityCambridgeUnited States
| | - Miju Kim
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Amy E Schade
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Program in Virology, Graduate School of Arts and SciencesHarvard UniversityCambridgeUnited States
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Oncologic PathologyDana-Farber Cancer InstituteBostonUnited States
| | - Huwate Yeerna
- Division of Medical Genetics, School of MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Emily Damato
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Amanda Balboni Iniguez
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Pediatric OncologyDana-Farber Cancer InstituteBostonUnited States
| | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityUnited States
| | - Kim Stegmaier
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Pediatric OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Nathanael S Gray
- Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUnited States
| | - Pablo Tamayo
- Division of Medical Genetics, School of MedicineUniversity of California, San DiegoSan DiegoUnited States
- Moores Cancer CenterUniversity of California, San DiegoSan DiegoUnited States
| | - Ole Gjoerup
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Oncologic PathologyDana-Farber Cancer InstituteBostonUnited States
| | - James DeCaprio
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Program in Virology, Graduate School of Arts and SciencesHarvard UniversityCambridgeUnited States
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - William C Hahn
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
167
|
Moskal N, Riccio V, Bashkurov M, Taddese R, Datti A, Lewis PN, Angus McQuibban G. ROCK inhibitors upregulate the neuroprotective Parkin-mediated mitophagy pathway. Nat Commun 2020; 11:88. [PMID: 31900402 PMCID: PMC6941965 DOI: 10.1038/s41467-019-13781-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
The accumulation of damaged mitochondria causes the death of dopaminergic neurons. The Parkin-mediated mitophagy pathway functions to remove these mitochondria from cells. Targeting this pathway represents a therapeutic strategy for several neurodegenerative diseases, most notably Parkinson's disease. We describe a discovery pipeline to identify small molecules that increase Parkin recruitment to damaged mitochondria and ensuing mitophagy. We show that ROCK inhibitors promote the activity of this pathway by increasing the recruitment of HK2, a positive regulator of Parkin, to mitochondria. This leads to the increased targeting of mitochondria to lysosomes and removal of damaged mitochondria from cells. Furthermore, ROCK inhibitors demonstrate neuroprotective effects in flies subjected to paraquat, a parkinsonian toxin that induces mitochondrial damage. Importantly, parkin and rok are required for these effects, revealing a signaling axis which controls Parkin-mediated mitophagy that may be exploited for the development of Parkinson's disease therapeutics.
Collapse
Affiliation(s)
- Natalia Moskal
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Victoria Riccio
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Mikhail Bashkurov
- Network Biology Collaborative Centre, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rediet Taddese
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alessandro Datti
- Network Biology Collaborative Centre, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Peter N Lewis
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - G Angus McQuibban
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
168
|
Vargas RE, Duong VT, Han H, Ta AP, Chen Y, Zhao S, Yang B, Seo G, Chuc K, Oh S, El Ali A, Razorenova OV, Chen J, Luo R, Li X, Wang W. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. EMBO J 2020; 39:e102406. [PMID: 31782549 PMCID: PMC6939200 DOI: 10.15252/embj.2019102406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
The Hippo pathway, which plays a critical role in organ size control and cancer, features numerous WW domain-based protein-protein interactions. However, ~100 WW domains and 2,000 PY motif-containing peptide ligands are found in the human proteome, raising a "WW-PY" binding specificity issue in the Hippo pathway. In this study, we have established the WW domain binding specificity for Hippo pathway components and uncovered a unique amino acid sequence required for it. By using this criterion, we have identified a WW domain-containing protein, STXBP4, as a negative regulator of YAP. Mechanistically, STXBP4 assembles a protein complex comprising α-catenin and a group of Hippo PY motif-containing components/regulators to inhibit YAP, a process that is regulated by actin cytoskeleton tension. Interestingly, STXBP4 is a potential tumor suppressor for human kidney cancer, whose downregulation is correlated with YAP activation in clear cell renal cell carcinoma. Taken together, our study not only elucidates the WW domain binding specificity for the Hippo pathway, but also reveals STXBP4 as a player in actin cytoskeleton tension-mediated Hippo pathway regulation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Hippo Signaling Pathway
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Survival Rate
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Vesicular Transport Proteins/genetics
- Vesicular Transport Proteins/metabolism
- WW Domains
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Rebecca E Vargas
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Vy Thuy Duong
- Department of ChemistryUniversity of California, IrvineIrvineCAUSA
| | - Han Han
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Albert Paul Ta
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Yuxuan Chen
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Shiji Zhao
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Bing Yang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Gayoung Seo
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Kimberly Chuc
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Sunwoo Oh
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Amal El Ali
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Olga V Razorenova
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Junjie Chen
- Department of Experimental Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ray Luo
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Materials Science and EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Biomedical EngineeringUniversity of California, IrvineIrvineCAUSA
| | - Xu Li
- School of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Wenqi Wang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| |
Collapse
|
169
|
O'Loughlin T, Kendrick-Jones J, Buss F. Approaches to Identify and Characterise MYO6-Cargo Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:355-380. [PMID: 32451866 DOI: 10.1007/978-3-030-38062-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the prevalence and importance of the actin cytoskeleton and the host of associated myosin motors, it comes as no surprise to find that they are linked to a plethora of cellular functions and pathologies. Although our understanding of the biophysical properties of myosin motors has been aided by the high levels of conservation in their motor domains and the extensive work on myosin in skeletal muscle contraction, our understanding of how the nonmuscle myosins participate in such a wide variety of cellular processes is less clear. It is now well established that the highly variable myosin tails are responsible for targeting these myosins to distinct cellular sites for specific functions, and although a number of adaptor proteins have been identified, our current understanding of the cellular processes involved is rather limited. Furthermore, as more adaptor proteins, cargoes and complexes are identified, the importance of elucidating the regulatory mechanisms involved is essential. Ca2+, and now phosphorylation and ubiquitination, are emerging as important regulators of cargo binding, and it is likely that other post-translational modifications are also involved. In the case of myosin VI (MYO6), a number of immediate binding partners have been identified using traditional approaches such as yeast two-hybrid screens and affinity-based pull-downs. However, these methods have only been successful in identifying the cargo adaptors, but not the cargoes themselves, which may often comprise multi-protein complexes. Furthermore, motor-adaptor-cargo interactions are dynamic by nature and often weak, transient and highly regulated and therefore difficult to capture using traditional affinity-based methods. In this chapter we will discuss the various approaches including functional proteomics that have been used to uncover and characterise novel MYO6-associated proteins and complexes and how this work contributes to a fuller understanding of the targeting and function(s) of this unique myosin motor.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK.
