151
|
Bdira FB, Erkelens AM, Qin L, Volkov AN, Lippa A, Bowring N, Boyle A, Ubbink M, Dove S, Dame R. Novel anti-repression mechanism of H-NS proteins by a phage protein. Nucleic Acids Res 2021; 49:10770-10784. [PMID: 34520554 PMCID: PMC8501957 DOI: 10.1093/nar/gkab793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda M Erkelens
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Liang Qin
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alexander N Volkov
- VIB-VUB Structural Biology Research Center, Pleinlaan 2, 1050 Brussels, Belgium
- Jean Jeener NMR Centre, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrew M Lippa
- Boston Children's Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Bowring
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Aimee L Boyle
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marcellus Ubbink
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Simon L Dove
- Boston Children's Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, MA 02115, USA
| | - Remus T Dame
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
152
|
Sawaya NA, Baran N, Mahank S, Varsani A, Lindell D, Breitbart M. Adaptation of the polony technique to quantify Gokushovirinae, a diverse group of single-stranded DNA phage. Environ Microbiol 2021; 23:6622-6636. [PMID: 34623742 DOI: 10.1111/1462-2920.15805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022]
Abstract
Advances in metagenomics have revealed the ubiquity of single-stranded DNA (ssDNA) phage belonging to the subfamily Gokushovirinae in the oceans; however, the abundance and ecological roles of this group are unknown. Here, we quantify gokushoviruses through adaptation of the polony method, in which viral template DNA is immobilized in a gel, amplified by PCR, and subsequently detected by hybridization. Primers and probes for this assay were designed based on PCR amplicon diversity of gokushovirus major capsid protein gene sequences from a depth profile in the Gulf of Aqaba, Red Sea sampled in September 2015. At ≥95% identity, these 87 gokushovirus sequences formed 14 discrete clusters with the largest clades showing distinct depth distributions. The application of the polony method enabled the first quantification of gokushoviruses in any environment. The gokushoviruses were most abundant in the upper 40 m of the stratified water column, with a subsurface peak in abundance of 1.26 × 105 viruses ml-1 . These findings suggest that discrete gokushovirus genotypes infect bacterial hosts that differentially partition in the water column. Since the designed primers and probe are conserved across marine ecosystems, this polony method can be applied broadly for the quantification of gokushoviruses throughout the global oceans.
Collapse
Affiliation(s)
- Natalie A Sawaya
- University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
| | - Nava Baran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shelby Mahank
- University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA.,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Mya Breitbart
- University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
| |
Collapse
|
153
|
Li Y, Wang Q, Peng K, Liu Y, Xiao X, Mohsin M, Li R, Wang Z. Distribution and genomic characterization of tigecycline-resistant tet(X4)-positive Escherichia coli of swine farm origin. Microb Genom 2021; 7:000667. [PMID: 34693904 PMCID: PMC8627205 DOI: 10.1099/mgen.0.000667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/06/2021] [Indexed: 02/03/2023] Open
Abstract
Abstract The emergence of plasmid-mediated tigecycline-resistant strains is posing a serious threat to food safety and human health, which has attracted worldwide attention. The tigecycline resistance gene tet (X4) has been found in diverse sources, but the distribution of tet (X4) and its genetic background in the animal farming environment is not fully understood. Thirty-two tet (X)-positive Escherichia coli strains isolated from 159 samples collected from swine farms showed resistance to tigecycline. The tet (X)-positive strains were characterized by antimicrobial susceptibility testing, conjugation assay, PCR, Illumina and long-read Nanopore sequencing, and bioinformatics analysis. A total of 11 different sequence types (STs) were identified and most of them belonged to phylogroup A, except ST641. In total, 196 possible prophage sequences were identified and some of the prophage regions were found to carry resistance genes, including tet (X4). Furthermore, our results showed possible correlations between CRISPR spacer sequences and serotypes or STs. The co-existence of tigecycline-resistant tet (A) variants and tet (X4) complicates the evolution of vital resistance genes in farming environments. Further, four reorganization plasmids carrying tet (X4) were observed, and the formation mechanism mainly involved homologous recombination. These findings contribute significantly to a better understanding of the diversity and complexity of tet (X4)-bearing plasmids, an emerging novel public health concern.
Collapse
Affiliation(s)
- Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Qian Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Xia Xiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| |
Collapse
|
154
|
Facciolà A, Laganà P, Caruso G. The COVID-19 pandemic and its implications on the environment. ENVIRONMENTAL RESEARCH 2021; 201:111648. [PMID: 34242676 PMCID: PMC8261195 DOI: 10.1016/j.envres.2021.111648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/06/2023]
Abstract
The emerging threat posed by COVID-19 pandemic has strongly modified our lifestyle, making urgent to re-consider the humans-environment relationships and stimulating towards more sustainable choices in our daily behavior. Scientific evidences showed that the onset of new viral pathogens with a high epidemic-pandemic potential is often the result of complex interactions between animals, humans and environment. In this context, the interest of the scientific community has also been attracted towards the potential interactions of SARS-CoV-2 with environmental compartments. Many issues, ranging from the epidemiology and persistence of SARS-CoV-2 in water bodies to the potential implications of lockdown measures on environmental quality status are here reviewed, with a special reference to marine ecosystems. Due to current sanitary emergence, the relevance of pilot studies regarding the interactions between SARS-CoV-2 spread and the direct and indirect environmental impacts of the COVID-19 pandemic, that are still a matter of scientific debate, is underlined.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| |
Collapse
|
155
|
Olonade I, van Zyl LJ, Trindade M. Genomic Characterization of a Prophage, Smhb1, That Infects Salinivibrio kushneri BNH Isolated from a Namib Desert Saline Spring. Microorganisms 2021; 9:2043. [PMID: 34683373 PMCID: PMC8537503 DOI: 10.3390/microorganisms9102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022] Open
Abstract
Recent years have seen the classification and reclassification of many viruses related to the model enterobacterial phage P2. Here, we report the identification of a prophage (Smhb1) that infects Salinivibrio kushneri BNH isolated from a Namib Desert salt pan (playa). Analysis of the genome revealed that it showed the greatest similarity to P2-like phages that infect Vibrio species and showed no relation to any of the previously described Salinivibrio-infecting phages. Despite being distantly related to these Vibrio infecting phages and sharing the same modular gene arrangement as seen in most P2-like viruses, the nucleotide identity to its closest relatives suggest that, for now, Smhb1 is the lone member of the Peduovirus genus Playavirus. Although host range testing was not extensive and no secondary host could be identified for Smhb1, genomic evidence suggests that the phage is capable of infecting other Salinivibrio species, including Salinivibrio proteolyticus DV isolated from the same playa. Taken together, the analysis presented here demonstrates how adaptable the P2 phage model can be.
