151
|
Rahimpour E, Lotfipour F, Jouyban A. A minireview on nanoparticle-based sensors for the detection of coronaviruses. Bioanalysis 2021; 13:1837-1850. [PMID: 34463130 PMCID: PMC8407278 DOI: 10.4155/bio-2021-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoVs) are a class of viruses that cause respiratory tract infections in birds and mammals. Severe acute respiratory syndrome and Middle East respiratory syndrome are pathogenic human viruses. The ongoing coronavirus causing a pandemic of COVID-19 is a recently identified virus from this group. The first step in the control of spreading the disease is to detect and quarantine infected subjects. Consequently, the introduction of rapid and reliable detection methods for CoVs is crucial. To date, several methods were reported for the detection of coronaviruses. Nanoparticles play an important role in detection tools, thanks to their high surface-to-volume ratio and exclusive optical property enables the development of susceptible analytical nanoparticle-based sensors. The studies performed on using nanoparticles-based (mainly gold) sensors to detect CoVs in two categories of optical and electrochemical were reviewed here. Details of each reported sensor and its relevant analytical parameters are carefully provided and explained.
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Food & Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Farzaneh Lotfipour
- Food & Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Biotecnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Faculty of Pharmacy, Near East University, PO box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
152
|
Ruiz-Medina BE, Varela-Ramirez A, Kirken RA, Robles-Escajeda E. The SARS-CoV-2 origin dilemma: Zoonotic transfer or laboratory leak? Bioessays 2021; 44:e2100189. [PMID: 34812505 PMCID: PMC8688222 DOI: 10.1002/bies.202100189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022]
Abstract
The COVID‐19 pandemic is responsible for millions of deaths worldwide yet its origin remains unclear. Two potential scenarios of how infection of humans initially occurred include zoonotic transfer from wild animals and a leak of the pathogen from a research laboratory. The Wuhan wet markets where wild animals are sold represent a strong scenario for zoonotic transfer. However, isolation of SARS‐CoV‐2 or its immediate predecessor from wild animals in their natural environment has yet to be documented. Due to incomplete evidence for a zoonotic origin, a laboratory origin is plausible. The Wuhan Institute of Virology is at the epicenter of the pandemic and their work has included manipulation of wild‐type coronavirus to enable infection of human cells. Although stronger evidence supports the zoonotic transfer, inconclusive reports maintain the laboratory leak hypothesis alive. It is imperative to reach a factual conclusion to prevent future pandemics.
Collapse
Affiliation(s)
- Blanca E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Armando Varela-Ramirez
- Department of Biological Sciences, The Border Biomedical Research Center, The Cellular Characterization and Biorepository Core Facility, The University of Texas at El Paso, El Paso, Texas, USA
| | - Robert A Kirken
- Department of Biological Sciences, The Border Biomedical Research Center, The Cellular Characterization and Biorepository Core Facility, The University of Texas at El Paso, El Paso, Texas, USA
| | - Elisa Robles-Escajeda
- Department of Biological Sciences, The Border Biomedical Research Center, The Cellular Characterization and Biorepository Core Facility, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
153
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. An Overview of Recent Insights into the Response of TLR to SARS-CoV-2 Infection and the Potential of TLR Agonists as SARS-CoV-2 Vaccine Adjuvants. Viruses 2021; 13:2302. [PMID: 34835108 PMCID: PMC8622245 DOI: 10.3390/v13112302] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to coronavirus disease (COVID-19), a global health pandemic causing millions of deaths worldwide. However, the immunopathogenesis of COVID-19, particularly the interaction between SARS-CoV-2 and host innate immunity, remains unclear. The innate immune system acts as the first line of host defense, which is critical for the initial detection of invading pathogens and the activation and shaping of adaptive immunity. Toll-like receptors (TLRs) are key sensors of innate immunity that recognize pathogen-associated molecular patterns and activate downstream signaling for pro-inflammatory cytokine and chemokine production. However, TLRs may also act as a double-edged sword, and dysregulated TLR responses may enhance immune-mediated pathology, instead of providing protection. Therefore, a proper understanding of the interaction between TLRs and SARS-CoV-2 is of great importance for devising therapeutic and preventive strategies. The use of TLR agonists as vaccine adjuvants for human disease is a promising approach that could be applied in the investigation of COVID-19 vaccines. In this review, we discuss the recent progress in our understanding of host innate immune responses in SARS-CoV-2 infection, with particular focus on TLR response. In addition, we discuss the use of TLR agonists as vaccine adjuvants in enhancing the efficacy of COVID-19 vaccine.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| |
Collapse
|
154
|
da Silva TT, Francisquini R, Nascimento MCV. Meteorological and human mobility data on predicting COVID-19 cases by a novel hybrid decomposition method with anomaly detection analysis: A case study in the capitals of Brazil. EXPERT SYSTEMS WITH APPLICATIONS 2021; 182:115190. [PMID: 34025047 PMCID: PMC8130621 DOI: 10.1016/j.eswa.2021.115190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 05/22/2023]
Abstract
In 2020, Brazil was the leading country in COVID-19 cases in Latin America, and capital cities were the most severely affected by the outbreak. Climates vary in Brazil due to the territorial extension of the country, its relief, geography, and other factors. Since the most common COVID-19 symptoms are related to the respiratory system, many researchers have studied the correlation between the number of COVID-19 cases with meteorological variables like temperature, humidity, rainfall, etc. Also, due to its high transmission rate, some researchers have analyzed the impact of human mobility on the dynamics of COVID-19 transmission. There is a dearth of literature that considers these two variables when predicting the spread of COVID-19 cases. In this paper, we analyzed the correlation between the number of COVID-19 cases and human mobility, and meteorological data in Brazilian capitals. We found that the correlation between such variables depends on the regions where the cities are located. We employed the variables with a significant correlation with COVID-19 cases to predict the number of COVID-19 infections in all Brazilian capitals and proposed a prediction method combining the Ensemble Empirical Mode Decomposition (EEMD) method with the Autoregressive Integrated Moving Average Exogenous inputs (ARIMAX) method, which we called EEMD-ARIMAX. After analyzing the results poor predictions were further investigated using a signal processing-based anomaly detection method. Computational tests showed that EEMD-ARIMAX achieved a forecast 26.73% better than ARIMAX. Moreover, an improvement of 30.69% in the average root mean squared error (RMSE) was noticed when applying the EEMD-ARIMAX method to the data normalized after the anomaly detection.
Collapse
Affiliation(s)
- Tiago Tiburcio da Silva
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), Av. Cesare M. G. Lattes, 1201, Eugênio de Mello, São José dos Campos-SP, CEP: 12247-014, Brazil
| | - Rodrigo Francisquini
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), Av. Cesare M. G. Lattes, 1201, Eugênio de Mello, São José dos Campos-SP, CEP: 12247-014, Brazil
| | - Mariá C V Nascimento
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), Av. Cesare M. G. Lattes, 1201, Eugênio de Mello, São José dos Campos-SP, CEP: 12247-014, Brazil
| |
Collapse
|
155
|
Yuce M, Cicek E, Inan T, Dag AB, Kurkcuoglu O, Sungur FA. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins 2021; 89:1425-1441. [PMID: 34169568 PMCID: PMC8441840 DOI: 10.1002/prot.26164] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has serious negative effects on health, social life, and economics. Recently, vaccines from various companies have been urgently approved to control SARS-CoV-2 infections. However, any specific antiviral drug has not been confirmed so far for regular treatment. An important target is the main protease (Mpro ), which plays a major role in replication of the virus. In this study, Gaussian and residue network models are employed to reveal two distinct potential allosteric sites on Mpro that can be evaluated as drug targets besides the active site. Then, Food and Drug Administration (FDA)-approved drugs are docked to three distinct sites with flexible docking using AutoDock Vina to identify potential drug candidates. Fourteen best molecule hits for the active site of Mpro are determined. Six of these also exhibit high docking scores for the potential allosteric regions. Full-atom molecular dynamics simulations with MM-GBSA method indicate that compounds docked to active and potential allosteric sites form stable interactions with high binding free energy (∆Gbind ) values. ∆Gbind values reach -52.06 kcal/mol for the active site, -51.08 kcal/mol for the potential allosteric site 1, and - 42.93 kcal/mol for the potential allosteric site 2. Energy decomposition calculations per residue elucidate key binding residues stabilizing the ligands that can further serve to design pharmacophores. This systematic and efficient computational analysis successfully determines ivermectine, diosmin, and selinexor currently subjected to clinical trials, and further proposes bromocriptine, elbasvir as Mpro inhibitor candidates to be evaluated against SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Merve Yuce
- Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Erdem Cicek
- Computational Science and Engineering DivisionInformatics Institute, Istanbul Technical UniversityIstanbulTurkey
| | - Tugce Inan
- Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Aslihan Basak Dag
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityIstanbulTurkey
| | - Ozge Kurkcuoglu
- Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Fethiye Aylin Sungur
- Computational Science and Engineering DivisionInformatics Institute, Istanbul Technical UniversityIstanbulTurkey
| |
Collapse
|
156
|
Lawler OK, Allan HL, Baxter PWJ, Castagnino R, Tor MC, Dann LE, Hungerford J, Karmacharya D, Lloyd TJ, López-Jara MJ, Massie GN, Novera J, Rogers AM, Kark S. The COVID-19 pandemic is intricately linked to biodiversity loss and ecosystem health. Lancet Planet Health 2021; 5:e840-e850. [PMID: 34774124 PMCID: PMC8580505 DOI: 10.1016/s2542-5196(21)00258-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 05/21/2023]
Abstract
The ongoing COVID-19 pandemic, caused by zoonotic SARS-CoV-2, has important links to biodiversity loss and ecosystem health. These links range from anthropogenic activities driving zoonotic disease emergence and extend to the pandemic affecting biodiversity conservation, environmental policy, ecosystem services, and multiple conservation facets. Crucially, such effects can exacerbate the initial drivers, resulting in feedback loops that are likely to promote future zoonotic disease outbreaks. We explore these feedback loops and relationships, highlighting known and potential zoonotic disease emergence drivers (eg, land-use change, intensive livestock production, wildlife trade, and climate change), and discuss direct and indirect effects of the ongoing pandemic on biodiversity loss and ecosystem health. We stress that responses to COVID-19 must include actions aimed at safeguarding biodiversity and ecosystems, in order to avoid future emergence of zoonoses and prevent their wide-ranging effects on human health, economies, and society. Such responses would benefit from adopting a One Health approach, enhancing cross-sector, transboundary communication, as well as from collaboration among multiple actors, promoting planetary and human health.
Collapse
Affiliation(s)
- Odette K Lawler
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Hannah L Allan
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Peter W J Baxter
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Romi Castagnino
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Marina Corella Tor
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Leah E Dann
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua Hungerford
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Dibesh Karmacharya
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia; Center for Molecular Dynamics Nepal, Kathmandu, Nepal
| | - Thomas J Lloyd
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia; School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - María José López-Jara
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia; School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Gloeta N Massie
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Junior Novera
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew M Rogers
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia
| | - Salit Kark
- The Biodiversity Research Group, School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
157
|
Moreira JLDS, Barbosa SMB, Gonçalves Júnior J. Pathophysiology and molecular mechanisms of liver injury in severe forms of COVID-19: An integrative review. Clin Res Hepatol Gastroenterol 2021; 45:101752. [PMID: 34303828 PMCID: PMC8299216 DOI: 10.1016/j.clinre.2021.101752] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS SARS-CoV-2 has primary pulmonary impairment, but other organs such as the liver can also be affected. This implies a worsening of patient's prognosis and an increase in morbidity and mortality. The metabolic pathways and molecular factors involved in the genesis of this injury are still unknown. Therefore, we aimed to carry out an integrative review about the pathophysiology and possible molecular mechanisms of liver injury by COVID-19. METHODS We carried out an integrative literature review in the following databases: PubMed, Scopus, and Embase from December 2020 to March 2021 using the following descriptors: # 1 "COVID-19" (MeSH) AND / OR # 2 "Liver injury" (MeSH) AND / OR # 3 "Pathophysiology" (MesH). RESULTS The data were extracted and divided into two main themes, for heuristic purposes: "Hepatotropism and SARS-CoV-2", and "Pathophysiological hypotheses for liver injury associated with SARS-CoV-2". CONCLUSIONS The virus seems to promote liver damage through five mechanisms: direct injury, humoral and cellular inflammatory response, hypoxemia caused by a decrease in the effective circulating volume, reinfection through the portal system, and use of drugs in the treatment. The literature also points out that the expression of the angiotensin-converting enzyme II and transmembrane serine protease 2 receptors is expressive in cholangiocyte and is present in hepatocytes, which is a risk factor for the virus to enter these cells. Finally, patients with previous liver disease appear to be more susceptible to liver injury by COVID-19.