| |
Collapse
|
170
|
Bagci H, Sriskandarajah N, Robert A, Boulais J, Elkholi IE, Tran V, Lin ZY, Thibault MP, Dubé N, Faubert D, Hipfner DR, Gingras AC, Côté JF. Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nat Cell Biol 2019; 22:120-134. [DOI: 10.1038/s41556-019-0438-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
|
171
|
Abstract
The Hippo pathway was initially discovered in Drosophila melanogaster as a key regulator of tissue growth. It is an evolutionarily conserved signaling cascade regulating numerous biological processes, including cell growth and fate decision, organ size control, and regeneration. The core of the Hippo pathway in mammals consists of a kinase cascade, MST1/2 and LATS1/2, as well as downstream effectors, transcriptional coactivators YAP and TAZ. These core components of the Hippo pathway control transcriptional programs involved in cell proliferation, survival, mobility, stemness, and differentiation. The Hippo pathway is tightly regulated by both intrinsic and extrinsic signals, such as mechanical force, cell-cell contact, polarity, energy status, stress, and many diffusible hormonal factors, the majority of which act through G protein-coupled receptors. Here, we review the current understanding of molecular mechanisms by which signals regulate the Hippo pathway with an emphasis on mechanotransduction and the effects of this pathway on basic biology and human diseases.
Collapse
Affiliation(s)
- Shenghong Ma
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| | - Rui Chen
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| |
Collapse
|
172
|
Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP. Cell Rep 2019; 25:1622-1635.e6. [PMID: 30404014 PMCID: PMC6231326 DOI: 10.1016/j.celrep.2018.10.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/16/2018] [Accepted: 10/03/2018] [Indexed: 02/04/2023] Open
Abstract
The transcriptional regulator YAP orchestrates many cellular functions, including tissue homeostasis, organ growth control, and tumorigenesis. Mechanical stimuli are a key input to YAP activity, but the mechanisms controlling this regulation remain largely uncharacterized. We show that CAV1 positively modulates the YAP mechanoresponse to substrate stiffness through actin-cytoskeleton-dependent and Hippo-kinase-independent mechanisms. RHO activity is necessary, but not sufficient, for CAV1-dependent mechanoregulation of YAP activity. Systematic quantitative interactomic studies and image-based small interfering RNA (siRNA) screens provide evidence that this actin-dependent regulation is determined by YAP interaction with the 14-3-3 protein YWHAH. Constitutive YAP activation rescued phenotypes associated with CAV1 loss, including defective extracellular matrix (ECM) remodeling. CAV1-mediated control of YAP activity was validated in vivo in a model of pancreatitis-driven acinar-to-ductal metaplasia. We propose that this CAV1-YAP mechanotransduction system controls a significant share of cell programs linked to these two pivotal regulators, with potentially broad physiological and pathological implications.
Collapse
|
173
|
Lei WL, Han F, Hu MW, Liang QX, Meng TG, Zhou Q, Ouyang YC, Hou Y, Schatten H, Wang ZB, Sun QY. Protein phosphatase 6 is a key factor regulating spermatogenesis. Cell Death Differ 2019; 27:1952-1964. [PMID: 31819157 DOI: 10.1038/s41418-019-0472-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022] Open
Abstract
Protein phosphatase 6 (PP6) is a member of the PP2A-like subfamily, which plays a critical role in many fundamental cellular processes. We recently reported that PP6 is essential for female fertility. Here, we report that PP6 is involved in meiotic recombination and that germ cell-specific deletion of PP6 by Stra8-Cre causes defective spermatogenesis. The PP6-deficient spermatocytes were arrested at the pachytene stage and defects in DSB repair and crossover formation were observed, indicating that PP6 facilitated meiotic double-stranded breaks (DSB) repair. Further investigations revealed that depletion of PP6 in the germ cells affected chromatin relaxation, which was dependent on MAPK pathway activity, consequently preventing programmed DSB repair factors from being recruited to proper positions on the chromatin. Taken together, our results demonstrate that PP6 has an important role in meiotic recombination and male fertility.
Collapse
Affiliation(s)
- Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Meng-Wen Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiu-Xia Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
174
|
Zinatizadeh MR, Miri SR, Zarandi PK, Chalbatani GM, Rapôso C, Mirzaei HR, Akbari ME, Mahmoodzadeh H. The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis 2019; 8:48-60. [PMID: 33569513 PMCID: PMC7859453 DOI: 10.1016/j.gendis.2019.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hippo Tumor Suppressor Pathway is the main pathway for cell growth that regulates tissue enlargement and organ size by limiting cell growth. This pathway is activated in response to cell cycle arrest signals (cell polarity, transduction, and DNA damage) and limited by growth factors or mitogens associated with EGF and LPA. The major pathway consists of the central kinase of Ste20 MAPK (Saccharomyces cerevisiae), Hpo (Drosophila melanogaster) or MST kinases (mammalian) that activates the mammalian AGC kinase dmWts or LATS effector (MST and LATS). YAP in the nucleus work as a cofactor for a wide range of transcription factors involved in proliferation (TEA domain family, TEAD1-4), stem cells (Oct4 mononuclear factor and SMAD-related TGFβ effector), differentiation (RUNX1), and Cell cycle/apoptosis control (p53, p63, and p73 family members). This is due to the diverse roles of YAP and may limit tumor progression and establishment. TEAD also coordinates various signal transduction pathways such as Hippo, WNT, TGFβ and EGFR, and effects on lack of regulation of TEAD cancerous genes, such as KRAS, BRAF, LKB1, NF2 and MYC, which play essential roles in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. However, RAS signaling is a pivotal factor in the inactivation of Hippo, which controls EGFR-RAS-RAF-MEK-ERK-mediated interaction of Hippo signaling. Thus, the loss of the Hippo pathway may have significant consequences on the targets of RAS-RAF mutations in cancer.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences State University of Campinas – UNICAMP Campinas, SP, Brazil
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
175
|
Chen R, Xie R, Meng Z, Ma S, Guan KL. STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nat Cell Biol 2019; 21:1565-1577. [PMID: 31792377 DOI: 10.1038/s41556-019-0426-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023]
Abstract
The Hippo pathway plays a critical role in development, tissue homeostasis and organ size; its dysregulation contributes to human diseases. Although MST1/2 and the MAP4Ks are well known as the Hippo kinases, a major open question is how these kinases are regulated by upstream signals. Here we report that STRIPAK integrates upstream signals to control the activities of MST1/2 and the MAP4Ks, thus initiating Hippo signalling. STRIPAK also serves as a master regulator for the STE20 family kinases. Following serum or lysophosphatidic acid stimulation, active RhoA binds and dissociates rhophilin and NF2/Kibra from STRIPAK, thereby inducing the association and dephosphorylation of MST1/2 and MAP4Ks by the STRIPAK phosphatase catalytic subunit PP2AC. Rhophilin suppresses cancer cell growth by activating the Hippo pathway. Our study reveals a RhoA-rhophilin-NF2/Kibra-STRIPAK signalling axis in Hippo regulation, thus addressing the key question of how Hippo signalling is initiated and suggesting a broad and active role for STRIPAK in cellular signalling.