Collapse
Affiliation(s)
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, Cape Town 7535, South Africa; (I.O.); (M.T.)
| | | |
Collapse
|
156
|
Dkhili S, Ribeiro M, Ghariani S, Yahia HB, Hillion M, Poeta P, Slama KB, Hébraud M, Igrejas G. Bacteriophages as Antimicrobial Agents? Proteomic Insights on Three Novel Lytic Bacteriophages Infecting ESBL-Producing Escherichia coli. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:626-640. [PMID: 34559008 DOI: 10.1089/omi.2021.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the emergence of multiresistant bacteria, the use of bacteriophages is gaining renewed interest as potential antimicrobial agents. The aim of this study was to analyze the structure of three lytic bacteriophages infecting Escherichia coli (SD1, SD2, and SD3) using a gel-based proteomics approach and the cellular response of this bacterium to phage SD1 infection at the proteome level. The combination of the results of 1-DE and 2-DE followed by mass spectrometry led to the identification of 3, 14, and 9 structure proteins for SD1, SD2, and SD3 phages, respectively. Different protein profiles with common proteins were noticed. We also analyzed phage-induced effects by comparing samples from infected cells to those of noninfected cells. We verified important changes in E. coli proteins expression during phage SD1 infection, where there was an overexpression of proteins involved in stress response. Our results indicated that viral infection caused bacterial oxidative stress and bacterial cells response to stress was orchestrated by antioxidant defense mechanisms. This article makes an empirical scientific contribution toward the concept of bacteriophages as potential antimicrobial agents. With converging ecological threats in the 21st century, novel approaches to address the innovation gaps in antimicrobial development are more essential than ever. Further research on bacteriophages is called for in this broader context of planetary health and integrative biology.
Collapse
Affiliation(s)
- Sadika Dkhili
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Salma Ghariani
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Mélanie Hillion
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Patricia Poeta
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Michel Hébraud
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| |
Collapse
|
157
|
DeLong JP, Al-Sammak MA, Al-Ameeli ZT, Dunigan DD, Edwards KF, Fuhrmann JJ, Gleghorn JP, Li H, Haramoto K, Harrison AO, Marston MF, Moore RM, Polson SW, Ferrell BD, Salsbery ME, Schvarcz CR, Shirazi J, Steward GF, Van Etten JL, Wommack KE. Towards an integrative view of virus phenotypes. Nat Rev Microbiol 2021; 20:83-94. [PMID: 34522049 DOI: 10.1038/s41579-021-00612-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.
Collapse
Affiliation(s)
- John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Maitham A Al-Sammak
- Tropical Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zeina T Al-Ameeli
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Medical Technical Institutes, Middle Technical University, Baghdad, Iraq
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kyle F Edwards
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Jeffry J Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Hanqun Li
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Kona Haramoto
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Amelia O Harrison
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Marcia F Marston
- Department of Biology and Marine Biology, Roger Williams University, Bristol, RI, USA
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Shawn W Polson
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Miranda E Salsbery
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Jasmine Shirazi
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Grieg F Steward
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - James L Van Etten
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA. .,Department of Biological Sciences, University of Delaware, Newark, DE, USA. .,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
158
|
Sandaa RA, Saltvedt MR, Dahle H, Wang H, Våge S, Blanc-Mathieu R, Steen IH, Grimsley N, Edvardsen B, Ogata H, Lawrence J. Adaptive evolution of viruses infecting marine microalgae (haptophytes), from acute infections to stable coexistence. Biol Rev Camb Philos Soc 2021; 97:179-194. [PMID: 34514703 DOI: 10.1111/brv.12795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Collectively known as phytoplankton, photosynthetic microbes form the base of the marine food web, and account for up to half of the primary production on Earth. Haptophytes are key components of this phytoplankton community, playing important roles both as primary producers and as mixotrophs that graze on bacteria and protists. Viruses influence the ecology and diversity of phytoplankton in the ocean, with the majority of microalgae-virus interactions described as 'boom and bust' dynamics, which are characteristic of acute virus-host systems. Most haptophytes are, however, part of highly diverse communities and occur at low densities, decreasing their chance of being infected by viruses with high host specificity. Viruses infecting these microalgae have been isolated in the laboratory, and there are several characteristics that distinguish them from acute viruses infecting bloom-forming haptophytes. Herein we synthesise what is known of viruses infecting haptophyte hosts in the ocean, discuss the adaptive evolution of haptophyte-infecting viruses -from those that cause acute infections to those that stably coexist with their host - and identify traits of importance for successful survival in the ocean.