Collapse
Affiliation(s)
| | | | - Jucier Gonçalves Júnior
- Departament of Internal Medicine - Division of Rheumathology, Universidade de São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
158
|
Akkawi AR, Ghazal M. COVID-19 and Cardiac Arrhythmias: A Review of the Literature. Cureus 2021; 13:e17797. [PMID: 34660007 PMCID: PMC8496560 DOI: 10.7759/cureus.17797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. There are many documented COVID-19-related cardiac complications, one of the most feared is arrhythmia. Many ongoing studies are evaluating the pathophysiology of COVID-19-induced arrhythmia. However, our knowledge about the exact mechanism of the latter is still limited. The underlying possible mechanisms could be related to direct or indirect endomyocardial tissue damage. It is also noted in several studies that cardiac arrhythmias are the consequence of systemic illness, proarrhythmic medications, and electrolytes imbalances in hospitalized patients and not solely the direct effects of COVID-19 infection. In this review article, we present the different aspects of arrhythmias in COVID patients, possible associated conditions, and triggers.
Collapse
Affiliation(s)
| | - Mohamad Ghazal
- Internal Medicine, American University of Beirut Medical Center, Beirut, LBN
| |
Collapse
|
159
|
Infection Control in the Era of COVID-19: A Narrative Review. Antibiotics (Basel) 2021; 10:antibiotics10101244. [PMID: 34680824 PMCID: PMC8532716 DOI: 10.3390/antibiotics10101244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 quickly became a pandemic causing millions of infections and mortalities. It required real-time adjustments to healthcare systems and infection prevention and control (IPC) measures to limit the spread and protect healthcare providers and hospitalized patients. IPC guidelines were adopted and developed based on experience gained during the MERS-CoV and SARS-CoV outbreaks. The aim of this narrative review is to summarize current evidence on IPC in healthcare settings and patients with COVID-19 to prevent nosocomial infections during the actual pandemic. A search was run on PubMed using the terms (‘COVID-19’ [Mesh]) AND (‘Infection Control’ [Mesh]) between 2019 and 2021. We identified 86 studies that were in accordance with our aim and summarized them under certain themes as they related to COVID-19 infection control measures. All the guidelines recommend early diagnosis and rapid isolation of COVID-19 patients. The necessary precautions should be taken comprising the whole process, starting with an infectious disease plan, administrative and engineering controls, triage, and PPE training. Guidelines should target modes of transmission, droplet, aerosol, and oral–fecal, while recommending control precautions. Healthcare facilities must promptly implement a multidisciplinary defense system to combat the outbreak.
Collapse
|
160
|
Kumar A, Mishra DC, Angadi UB, Yadav R, Rai A, Kumar D. Inhibition Potencies of Phytochemicals Derived from Sesame Against SARS-CoV-2 Main Protease: A Molecular Docking and Simulation Study. Front Chem 2021; 9:744376. [PMID: 34692642 PMCID: PMC8531729 DOI: 10.3389/fchem.2021.744376] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has now spread across the nations with high mortality rates and multifaceted impact on human life. The proper treatment methods to overcome this contagious disease are still limited. The main protease enzyme (Mpro, also called 3CLpro) is essential for viral replication and has been considered as one of the potent drug targets for treating COVID-19. In this study, virtual screening was performed to find out the molecular interactions between 36 natural compounds derived from sesame and the Mpro of COVID-19. Four natural metabolites, namely, sesamin, sesaminol, sesamolin, and sesamolinol have been ranked as the top interacting molecules to Mpro based on the affinity of molecular docking. Moreover, stability of these four sesame-specific natural compounds has also been evaluated using molecular dynamics (MD) simulations for 200 nanoseconds. The molecular dynamics simulations and free energy calculations revealed that these compounds have stable and favorable energies, causing strong binding with Mpro. These screened natural metabolites also meet the essential conditions for drug likeness such as absorption, distribution, metabolism, and excretion (ADME) properties as well as Lipinski's rule of five. Our finding suggests that these screened natural compounds may be evolved as promising therapeutics against COVID-19.
Collapse
Affiliation(s)
- Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dwijesh Chandra Mishra
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa Basavanneppa Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rashmi Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
161
|
Ahmad I, Pawara R, Surana S, Patel H. The Repurposed ACE2 Inhibitors: SARS-CoV-2 Entry Blockers of Covid-19. Top Curr Chem (Cham) 2021; 379:40. [PMID: 34623536 PMCID: PMC8498772 DOI: 10.1007/s41061-021-00353-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
The highly infectious disease COVID-19 is induced by SARS-coronavirus 2 (SARS-CoV-2), which has spread rapidly around the globe and was announced as a pandemic by the World Health Organization (WHO) in March 2020. SARS-CoV-2 binds to the host cell's angiotensin converting enzyme 2 (ACE2) receptor through the viral surface spike glycoprotein (S-protein). ACE2 is expressed in the oral mucosa and can therefore constitute an essential route for entry of SARS-CoV-2 into hosts through the tongue and lung epithelial cells. At present, no effective treatments for SARS-CoV-2 are yet in place. Blocking entry of the virus by inhibiting ACE2 is more advantageous than inhibiting the subsequent stages of the SARS-CoV-2 life cycle. Based on current published evidence, we have summarized the different in silico based studies and repurposing of anti-viral drugs to target ACE2, SARS-CoV-2 S-Protein: ACE2 and SARS-CoV-2 S-RBD: ACE2. This review will be useful to researchers looking to effectively recognize and deal with SARS-CoV-2, and in the development of repurposed ACE2 inhibitors against COVID-19.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India
| | - Rahul Pawara
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India
| | - Sanjay Surana
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India.
| |
Collapse
|
162
|
Cook NL, Lauer MS. Biomedical Research COVID-19 Impact Assessment: Lessons Learned and Compelling Needs. NAM Perspect 2021; 2021:202107e. [PMID: 34611607 DOI: 10.31478/202107e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
163
|
Palm ME, Lindsell CJ, Selker HP. Sharing data among clinical trials of therapeutics in COVID-19: Barriers and facilitators to collaborating in a crisis. J Clin Transl Sci 2021; 6:e52. [PMID: 35599687 PMCID: PMC9114727 DOI: 10.1017/cts.2021.866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background The Clinical and Translational Science Award Program (CTSA) Trial Innovation Network (TIN) was launched in 2016 to increase the efficiency and effectiveness of multisite trials by supporting the development of national infrastructure. With the advent of the COVID-19 pandemic, it was therefore well-positioned to support clinical trial collaboration. The TIN was leveraged to support two initiatives: (1) to create and evaluate a mechanism for coordinating Data and Safety Monitoring Board (DSMB) activities among multiple ongoing trials of the same therapeutic agents, and (2) to share data across clinical trials so that smaller, likely underpowered studies, could be combined to produce meaningful and actionable data through pooled analyses. The success of these initiatives was understood to be dependent upon the willingness of investigators, study teams, and US National Institutes of Health research networks to collaborate and share information. Methods To inform these two initiatives, we conducted semistructured interviews with members of CTSA hubs and clinical research stakeholders that probed barriers and facilitators to collaboration. Thematic analysis identified topics relevant across institutions, individuals, and DSMBs. Results The DSMB coordination initiative was viewed as less controversial, while the data pooling initiative was seen as complex because of its potential impact on publication, authorship, and the rewards of discovery. Barriers related to resources, centralization, and technical work were significant, but interviewees suggested these could be handled by the provision of central funding and supportive frameworks. The more intractable findings were related to issues around credit and ownership of data. Conclusion Based on our interviews, we conclude with nine recommended actions that can be implemented to support collaboration.
Collapse
Affiliation(s)
- Marisha E. Palm
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts, USA
| | - Christopher J. Lindsell
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harry P. Selker
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
164
|
Thurstan RH, Hockings KJ, Hedlund JSU, Bersacola E, Collins C, Early R, Ermiasi Y, Fleischer‐Dogley F, Gilkes G, Harrison ME, Imron MA, Kaiser‐Bunbury CN, Refly Katoppo D, Marriott C, Muzungaile M, Nuno A, Regalla de Barros A, van Veen F, Wijesundara I, Dogley D, Bunbury N. Envisioning a resilient future for biodiversity conservation in the wake of the COVID-19 pandemic. PEOPLE AND NATURE 2021; 3:990-1013. [PMID: 34909607 PMCID: PMC8661774 DOI: 10.1002/pan3.10262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 08/07/2021] [Indexed: 11/07/2022] Open
Abstract
As the COVID-19 pandemic continues to affect societies across the world, the ongoing economic and social disruptions are likely to present fundamental challenges for current and future biodiversity conservation.We review the literature for outcomes of past major societal, political, economic and zoonotic perturbations on biodiversity conservation, and demonstrate the complex implications of perturbation events upon conservation efforts. Building on the review findings, we use six in-depth case studies and the emerging literature to identify positive and negative outcomes of the COVID-19 pandemic, known and anticipated, for biodiversity conservation efforts around the world.A number of similarities exist between the current pandemic and past perturbations, with experiences highlighting that the pandemic-induced declines in conservation revenue and capacity, livelihood and trade disruptions are likely to have long-lasting and negative implications for biodiversity and conservation efforts.Yet, the COVID-19 pandemic also brought about a global pause in human movement that is unique in recent history, and may yet foster long-lasting behavioural and societal changes, presenting opportunities to strengthen and advance conservation efforts in the wake of the pandemic. Enhanced collaborations and partnerships at the local level, cross-sectoral engagement, local investment and leadership will all enhance the resilience of conservation efforts in the face of future perturbations. Other actions aimed at enhancing resilience will require fundamental institutional change and extensive government and public engagement and support if they are to be realised.The pandemic has highlighted the inherent vulnerabilities in the social and economic models upon which many conservation efforts are based. In so doing, it presents an opportunity to reconsider the status quo for conservation, and promotes behaviours and actions that are resilient to future perturbation. A free Plain Language Summary can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Ruth H. Thurstan
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Kimberley J. Hockings
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Johanna S. U. Hedlund
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Department of BiologyLund UniversityLundSweden
| | - Elena Bersacola
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Claire Collins
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Regan Early
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Yunsiska Ermiasi
- Yayasan Borneo Nature IndonesiaCentral KalimantanPalangka RayaIndonesia
| | | | | | - Mark E. Harrison
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Borneo Nature Foundation InternationalTremough Innovation CentrePenrynUK
- School of Geography, Geology and the EnvironmentUniversity of LeicesterLeicesterUK
| | | | | | | | | | - Marie‐May Muzungaile
- Biodiversity Conservation and Management DivisionMinistry of Environment, Energy and Climate ChangeVictoriaRepublic of Seychelles
| | - Ana Nuno
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Interdisciplinary Centre of Social Sciences (CICS.NOVA)School of Social Sciences and Humanities (NOVA FCSH)NOVA University LisbonLisboaPortugal
| | - Aissa Regalla de Barros
- Instituto da Biodiversidade e das Áreas ProtegidasDr. Alfredo Simão da Silva (IBAP)BissauGuiné‐Bissau
| | - Frank van Veen
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | | | | | - Nancy Bunbury
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Seychelles Islands FoundationVictoriaRepublic of Seychelles
| |
Collapse
|
165
|
Traceable surveillance and genetic diversity analysis of coronaviruses in poultry from China in 2019. Virus Res 2021; 306:198566. [PMID: 34582833 PMCID: PMC8464398 DOI: 10.1016/j.virusres.2021.198566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first reported in Wuhan, China, and rapidly spread throughout the world. This newly emerging pathogen is highly transmittable and can cause fatal disease. More than 35 million cases have been confirmed, with a fatality rate of about 2.9% to October 9, 2020. However, the original and intermediate hosts of SARS-CoV-2 remain unknown. Here, 3160 poultry samples collected from 14 provinces of China between September and December 2019 were tested for SARS-CoV-2 infection. All the samples were SARS-CoV-2 negative, but 593 avian coronaviruses were detected, including 485 avian infectious bronchitis viruses, 72 duck coronaviruses, and 36 pigeon coronaviruses, with positivity rates of 15.35%, 2.28%, and 1.14%, respectively. Our surveillance demonstrates the diversity of avian coronaviruses in China, with higher prevalence rates in some regions. Furthermore, the possibility that SARS-CoV-2 originated from a known avian-origin coronavirus can be preliminarily ruled out. More surveillance of and research into avian coronaviruses are required to better understand the diversity, distribution, cross-species transmission, and clinical significance of these viruses.