Collapse
Affiliation(s)
- Rui Chen
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ruiling Xie
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Department of Otolaryngology, Head & Neck Surgery, Peking University First Hospital, Beijing, China
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Shenghong Ma
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
176
|
Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, Zhang L, Zhou F. Extracellular Vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901779. [PMID: 31871860 PMCID: PMC6918121 DOI: 10.1002/advs.201901779] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/26/2019] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cells. They contain proteins, lipids, and nucleic acids which are delivered from the parent cells to the recipient cells. Thereby, they function as mediators of intercellular communication and molecular transfer. Recent evidences suggest that exosomes, a small subset of EVs, are involved in numerous physiological and pathological processes and play essential roles in remodeling the tumor immune microenvironment even before the occurrence and metastasis of cancer. Exosomes derived from tumor cells and host cells mediate their mutual regulation locally or remotely, thereby determining the responsiveness of cancer therapies. As such, tumor-derived circulating exosomes are considered as noninvasive biomarkers for early detection and diagnosis of tumor. Exosome-based therapies are also emerging as cutting-edge and promising strategies that could be applied to suppress tumor progression or enhance anti-tumor immunity. Herein, the current understanding of exosomes and their key roles in modulating immune responses, as well as their potential therapeutic applications are outlined. The limitations of current studies are also presented and directions for future research are described.
Collapse
Affiliation(s)
- Feng Xie
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Xiaoxue Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Head & Neck CancerTranslational Research of Zhejiang ProvinceZhejiang Cancer HospitalHangzhou310058P. R. China
| | - Meiyu Fang
- Key Laboratory of Head & Neck CancerTranslational Research of Zhejiang ProvinceZhejiang Cancer HospitalHangzhou310058P. R. China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Peng Su
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yifei Tu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
177
|
Cloutier P, Poitras C, Faubert D, Bouchard A, Blanchette M, Gauthier MS, Coulombe B. Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome. J Proteome Res 2019; 19:18-27. [PMID: 31738558 DOI: 10.1021/acs.jproteome.9b00599] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The PAQosome is an 11-subunit chaperone involved in the biogenesis of several human protein complexes. We show that ASDURF, a recently discovered upstream open reading frame (uORF) in the 5' UTR of ASNSD1 mRNA, encodes the 12th subunit of the PAQosome. ASDURF displays significant structural homology to β-prefoldins and assembles with the five known subunits of the prefoldin-like module of the PAQosome to form a heterohexameric prefoldin-like complex. A model of the PAQosome prefoldin-like module is presented. The data presented here provide an example of a eukaryotic uORF-encoded polypeptide whose function is not limited to cis-acting translational regulation of downstream coding sequence and highlights the importance of including alternative ORF products in proteomic studies.
Collapse
Affiliation(s)
- Philippe Cloutier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Christian Poitras
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Annie Bouchard
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Mathieu Blanchette
- School of Computer Science , McGill University , 3480 University Street , Montréal , Quebec H3A 0E9 , Canada
| | - Marie-Soleil Gauthier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de Médecine , Université de Montréal , 2900 Boulevard Édouart-Montpetit , Montréal , Quebec H3T 1J4 , Canada
| |
Collapse
|
178
|
Soares H, Carmona B, Nolasco S, Viseu Melo L. Polarity in Ciliate Models: From Cilia to Cell Architecture. Front Cell Dev Biol 2019; 7:240. [PMID: 31681771 PMCID: PMC6813674 DOI: 10.3389/fcell.2019.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Tetrahymena and Paramecium are highly differentiated unicellular organisms with elaborated cortical patterns showing a regular arrangement of hundreds to thousands of basal bodies in longitudinal rows that extend from the anterior to the posterior region of the cell. Thus both ciliates exhibit a permanent antero–posterior axis and left–right asymmetry. This cell polarity is reflected in the direction of the structures nucleated around each basal body such as the ciliary rootlets. Studies in these ciliates showed that basal bodies assemble two types of cilia, the cortical cilia and the cilia of the oral apparatus, a complex structure specialized in food capture. These two cilia types display structural differences at their tip domain. Basal bodies possessing distinct compositions creating specialized landmarks are also present. Cilia might be expected to express and transmit polarities throughout signaling pathways given their recognized role in signal transduction. This review will focus on how local polarities in basal bodies/cilia are regulated and transmitted through cell division in order to maintain the global polarity and shape of these cells and locally constrain the interpretation of signals by different cilia. We will also discuss ciliates as excellent biological models to study development and morphogenetic mechanisms and their relationship with cilia diversity and function in metazoans.
Collapse
Affiliation(s)
- Helena Soares
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Bruno Carmona
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Viseu Melo
- Physics Department and CEFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
179
|
Ko PJ, Woodrow C, Dubreuil MM, Martin BR, Skouta R, Bassik MC, Dixon SJ. A ZDHHC5-GOLGA7 Protein Acyltransferase Complex Promotes Nonapoptotic Cell Death. Cell Chem Biol 2019; 26:1716-1724.e9. [PMID: 31631010 DOI: 10.1016/j.chembiol.2019.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Lethal small molecules are useful probes to discover and characterize novel cell death pathways and biochemical mechanisms. Here we report that the synthetic oxime-containing small molecule caspase-independent lethal 56 (CIL56) induces an unconventional form of nonapoptotic cell death distinct from necroptosis, ferroptosis, and other pathways. CIL56-induced cell death requires a catalytically active protein S-acyltransferase complex comprising the enzyme ZDHHC5 and an accessory subunit GOLGA7. The ZDHHC5-GOLGA7 complex is mutually stabilizing and localizes to the plasma membrane. CIL56 inhibits anterograde protein transport from the Golgi apparatus, which may be lethal in the context of ongoing ZDHHC5-GOLGA7 complex-dependent retrograde protein trafficking from the plasma membrane to internal sites. Other oxime-containing small molecules, structurally distinct from CIL56, may trigger cell death through the same pathway. These results define an unconventional form of nonapoptotic cell death regulated by protein S-acylation.