Collapse
Affiliation(s)
- Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Marius R Saltvedt
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Haina Wang
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Selina Våge
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Romain Blanc-Mathieu
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Université Grenoble Alpes, CNRS, INRA, IRIG, Grenoble, France
| | - Ida H Steen
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, Postbox 1066, N-0316, Oslo, Norway
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Janice Lawrence
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
159
|
Wu S, Fang Z, Tan J, Li M, Wang C, Guo Q, Xu C, Jiang X, Zhu H. DeePhage: distinguishing virulent and temperate phage-derived sequences in metavirome data with a deep learning approach. Gigascience 2021; 10:giab056. [PMID: 34498685 PMCID: PMC8427542 DOI: 10.1093/gigascience/giab056] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Prokaryotic viruses referred to as phages can be divided into virulent and temperate phages. Distinguishing virulent and temperate phage-derived sequences in metavirome data is important for elucidating their different roles in interactions with bacterial hosts and regulation of microbial communities. However, there is no experimental or computational approach to effectively classify their sequences in culture-independent metavirome. We present a new computational method, DeePhage, which can directly and rapidly judge each read or contig as a virulent or temperate phage-derived fragment. FINDINGS DeePhage uses a "one-hot" encoding form to represent DNA sequences in detail. Sequence signatures are detected via a convolutional neural network to obtain valuable local features. The accuracy of DeePhage on 5-fold cross-validation reaches as high as 89%, nearly 10% and 30% higher than that of 2 similar tools, PhagePred and PHACTS. On real metavirome, DeePhage correctly predicts the highest proportion of contigs when using BLAST as annotation, without apparent preferences. Besides, DeePhage reduces running time vs PhagePred and PHACTS by 245 and 810 times, respectively, under the same computational configuration. By direct detection of the temperate viral fragments from metagenome and metavirome, we furthermore propose a new strategy to explore phage transformations in the microbial community. The ability to detect such transformations provides us a new insight into the potential treatment for human disease. CONCLUSIONS DeePhage is a novel tool developed to rapidly and efficiently identify 2 kinds of phage fragments especially for metagenomics analysis. DeePhage is freely available via http://cqb.pku.edu.cn/ZhuLab/DeePhage or https://github.com/shufangwu/DeePhage.
Collapse
Affiliation(s)
- Shufang Wu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
| | - Zhencheng Fang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
| | - Jie Tan
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
| | - Mo Li
- Peking University-Tsinghua University - National Institute of Biological Sciences (PTN) joint PhD program, School of Life Sciences, Peking University, Beijing 100871, Beijing, China
| | - Chunhui Wang
- Peking University-Tsinghua University - National Institute of Biological Sciences (PTN) joint PhD program, School of Life Sciences, Peking University, Beijing 100871, Beijing, China
| | - Qian Guo
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, GA 30332, Atlanta, USA
| | - Congmin Xu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, GA 30332, Atlanta, USA
| | - Xiaoqing Jiang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
| | - Huaiqiu Zhu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, GA 30332, Atlanta, USA
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, Beijing, China
| |
Collapse
|
160
|
Mäntynen S, Laanto E, Oksanen HM, Poranen MM, Díaz-Muñoz SL. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol 2021; 11:210188. [PMID: 34520699 PMCID: PMC8440029 DOI: 10.1098/rsob.210188] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The canonical lytic-lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the terms 'pseudolysogeny' and 'productive or non-productive chronic infection', and distinguish them from the carrier state life cycle, which describes a population-level phenomenon. Our review also finds that phages may change their infection modes in response to environmental conditions or the physiological state of the host cell. We outline known molecular mechanisms underlying the alternative phage-host interactions, including specific genetic pathways and their considerable biotechnological potential. Moreover, we discuss potential implications of the alternative phage lifestyles for microbial biology and ecosystem functioning, as well as applied topics such as phage therapy.
Collapse
Affiliation(s)
- Sari Mäntynen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Elina Laanto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA,Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
161
|
Greene W, Chan B, Bromage E, Grose JH, Walsh C, Kortright K, Forrest S, Perry G, Byrd L, Stamper MA. The Use of Bacteriophages and Immunological Monitoring for the Treatment of a Case of Chronic Septicemic Cutaneous Ulcerative Disease in a Loggerhead Sea Turtle Caretta caretta. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:139-154. [PMID: 34216060 PMCID: PMC8518602 DOI: 10.1002/aah.10130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 06/13/2023]
Abstract
In this case study, phage therapy was applied to treat a multidrug-resistant case of septicemic cutaneous ulcerative disease (SCUD) caused by Citrobacter freundii in a loggerhead sea turtle Caretta caretta. Phages were applied topically, intravenously, into the carapace, and into the exhibit water using various phage cocktails specific to the causative agent over an 8-month period. This was performed in conjunction with antimicrobial therapy. The animal was monitored through weekly cultures, photographs, and complete blood cell counts, as well as immune assays (phagocytosis, plasma lysozyme and superoxide dismutase activity, and plasma electrophoresis profiles). The animal, in comparison to an untreated, unaffected control, had elevated antibody titers to the administered phages, which persisted for at least 35 weeks. Although cultures were clear of C. freundii after phage treatment, the infection did return over time and immune assays confirmed deficiencies when compared to a healthy loggerhead sea turtle. Immune parameters with statistically significant changes over the study period included the following: decreased phagocytosis, increased alpha- and gamma-globulin protein components, and an increased albumin : globulin ratio. When C. freundii appeared again, the multidrug-resistant status had reverted back to normal susceptibility patterns. Although not completely known whether it was another subspecies of bacteria, the therapy did resolve the multidrug-resistant challenge. Phage therapy in combination with antimicrobial agents may be an effective treatment for sea turtles with normally functioning immune systems or less-severe infections. Additional research is needed to better understand and quantify sea turtle immunology.