Collapse
|
166
|
Shahabadi N, Zendehcheshm S, Mahdavi M, Khademi F. Inhibitory activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine on COVID-19 main protease and human ACE2 receptor: A comparative in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100745. [PMID: 34568544 PMCID: PMC8455240 DOI: 10.1016/j.imu.2021.100745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
By September 1, 2021, SARS-CoV-2, a respiratory virus that prompted Coronavirus Disease in 2019, had infected approximately 218,567,442 patients and claimed 4,534,151 lives. There are currently no specific treatments available for this lethal virus, although several drugs, including remdesivir and hydroxychloroquine, have been tested. The purpose of this study is to assess the activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine as potential SARS-CoV-2 main protease inhibitors. Additionally, this study aims to provide insight into the development of potential inhibitors that may inhibit ACE2, thereby preventing SARS-CoV-2 entry into the host cell and infection. To this end, remdesivir and hydroxychloroquine were used as comparator drugs. The calculations revealed that cetilistat, abiraterone, diiodohydroxyquinoline, and bexarotene inhibit main protease and ACE2 receptors more effectively than the well-known drug hydroxychloroquine when used against COVID-19. Meanwhile, bexarotene and cetilistat bind more tightly to the SARS-CoV-2 main protease and the ACE2 receptor, respectively, than remdesivir, a potential treatment for COVID-19 that is the first FDA-approved drug against this virus. As a result, the molecular dynamic simulations of these two drugs in the presence of proteins were investigated. The MD simulation results demonstrated that these drugs interact to stabilize the systems, allowing them to be used as effective inhibitors of these proteins. Meanwhile, bexarotene, abiraterone, cetilistat, and diiodohydroxyquinoline's systemic effects should be further investigated in suitable ex vivo human organ culture or organoids, animal models, or clinical trials.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdavi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
167
|
Ding FM, Feng Y, Han L, Zhou Y, Ji Y, Hao HJ, Xue YS, Yin DN, Xu ZC, Luo S, Zhang PY, Zhang M. Early Fever Is Associated With Clinical Outcomes in Patients With Coronavirus Disease. Front Public Health 2021; 9:712190. [PMID: 34513787 PMCID: PMC8427156 DOI: 10.3389/fpubh.2021.712190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Fever is one of the typical symptoms of coronavirus disease (COVID-19). We aimed to investigate the association between early fever (EF) and clinical outcomes in COVID-19 patients. A total of 1,014 COVID-19 patients at the Leishenshan Hospital were enrolled and classified into the EF and non-EF groups based on whether they had fever within 5 days of symptom onset. Risk factors for clinical outcomes in patients with different levels of disease severity were analyzed using multivariable analyses. Time from symptom onset to symptom alleviation, CT image improvement, and discharge were longer for patients with moderate and severe disease in the EF group than in the non-EF group. Multivariable analysis showed that sex, EF, eosinophil number, C-reactive protein, and IL-6 levels were positively correlated with the time from symptom onset to hospital discharge in moderate cases. The EF patients showed no significant differences in the development of acute respiratory distress syndrome, compared with the non-EF patients. The Kaplan–Meier curve showed no obvious differences in survival between the EF and non-EF patients. However, EF patients with increased temperature showed markedly lower survival than the non-EF patients with increased temperature. EF had no significant impact on the survival of critically ill patients, while an increase in temperature was identified as an independent risk factor. EF appears to be a predictor of longer recovery time in moderate/severe COVID-19 infections. However, its value in predicting mortality needs to be considered for critically ill patients with EF showing increasing temperature.
Collapse
Affiliation(s)
- Feng-Ming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Feng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Ji
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Juan Hao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Shu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Ning Yin
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeng-Chao Xu
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Luo
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Peng-Yu Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Infectious Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
168
|
Thangamani L, Balasubramanian B, Easwaran M, Natarajan J, Pushparaj K, Meyyazhagan A, Piramanayagam S. GalNAc-siRNA conjugates: Prospective tools on the frontier of anti-viral therapeutics. Pharmacol Res 2021; 173:105864. [PMID: 34474100 PMCID: PMC8405237 DOI: 10.1016/j.phrs.2021.105864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The growing use of short-interfering RNA (siRNA)-based therapeutics for viral diseases reflects the most recent innovations in anti-viral vaccines and drugs. These drugs play crucial roles in the fight against many hitherto incurable diseases, the causes, pathophysiologies, and molecular processes of which remain unknown. Targeted liver drug delivery systems are in clinical trials. The receptor-mediated endocytosis approach involving the abundant asialoglycoprotein receptors (ASGPRs) on the surfaces of liver cells show great promise. We here review N-acetylgalactosamine (GalNAc)-siRNA conjugates that treat viral diseases such as hepatitis B infection, but we also mention that novel, native conjugate-based, targeted siRNA anti-viral drugs may also cure several life-threatening diseases such as hemorrhagic cystitis, multifocal leukoencephalopathy, and severe acute respiratory syndrome caused by coronaviruses and human herpes virus.
Collapse
Affiliation(s)
- Lokesh Thangamani
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Murugesh Easwaran
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India.
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
169
|
Calvo Fernández E, Zhu LY. Racing to immunity: Journey to a COVID-19 vaccine and lessons for the future. Br J Clin Pharmacol 2021; 87:3408-3424. [PMID: 33289156 PMCID: PMC7753785 DOI: 10.1111/bcp.14686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is the novel coronavirus behind the COVID-19 pandemic. Since its emergence, the global scientific community has mobilized to study this virus, and an overwhelming effort to identify COVID-19 treatments is currently ongoing for a variety of therapeutics and prophylactics. To better understand these efforts, we compiled a list of all COVID-19 vaccines undergoing preclinical and clinical testing using the WHO and ClinicalTrials.gov database, with details surrounding trial design and location. The most advanced vaccines are discussed in more detail, with a focus on their technology, advantages and disadvantages, as well as any available recent clinical findings. We also cover some of the primary challenges, safety concerns and public responses to COVID-19 vaccine trials, and consider what this can mean for the future. By compiling this information, we aim to facilitate a more thorough understanding of the extensive COVID-19 clinical testing vaccine landscape as it unfolds, and better highlight some of the complexities and challenges being faced by the joint effort of the scientific community in finding a prophylactic against COVID-19.
Collapse
Affiliation(s)
- Ester Calvo Fernández
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Lucie Y. Zhu
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
170
|
ALADRO-GONZALVO AR. Short-term changes in time spent sitting during the COVID-19 pandemic. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2021. [DOI: 10.23736/s0393-3660.20.04459-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
171
|
Colombani T, Eggermont LJ, Rogers ZJ, McKay LGA, Avena LE, Johnson RI, Storm N, Griffiths A, Bencherif SA. Biomaterials and Oxygen Join Forces to Shape the Immune Response and Boost COVID-19 Vaccines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100316. [PMID: 34580619 PMCID: PMC8209904 DOI: 10.1002/advs.202100316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/02/2021] [Indexed: 05/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global health crisis, resulting in a critical need for effective vaccines that generate protective antibodies. Protein subunit vaccines represent a promising approach but often lack the immunogenicity required for strong immune stimulation. To overcome this challenge, it is first demonstrated that advanced biomaterials can be leveraged to boost the effectiveness of SARS-CoV-2 protein subunit vaccines. Additionally, it is reported that oxygen is a powerful immunological co-adjuvant and has an ability to further potentiate vaccine potency. In preclinical studies, mice immunized with an oxygen-generating coronavirus disease 2019 (COVID-19) cryogel-based vaccine (O2-CryogelVAX) exhibit a robust Th1 and Th2 immune response, leading to a sustained production of highly effective neutralizing antibodies against the virus. Even with a single immunization, O2-CryogelVAX achieves high antibody titers within 21 days, and both binding and neutralizing antibody levels are further increased after a second dose. Engineering a potent vaccine system that generates sufficient neutralizing antibodies after one dose is a preferred strategy amid vaccine shortage. The data suggest that this platform is a promising technology to reinforce vaccine-driven immunostimulation and is applicable to current and emerging infectious diseases.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Zachary J. Rogers
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Lindsay G. A. McKay
- Department of Microbiology and National Emerging Infectious Diseases LaboratoriesBoston University School of MedicineBostonMA02118USA
| | - Laura E. Avena
- Department of Microbiology and National Emerging Infectious Diseases LaboratoriesBoston University School of MedicineBostonMA02118USA
| | - Rebecca I. Johnson
- Department of Microbiology and National Emerging Infectious Diseases LaboratoriesBoston University School of MedicineBostonMA02118USA
| | - Nadia Storm
- Department of Microbiology and National Emerging Infectious Diseases LaboratoriesBoston University School of MedicineBostonMA02118USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases LaboratoriesBoston University School of MedicineBostonMA02118USA
| | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Biomechanics and Bioengineering (BMBI)UTC CNRS UMR 7338University of Technology of CompiègneSorbonne UniversityCompiègne60203France
| |
Collapse
|
172
|
Kifle ZD. Bruton tyrosine kinase inhibitors as potential therapeutic agents for COVID-19: A review. Metabol Open 2021; 11:100116. [PMID: 34345815 PMCID: PMC8318668 DOI: 10.1016/j.metop.2021.100116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is first detected in December 2019 in Wuhan, China which is a new pandemic caused by SARS-COV-2 that has greatly affected the whole world. Bruton tyrosine kinase (BTK) inhibitors are drugs that are used for the management of cancer, and are being repurposed for COVID-19. BTK regulates macrophage and B cell activation, development, survival, and signaling. Inhibition of BTK has revealed an ameliorative effect on lung injury in patients with severe COVID-19. Thus, this review aimed to summarize evidence regarding the role of Bruton tyrosine kinase inhibitors against COVID-19. To include findings from diverse studies, publications related to BTK inhibitors and Covid-19 were searched from the databases such as SCOPUS, Web of Science, Medline, Google Scholar, PubMed, and Elsevier, using English key terms. Both experimental and clinical studies suggest that targeting excessive host inflammation with a BTK inhibitor is a potential therapeutic strategy in the treatment of patients with severe COVID-19. Currently, BTK inhibitors such as ibrutinib and acalabrutinib have shown a protective effect against pulmonary injury in a small series group of COVID-19 infected patients. Small molecule inhibitors like BTK inhibitors, targeting a wide range of pro-inflammatory singling pathways, may a key role in the management of COVID-19.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
173
|
Guo Q, Li M, Wang C, Guo J, Jiang X, Tan J, Wu S, Wang P, Xiao T, Zhou M, Fang Z, Xiao Y, Zhu H. Predicting hosts based on early SARS-CoV-2 samples and analyzing the 2020 pandemic. Sci Rep 2021; 11:17422. [PMID: 34465838 PMCID: PMC8408148 DOI: 10.1038/s41598-021-96903-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 pandemic has raised concerns in the identification of the hosts of the virus since the early stages of the outbreak. To address this problem, we proposed a deep learning method, DeepHoF, based on extracting viral genomic features automatically, to predict the host likelihood scores on five host types, including plant, germ, invertebrate, non-human vertebrate and human, for novel viruses. DeepHoF made up for the lack of an accurate tool, reaching a satisfactory AUC of 0.975 in the five-classification, and could make a reliable prediction for the novel viruses without close neighbors in phylogeny. Additionally, to fill the gap in the efficient inference of host species for SARS-CoV-2 using existing tools, we conducted a deep analysis on the host likelihood profile calculated by DeepHoF. Using the isolates sequenced in the earliest stage of the COVID-19 pandemic, we inferred that minks, bats, dogs and cats were potential hosts of SARS-CoV-2, while minks might be one of the most noteworthy hosts. Several genes of SARS-CoV-2 demonstrated their significance in determining the host range. Furthermore, a large-scale genome analysis, based on DeepHoF's computation for the later pandemic in 2020, disclosed the uniformity of host range among SARS-CoV-2 samples and the strong association of SARS-CoV-2 between humans and minks.