Collapse
Affiliation(s)
- Pin-Joe Ko
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Claire Woodrow
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael M Dubreuil
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brent R Martin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachid Skouta
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
180
|
Klimek C, Jahnke R, Wördehoff J, Kathage B, Stadel D, Behrends C, Hergovich A, Höhfeld J. The Hippo network kinase STK38 contributes to protein homeostasis by inhibiting BAG3-mediated autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1556-1566. [PMID: 31326538 PMCID: PMC6692498 DOI: 10.1016/j.bbamcr.2019.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022]
Abstract
Chaperone-assisted selective autophagy (CASA) initiated by the cochaperone Bcl2-associated athanogene 3 (BAG3) represents an important mechanism for the disposal of misfolded and damaged proteins in mammalian cells. Under mechanical stress, the cochaperone cooperates with the small heat shock protein HSPB8 and the cytoskeleton-associated protein SYNPO2 to degrade force-unfolded forms of the actin-crosslinking protein filamin. This is essential for muscle maintenance in flies, fish, mice and men. Here, we identify the serine/threonine protein kinase 38 (STK38), which is part of the Hippo signaling network, as a novel interactor of BAG3. STK38 was previously shown to facilitate cytoskeleton assembly and to promote mitophagy as well as starvation and detachment induced autophagy. Significantly, our study reveals that STK38 exerts an inhibitory activity on BAG3-mediated autophagy. Inhibition relies on a disruption of the functional interplay of BAG3 with HSPB8 and SYNPO2 upon binding of STK38 to the cochaperone. Of note, STK38 attenuates CASA independently of its kinase activity, whereas previously established regulatory functions of STK38 involve target phosphorylation. The ability to exert different modes of regulation on central protein homeostasis (proteostasis) machineries apparently allows STK38 to coordinate the execution of diverse macroautophagy pathways and to balance cytoskeleton assembly and degradation.
Collapse
Affiliation(s)
- Christina Klimek
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Ricarda Jahnke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Judith Wördehoff
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniela Stadel
- Institute of Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Ludwig-Maximilians-University Munich, Feodor-Lynen Strasse 17, 81377 München, Germany
| | | | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
181
|
Lin Z, Yang Z, Xie R, Ji Z, Guan K, Zhang M. Decoding WW domain tandem-mediated target recognitions in tissue growth and cell polarity. eLife 2019; 8:49439. [PMID: 31486770 PMCID: PMC6744271 DOI: 10.7554/elife.49439] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
WW domain tandem-containing proteins such as KIBRA, YAP, and MAGI play critical roles in cell growth and polarity via binding to and positioning target proteins in specific subcellular regions. An immense disparity exists between promiscuity of WW domain-mediated target bindings and specific roles of WW domain proteins in cell growth regulation. Here, we discovered that WW domain tandems of KIBRA and MAGI, but not YAP, bind to specific target proteins with extremely high affinity and exquisite sequence specificity. Via systematic structural biology and biochemistry approaches, we decoded the target binding rules of WW domain tandems from cell growth regulatory proteins and uncovered a list of previously unknown WW tandem binding proteins including β-Dystroglycan, JCAD, and PTPN21. The WW tandem-mediated target recognition mechanisms elucidated here can guide functional studies of WW domain proteins in cell growth and polarity as well as in other cellular processes including neuronal synaptic signaling.
Collapse
Affiliation(s)
- Zhijie Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhou Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruiling Xie
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, United States.,Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Zeyang Ji
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Kunliang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, United States
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, China
| |
Collapse
|
182
|
Li N, Lu N, Xie C. The Hippo and Wnt signalling pathways: crosstalk during neoplastic progression in gastrointestinal tissue. FEBS J 2019; 286:3745-3756. [PMID: 31342636 DOI: 10.1111/febs.15017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
The Hippo and Wnt signalling pathways play crucial roles in maintaining tissue homeostasis and organ size by orchestrating cell proliferation, differentiation and apoptosis. These pathways have been frequently found to be dysregulated in human cancers. While the canonical signal transduction of Hippo and Wnt has been well studied, emerging evidence shows that these two signalling pathways contribute to and exhibit overlapping functions in gastrointestinal (GI) tumorigenesis. In fact, the core effectors YAP/TAZ in Hippo signalling pathway cooperate with β-catenin in Wnt signalling pathway to promote GI neoplasia. Here, we provide a brief review to summarize the molecular mechanisms underlying the crosstalk between these two pathways and elucidate their involvement in GI tumorigenesis, particularly focusing on the intestine, stomach and liver.
Collapse
Affiliation(s)
- Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
183
|
Kück U, Radchenko D, Teichert I. STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol Chem 2019; 400:1005-1022. [PMID: 31042639 DOI: 10.1515/hsz-2019-0173] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/28/2019] [Indexed: 01/17/2023]
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) complex is evolutionary highly conserved and has been structurally and functionally described in diverse lower and higher eukaryotes. In recent years, this complex has been biochemically characterized better and further analyses in different model systems have shown that it is also involved in numerous cellular and developmental processes in eukaryotic organisms. Further recent results have shown that the STRIPAK complex functions as a macromolecular assembly communicating through physical interaction with other conserved signaling protein complexes to constitute larger dynamic protein networks. Here, we will provide a comprehensive and up-to-date overview of the architecture, function and regulation of the STRIPAK complex and discuss key issues and future perspectives, linked with human diseases, which may form the basis of further research endeavors in this area. In particular, the investigation of bi-directional interactions between STRIPAK and other signaling pathways should elucidate upstream regulators and downstream targets as fundamental parts of a complex cellular network.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Daria Radchenko
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ines Teichert
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
184
|
Jones PD, Kaiser MA, Ghaderi Najafabadi M, Koplev S, Zhao Y, Douglas G, Kyriakou T, Andrews S, Rajmohan R, Watkins H, Channon KM, Ye S, Yang X, Björkegren JLM, Samani NJ, Webb TR. JCAD, a Gene at the 10p11 Coronary Artery Disease Locus, Regulates Hippo Signaling in Endothelial Cells. Arterioscler Thromb Vasc Biol 2019; 38:1711-1722. [PMID: 29794114 DOI: 10.1161/atvbaha.118.310976] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective- A large number of genetic loci have been associated with risk of coronary artery disease (CAD) through genome-wide association studies, however, for most loci the underlying biological mechanism is unknown. Determining the molecular pathways and cellular processes affected by these loci will provide new insights into CAD pathophysiology and may lead to new therapies. The CAD-associated variants at 10p11.23 fall in JCAD, which encodes an endothelial junction protein, however, its molecular function in endothelial cells is not known. In this study, we characterize the molecular role of JCAD (junctional cadherin 5 associated) in endothelial cells. Approach and Results- We show that JCAD knockdown in endothelial cells affects key phenotypes related to atherosclerosis including proliferation, migration, apoptosis, tube formation, and monocyte binding. We demonstrate that JCAD interacts with LATS2 (large tumor suppressor kinase 2) and negatively regulates Hippo signaling leading to increased activity of YAP (yes-associated protein), the transcriptional effector of the pathway. We also show by double siRNA knockdown that the phenotypes caused by JCAD knockdown require LATS2 and that JCAD is involved in transmission of RhoA-mediated signals into the Hippo pathway. In human tissues, we find that the CAD-associated lead variant, rs2487928, is associated with expression of JCAD in arteries, including atherosclerotic arteries. Gene co-expression analyses across disease-relevant tissues corroborate our phenotypic findings and support the link between JCAD and Hippo signaling. Conclusions- Our results show that JCAD negatively regulates Hippo signaling in endothelial cells and we suggest that JCAD contributes to atherosclerosis by mediating YAP activity and contributing to endothelial dysfunction.