Collapse
Affiliation(s)
- Whitney Greene
- Mote Marine Laboratory and Aquarium1600 Ken Thompson ParkwaySarasotaFlorida34236USA
| | | | - Erin Bromage
- University of Massachusetts Dartmouth285 Old Westport RoadNorth DartmouthMassachusetts02747USA
| | | | - Cathy Walsh
- Mote Marine Laboratory and Aquarium1600 Ken Thompson ParkwaySarasotaFlorida34236USA
| | | | - Sue Forrest
- Mote Marine Laboratory and Aquarium1600 Ken Thompson ParkwaySarasotaFlorida34236USA
| | - Grace Perry
- University of Massachusetts Dartmouth285 Old Westport RoadNorth DartmouthMassachusetts02747USA
| | - Lynne Byrd
- Mote Marine Laboratory and Aquarium1600 Ken Thompson ParkwaySarasotaFlorida34236USA
| | - M. Andrew Stamper
- Disney’s Animals, Science, and EnvironmentWalt Disney’s Parks and ResortsBay LakeFlorida32830USA
| |
Collapse
|
162
|
Hatfull GF, Dedrick RM, Schooley RT. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu Rev Med 2021; 73:197-211. [PMID: 34428079 DOI: 10.1146/annurev-med-080219-122208] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antibiotic resistance in bacterial pathogens presents a substantial threat to the control of infectious diseases. Development of new classes of antibiotics has slowed in recent years due to pressures of cost and market profitability, and there is a strong need for new antimicrobial therapies. The therapeutic use of bacteriophages has long been considered, with numerous anecdotal reports of success. Interest in phage therapy has been renewed by recent clinical successes in case studies with personalized phage cocktails, and several clinical trials are in progress. We discuss recent progress in the therapeutic use of phages and contemplate the key factors influencing the opportunities and challenges. With strong safety profiles, the main challenges of phage therapeutics involve strain variation among clinical isolates of many pathogens, battling phage resistance, and the potential limitations of host immune responses. However, the opportunities are considerable, with the potential to enhance current antibiotic efficacy, protect newly developed antibiotics, and provide a last resort in response to complete antibiotic failure. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; ,
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; ,
| | - Robert T Schooley
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
163
|
Zhou Y, Gao X, Xu J, Li G, Ma R, Yan P, Dong C, Shao Z. Mesonia hitae sp. nov., isolated from the seawater of the South Atlantic Ocean. Int J Syst Evol Microbiol 2021; 71. [PMID: 34402780 DOI: 10.1099/ijsem.0.004911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, non-motile, non-spore-forming, aerobic and short rod-shaped bacterial strain R32T, was isolated from seawater of the South Atlantic Ocean. Strain R32T grew at 10-40 °C (optimum 28 °C), at pH 6.0-8.0 (optimum 7.0), and in the presence of 3-8 % NaCl (w/v) (optimum 5 %). Cells were oxidase- and catalase-positive. The 16S rRNA gene sequence of strain R32T shared the highest similarities with Mesonia oceanica (98.3 %), followed by Salegentibacter salarius (93.0 %), Salegentibacter mishustinae (92.8 %), Salegentibacter salegens (92.5 %) and Mesonia maritima (92.4 %). The dominant fatty acids were iso-C15 : 0 (32.7 %) and iso-C17 : 0 3-OH (21.1 %). Menaquinone-6 (MK-6) was detected as the sole respiratory quinone. The polar lipids found were phosphatidylethanolamine, three aminolipids and three unidentified lipids. The DNA G+C content was 35.0 mol%. The ANI value and dDDH value between strain R32T and the Salegentibacter and Mesonia species were 70.5-85.8 % and 18.7-30.5 %, respectively. Based on the results of the polyphasic characterization, strain R32T is considered to represent a novel species of the genus Mesonia, for which the name Mesonia hitae sp. nov. is proposed. The type strain is R32T (=MCCC 1A09780T=KCTC 72004T).
Collapse
Affiliation(s)
- Ying Zhou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, PR China
| | - Xiujun Gao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, PR China
| | - Jingjing Xu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, PR China
| | - Guizhen Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, PR China.,Key Laboratory of Marine Genetic Resources, the Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Rui Ma
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, PR China
| | - Peisheng Yan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, PR China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, the Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, the Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| |
Collapse
|
164
|
Li X, Zhang C, Wei F, Yu F, Zhao Z. Bactericidal activity of a holin-endolysin system derived from Vibrio alginolyticus phage HH109. Microb Pathog 2021; 159:105135. [PMID: 34390766 DOI: 10.1016/j.micpath.2021.105135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Vibrio alginolyticus is a common opportunistic pathogen that can cause vibriosis of marine aquatic animals. The application of phages or particularly associated protein products for the treatment of vibriosis has shown prominent advantages compared with the treatment with traditional antibiotics. In this study, the function of a holin-endolysin system from V. alginolyticus phage HH109 was characterized by examining the effect of their overexpression on Escherichia coli and V. alginolyticus. Our data revealed that the endolysin of the phage HH109 has stronger bactericidal activity than the holin, as evidenced by observing more cell death and severe structural damage of cells in the endolysin-expressing E. coli. Furthermore, the two proteins displayed the synergistic effect when the holA and lysin were co-expressed in E. coli, although no interaction between them was detected using the bacterial two-hybrid assay. Transmission electron microscopy observation revealed disruptions of cell envelopes accompanied by leakage of intracellular contents. Similarly, the bactericidal activity of the holin and endolysin against V. alginolyticus was also examined whatever the host is sensitive or resistant to phage HH109. Together, our study contributes to a better understanding of the mechanism of phage HH109 destroying the bacterial cell wall to lyse their host and may offer alternative applications potentially for vibriosis treatment.