Collapse
Affiliation(s)
- Qian Guo
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Mo Li
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint PhD Program, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunhui Wang
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint PhD Program, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jinyuan Guo
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Xiaoqing Jiang
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Tan
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Shufang Wu
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Peihong Wang
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Tingting Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Man Zhou
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Zhencheng Fang
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Huaiqiu Zhu
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
174
|
Fabiani L, Caratelli V, Fiore L, Scognamiglio V, Antonacci A, Fillo S, De Santis R, Monte A, Bortone M, Moscone D, Lista F, Arduini F. State of the Art on the SARS-CoV-2 Toolkit for Antigen Detection: One Year Later. BIOSENSORS 2021; 11:310. [PMID: 34562898 PMCID: PMC8470122 DOI: 10.3390/bios11090310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The recent global events of COVID-19 in 2020 have alerted the world to the risk of viruses and their impacts on human health, including their impacts in the social and economic sectors. Rapid tests are urgently required to enable antigen detection and thus to facilitate rapid and simple evaluations of contagious individuals, with the overriding goal to delimitate spread of the virus among the population. Many efforts have been achieved in recent months through the realization of novel diagnostic tools for rapid, affordable, and accurate analysis, thereby enabling prompt responses to the pandemic infection. This review reports the latest results on electrochemical and optical biosensors realized for the specific detection of SARS-CoV-2 antigens, thus providing an overview of the available diagnostics tested and marketed for SARS-CoV-2 antigens as well as their pros and cons.
Collapse
Affiliation(s)
- Laura Fabiani
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; (L.F.); (V.C.); (L.F.); (D.M.)
| | - Veronica Caratelli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; (L.F.); (V.C.); (L.F.); (D.M.)
| | - Luca Fiore
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; (L.F.); (V.C.); (L.F.); (D.M.)
| | - Viviana Scognamiglio
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy; (V.S.); (A.A.)
| | - Amina Antonacci
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy; (V.S.); (A.A.)
| | - Silvia Fillo
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy; (S.F.); (R.D.S.); (A.M.); (M.B.); (F.L.)
| | - Riccardo De Santis
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy; (S.F.); (R.D.S.); (A.M.); (M.B.); (F.L.)
| | - Anella Monte
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy; (S.F.); (R.D.S.); (A.M.); (M.B.); (F.L.)
| | - Manfredo Bortone
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy; (S.F.); (R.D.S.); (A.M.); (M.B.); (F.L.)
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; (L.F.); (V.C.); (L.F.); (D.M.)
| | - Florigio Lista
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy; (S.F.); (R.D.S.); (A.M.); (M.B.); (F.L.)
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; (L.F.); (V.C.); (L.F.); (D.M.)
- SENSE4MED, via Renato Rascel 30, 00128 Rome, Italy
| |
Collapse
|
175
|
Jamwal VL, Kumar N, Bhat R, Jamwal PS, Singh K, Dogra S, Kulkarni A, Bhadra B, Shukla MR, Saran S, Dasgupta S, Vishwakarma RA, Gandhi SG. Optimization and validation of RT-LAMP assay for diagnosis of SARS-CoV2 including the globally dominant Delta variant. Virol J 2021; 18:178. [PMID: 34461941 PMCID: PMC8404189 DOI: 10.1186/s12985-021-01642-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 pandemic, has infected more than 179 million people worldwide. Testing of infected individuals is crucial for identification and isolation, thereby preventing further spread of the disease. Presently, Taqman™ Reverse Transcription Real Time PCR is considered gold standard, and is the most common technique used for molecular testing of COVID-19, though it requires sophisticated equipments, expertise and is also relatively expensive. Objective Development and optimization of an alternate molecular testing method for the diagnosis of COVID-19, through a two step Reverse Transcription Loop-mediated isothermal AMPlification (RT-LAMP). Results Primers for LAMP were carefully designed for discrimination from other closely related human pathogenic coronaviruses. Care was also taken that primer binding sites are present in conserved regions of SARS-CoV2. Our analysis shows that the primer binding sites are well conserved in all the variants of concern (VOC) and variants of interest (VOI), notified by World Health Organization (WHO). These lineages include B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526 and B.1.617.1. Various DNA polymerases with strand displacement activity were evaluated and conditions were optimized for LAMP amplification and visualization. Different LAMP primer sets were also evaluated using synthetic templates as well as patient samples. Conclusion In a double blind study, the RT-LAMP assay was validated on more than 150 patient samples at two different sites. The RT-LAMP assay appeared to be 89.2% accurate when compared to the Taqman™ rt-RT-PCR assay. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01642-9.
Collapse
Affiliation(s)
- Vijay Lakshmi Jamwal
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Natish Kumar
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rahul Bhat
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Piyush Singh Jamwal
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kaurab Singh
- Higher Education Department, Union Territory of Jammu and Kashmir, Jammu, India
| | - Sandeep Dogra
- Department of Microbiology, Government Medical College, Jammu, 180001, India
| | - Abhishek Kulkarni
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Bhaskar Bhadra
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Manish R Shukla
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Saurabh Saran
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Dasgupta
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Ram A Vishwakarma
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sumit G Gandhi
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
176
|
Pollett S, Conte MA, Sanborn M, Jarman RG, Lidl GM, Modjarrad K, Maljkovic Berry I. A comparative recombination analysis of human coronaviruses and implications for the SARS-CoV-2 pandemic. Sci Rep 2021; 11:17365. [PMID: 34462471 PMCID: PMC8405798 DOI: 10.1038/s41598-021-96626-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022] Open
Abstract
The SARS-CoV-2 pandemic prompts evaluation of recombination in human coronavirus (hCoV) evolution. We undertook recombination analyses of 158,118 public seasonal hCoV, SARS-CoV-1, SARS-CoV-2 and MERS-CoV genome sequences using the RDP4 software. We found moderate evidence for 8 SARS-CoV-2 recombination events, two of which involved the spike gene, and low evidence for one SARS-CoV-1 recombination event. Within MERS-CoV, 229E, OC43, NL63 and HKU1 datasets, we noted 7, 1, 9, 14, and 1 high-confidence recombination events, respectively. There was propensity for recombination breakpoints in the non-ORF1 region of the genome containing structural genes, and recombination severely skewed the temporal structure of these data, especially for NL63 and OC43. Bayesian time-scaled analyses on recombinant-free data indicated the sampled diversity of seasonal CoVs emerged in the last 70 years, with 229E displaying continuous lineage replacements. These findings emphasize the importance of genomic based surveillance to detect recombination in SARS-CoV-2, particularly if recombination may lead to immune evasion.
Collapse
Affiliation(s)
- Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Mark Sanborn
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Grace M Lidl
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
177
|
Paidas MJ, Mohamed AB, Norenberg MD, Saad A, Barry AF, Colon C, Kenyon NS, Jayakumar AR. Multi-Organ Histopathological Changes in a Mouse Hepatitis Virus Model of COVID-19. Viruses 2021; 13:1703. [PMID: 34578284 PMCID: PMC8473123 DOI: 10.3390/v13091703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Infection with SARS-CoV-2, the virus responsible for the global COVID-19 pandemic, causes a respiratory illness that can severely impact other organ systems and is possibly precipitated by cytokine storm, septic shock, thrombosis, and oxidative stress. SARS-CoV-2 infected individuals may be asymptomatic or may experience mild, moderate, or severe symptoms with or without pneumonia. The mechanisms by which SARS-CoV-2 infects humans are largely unknown. Mouse hepatitis virus 1 (MHV-1)-induced infection was used as a highly relevant surrogate animal model for this study. We further characterized this animal model and compared it with SARS-CoV-2 infection in humans. MHV-1 inoculated mice displayed death as well as weight loss, as reported earlier. We showed that MHV-1-infected mice at days 7-8 exhibit severe lung inflammation, peribronchiolar interstitial infiltration, bronchiolar epithelial cell necrosis and intra-alveolar necrotic debris, alveolar exudation (surrounding alveolar walls have capillaries that are dilated and filled with red blood cells), mononuclear cell infiltration, hyaline membrane formation, the presence of hemosiderin-laden macrophages, and interstitial edema. When compared to uninfected mice, the infected mice showed severe liver vascular congestion, luminal thrombosis of portal and sinusoidal vessels, hepatocyte degeneration, cell necrosis, and hemorrhagic changes. Proximal and distal tubular necrosis, hemorrhage in interstitial tissue, and the vacuolation of renal tubules were observed. The heart showed severe interstitial edema, vascular congestion, and dilation, as well as red blood cell extravasation into the interstitium. Upon examination of the MHV-1 infected mice brain, we observed congested blood vessels, perivascular cavitation, cortical pericellular halos, vacuolation of neuropils, darkly stained nuclei, pyknotic nuclei, and associated vacuolation of the neuropil in the cortex, as well as acute eosinophilic necrosis and necrotic neurons with fragmented nuclei and vacuolation in the hippocampus. Our findings suggest that the widespread thrombotic events observed in the surrogate animal model for SARS-CoV-2 mimic the reported findings in SARS-CoV-2 infected humans, representing a highly relevant and safe animal model for the study of the pathophysiologic mechanisms of SARS-CoV-2 for potential therapeutic interventions.