Collapse
Affiliation(s)
- Peter D Jones
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Michael A Kaiser
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Maryam Ghaderi Najafabadi
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (S.K., J.L.M.B.)
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., X.Y.)
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence (G.D., T.K., H.W., K.M.C.)
| | - Theodosios Kyriakou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence (G.D., T.K., H.W., K.M.C.).,Wellcome Trust Centre for Human Genetics (T.K.), University of Oxford, United Kingdom
| | - Sarah Andrews
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Rathinasabapathy Rajmohan
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence (G.D., T.K., H.W., K.M.C.)
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence (G.D., T.K., H.W., K.M.C.)
| | - Shu Ye
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., X.Y.)
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (S.K., J.L.M.B.).,Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (J.L.M.B.).,Department of Physiology, Institute of Biomedicine and Translation Medicine, University of Tartu, Estonia (J.LM.B.)
| | - Nilesh J Samani
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Tom R Webb
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| |
Collapse
|
185
|
Béganton B, Solassol I, Mangé A, Solassol J. Protein interactions study through proximity-labeling. Expert Rev Proteomics 2019; 16:717-726. [PMID: 31269821 DOI: 10.1080/14789450.2019.1638769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The proteome is a dynamic system in which protein-protein interactions play a crucial part in shaping the cell phenotype. However, given the current limitations of available technologies to describe the dynamic nature of these interactions, the identification of protein-protein interactions has long been a major challenge in proteomics. In recent years, the development of BioID and APEX, two proximity-tagging technologies, have opened-up new perspectives and have already started to change our conception of protein-protein interactions, and more generally, of the proteome. With a broad range of application encompassing health, these new technologies are currently setting milestones crucial to understand fine cellular mechanisms. Area covered: In this article, we describe both the recent and the more conventional available tools to study protein-protein interactions, compare the advantages and the limitations of these techniques, and discuss the recent advancements led by the proximity tagging techniques to refine our conception of the proteome. Expert opinion: The recent development of proximity labeling techniques emphasizes the growing importance of such technologies to decipher cellular mechanism. Although several challenges still need to be addressed, many fields can benefit from these tools and notably the detection of new therapeutic targets for patient care.
Collapse
Affiliation(s)
- Benoît Béganton
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France.,Department of Pathology and onco-biology, CHU Montpellier , Montpellier , France
| | - Isabelle Solassol
- Translational Research Unit, Montpellier Cancer Institute , Montpellier , France
| | - Alain Mangé
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France
| | - Jérôme Solassol
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France.,Department of Pathology and onco-biology, CHU Montpellier , Montpellier , France
| |
Collapse
|
186
|
Gundogdu R, Hergovich A. MOB (Mps one Binder) Proteins in the Hippo Pathway and Cancer. Cells 2019; 8:cells8060569. [PMID: 31185650 PMCID: PMC6627106 DOI: 10.3390/cells8060569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in the eukaryotic kingdom. MOBs represent globular scaffold proteins without any known enzymatic activities. They can act as signal transducers in essential intracellular pathways. MOBs have diverse cancer-associated cellular functions through regulatory interactions with members of the NDR/LATS kinase family. By forming additional complexes with serine/threonine protein kinases of the germinal centre kinase families, other enzymes and scaffolding factors, MOBs appear to be linked to an even broader disease spectrum. Here, we review our current understanding of this emerging protein family, with emphases on post-translational modifications, protein-protein interactions, and cellular processes that are possibly linked to cancer and other diseases. In particular, we summarise the roles of MOBs as core components of the Hippo tissue growth and regeneration pathway.
Collapse
Affiliation(s)
- Ramazan Gundogdu
- Vocational School of Health Services, Bingol University, 12000 Bingol, Turkey.
| | - Alexander Hergovich
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom.
| |
Collapse
|
187
|
Lun XK, Szklarczyk D, Gábor A, Dobberstein N, Zanotelli VRT, Saez-Rodriguez J, von Mering C, Bodenmiller B. Analysis of the Human Kinome and Phosphatome by Mass Cytometry Reveals Overexpression-Induced Effects on Cancer-Related Signaling. Mol Cell 2019; 74:1086-1102.e5. [PMID: 31101498 PMCID: PMC6561723 DOI: 10.1016/j.molcel.2019.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 02/06/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner. Based on these data, we expanded the functional classification of human kinases and phosphatases and showed that the overexpression effects include non-catalytic roles. We detected 208 previously unreported signaling relationships. The signaling dynamics analysis indicated that the overexpression of ERK-specific phosphatases sustains proliferative signaling. This suggests a phosphatase-driven mechanism of cancer progression. Moreover, our analysis revealed a drug-resistant mechanism through which overexpression of tyrosine kinases, including SRC, FES, YES1, and BLK, induced MEK-independent ERK activation in melanoma A375 cells. These proteins could predict drug sensitivity to BRAF-MEK concurrent inhibition in cells carrying BRAF mutations.