Collapse
Affiliation(s)
- Xixi Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Ce Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fucheng Wei
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fei Yu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.
| |
Collapse
|
165
|
Zhong ZP, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li YF, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG. Glacier ice archives nearly 15,000-year-old microbes and phages. MICROBIOME 2021; 9:160. [PMID: 34281625 PMCID: PMC8290583 DOI: 10.1186/s40168-021-01106-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. RESULTS We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. CONCLUSIONS Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Natalie E Solonenko
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Yueh-Fen Li
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Mary E Davis
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ellen Mosley-Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Geography, Ohio State University, Columbus, OH, USA
| | - Virginia I Rich
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| | - Lonnie G Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- School of Earth Sciences, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
166
|
Du S, Qin F, Zhang Z, Tian Z, Yang M, Liu X, Zhao G, Xia Q, Zhao Y. Genomic diversity, life strategies and ecology of marine HTVC010P-type pelagiphages. Microb Genom 2021; 7. [PMID: 34227930 PMCID: PMC8477408 DOI: 10.1099/mgen.0.000596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SAR11 bacteria dominate ocean surface bacterioplankton communities, and play an important role in marine carbon and nutrient cycling. The biology and ecology of SAR11 are impacted by SAR11 phages (pelagiphages) that are highly diverse and abundant in the ocean. Among the currently known pelagiphages, HTVC010P represents an extremely abundant but under-studied phage group in the ocean. In this study, we have isolated seven new HTVC010P-type pelagiphages, and recovered 77 nearly full-length HTVC010P-type metagenomic viral genomes from marine metagenomes. Comparative genomic and phylogenomic analyses showed that HTVC010P-type pelagiphages display genome synteny and can be clustered into two major subgroups, with subgroup I consisting of strictly lytic phages and subgroup II mostly consisting of phages with potential lysogenic life cycles. All but one member of the subgroup II contain an integrase gene. Site-specific integration of subgroup II HTVC010P-type pelagiphage was either verified experimentally or identified by in silico genomic sequence analyses, which revealed that various SAR11 tRNA genes can serve as the integration sites of HTVC010P-type pelagiphages. Moreover, HTVC010P-type pelagiphage integration was confirmed by the detection of several Global Ocean Survey (GOS) fragments that contain hybrid phage–host integration sites. Metagenomic recruitment analysis revealed that these HTVC010P-type phages were globally distributed and most lytic subgroup I members exhibited higher relative abundance. Altogether, this study significantly expands our knowledge about the genetic diversity, life strategies and ecology of HTVC010P-type pelagiphages.
Collapse
Affiliation(s)
- Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zhen Tian
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xinxin Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Guiyuan Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Qian Xia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
167
|
Abstract
Control of pathogenic bacteria by deliberate application of predatory phages has potential as a powerful therapy against antibiotic-resistant bacteria. The key advantages of phage biocontrol over antibacterial chemotherapy are: (1) an ability to self-propagate inside host bacteria, (2) targeted predation of specific species or strains of bacteria, (3) adaptive molecular machinery to overcome resistance in target bacteria. However, realizing the potential of phage biocontrol is dependent on harnessing or adapting these responses, as many phage species switch between lytic infection cycles (resulting in lysis) and lysogenic infection cycles (resulting in genomic integration) that increase the likelihood of survival of the phage in response to external stress or host depletion. Similarly, host range will need to be optimized to make phage therapy medically viable whilst avoiding the potential for deleteriously disturbing the commensal microbiota. Phage training is a new approach to produce efficient phages by capitalizing on the evolved response of wild-type phages to bacterial resistance. Here we will review recent studies reporting successful trials of training different strains of phages to switch into lytic replication mode, overcome bacterial resistance, and increase their host range. This review will also highlight the current knowledge of phage training and future implications in phage applications and phage therapy and summarize the recent pipeline of the magistral preparation to produce a customized phage for clinical trials and medical applications.
Collapse
|
168
|
Jahn MT, Lachnit T, Markert SM, Stigloher C, Pita L, Ribes M, Dutilh BE, Hentschel U. Lifestyle of sponge symbiont phages by host prediction and correlative microscopy. THE ISME JOURNAL 2021; 15:2001-2011. [PMID: 33603147 PMCID: PMC8245591 DOI: 10.1038/s41396-021-00900-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
Bacteriophages (phages) are ubiquitous elements in nature, but their ecology and role in animals remains little understood. Sponges represent the oldest known extant animal-microbe symbiosis and are associated with dense and diverse microbial consortia. Here we investigate the tripartite interaction between phages, bacterial symbionts, and the sponge host. We combined imaging and bioinformatics to tackle important questions on who the phage hosts are and what the replication mode and spatial distribution within the animal is. This approach led to the discovery of distinct phage-microbe infection networks in sponge versus seawater microbiomes. A new correlative in situ imaging approach ('PhageFISH-CLEM') localised phages within bacterial symbiont cells, but also within phagocytotically active sponge cells. We postulate that the phagocytosis of free virions by sponge cells modulates phage-bacteria ratios and ultimately controls infection dynamics. Prediction of phage replication strategies indicated a distinct pattern, where lysogeny dominates the sponge microbiome, likely fostered by sponge host-mediated virion clearance, while lysis dominates in seawater. Collectively, this work provides new insights into phage ecology within sponges, highlighting the importance of tripartite animal-phage-bacterium interplay in holobiont functioning. We anticipate that our imaging approach will be instrumental to further understanding of viral distribution and cellular association in animal hosts.