Collapse
Affiliation(s)
- Michael J Paidas
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Adhar B Mohamed
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Michael D Norenberg
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Saad
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ariel Faye Barry
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Cristina Colon
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Norma Sue Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Arumugam R Jayakumar
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
178
|
Li J, Qiu Y, Zhang Y, Gong X, He Y, Yue P, Zheng X, Liu L, Liao H, Zhou K, Hua Y, Li Y. Protective efficient comparisons among all kinds of respirators and masks for health-care workers against respiratory viruses: A PRISMA-compliant network meta-analysis. Medicine (Baltimore) 2021; 100:e27026. [PMID: 34449478 PMCID: PMC8389967 DOI: 10.1097/md.0000000000027026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/06/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND There is no definite conclusion about comparison of better effectiveness between N95 respirators and medical masks in preventing health-care workers (HCWs) from respiratory infectious diseases, so that conflicting results and recommendations regarding the protective effects may cause difficulties for selection and compliance of respiratory personal protective equipment use for HCWs, especially facing with pandemics of corona virus disease 2019. METHODS We systematically searched MEDLINE, Embase, PubMed, China National Knowledge Infrastructure, Wanfang, medRxiv, and Google Scholar from initiation to November 10, 2020 for randomized controlled trials, case-control studies, cohort studies, and cross-sectional studies that reported protective effects of masks or respirators for HCWs against respiratory infectious diseases. We gathered data and pooled differences in protective effects according to different types of masks, pathogens, occupations, concurrent measures, and clinical settings. The study protocol is registered with PROSPERO (registration number: 42020173279). RESULTS We identified 4165 articles, reviewed the full text of 66 articles selected by abstracts. Six randomized clinical trials and 26 observational studies were included finally. By 2 separate conventional meta-analyses of randomized clinical trials of common respiratory viruses and observational studies of pandemic H1N1, pooled effects show no significant difference between N95 respirators and medical masks against common respiratory viruses for laboratory-confirmed respiratory virus infection (risk ratio 0.99, 95% confidence interval [CI] 0.86-1.13, I2 = 0.0%), clinical respiratory illness (risk ratio 0.89, 95% CI 0.45-1.09, I2 = 83.7%, P = .002), influenza-like illness (risk ratio 0.75, 95% CI 0.54-1.05, I2 = 0.0%), and pandemic H1N1 for laboratory-confirmed respiratory virus infection (odds ratio 0.92, 95% CI 0.49-1.70, I2 = 0.0%, P = .967). But by network meta-analysis, N95 respirators has a significantly stronger protection for HCWs from betacoronaviruses of severe acute respiratory syndrome, middle east respiratory syndrome, and corona virus disease 2019 (odds ratio 0.43, 95% CI 0.20-0.94). CONCLUSIONS Our results provide moderate and very-low quality evidence of no significant difference between N95 respirators and medical masks for common respiratory viruses and pandemic H1N1, respectively. And we found low quality evidence that N95 respirators had a stronger protective effectiveness for HCWs against betacoronaviruses causative diseases compared to medical masks. The evidence of comparison between N95 respirators and medical masks for corona virus disease 2019 is open to question and needs further study.
Collapse
|
179
|
Goswami D. Comparative assessment of RNA-dependent RNA polymerase (RdRp) inhibitors under clinical trials to control SARS-CoV2 using rigorous computational workflow. RSC Adv 2021; 11:29015-29028. [PMID: 35478553 PMCID: PMC9038185 DOI: 10.1039/d1ra04460e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
The devastating effect of SARS-CoV2 continues and the scientific community is pursuing to find the strategy to combat the spread of the virus. The approach is adapted to target this virus with medicine in combination with existing vaccines. For this, the medications that can specifically inhibit an enzyme essential for viral replication 'RNA-dependant-RNA polymerase (RdRp)' of SARS-CoV2 are being developed. RdRp is the enzyme commonly found in all RNA viruses but is absent in humans. There are in total 60 different RdRp inhibitors already under clinical trials for combating other RNA viruses, which are sought to even work for SARS-CoV2. These inhibitors are classified as nucleoside/nucleotide analogues and nonnucleoside/nonnucleotide analogues. In this study, all the known RdRp inhibitors were computationally targeted in the native form and their active form making the use of molecular docking, MM-GBSA and molecular dynamics (MD) simulations to find the top two of each nucleoside/nucleotide analogues and nonnucleoside/nonnucleotide analogues. The results showed ribavirin 5'-triphosphate and favipiravir ribonucleoside triphosphate (favipiravir-RTP) to be the top two nucleotide analogues while pimodivir and dihydropyrazolopyridinone analogue 8d were the top two nonnucleosides/non-nucleotide analogues.
Collapse
Affiliation(s)
- Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University Ahmedabad 380009 Gujarat India
| |
Collapse
|
180
|
Leneva I, Kartashova N, Poromov A, Gracheva A, Korchevaya E, Glubokova E, Borisova O, Shtro A, Loginova S, Shchukina V, Khamitov R, Faizuloev E. Antiviral Activity of Umifenovir In Vitro against a Broad Spectrum of Coronaviruses, Including the Novel SARS-CoV-2 Virus. Viruses 2021; 13:1665. [PMID: 34452529 PMCID: PMC8402645 DOI: 10.3390/v13081665] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
An escalating pandemic of the novel SARS-CoV-2 virus is impacting global health, and effective antivirals are needed. Umifenovir (Arbidol) is an indole-derivative molecule, licensed in Russia and China for prophylaxis and treatment of influenza and other respiratory viral infections. It has been shown that umifenovir has broad spectrum activity against different viruses. We evaluated the sensitivity of different coronaviruses, including the novel SARS-CoV-2 virus, to umifenovir using in vitro assays. Using a plaque assay, we revealed an antiviral effect of umifenovir against seasonal HCoV-229E and HCoV-OC43 coronaviruses in Vero E6 cells, with estimated 50% effective concentrations (EC50) of 10.0 ± 0.5 µM and 9.0 ± 0.4 µM, respectively. Umifenovir at 90 µM significantly suppressed plaque formation in CMK-AH-1 cells infected with SARS-CoV. Umifenovir also inhibited the replication of SARS-CoV-2 virus, with EC50 values ranging from 15.37 ± 3.6 to 28.0 ± 1.0 µM. In addition, 21-36 µM of umifenovir significantly suppressed SARS-CoV-2 virus titers (≥2 log TCID50/mL) in the first 24 h after infection. Repurposing of antiviral drugs is very helpful in fighting COVID-19. A safe, pan-antiviral drug such as umifenovir could be extremely beneficial in combating the early stages of a viral pandemic.
Collapse
Affiliation(s)
- Irina Leneva
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| | - Nadezhda Kartashova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| | - Artem Poromov
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| | - Anastasiia Gracheva
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| | - Ekaterina Korchevaya
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| | - Ekaterina Glubokova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| | - Olga Borisova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| | - Anna Shtro
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia;
| | - Svetlana Loginova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| | - Veronika Shchukina
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| | - Ravil Khamitov
- International Biotechnology Center IBC “GENERIUM”, Volginsky Village, Petushinsky District, 601125 Vladimir, Russia;
| | - Evgeny Faizuloev
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (N.K.); (A.P.); (A.G.); (E.K.); (E.G.); (O.B.); (S.L.); (V.S.); (E.F.)
| |
Collapse
|
181
|
Mohapatra RK, Dhama K, Mishra S, Sarangi AK, Kandi V, Tiwari R, Pintilie L. The microbiota-related coinfections in COVID-19 patients: a real challenge. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:47. [PMID: 34458380 PMCID: PMC8380112 DOI: 10.1186/s43088-021-00134-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of ongoing global pandemic of coronavirus disease 2019 (COVID-19), has infected millions of people around the world, especially the elderly and immunocompromised individuals. The infection transmission rate is considered more rapid than other deadly pandemics and severe epidemics encountered earlier, such as Ebola, Zika, Influenza, Marburg, SARS, and MERS. The public health situation therefore is really at a challenging crossroads. MAIN BODY The internal and external and resident microbiota community is crucial in human health and is essential for immune responses. This community tends to be altered due to pathogenic infections which would lead to severity of the disease as it progresses. Few of these resident microflora become negatively active during infectious diseases leading to coinfection, especially the opportunistic pathogens. Once such a condition sets in, it is difficult to diagnose, treat, and manage COVID-19 in a patient. CONCLUSION This review highlights the various reported possible coinfections that arise in COVID-19 patients vis-à-vis other serious pathological conditions. The local immunity in lungs, nasal passages, oral cavity, and salivary glands are involved with different aspects of COVID-19 transmission and pathology. Also, the role of adaptive immune system is discussed at the site of infection to control the infection along with the proinflammatory cytokine therapy.
Collapse
Affiliation(s)
- Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha 758002 India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Snehasish Mishra
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024 India
| | - Ashish K. Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, Telangana India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001 India
| | - Lucia Pintilie
- Department of Synthesis of Bioactive Substances and Pharmaceutical Technologies, National Institute for Chemical and Pharmaceutical Research and Development, Bucharest, Romania
| |
Collapse
|
182
|
Vivo-Morpholino-Based Antiviral for SARS-CoV-2: Implications for Novel Therapies in the Treatment of Acute COVID-19 Disease. Biomedicines 2021; 9:biomedicines9081018. [PMID: 34440222 PMCID: PMC8394971 DOI: 10.3390/biomedicines9081018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Therapeutic modalities designed specifically to inhibit COVID-19 infection and replication would limit progressive COVID-19-associated pulmonary disease in infected patients and prevent or limit systemic disease. If effective, antivirals could reduce viral transmission rates by reducing viral burden and allow time for immune clearance. For individuals infected with acute-stage disease, antivirals in support of the existing vaccines could reduce COVID-19 hospitalizations and deaths. Here, we evaluate MRCV-19, a phosphorodiamidate morpholino oligo with delivery dendrimer (Vivo-Morpholino), to prevent coronavirus infection in a cell culture model. This is a novel antiviral that effectively inhibits SARS-CoV-2 replication in vitro. By design, MRCV-19 targets the SARS-CoV-2 5’UTR and overlaps the pp1a start site of translation in order to block access of the translation initiation complex to the start. MRCV-19 testing is conducted in a high-throughput, 384-well plate format with a 10-point dose-response curve (common ratio of 2) assayed in duplicate with parallel cytotoxicity evaluations. MRCV-19 was shown to be more effective than hydroxychloroquine and remdesivir in our CPE reduction assay with low toxicity. The clinical translational impact of this study is providing the basis for evaluating MRCV-19 on a large scale in an appropriate infection model for toxicity and systemic high-level inhibition of SARS-CoV-2, which could lead in time to phase I testing in humans.
Collapse
|
183
|
Diaz-Escobar J, Ordóñez-Guillén NE, Villarreal-Reyes S, Galaviz-Mosqueda A, Kober V, Rivera-Rodriguez R, Lozano Rizk JE. Deep-learning based detection of COVID-19 using lung ultrasound imagery. PLoS One 2021; 16:e0255886. [PMID: 34388187 PMCID: PMC8363024 DOI: 10.1371/journal.pone.0255886] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has exposed the vulnerability of healthcare services worldwide, especially in underdeveloped countries. There is a clear need to develop novel computer-assisted diagnosis tools to provide rapid and cost-effective screening in places where massive traditional testing is not feasible. Lung ultrasound is a portable, easy to disinfect, low cost and non-invasive tool that can be used to identify lung diseases. Computer-assisted analysis of lung ultrasound imagery is a relatively recent approach that has shown great potential for diagnosing pulmonary conditions, being a viable alternative for screening and diagnosing COVID-19. OBJECTIVE To evaluate and compare the performance of deep-learning techniques for detecting COVID-19 infections from lung ultrasound imagery. METHODS We adapted different pre-trained deep learning architectures, including VGG19, InceptionV3, Xception, and ResNet50. We used the publicly available POCUS dataset comprising 3326 lung ultrasound frames of healthy, COVID-19, and pneumonia patients for training and fine-tuning. We conducted two experiments considering three classes (COVID-19, pneumonia, and healthy) and two classes (COVID-19 versus pneumonia and COVID-19 versus non-COVID-19) of predictive models. The obtained results were also compared with the POCOVID-net model. For performance evaluation, we calculated per-class classification metrics (Precision, Recall, and F1-score) and overall metrics (Accuracy, Balanced Accuracy, and Area Under the Receiver Operating Characteristic Curve). Lastly, we performed a statistical analysis of performance results using ANOVA and Friedman tests followed by post-hoc analysis using the Wilcoxon signed-rank test with the Holm's step-down correction. RESULTS InceptionV3 network achieved the best average accuracy (89.1%), balanced accuracy (89.3%), and area under the receiver operating curve (97.1%) for COVID-19 detection from bacterial pneumonia and healthy lung ultrasound data. The ANOVA and Friedman tests found statistically significant performance differences between models for accuracy, balanced accuracy and area under the receiver operating curve. Post-hoc analysis showed statistically significant differences between the performance obtained with the InceptionV3-based model and POCOVID-net, VGG19-, and ResNet50-based models. No statistically significant differences were found in the performance obtained with InceptionV3- and Xception-based models. CONCLUSIONS Deep learning techniques for computer-assisted analysis of lung ultrasound imagery provide a promising avenue for COVID-19 screening and diagnosis. Particularly, we found that the InceptionV3 network provides the most promising predictive results from all AI-based techniques evaluated in this work. InceptionV3- and Xception-based models can be used to further develop a viable computer-assisted screening tool for COVID-19 based on ultrasound imagery.