Collapse
Affiliation(s)
- Xiao-Kang Lun
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; Molecular Life Sciences PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Attila Gábor
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Nadine Dobberstein
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Vito Riccardo Tomaso Zanotelli
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; Systems Biology PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, CB10 1SD Cambridge, UK; Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, BIOQUANT, 69120 Heidelberg, Germany
| | - Christian von Mering
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
188
|
Carnes RM, Mobley JA, Crossman DK, Liu H, Korf BR, Kesterson RA, Wallis D. Multi-Omics Profiling for NF1 Target Discovery in Neurofibromin (NF1) Deficient Cells. Proteomics 2019; 19:e1800334. [PMID: 30908848 DOI: 10.1002/pmic.201800334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/27/2019] [Indexed: 01/07/2023]
Abstract
Loss of NF1 is an oncogenic driver. In efforts to define pathways responsible for the development of neurofibromas and other cancers, transcriptomic and proteomic changes are evaluated in a non-malignant NF1 null cell line. NF1 null HEK293 cells were created using CRISPR/Cas9 technology and they are compared to parental cells that express neurofibromin. A total of 1222 genes and 132 proteins are found to be differentially expressed. The analysis is integrated to identify eight transcripts/proteins that are differentially regulated in both analyses. Metacore Pathway analysis identifies Neurogenesis NGF/TrkA MAPK-mediated signaling alterations. Next, the data set is compared with other published studies that involve analysis of cells or tumors deficient for NF1 and it is found that 141 genes recur in the sample and others; only thirteen of these genes recur in two or more studies. Genes/proteins of interest are validated via q-RT-PCR or Western blot. It is shown that KRT8 and 14-3-3σ protein levels respond to exogenously introduced mNf1 cDNA. Hence, transcripts/proteins that respond to neurofibromin levels are identified and they can potentially be used as biomarkers.
Collapse
Affiliation(s)
- Rachel M Carnes
- Department of Genetics, University of Alabama at Birmingham, 35294, Birmingham, AL, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, 35294, Birmingham, AL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, 35294, Birmingham, AL, USA
| | - Hui Liu
- Department of Genetics, University of Alabama at Birmingham, 35294, Birmingham, AL, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, 35294, Birmingham, AL, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, 35294, Birmingham, AL, USA
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, 35294, Birmingham, AL, USA
| |
Collapse
|
189
|
Abstract
Proximity-dependent labeling methods for detecting candidate protein-protein interactions (PPIs) or mapping the protein constituency of subcellular domains have become increasingly utilized by the scientific community. One such method, BioID, allows for the identification of not only strong interactions but also weak and transient associations between a protein of interest (POI) or targeting motif and adjacent proteins. A promiscuous biotin ligase is fused to a POI or targeting motif, expressed in living cells, and induced to biotinylate proximal proteins during a defined labeling period by biotin supplementation. This generates a history of protein-protein associations that occurred with the POI or the protein constituency within a discrete subcellular domain during the labeling period. Biotinylated proteins are subsequently isolated, identified via mass spectrometry, and investigated as candidate interactors with the POI or as constituents within a subcellular domain. The BioID method has been utilized by numerous research groups and is continually being optimized, applied to new models, and modified for use in novel applications. Here we describe a protocol by which a BioID fusion protein can be validated and utilized for BioID pull-downs.
Collapse
Affiliation(s)
- Danielle G May
- Enabling Technology Group, Sanford Research, Sioux Falls, SD, USA
| | - Kyle J Roux
- Enabling Technology Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
190
|
Yamauchi T, Moroishi T. Hippo Pathway in Mammalian Adaptive Immune System. Cells 2019; 8:cells8050398. [PMID: 31052239 PMCID: PMC6563119 DOI: 10.3390/cells8050398] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway was originally identified as an evolutionarily-conserved signaling mechanism that contributes to the control of organ size. It was then rapidly expanded as a key pathway in the regulation of tissue development, regeneration, and cancer pathogenesis. The increasing amount of evidence in recent years has also connected this pathway to the regulation of innate and adaptive immune responses. Notably, the Hippo pathway has been revealed to play a pivotal role in adaptive immune cell lineages, as represented by the patients with T- and B-cell lymphopenia exhibiting defective expressions of the pathway component. The complex regulatory mechanisms of and by the Hippo pathway have also been evident as alternative signal transductions are employed in some immune cell types. In this review article, we summarize the current understanding of the emerging roles of the Hippo pathway in adaptive immune cell development and differentiation. We also highlight the recent findings concerning the dual functions of the Hippo pathway in autoimmunity and anti-cancer immune responses and discuss the key open questions in the interplay between the Hippo pathway and the mammalian immune system.
Collapse
Affiliation(s)
- Takayoshi Yamauchi
- Department of Molecular Enzymology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Toshiro Moroishi
- Department of Molecular Enzymology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| |
Collapse
|
191
|
Hennigan RF, Fletcher JS, Guard S, Ratner N. Proximity biotinylation identifies a set of conformation-specific interactions between Merlin and cell junction proteins. Sci Signal 2019; 12:12/578/eaau8749. [PMID: 31015291 DOI: 10.1126/scisignal.aau8749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 2 is an inherited, neoplastic disease associated with schwannomas, meningiomas, and ependymomas and that is caused by inactivation of the tumor suppressor gene NF2 The NF2 gene product, Merlin, has no intrinsic catalytic activity; its tumor suppressor function is mediated through the proteins with which it interacts. We used proximity biotinylation followed by mass spectrometry and direct binding assays to identify proteins that associated with wild-type and various mutant forms of Merlin in immortalized Schwann cells. We defined a set of 52 proteins in close proximity to wild-type Merlin. Most of the Merlin-proximal proteins were components of cell junctional signaling complexes, suggesting that additional potential interaction partners may exist in adherens junctions, tight junctions, and focal adhesions. With mutant forms of Merlin that cannot bind to phosphatidylinositol 4,5-bisphosphate (PIP2) or that constitutively adopt a closed conformation, we confirmed a critical role for PIP2 binding in Merlin function and identified a large cohort of proteins that specifically interacted with Merlin in the closed conformation. Among these proteins, we identified a previously unreported Merlin-binding protein, apoptosis-stimulated p53 protein 2 (ASPP2, also called Tp53bp2), that bound to closed-conformation Merlin predominately through the FERM domain. Our results demonstrate that Merlin is a component of cell junctional mechanosensing complexes and defines a specific set of proteins through which it acts.