Collapse
Affiliation(s)
- M T Jahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
- Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.
| | - T Lachnit
- Christian-Albrechts-University of Kiel, Kiel, Germany
| | - S M Markert
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - C Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - L Pita
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - M Ribes
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - B E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - U Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
169
|
Anand U, Bianco F, Suresh S, Tripathi V, Núñez-Delgado A, Race M. SARS-CoV-2 and other viruses in soil: An environmental outlook. ENVIRONMENTAL RESEARCH 2021; 198:111297. [PMID: 33971130 PMCID: PMC8102436 DOI: 10.1016/j.envres.2021.111297] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 05/15/2023]
Abstract
In the present review, the authors shed light on the SARS-CoV-2 impact, persistence, and monitoring in the soil environment. With this purpose, several aspects have been deepened: i) viruses in soil ecosystems; ii) direct and indirect impact on the soil before and after the pandemic, and iii) methods for quantification of viruses and SARS-CoV-2 monitoring in soil. Viruses are present in soil (i.e. up to 417 × 107 viruses per g TS-1 in wetlands) and can affect the behavior and ecology of other life forms (e.g. bacteria), which are remarkably important for maintaining environmental equilibrium. Also, SARS-CoV-2 can be found in soil (i.e. up to 550 copies·g-1). Considering that the SARS-CoV-2 is very recent, poor knowledge is available in the literature on persistence in the soil and reference has been made to coronaviruses and other families of viruses. For instance, the survival of enveloped viruses (e.g. SARS-CoV) can reach 90 days in soils with 10% of moisture content at ambient. In such a context, the possible spread of the SARS-CoV-2 in the soil was evaluated by analyzing the possible contamination routes.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, Univ. Santiago de Compostela, 27002, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| |
Collapse
|
170
|
Park WJ, Kong SJ, Park JH. Kimchi bacteriophages of lactic acid bacteria: population, characteristics, and their role in watery kimchi. Food Sci Biotechnol 2021; 30:949-957. [PMID: 34395026 PMCID: PMC8302715 DOI: 10.1007/s10068-021-00930-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
The bacteriophages (phages) in the watery kimchis (Baek-kimchi and Dongchimi) were characterized to determine the phage ecology of lactic acid bacteria (LAB). Kimchi obtained from the Seoul markets had an average of 2.1 log phage particles/mL, corresponding to 28% of the bacterial counts on a log scale. High counts of 5.5-6.5 log particles/mL of phages were noted in the early phase of fermentation (reaching pH 4), and 2.1-3.0 log phage particles/mL were found in the later phase, with some fluctuation in numbers. The LAB hosts changed from Weissella and Leuconostoc to Lactobacillus during Dongchimi fermentation. Fifteen phages, except for those of Lactobacillus, were isolated from diverse strains in the early phase. Five Weissella phages were Podoviridae, and all 10 Leuconostoc phages were Myoviridae. Phages had narrow and different host infection spectra to strains of the same species and high acidic stability. Therefore, the mortality and diversity of LAB during natural kimchi fermentation may be related to the specific phages of the hosts. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-00930-y.
Collapse
Affiliation(s)
- Won-Jeong Park
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Se-Jin Kong
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
171
|
Zhu DH, Su CY, Yang XH, Abe Y. A Case of Intragenic Recombination Dramatically Impacting the Phage WO Genetic Diversity in Gall Wasps. Front Microbiol 2021; 12:694115. [PMID: 34276627 PMCID: PMC8279768 DOI: 10.3389/fmicb.2021.694115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
The phage WO was characterized in Wolbachia, a strictly intracellular bacterium causing several reproductive alterations in its arthropod hosts. This study aimed to screen the presence of Wolbachia and phage WO in 15 gall wasp species from six provinces of southern China to investigate their diversity and prevalence patterns. A high incidence of Wolbachia infection was determined in the gall wasp species, with an infection rate of 86.7% (13/15). Moreover, seven species had double or multiple infections. All Wolbachia-infected gall wasp species were found to harbor phage WO. The gall wasp species infected with a single Wolbachia strain were found to harbor a single phage WO type. On the contrary, almost all species with double or multiple Wolbachia infections harbored a high level of phage WO diversity (ranging from three to 27 types). Six horizontal transfer events of phage WO in Wolbachia were found to be associated with gall wasps, which shared identical orf7 sequences among their respective accomplices. The transfer potentially took place through gall inducers and associated inquilines infected with or without Wolbachia. Furthermore, 10 putative recombination events were identified from Andricus hakonensis and Andricus sp2, which harbored multiple phage WO types, suggesting that intragenic recombination was the important evolutionary force, which effectively promoted the high level of phage WO diversity associated with gall wasps.
Collapse
Affiliation(s)
- Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Cheng-Yuan Su
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Xiao-Hui Yang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Yoshihisa Abe
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| |
Collapse
|
172
|
Improving Phage-Biofilm In Vitro Experimentation. Viruses 2021; 13:v13061175. [PMID: 34205417 PMCID: PMC8234374 DOI: 10.3390/v13061175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages or phages, the viruses of bacteria, are abundant components of most ecosystems, including those where bacteria predominantly occupy biofilm niches. Understanding the phage impact on bacterial biofilms therefore can be crucial toward understanding both phage and bacterial ecology. Here, we take a critical look at the study of bacteriophage interactions with bacterial biofilms as carried out in vitro, since these studies serve as bases of our ecological and therapeutic understanding of phage impacts on biofilms. We suggest that phage-biofilm in vitro experiments often may be improved in terms of both design and interpretation. Specific issues discussed include (a) not distinguishing control of new biofilm growth from removal of existing biofilm, (b) inadequate descriptions of phage titers, (c) artificially small overlying fluid volumes, (d) limited explorations of treatment dosing and duration, (e) only end-point rather than kinetic analyses, (f) importance of distinguishing phage enzymatic from phage bacteriolytic anti-biofilm activities, (g) limitations of biofilm biomass determinations, (h) free-phage interference with viable-count determinations, and (i) importance of experimental conditions. Toward bettering understanding of the ecology of bacteriophage-biofilm interactions, and of phage-mediated biofilm disruption, we discuss here these various issues as well as provide tips toward improving experiments and their reporting.