Collapse
Affiliation(s)
- Julia Diaz-Escobar
- CICESE Research Center, Ensenada, Baja California, México
- Faculty of Science, UABC, Ensenada, Baja California, México
| | | | | | | | - Vitaly Kober
- CICESE Research Center, Ensenada, Baja California, México
- Department of Mathematics, Chelyabinsk State University, Chelyabinsk, Russia
| | | | | |
Collapse
|
184
|
Cama J, Leszczynski R, Tang PK, Khalid A, Lok V, Dowson CG, Ebata A. To Push or To Pull? In a Post-COVID World, Supporting and Incentivizing Antimicrobial Drug Development Must Become a Governmental Priority. ACS Infect Dis 2021; 7:2029-2042. [PMID: 33606496 PMCID: PMC7931625 DOI: 10.1021/acsinfecdis.0c00681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The COVID-19 pandemic has refocused attention worldwide on the dangers of infectious diseases, in terms of both global health and the effects on the world economy. Even in high income countries, health systems have been found wanting in dealing with the new infectious agent. However, the even greater long-term danger of antimicrobial resistance in pathogenic bacteria and fungi is still under-appreciated, especially among the general public. Although antimicrobial drug development faces significant scientific challenges, the gravest challenge at the moment appears to be economic, where the lack of a viable market has led to a collapse in drug development pipelines. There is therefore a critical need for governments across the world to further incentivize the development of antimicrobials. Most incentive strategies over the past decade have focused on so-called "push" incentives that bridge the costs of antimicrobial research and development, but these have been insufficient for reviving the pipeline. In this Perspective, we analyze the current incentive strategies in place for antimicrobial drug development, and focus on "pull" incentives, which instead aim to improve revenue generation and thereby resolve the antimicrobial market failure challenge. We further analyze these incentives in a broader "One Health" context and stress the importance of developing and enforcing strict protocols to ensure appropriate manufacturing practices and responsible use. Our analysis reiterates the importance of international cooperation, coordination across antimicrobial research, and sustained funding in tackling this significant global challenge. A failure to invest wisely and continuously to incentivize antimicrobial pipelines will have catastrophic consequences for global health and wellbeing in the years to come.
Collapse
Affiliation(s)
- J. Cama
- Living
Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.
- College
of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K.
- ,
| | - R. Leszczynski
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
| | - P. K. Tang
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
- Faculty
of Life Sciences and Medicine, King’s
College London, Great
Maze Pond, London SE1 1UK, U.K.
| | - A. Khalid
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
- School
of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, U.K.
| | - V. Lok
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
- School of
Biological and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - C. G. Dowson
- School
of Life Sciences, Gibbet Hill Campus, University
of Warwick, Coventry CV4 7AL, U.K.
- Antibiotic
Research U.K., Genesis 5, York Science Park, Heslington, York YO10 5DQ, U.K.
| | - A. Ebata
- Institute
of Development Studies, Library Road, Brighton BN1 9RE, U.K.
| |
Collapse
|
185
|
Kolozsvári LR, Bérczes T, Hajdu A, Gesztelyi R, Tiba A, Varga I, Al-Tammemi AB, Szőllősi GJ, Harsányi S, Garbóczy S, Zsuga J. Predicting the epidemic curve of the coronavirus (SARS-CoV-2) disease (COVID-19) using artificial intelligence: An application on the first and second waves. INFORMATICS IN MEDICINE UNLOCKED 2021; 25:100691. [PMID: 34395821 DOI: 10.1101/2020.04.17.20069666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES The COVID-19 pandemic is considered a major threat to global public health. The aim of our study was to use the official epidemiological data to forecast the epidemic curves (daily new cases) of the COVID-19 using Artificial Intelligence (AI)-based Recurrent Neural Networks (RNNs), then to compare and validate the predicted models with the observed data. METHODS We used publicly available datasets from the World Health Organization and Johns Hopkins University to create a training dataset, then we employed RNNs with gated recurring units (Long Short-Term Memory - LSTM units) to create two prediction models. Our proposed approach considers an ensemble-based system, which is realized by interconnecting several neural networks. To achieve the appropriate diversity, we froze some network layers that control the way how the model parameters are updated. In addition, we could provide country-specific predictions by transfer learning, and with extra feature injections from governmental constraints, better predictions in the longer term are achieved. We have calculated the Root Mean Squared Logarithmic Error (RMSLE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) to thoroughly compare our model predictions with the observed data. RESULTS We reported the predicted curves for France, Germany, Hungary, Italy, Spain, the United Kingdom, and the United States of America. The result of our study underscores that the COVID-19 pandemic is a propagated source epidemic, therefore repeated peaks on the epidemic curve are to be anticipated. Besides, the errors between the predicted and validated data and trends seem to be low. CONCLUSION Our proposed model has shown satisfactory accuracy in predicting the new cases of COVID-19 in certain contexts. The influence of this pandemic is significant worldwide and has already impacted most life domains. Decision-makers must be aware, that even if strict public health measures are executed and sustained, future peaks of infections are possible. The AI-based models are useful tools for forecasting epidemics as these models can be recalculated according to the newly observed data to get a more precise forecasting.
Collapse
Affiliation(s)
- László Róbert Kolozsvári
- Department of Family and Occupational Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Tamás Bérczes
- Faculty of Informatics, University of Debrecen, Debrecen, Hungary
| | - András Hajdu
- Faculty of Informatics, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tiba
- Faculty of Informatics, University of Debrecen, Debrecen, Hungary
| | - Imre Varga
- Faculty of Informatics, University of Debrecen, Debrecen, Hungary
| | - Ala'a B Al-Tammemi
- Department of Family and Occupational Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Gergő József Szőllősi
- Department of Family and Occupational Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Harsányi
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Health Systems Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Garbóczy
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Psychiatry, Kenézy Hospital, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
186
|
Antigen production and development of an indirect ELISA based on the nucleocapsid protein to detect human SARS-CoV-2 seroconversion. Braz J Microbiol 2021; 52:2069-2073. [PMID: 34342836 PMCID: PMC8329412 DOI: 10.1007/s42770-021-00556-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
Serological assays are important tools to identify previous exposure to SARS-CoV-2, helping to track COVID-19 cases and determine the level of humoral response to SARS-CoV-2 infections and/or immunization to future vaccines. Here, the SARS-CoV-2 nucleocapsid protein was expressed in Escherichia coli and purified to homogeneity and high yield using a single chromatography step. The purified SARS-CoV-2 nucleocapsid protein was used to develop an indirect enzyme-linked immunosorbent assay for the identification of human SARS-CoV-2 seroconverts. The assay sensitivity and specificity were determined analyzing sera from 140 RT-qPCR-confirmed COVID-19 cases and 210 pre-pandemic controls. The assay operated with 90% sensitivity and 98% specificity; identical accuracies were obtained in head-to-head comparison with a commercial ELISA kit. Antigen-coated plates were stable for up to 3 months at 4 °C. The ELISA method described is ready for mass production and will be an additional tool to track COVID-19 cases.
Collapse
|
187
|
Gunathilake TMSU, Ching YC, Uyama H, Chuah CH. Nanotherapeutics for treating coronavirus diseases. J Drug Deliv Sci Technol 2021; 64:102634. [PMID: 34127930 PMCID: PMC8190278 DOI: 10.1016/j.jddst.2021.102634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Viral diseases have recently become a threat to human health and rapidly become a significant cause of mortality with a continually exacerbated unfavorable socio-economic impact. Coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have threatened human life, with immense accompanying morbidity rates; the COVID-19 (caused by SARS-CoV-2) epidemic has become a severe threat to global public health. In addition, the design process of antiviral medications usually takes years before the treatments can be made readily available. Hence, it is necessary to invest scientifically and financially in a technology platform that can then be quickly repurposed on demand to be adequately positioned for this kind of pandemic situation through lessons learned from the previous pandemics. Nanomaterials/nanoformulations provide such platform technologies, and a proper investigation into their basic science and biological interactions would be of great benefit for potential vaccine and therapeutic development. In this respect, intelligent and advanced nano-based technologies provide specific physico-chemical properties, which can help fix the key issues related to the treatments of viral infections. This review aims to provide an overview of the latest research on the effective use of nanomaterials in the treatment of coronaviruses. Also raised are the problems, perspectives of antiviral nanoformulations, and the possibility of using nanomaterials effectively against current pandemic situations.
Collapse
Affiliation(s)
- Thennakoon M Sampath U Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
188
|
Murugan NA, Pandian CJ, Jeyakanthan J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J Biomol Struct Dyn 2021; 39:4415-4426. [PMID: 32543978 PMCID: PMC7309306 DOI: 10.1080/07391102.2020.1777901] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
The outbreak due to SARS-CoV-2 (or Covid-19) is spreading alarmingly and number of deaths due to infection is aggressively increasing every day. Due to the rapid human to human transmission of Covid-19, we are in need to find a potent drug at the earliest by ruling-out the traditional time-consuming approach of drug development. This is only possible if we use reliable computational approaches for screening compounds from chemical space or by drug repurposing or by finding the phytochemicals and nutraceuticals from plants as they can be immediately used without the need for carrying out drug-trials to test safety and efficacy. A number of plant products were routinely suggested as drugs in traditional Indian and Chinese medicine. Here using molecular docking approach, and combined molecular dynamics and MM-GBSA based free energy calculations approach, we study the potency of the four selected phytochemicals namely andrographolide (AGP1), 14-deoxy 11,12-didehydro andrographolide (AGP2), neoandrographolide (AGP3) and 14-deoxy andrographolide (AGP4) from A. paniculata plant against the four key targets including three non-structural proteins (3 L main protease (3CLpro), Papain-like proteinase (PLpro) and RNA-directed RNA polymerase (RdRp)) and a structural protein (spike protein (S)) of the virus which are responsible for replication, transcription and host cell recognition. The therapeutic potential of the selected phytochemicals against Covid-19 were also evaluated in comparison with a few commercially available drugs. The binding free energy data suggest that AGP3 could be used as a cost-effective drug-analog for treating covid-19 infection in developing countries.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Natarajan Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | |
Collapse
|
189
|
Berber E, Sumbria D, Çanakoğlu N. Meta-analysis and comprehensive study of coronavirus outbreaks: SARS, MERS and COVID-19. J Infect Public Health 2021; 14:1051-1064. [PMID: 34174535 PMCID: PMC8214867 DOI: 10.1016/j.jiph.2021.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Zoonotic coronaviruses have caused several endemic and pandemic situations around the world. SARS caused the first epidemic alert at the beginning of this century, followed by MERS. COVID-19 appeared to be highly contagious, with human-to-human transmission by aerosol droplets, and reached nearly all countries around the world. A plethora of studies were performed, with reports being published within a short period of time by scientists and medical physicians. It has been difficult to find the relevant data to create an overview of the situation according to studies from accumulated findings and reports. In the present study we aimed to perform a comprehensive study in the context of the case fatality ratios (CFRs) of three major human Coronavirus outbreaks which occurred during the first twenty years of 21st century. METHODS In this study, we performed meta-analyses on SARS, MERS and COVID-19 outbreak events from publicly available records. Study analyses were performed with the help of highly reputable scientific databases such as PubMed, WOS and Scopus to evaluate and present current knowledge on zoonotic coronavirus outbreaks, starting from 2000 to the end of 2020. RESULTS A total of 250,194 research studies and records were identified with specific keywords and synonyms for the three viruses in order to cover all publications. In the end, 41 records were selected and included after applying several exclusion and inclusion criteria on identified datasets. SARS was found to have a nearly 11% case fatality ratio (CFR), which means the estimated number of deaths as a proportion of confirmed positive cases; Taiwan was the country most affected by the SARS outbreak based on the CFR analysis. MERS had CFRs of 35.8 and 26 in Saudi Arabia during the 2012 and 2015 outbreaks, respectively. COVID-19 resulted in a 2.2 CFR globally, and the USA reported the highest mortality ratio in the world in the end of first year of COVID-19 pandemic. CONCLUSION Some members of the Coronaviridae family can cause highly contagious and devastating infections among humans. Within the last two decades, the whole world has witnessed several deadly emerging infectious diseases, which are most commonly zoonotic in nature. We conclude that pre-existing immunity during the early stages of a pandemic might be important, but case control and management strategies should be improved to decrease CFRs. Finally, we have addressed several concerns in relation to outbreak events in this study.