Collapse
Affiliation(s)
- Robert F Hennigan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA.
| | - Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Steven Guard
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
192
|
Zaltsman Y, Masuko S, Bensen JJ, Kiessling LL. Angiomotin Regulates YAP Localization during Neural Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports 2019; 12:869-877. [PMID: 31006631 PMCID: PMC6523060 DOI: 10.1016/j.stemcr.2019.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/02/2022] Open
Abstract
Leveraging the extraordinary potential of human pluripotent stem cells (hPSCs) requires an understanding of the mechanisms underlying cell-fate decisions. Substrate elasticity can induce differentiation by signaling through the transcriptional coactivator Yes-associated protein (YAP). Cells cultured on surfaces mimicking brain elasticity exclude YAP from their nuclei and differentiate to neurons. How YAP localization is controlled during neural differentiation has been unclear. We employed CRISPR/Cas9 to tag endogenous YAP in hPSCs and used this fusion protein to identify YAP's interaction partners. This engineered cell line revealed that neural differentiation promotes a change in YAP interactors, including a dramatic increase in angiomotin (AMOT) interaction with YAP. AMOT regulates YAP localization during differentiation. AMOT expression increases during neural differentiation and leads to YAP nuclear exclusion. Our findings that AMOT-dependent regulation of YAP helps direct hPSC fate provide insight into the molecular mechanisms by which the microenvironment can induce neural differentiation. Endogenous tagging reveals YAP interactors in hPSCs AMOT-YAP complex concentration increases during neural differentiation AMOT regulates YAP localization in hPSCs hPSC cytoskeleton influences YAP localization via AMOT
Collapse
Affiliation(s)
- Yefim Zaltsman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sayaka Masuko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Bensen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura L Kiessling
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
193
|
Boopathy GTK, Hong W. Role of Hippo Pathway-YAP/TAZ Signaling in Angiogenesis. Front Cell Dev Biol 2019; 7:49. [PMID: 31024911 PMCID: PMC6468149 DOI: 10.3389/fcell.2019.00049] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a highly coordinated process of formation of new blood vessels from pre-existing blood vessels. The process of development of the proper vascular network is a complex process that is crucial for the vertebrate development. Several studies have defined essential roles of Hippo pathway-YAP/TAZ in organ size control, tissue regeneration, and self-renewal. Thus Hippo pathway is one of the central components in tissue homeostasis. There are mounting evidences on the eminence of Hippo pathway-YAP/TAZ in angiogenesis in multiple model organisms. Hippo pathway-YAP/TAZ is now demonstrated to regulate endothelial cell proliferation, migration and survival; subsequently regulating vascular sprouting, vascular barrier formation, and vascular remodeling. Major intracellular signaling programs that regulate angiogenesis concomitantly activate YAP/TAZ to regulate key events in angiogenesis. In this review, we provide a brief overview of the recent findings in the Hippo pathway and YAP/TAZ signaling in angiogenesis.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
194
|
Mlynarova J, Trentin-Sonoda M, Gaisler da Silva F, Major JL, Salih M, Carneiro-Ramos MS, Tuana BS. SLMAP3 isoform modulates cardiac gene expression and function. PLoS One 2019; 14:e0214669. [PMID: 30934005 PMCID: PMC6443179 DOI: 10.1371/journal.pone.0214669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
The sarcolemmal membrane associated proteins (SLMAPs) belong to the super family of tail anchored membrane proteins which serve diverse roles in biology including cell growth, protein trafficking and ion channel regulation. Mutations in human SLMAP have been linked to Brugada syndrome with putative deficits in trafficking of the sodium channel (Nav1.5) to the cell membrane resulting in aberrant electrical activity and heart function. Three main SLMAP isoforms (SLMAP1 (35 kDa), SLMAP2 (45 kDa), and SLMAP3 (91 kDa)) are expressed in myocardium but their precise role remains to be defined. Here we generated transgenic (Tg) mice with cardiac-specific expression of the SLMAP3 isoform during postnatal development which present with a significant decrease (20%) in fractional shortening and (11%) in cardiac output at 5 weeks of age. There was a lack of any notable cardiac remodeling (hypertrophy, fibrosis or fetal gene activation) in Tg hearts but the electrocardiogram indicated a significant increase (14%) in the PR interval and a decrease (43%) in the R amplitude. Western blot analysis indicated a selective and significant decrease (55%) in protein levels of Nav1.5 while 45% drop in its transcript levels were detectable by qRT-PCR. Significant decreases in the protein and transcript levels of the calcium transport system of the sarcoplasmic reticulum (SERCA2a/PLN) were also evident in Tg hearts. These data reveal a novel role for SLMAP3 in the selective regulation of important ion transport proteins at the level of gene expression and suggest that it may be a unique target in cardiovascular function and disease.
Collapse
Affiliation(s)
- Jana Mlynarova
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mayra Trentin-Sonoda
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Fernanda Gaisler da Silva
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Jennifer L. Major
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - Balwant S. Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
195
|
The Caspase-3 homolog DrICE regulates endocytic trafficking during Drosophila tracheal morphogenesis. Nat Commun 2019; 10:1031. [PMID: 30833576 PMCID: PMC6399233 DOI: 10.1038/s41467-019-09009-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Although well known for its role in apoptosis, the executioner caspase DrICE has a non-apoptotic function that is required for elongation of the epithelial tubes of the Drosophila tracheal system. Here, we show that DrICE acts downstream of the Hippo Network to regulate endocytic trafficking of at least four cell polarity, cell junction and apical extracellular matrix proteins involved in tracheal tube size control: Crumbs, Uninflatable, Kune-Kune and Serpentine. We further show that tracheal cells are competent to undergo apoptosis, even though developmentally-regulated DrICE function rarely kills tracheal cells. Our results reveal a developmental role for caspases, a pool of DrICE that co-localizes with Clathrin, and a mechanism by which the Hippo Network controls endocytic trafficking. Given reports of in vitro regulation of endocytosis by mammalian caspases during apoptosis, we propose that caspase-mediated regulation of endocytic trafficking is an evolutionarily conserved function of caspases that can be deployed during morphogenesis. Caspases are well-known drivers of apoptosis, although recent studies suggest potential non-apoptotic functions. Here, McSharry and Beitel show that the Drosophila executioner caspase DrICE regulates endocytic trafficking of key proteins downstream of Hippo during tracheal morphogenesis.