Collapse
|
173
|
Viral footprints across Gulfs of Kathiawar Peninsula and Arabian Sea: Unraveled from pelagic sediment metagenomic data. Virus Res 2021; 302:198485. [PMID: 34146609 DOI: 10.1016/j.virusres.2021.198485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Marine biosphere is one of the largest, diverse and dynamic system hosting numerous of microorganisms. Viruses being the most abundant under explored lifeforms in ocean, represent a reservoir of great genetic diversity. We report the metagenomic insights on the viral communities in the deep sediments of the two Gulfs of Gujarat i.e. Gulf of Khambhat and Gulf of Kutch, with one sample from Arabian Sea, treated as open sea control. The viral reads were filtered from the whole dataset, assembled and studied for viral diversity, which was visualized by Pavian. The sequences were checked for the viral abundance, diversity and functionality. The resulting viral taxonomic classification contained 6 orders, 8 families and 47 genera. The results revealed that the phages infecting Cyanobacterium, Bacillus and Vibrio dominated the sediments. Further, it was observed that majority of viral sequences belonged to double-stranded DNA phages. The present study attempts to provide a primary insight of the viral signals and potential genetic content in the Gulfs of Kathiawar.
Collapse
|
174
|
Sandhu SK, Bayliss CD, Morozov AY. How does feedback from phage infections influence the evolution of phase variation in Campylobacter? PLoS Comput Biol 2021; 17:e1009067. [PMID: 34125841 PMCID: PMC8224891 DOI: 10.1371/journal.pcbi.1009067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) causes gastroenteritis following the consumption of contaminated poultry meat, resulting in a large health and economic burden worldwide. Phage therapy is a promising technique for eradicating C. jejuni from poultry flocks and chicken carcasses. However, C. jejuni can resist infections by some phages through stochastic, phase-variable ON/OFF switching of the phage receptors mediated by simple sequence repeats (SSR). While selection strength and exposure time influence the evolution of SSR-mediated phase variation (PV), phages offer a more complex evolutionary environment as phage replication depends on having a permissive host organism. Here, we build and explore several continuous culture bacteria-phage computational models, each analysing different phase-variable scenarios calibrated to the experimental SSR rates of C. jejuni loci and replication parameters for the F336 phage. We simulate the evolution of PV rates via the adaptive dynamics framework for varying levels of selective pressures that act on the phage-resistant state. Our results indicate that growth reducing counter-selection on a single PV locus results in the stable maintenance of the phage, while compensatory selection between bacterial states affects the evolutionary stable mutation rates (i.e. very high and very low mutation rates are evolutionarily disadvantageous), whereas, in the absence of either selective pressure the evolution of PV rates results in mutation rates below the basal values. Contrastingly, a biologically-relevant model with two phase-variable loci resulted in phage extinction and locking of the bacteria into a phage-resistant state suggesting that another counter-selective pressure is required, instance, the use of a distinct phage whose receptor is an F336-phage-resistant state. We conclude that a delicate balance between counter-selection and phage-attack can result in both the evolution of phase-variable phage receptors and persistence of PV-receptor-specific phage. Globally rising rates of antibiotic resistance have renewed interest in phage therapy. Bacteriophages (phages) act on bacteria to select for resistance mechanisms such as loss of phage receptors by phase variation (PV). Phase-variable genes mediate rapid adaption by stochastic switching of gene expression. Campylobacter jejuni is a common commensal of birds but also causes serious gastrointestinal infections in humans. Optimisation of phage therapy against C. jejuni requires an in-depth understanding of how PV has evolved and mediates phage resistance. Here, we use a detailed continuous culture model for nutrient-limited bacteria-phage interactions, with PV rates calibrated to match the experimental observations for C.jejuni and phage F336. Evolution within a model accounting for two phase-variable loci closely matches the experimental results when growth reducing counter-selection is imposed on all phage-resistant states, but, not when restricted to the particular states associated with resistance to immune effectors. Our results emphasize that delicate balancing of selective pressures, imposed by single and multiple distinct phages, are necessary for effective use of phage therapy against C. jejuni.
Collapse
Affiliation(s)
- Simran K. Sandhu
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Andrew Yu. Morozov
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
175
|
O'Connell L, Marcoux PR, Roupioz Y. Strategies for Surface Immobilization of Whole Bacteriophages: A Review. ACS Biomater Sci Eng 2021; 7:1987-2014. [PMID: 34038088 DOI: 10.1021/acsbiomaterials.1c00013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriophage immobilization is a key unit operation in emerging biotechnologies, enabling new possibilities for biodetection of pathogenic microbes at low concentration, production of materials with novel antimicrobial properties, and fundamental research on bacteriophages themselves. Wild type bacteriophages exhibit extreme binding specificity for a single species, and often for a particular subspecies, of bacteria. Since their specificity originates in epitope recognition by capsid proteins, which can be altered by chemical or genetic modification, their binding specificity may also be redirected toward arbitrary substrates and/or a variety of analytes in addition to bacteria. The immobilization of bacteriophages on planar and particulate substrates is thus an area of active and increasing scientific interest. This review assembles the knowledge gained so far in the immobilization of whole phage particles, summarizing the main chemistries, and presenting the current state-of-the-art both for an audience well-versed in bioconjugation methods as well as for those who are new to the field.