Collapse
Affiliation(s)
- Engin Berber
- University of Tennessee, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, Knoxville, TN, USA; Erciyes University, College of Veterinary Medicine, Department of Virology, Kayseri, Turkey.
| | - Deepak Sumbria
- University of Tennessee, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, Knoxville, TN, USA; Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Department of Silviculture and Agroforestry, College of Forestry, Solan, Himachal Pradesh, India
| | - Nurettin Çanakoğlu
- Muğla Sıtkı Koçman University, Milas Faculty of Veterinary Science, Department of Virology, Muğla, Turkey
| |
Collapse
|
190
|
Baettig SJ, Parini A, Cardona I, Morand GB. Case series of coronavirus (SARS-CoV-2) in a military recruit school: clinical, sanitary and logistical implications. BMJ Mil Health 2021; 167:251-254. [PMID: 32303575 PMCID: PMC7306277 DOI: 10.1136/bmjmilitary-2020-001482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION A new coronavirus, called Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2), has emerged from China in late 2019 and has now caused a worldwide pandemic. The impact of COVID-19 has not been described so far in a military setting. We therefore report a case series of infected patients in a recruit school in Switzerland and the herein associated challenges. METHODS Retrospective review of COVID-19 cases among Swiss Armed Forces recruits in the early weeks of SARS-CoV-2 pandemic in the canton of Ticino, the southernmost canton of Switzerland. Positive cases were defined with two positive PCR testing for SARS-CoV-2 from nasopharyngeal swabs. Serological testing was performed with a commercially available kit according to manufacturers' instructions. RESULTS The first case was likely contaminated while skiing during weekend permission. He became symptomatic 4 days later, tested positive for SARS-CoV-2 and was put into isolation. He showed complete symptom resolution after 48 hours. Quarantine was ordered for all recruits with close contact in the past 2 days, a total of 55 persons out of 140 in the company. Seven out of nine recruits in one particular quarantine room became mildly symptomatic. SARS-CoV-2 PCR was positive in one of them. Seven days after initial diagnosis, the index patient and the other one from the quarantine retested positive for SARS-CoV-2, although they had been completely asymptomatic for over 96 hours. Serological testing revealed positive for both patients. All others showed negative IgM and IgG. CONCLUSIONS Young healthy recruits often showed a mild course of COVID-19 with rapid symptom decline but were persistent SARS-CoV-2 carriers. This illustrates how asymptomatic patients may be responsible for covert viral transmission. An early and prolonged establishment of isolation and quarantine for patients and close contacts is essential to slow down the spread of SARS-CoV-2, especially in the confined space of a military environment.
Collapse
Affiliation(s)
- Sascha J Baettig
- Department of Anaesthesiology, Kantonsspital Winterthur, Winterthur, Switzerland
- Military Medical Services, Swiss Armed Forces, Bern, Switzerland
| | - A Parini
- Military Medical Services, Swiss Armed Forces, Bern, Switzerland
| | - I Cardona
- Department of Gynaecology and Obstetrics, Spitalzentrum Biel, Biel, Switzerland
| | - G B Morand
- Military Medical Services, Swiss Armed Forces, Bern, Switzerland
- Department of Otorhinolaryngology - Head & Neck Surgery, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
191
|
Sabatino J, Di Salvo G, Calcaterra G, Bassareo PP, Oreto L, Cazzoli I, Calabrò MP, Guccione P, Gatzoulis MA. Adult congenital heart disease: Special considerations for COVID-19 and vaccine allocation/prioritization. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2021; 4:100186. [PMID: 35360449 PMCID: PMC8206548 DOI: 10.1016/j.ijcchd.2021.100186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023] Open
Abstract
Individuals with the highest risk for adverse outcomes of COVID-19 should be prioritized by the vaccine allocation policies. We have conducted a literature review of published studies, which comprehend congenital heart disease (CHD) and COVID-19, in order to present the overall evidences of both exposure and clinical risk of patients with adult congenital heart disease (ACHD) and to propose a risk profile schema for those patients to be incorporated into vaccine distribution decisions.
Collapse
Affiliation(s)
- Jolanda Sabatino
- Division of Paediatric Cardiology, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Division of Cardiology, "Magna Graecia" University, Catanzaro, Italy
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | | | - Pier Paolo Bassareo
- University College of Dublin Mater Misericordiae University Hospital (National Adult Congenital Disease Service) and Our Lady's Children's Hospital Crumlin, Ireland
| | - Lilia Oreto
- Mediterranean Pediatric Cardiology Center, Bambino Gesù Pediatric Hospital, Taormina, Messina, Italy
| | - Ilaria Cazzoli
- Pediatric Cardiology and Cardiac Surgery Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Pia Calabrò
- Department of Human Pathology of Adulthood and Childhood - Pediatric Cardiology Unit, University of Messina, Messina, Italy
| | - Paolo Guccione
- Pediatric Cardiology and Cardiac Surgery Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michael A Gatzoulis
- Adult Congenital Heart Centre, National Centre for Pulmonary Hypertension, Royal Brompton Hospital, London, UK
- National Heart & Lung Institute, Imperial College, London, UK
| |
Collapse
|
192
|
Hessami A, Shamshirian A, Heydari K, Pourali F, Alizadeh-Navaei R, Moosazadeh M, Abrotan S, Shojaie L, Sedighi S, Shamshirian D, Rezaei N. Cardiovascular diseases burden in COVID-19: Systematic review and meta-analysis. Am J Emerg Med 2021; 46:382-391. [PMID: 33268238 PMCID: PMC7561581 DOI: 10.1016/j.ajem.2020.10.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High rate of cardiovascular disease (CVD) have been reported among patients with novel coronavirus disease (COVID-19). Meanwhile there were controversies among different studies about CVD burden in COVID-19 patients. Hence, we aimed to study CVD burden among COVID-19 patients, using a systematic review and meta-analysis. METHODS We have systematically searched databases including PubMed, Embase, Cochrane Library, Scopus, Web of Science as well as medRxiv pre-print database. Hand searched was also conducted in journal websites and Google Scholar. Meta-analyses were carried out for Odds Ratio (OR) of mortality and Intensive Care Unit (ICU) admission for different CVDs. We have also performed a descriptive meta-analysis on different CVDs. RESULTS Fifty-six studies entered into meta-analysis for ICU admission and mortality outcome and 198 papers for descriptive outcomes, including 159,698 COVID-19 patients. Results of meta-analysis indicated that acute cardiac injury, (OR: 13.29, 95% CI 7.35-24.03), hypertension (OR: 2.60, 95% CI 2.11-3.19), heart Failure (OR: 6.72, 95% CI 3.34-13.52), arrhythmia (OR: 2.75, 95% CI 1.43-5.25), coronary artery disease (OR: 3.78, 95% CI 2.42-5.90), and cardiovascular disease (OR: 2.61, 95% CI 1.89-3.62) were significantly associated with mortality. Arrhythmia (OR: 7.03, 95% CI 2.79-17.69), acute cardiac injury (OR: 15.58, 95% CI 5.15-47.12), coronary heart disease (OR: 2.61, 95% CI 1.09-6.26), cardiovascular disease (OR: 3.11, 95% CI 1.59-6.09), and hypertension (OR: 1.95, 95% CI 1.41-2.68) were also significantly associated with ICU admission in COVID-19 patients. CONCLUSION Findings of this study revealed a high burden of CVDs among COVID-19 patients, which was significantly associated with mortality and ICU admission. Proper management of CVD patients with COVID-19 and monitoring COVID-19 patients for acute cardiac conditions is highly recommended to prevent mortality and critical situations.
Collapse
Affiliation(s)
- Amirhossein Hessami
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Shamshirian
- Gastrointestinal Cancer Research Center, Non-Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Laboratory Sciences, Student Research Committee, School of Allied Medical Science, Mazandaran University of Medical Sciences, Sari, Iran
| | - Keyvan Heydari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Gastrointestinal Cancer Research Center, Non-Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Pourali
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Moosazadeh
- Gastrointestinal Cancer Research Center, Non-Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran; Health Science Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Abrotan
- Department of Cardiology, Babol University of Medical Sciences, Babol, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Departments of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sogol Sedighi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
193
|
Pantelis C, Jayaram M, Hannan AJ, Wesselingh R, Nithianantharajah J, Wannan CMJ, Syeda WT, Choy KHC, Zantomio D, Christopoulos A, Velakoulis D, O’Brien TJ. Neurological, neuropsychiatric and neurodevelopmental complications of COVID-19. Aust N Z J Psychiatry 2021; 55:750-762. [PMID: 32998512 PMCID: PMC8317235 DOI: 10.1177/0004867420961472] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although COVID-19 is predominantly a respiratory disease, it is known to affect multiple organ systems. In this article, we highlight the impact of SARS-CoV-2 (the coronavirus causing COVID-19) on the central nervous system as there is an urgent need to understand the longitudinal impacts of COVID-19 on brain function, behaviour and cognition. Furthermore, we address the possibility of intergenerational impacts of COVID-19 on the brain, potentially via both maternal and paternal routes. Evidence from preclinical models of earlier coronaviruses has shown direct viral infiltration across the blood-brain barrier and indirect secondary effects due to other organ pathology and inflammation. In the most severely ill patients with pneumonia requiring intensive care, there appears to be additional severe inflammatory response and associated thrombophilia with widespread organ damage, including the brain. Maternal viral (and other) infections during pregnancy can affect the offspring, with greater incidence of neurodevelopmental disorders, such as autism, schizophrenia and epilepsy. Available reports suggest possible vertical transmission of SARS-CoV-2, although longitudinal cohort studies of such offspring are needed. The impact of paternal infection on the offspring and intergenerational effects should also be considered. Research targeted at mechanistic insights into all aspects of pathogenesis, including neurological, neuropsychiatric and haematological systems alongside pulmonary pathology, will be critical in informing future therapeutic approaches. With these future challenges in mind, we highlight the importance of national and international collaborative efforts to gather the required clinical and preclinical data to effectively address the possible long-term sequelae of this global pandemic, particularly with respect to the brain and mental health.