Collapse
|
196
|
Miller CJ, Lou HJ, Simpson C, van de Kooij B, Ha BH, Fisher OS, Pirman NL, Boggon TJ, Rinehart J, Yaffe MB, Linding R, Turk BE. Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output. PLoS Biol 2019; 17:e2006540. [PMID: 30897078 PMCID: PMC6445471 DOI: 10.1371/journal.pbio.2006540] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/02/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Specificity within protein kinase signaling cascades is determined by direct and indirect interactions between kinases and their substrates. While the impact of localization and recruitment on kinase-substrate targeting can be readily assessed, evaluating the relative importance of direct phosphorylation site interactions remains challenging. In this study, we examine the STE20 family of protein serine-threonine kinases to investigate basic mechanisms of substrate targeting. We used peptide arrays to define the phosphorylation site specificity for the majority of STE20 kinases and categorized them into four distinct groups. Using structure-guided mutagenesis, we identified key specificity-determining residues within the kinase catalytic cleft, including an unappreciated role for the kinase β3-αC loop region in controlling specificity. Exchanging key residues between the STE20 kinases p21-activated kinase 4 (PAK4) and Mammalian sterile 20 kinase 4 (MST4) largely interconverted their phosphorylation site preferences. In cells, a reprogrammed PAK4 mutant, engineered to recognize MST substrates, failed to phosphorylate PAK4 substrates or to mediate remodeling of the actin cytoskeleton. In contrast, this mutant could rescue signaling through the Hippo pathway in cells lacking multiple MST kinases. These observations formally demonstrate the importance of catalytic site specificity for directing protein kinase signal transduction pathways. Our findings further suggest that phosphorylation site specificity is both necessary and sufficient to mediate distinct signaling outputs of STE20 kinases and imply broad applicability to other kinase signaling systems.
Collapse
Affiliation(s)
- Chad J. Miller
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig Simpson
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bert van de Kooij
- Departments of Biological Engineering and Biology, MIT Center for Precision Cancer Medicine and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Byung Hak Ha
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Oriana S. Fisher
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Natasha L. Pirman
- Department of Cellular and Molecular Physiology and Systems Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Titus J. Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology and Systems Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Michael B. Yaffe
- Departments of Biological Engineering and Biology, MIT Center for Precision Cancer Medicine and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rune Linding
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
197
|
Béganton B, Coyaud E, Mangé A, Solassol J. Approches nouvelles pour l’étude des interactions protéine-protéine. Med Sci (Paris) 2019; 35:223-231. [DOI: 10.1051/medsci/2019035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Le protéome est un système dynamique où les interactions protéine-protéine occupent une place essentielle pour modeler ensemble le phénotype cellulaire. L’identification de ces interactions a toutefois longtemps représenté un obstacle important en protéomique tant les techniques disponibles ne permettaient pas de rendre compte de ces dynamiques d’interactions. Le développement récent du BioID et de l’APEX, deux technologies de marquage de proximité, ouvre aujourd’hui de nouvelles perspectives. Dans cette revue, nous décrivons les outils disponibles pour étudier les interactions protéine-protéine et discutons des progrès récents apportés par les marquages de proximité pour compléter notre vision du protéome et ainsi mieux comprendre les mécanismes cellulaires.
Collapse
|
198
|
Architecture, substructures, and dynamic assembly of STRIPAK complexes in Hippo signaling. Cell Discov 2019; 5:3. [PMID: 30622739 PMCID: PMC6323126 DOI: 10.1038/s41421-018-0077-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 01/24/2023] Open
Abstract
Striatin-interacting phosphatases and kinases (STRIPAKs) are evolutionarily conserved supramolecular complexes, which have been implicated in the Hippo signaling pathway. Yet the topological structure and dynamic assembly of STRIPAK complexes remain elusive. Here, we report the overall architecture and substructures of a Hippo kinase-containing STRIPAK complex. PP2Aa/c-bound STRN3 directly contacts the Hippo kinase MST2 and also controls the loading of MST2 via two “arms” in a phosphorylation-dependent manner, one arm being STRIP1 and the other SIKE1-SLMAP. A decreased cell density triggered the dissociation of the STRIP1 arm from STRIPAK, reflecting the dynamic assembly of the complex upon sensing upstream signals. Crystallographic studies defined at atomic resolution the interface between STRN3 and SIKE1, and that between SIKE1 and SLMAP. Disrupting the complex assembly abrogated the regulatory effect of STRIPAK towards Hippo signaling. Collectively, our study revealed a “two-arm” assembly of STRIPAK with context-dependent dynamics, offering a framework for further studies on Hippo signaling and biological processes involving MST kinases.
Collapse
|
199
|
Amisaki M, Tsuchiya H, Sakabe T, Fujiwara Y, Shiota G. Identification of genes involved in the regulation of TERT in hepatocellular carcinoma. Cancer Sci 2019; 110:550-560. [PMID: 30447097 PMCID: PMC6361581 DOI: 10.1111/cas.13884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) promotes immortalization by protecting telomeres in cancer cells. Mutation of the TERT promoter is one of the most common genetic alterations in hepatocellular carcinoma (HCC), indicating that TERT upregulation is a critical event in hepatocarcinogenesis. Regulators of TERT transcription are, therefore, predicted to be plausible targets for HCC treatment. We undertook a genome‐wide shRNA library screen and identified C15orf55 and C7orf43 as regulators of TERT expression in HepG2 cells. Promoter assays showed that C15orf55‐ and C7orf43‐responsive sites exist between base pairs −58 and +36 and −169 and −59 in the TERT promoter, respectively. C15orf55 upregulates TERT expression by binding to two GC motifs in the SP1 binding site of the TERT promoter. C7orf43 upregulates TERT expression through Yes‐associated protein 1. The expression levels of C15orf55 and C7orf43 also correlated with that of TERT, and were significantly increased in both HCC tissues and their adjacent non‐tumor tissues, compared to normal liver tissues from non‐HCC patients. Analysis of 377 HCC patients in The Cancer Genome Atlas dataset showed that overall survival of patients with low levels of C15orf55 and C7orf43 expression in tumor tissues was better compared with patients with high levels of C15orf55 and/or high C7orf43 expression. These results indicate that C15orf55 and C7orf43 are involved in the incidence and progression of HCC by upregulating TERT. In conclusion, we identified C15orf55 and C7orf43 as positive regulators of TERT expression in HCC tissues. These genes are promising targets for HCC treatment.
Collapse
Affiliation(s)
- Masataka Amisaki
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan.,Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Tomohiko Sakabe
- Division of Organ Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
200
|
Abstract
This chapter describes the luciferase assays that are available to monitor YAP/TAZ activity in cell lines and to study their regulation, including the choice for the normalizer, a description of the main YAP-/TAZ-responsive luciferase reporters used so far by the community, and technical notes and experimental considerations on the most appropriate positive controls. Some specific examples are provided to use luciferase assays as the basis to distinguish between Hippo-mediated and phosphorylation-mediated regulatory events and regulatory events that regulate YAP/TAZ independent of these inputs. Finally, typical experimental protocols are outlined briefly for an easier setup of YAP/TAZ luciferase assays.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Molecular Medicine, School of Medicine, University of Padova, Padova, Italy.
| |
Collapse
|