Collapse
Affiliation(s)
- Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Mid-West Area Mental Health Service, North Western Mental Health, Melbourne Health, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Mahesh Jayaram
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Mid-West Area Mental Health Service, North Western Mental Health, Melbourne Health, St Albans, VIC, Australia
- Department of Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Robb Wesselingh
- Department of Neurology & Neurosciences, The Central Clinical School, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Cassandra MJ Wannan
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Warda Taqdees Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - KH Christopher Choy
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Daniela Zantomio
- Department of Clinical Haematology, Austin Hospital, Austin Health, Heidelberg, VIC, Australia
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Terence J O’Brien
- Department of Neurology & Neurosciences, The Central Clinical School, Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, Australia
| |
Collapse
|
194
|
Younis I, Longsheng C, Zulfiqar MI, Imran M, Shah SAA, Hussain M, Solangi YA. Regional disparities in Preventive measures of COVID-19 pandemic in China. A study from international students' prior knowledge, perception and vulnerabilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40355-40370. [PMID: 33037960 PMCID: PMC7547302 DOI: 10.1007/s11356-020-10932-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/20/2020] [Indexed: 05/07/2023]
Abstract
The COVID-19 pandemic needs immediate solution before inflicting more devastation. So far, China has successfully controlled transmission of COVID-19 through implementing stringent preventive measures. In this study, we analyze the effectiveness of preventive measures taken in thirteen regions of China based on the feedback provided by 1135 international students studying in China. The study uses factor analysis combined with varimax rotation of variables. It was found that awareness raising and dispersing actionable knowledge regarding trust and adapting measures remained significantly important. Therefore, recognition of information gaps, improvements in the level of alertness, and development of preventive measures in each sector are imperative. The findings of this study revealed that trust, students' health, waste disposal, and the efforts of the Chinese government/international institute of education to prevent this pandemic were significantly and positively associated with preventive measures. The results showed that prior knowledge, global pandemics, and food and grocery purchases were firmly related to the preventive measures of COVID-19. Moreover, anxiety, transportation, and economic status were negatively related to the preventive measures. During this epidemic situation, international students suffered various types of mental stresses and anxiety, especially living in most affected regions of China. The study adopted a mixed (qualitative and quantitative) approach where the findings can act as a set of guidelines for governmental authorities in formulating, assisting in the preparation, instructing, and guiding policies to prevent and control the epidemic COVID-19 at national, local, and divisional levels.
Collapse
Affiliation(s)
- Ijaz Younis
- School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China
| | - Cheng Longsheng
- School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China
| | - Muhammad Imran Zulfiqar
- School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China
| | - Muhammad Imran
- School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China
| | - Syed Ahsan Ali Shah
- School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China
| | - Mudassar Hussain
- School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China
| | - Yasir Ahmed Solangi
- School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China
| |
Collapse
|
195
|
Siddiqui R, Mungroo MR, Khan NA. SARS-CoV-2 invasion of the central nervous: a brief review. Hosp Pract (1995) 2021; 49:157-163. [PMID: 33554684 PMCID: PMC7938650 DOI: 10.1080/21548331.2021.1887677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
There is increasing evidence of the ability of the novel coronavirus to invade the central nervous system (CNS). But how does a respiratory virus invade the highly protected CNS? Here, we reviewed available literature and case reports to determine CNS involvement in COVID-19, and to identify potential regions of the brain that may be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its possible route of entry into the brain to identify its pathogenicity. Based on the symptoms, the parietal lobe and the cerebellum are the likely targets of SARS-CoV-2; however, further work is needed to elucidate this. The presence of ACE2, used by SARS-CoV-2 for cell entry, in the brain as well as detection of the virus in the cerebrospinal fluid, further assert that SARS-COV-2 targets the brain, and therefore, medical practitioners should take that into account when dealing with patients suffering from COVID-19.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Mohammad Ridwane Mungroo
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
196
|
Khan A, Ali SS, Khan MT, Saleem S, Ali A, Suleman M, Babar Z, Shafiq A, Khan M, Wei DQ. Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS-CoV-2 main protease (3CLpro). J Biomol Struct Dyn 2021; 39:4659-4670. [PMID: 32552361 PMCID: PMC7309305 DOI: 10.1080/07391102.2020.1779128] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
The current coronavirus (SARS-COV-2) pandemic and phenomenal spread to every nook and cranny of the world has raised major apprehensions about the modern public health care system. So far as a result of this epidemic, 4,434,653 confirmed cases and 302,169 deaths are reported. The growing infection rate and death toll demand the use of all possible approaches to design novel drugs and vaccines to curb this disease. In this study, we combined drugs repurposing and virtual drug screening strategies to target 3CLpro, which has an essential role in viral maturation and replication. A total of 31 FDA approved anti-HIV drugs, and Traditional Chinese medicines (TCM) database were screened to find potential inhibitors. As a result, Saquinavir, and five drugs (TCM5280805, TCM5280445, TCM5280343, TCM5280863, and TCM5458190) from the TCM database were found as promising hits. Furthermore, results from molecular dynamics simulation and total binding free energy revealed that Saquinavir and TCM5280805 target the catalytic dyad (His41 and Cys145) and possess stable dynamics behavior. Thus, we suggest that these compounds should be tested experimentally against the SARS-COV-2 as Saquinavir has been reported to inhibit HIV protease experimentally. Considering the intensity of coronavirus dissemination, the present research is in line with the idea of discovering the latest inhibitors against the coronavirus essential pathways to accelerate the drug development cycle.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abbas Khan
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Muhammad Tahir Khan
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shoaib Saleem
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arif Ali
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Zainib Babar
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Athar Shafiq
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, China
| | - Dong-Qing Wei
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Peng Cheng Laboratory, Shenzhen, P.R. China
| |
Collapse
|
197
|
Coones RT, Green RJ, Frazier RA. Investigating lipid headgroup composition within epithelial membranes: a systematic review. SOFT MATTER 2021; 17:6773-6786. [PMID: 34212942 DOI: 10.1039/d1sm00703c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane lipid composition is often quoted within the literature, but with very little insight into how or why these compositions vary when compared to other biological membranes. One prominent area that lacks understanding in terms of rationale for lipid variability is the human gastro-intestinal tract (GIT). We have carried out a comprehensive systematic literature search to ascertain the key lipid components of epithelial membranes, with a particular focus on addressing the human GIT and to use compositional data to understand structural aspects of biological membranes. Both bacterial outer membranes and the human erythrocyte membrane were used as a comparison for the mammalian [epithelial] membranes and to understand variations in lipid presence. We show that phosphatidylcholine (PC) lipid types tend to dominate (33%) with phosphatidylethanolamines (PE) and cholesterol having very similar abundances (25 and 23% respectively). This systematic review presents a detailed insight into lipid headgroup composition and roles in various membrane types, with a summary of the distinction between the major lipid bilayer forming lipids and how peripheral lipids regulate charge and fluidity. The variety of lipids present in biological membranes is discussed and rationalised in terms function as well as cellular position.
Collapse
Affiliation(s)
- R T Coones
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R J Green
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R A Frazier
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, UK.
| |
Collapse
|
198
|
Kundu S, Sarkar D. Synthetic Attempts Towards Eminent Anti-Viral Candidates of SARS-CoV. Mini Rev Med Chem 2021; 22:232-247. [PMID: 34254915 DOI: 10.2174/1389557521666210712205655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/14/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) aka SARS-CoV spread over southern China for the first time in 2002-2003 and history repeated again since last year and take away more than two million people so far. On March 11, 2020 COVID-19 outbreak was officially declared as pandemic by World Health Organization (WHO). Entire world united to fight back against this ultimate destruction. Around 90 vaccines are featured against SARS-CoV-2 and more than 300 active clinical trials are underway by several groups and individuals. So far, no drugs are currently approved that completely eliminates the deadly corona virus. The promising SARS-CoV-2 anti-viral drugs are favipiravir, remdesivir, lopinavir, ribavirin and avifavir. In this review, we have discussed the synthetic approaches elaborately made so far by different groups and chemical companies all around the world towards top three convincing anti-viral drugs against SARS-CoV-2 which are favipiravir, remdesivir and lopinavir.
Collapse
Affiliation(s)
- Subhradip Kundu
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| |
Collapse
|
199
|
McKinley IG, West JM, Hardie SML. Risk management for pandemics: a novel approach: "Hindsight is 20/20" English proverb. SUSTAINABILITY SCIENCE 2021; 16:1625-1635. [PMID: 34257733 PMCID: PMC8269406 DOI: 10.1007/s11625-021-00999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The impacts of the current COVID-19 pandemic illustrate the global-level sensitivity to such threats. As understanding of major hazards is generally based on past experience and there is a lack of good historical precedents, approaches and models currently employed to assess risks and guide responses generally lack transparency and are often associated with huge, unspecified uncertainties. Fundamental challenges arise from the strongly coupled nature of the impacts of a pandemic (i.e. not only on health, but also on the entire socio-economic infrastructure) and their long-term evolution with recovery likely to take many years or, potentially, decades. Here, we outline experience gained in risk assessment within the nuclear industry, which has experience facing similar challenges (assessing long-term impacts in a strongly coupled technical system subject to socio-economic constraints), and assess options for knowledge transfer that may help manage future pandemics and other high-impact threats.
Collapse
Affiliation(s)
- Ian G. McKinley
- McKinley Consulting, Badstrasse 20B, 5408 Ennetbaden, Switzerland
| | - Julia M. West
- McKinley Consulting, Badstrasse 20B, 5408 Ennetbaden, Switzerland
- West Consult, Nottingham, UK
| | - Susie M. L. Hardie
- McKinley Consulting, Badstrasse 20B, 5408 Ennetbaden, Switzerland
- Schwarz Hara Consult, 6774 Tschagguns, Vorarlberg Austria
| |
Collapse
|
200
|
Nallusamy S, Mannu J, Ravikumar C, Angamuthu K, Nathan B, Nachimuthu K, Ramasamy G, Muthurajan R, Subbarayalu M, Neelakandan K. Exploring Phytochemicals of Traditional Medicinal Plants Exhibiting Inhibitory Activity Against Main Protease, Spike Glycoprotein, RNA-dependent RNA Polymerase and Non-Structural Proteins of SARS-CoV-2 Through Virtual Screening. Front Pharmacol 2021; 12:667704. [PMID: 34305589 PMCID: PMC8295902 DOI: 10.3389/fphar.2021.667704] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) being a causative agent for global pandemic disease nCOVID’19, has acquired much scientific attention for the development of effective vaccines and drugs. Several attempts have been made to explore repurposing existing drugs known for their anti-viral activities, and test the traditional herbal medicines known for their health benefiting and immune-boosting activity against SARS-CoV-2. In this study, efforts were made to examine the potential of 605 phytochemicals from 37 plant species (of which 14 plants were endemic to India) and 139 antiviral molecules (Pubchem and Drug bank) in inhibiting SARS-CoV-2 multiple protein targets through a virtual screening approach. Results of our experiments revealed that SARS-CoV-2 MPro shared significant disimilarities against SARS-CoV MPro and MERS-CoV MPro indicating the need for discovering novel drugs. This study has screened the phytochemical cyanin (Zingiber officinale) which may exhibit broad-spectrum inhibitory activity against main proteases of SARS-CoV-2, SARS-CoV and MERS-CoV with binding energies of (−) 8.3 kcal/mol (−) 8.2 kcal/mol and (−) 7.7 kcal/mol respectively. Amentoflavone, agathisflavone, catechin-7-o-gallate and chlorogenin were shown to exhibit multi-target inhibitory activity. Further, Mangifera indica, Anacardium occidentale, Vitex negundo, Solanum nigrum, Pedalium murex, Terminalia chebula, Azadirachta indica, Cissus quadrangularis, Clerodendrum serratum and Ocimum basilicumaree reported as potential sources of phytochemicals for combating nCOVID’19. More interestingly, this study has highlighted the anti-viral properties of the traditional herbal formulation “Kabasura kudineer” recommended by AYUSH, a unit of Government of India. Short listed phytochemicals could be used as leads for future drug design and development. Genomic analysis of identified herbal plants will help in unraveling molecular complexity of therapeutic and anti-viral properties which proffer lot of chance in the pharmaceutical field for researchers to scout new drugs in drug discovery.
Collapse
Affiliation(s)
- Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Caroline Ravikumar
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kandavelmani Angamuthu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Bharathi Nathan
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kumaravadivel Nachimuthu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gnanam Ramasamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Mohankumar Subbarayalu
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | | |
Collapse
|