Collapse
Affiliation(s)
- Larry O'Connell
- Université Grenoble Alpes, CEA, LETI, F38054 Grenoble, France.,Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Yoann Roupioz
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
176
|
Moderate Seasonal Dynamics Indicate an Important Role for Lysogeny in the Red Sea. Microorganisms 2021; 9:microorganisms9061269. [PMID: 34207938 PMCID: PMC8230703 DOI: 10.3390/microorganisms9061269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Viruses are the most abundant microorganisms in marine environments and viral infections can be either lytic (virulent) or lysogenic (temperate phage) within the host cell. The aim of this study was to quantify viral dynamics (abundance and infection) in the coastal Red Sea, a narrow oligotrophic basin with high surface water temperatures (22–32 °C degrees), high salinity (37.5–41) and continuous high insolation, thus making it a stable and relatively unexplored environment. We quantified viral and environmental changes in the Red Sea (two years) and the occurrence of lysogenic bacteria (induced by mitomycin C) on the second year. Water temperatures ranged from 24.0 to 32.5 °C, and total viral and bacterial abundances ranged from 1.5 to 8.7 × 106 viruses mL−1 and 1.9 to 3.2 × 105 bacteria mL−1, respectively. On average, 12.24% ± 4.8 (SE) of the prophage bacteria could be induced by mitomycin C, with the highest percentage of 55.8% observed in January 2018 when bacterial abundances were low; whereas no induction was measurable in spring when bacterial abundances were highest. Thus, despite the fact that the Red Sea might be perceived as stable, warm and saline, relatively modest changes in seasonal conditions were associated with large swings in the prevalence of lysogeny.
Collapse
|
177
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
178
|
Temporal Changes of Virus-Like Particle Abundance and Metagenomic Comparison of Viral Communities in Cropland and Prairie Soils. mSphere 2021; 6:e0116020. [PMID: 34077260 PMCID: PMC8265675 DOI: 10.1128/msphere.01160-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During the last several decades, viruses have been increasingly recognized for their abundance, ubiquity, and important roles in different ecosystems. Despite known contributions to aquatic systems, few studies examine viral abundance and community structure over time in terrestrial ecosystems. The effects of land conversion and land management on soil microbes have been previously investigated, but their effects on virus population are not well studied. This study examined annual dynamics of viral abundance in soils from a native tallgrass prairie and two croplands, conventional till winter wheat and no-till canola, in Oklahoma. Virus-like particle (VLP) abundance varied across sites, and showed clear seasonal shifts. VLP abundance significantly correlated with environmental variables that were generally reflective of land use, including air temperature, soil nitrogen, and plant canopy coverage. Structural equation modeling supported the effects of land use on soil communities by emphasizing interactions between management, environmental factors, and viral and bacterial abundance. Between the viral metagenomes from the prairie and tilled wheat field, 1,231 unique viral operational taxonomic units (vOTUs) were identified, and only five were shared that were rare in the contrasting field. Only 13% of the vOTUs had similarity to previously identified viruses in the RefSeq database, with only 7% having known taxonomic classification. Together, our findings indicated land use and tillage practices influence virus abundance and community structure. Analyses of viromes over time and space are vital to viral ecology in providing insight on viral communities and key information on interactions between viruses, their microbial hosts, and the environment. IMPORTANCE Conversion of land alters the physiochemical and biological environments by not only changing the aboveground community, but also modifying the soil environment for viruses and microbes. Soil microbial communities are critical to nutrient cycling, carbon mineralization, and soil quality; and viruses are known for influencing microbial abundance, community structure, and evolution. Therefore, viruses are considered an important part of soil functions in terrestrial ecosystems. In aquatic environments, virus abundance generally exceeds bacterial counts by an order of magnitude, and they are thought to be one of the greatest genetic reservoirs on the planet. However, data are extremely limited on viruses in soils, and even less is known about their responses to the disturbances associated with land use and management. The study provides important insights into the temporal dynamics of viral abundance and the structure of viral communities in response to the common practice of turning native habitats into arable soils.
Collapse
|
179
|
Nutrient Loading and Viral Memory Drive Accumulation of Restriction Modification Systems in Bloom-Forming Cyanobacteria. mBio 2021; 12:e0087321. [PMID: 34060332 PMCID: PMC8262939 DOI: 10.1128/mbio.00873-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mechanisms driving cyanobacterial harmful algal blooms (HABs) like those caused by Microcystis aeruginosa remain elusive, but improved defense against viral predation has been implicated for success in eutrophic environments. Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobacteria carry vastly more restriction modification systems per genome (RMPG) than nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of their ecological success. In contrast, picocyanobacteria that numerically dominate nutrient-poor systems have the fewest RMPG within the phylum Cyanobacteria. We used classic resource competition models to explore the hypothesis that nutrient enrichments drive ecological selection for high RMPG due to increased host-phage contact rate. These classic models, agnostic to the mechanism of defense, explain how nutrient loading can select for increased RMPG but, importantly, fail to explain the extreme accumulation of these defense systems. However, extreme accumulation of RMPG can be achieved in a novel “memory” model that accounts for a unique activity of restriction modification systems: the accidental methylation of viral DNA by the methyltransferase. The methylated virus “remembers” the RM defenses of its former host and can evade these defenses if they are present in the next host. This viral memory leads to continual RM system devaluation; RMs accumulate extensively because the benefit of each addition is diminished. Our modeling leads to the hypothesis that nutrient loading and virion methylation drive the extreme accumulation of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts with different RMPG values can coexist when hosts have unique sets of RM systems.
Collapse
|
180
|
Buchholz HH, Michelsen ML, Bolaños LM, Browne E, Allen MJ, Temperton B. Efficient dilution-to-extinction isolation of novel virus-host model systems for fastidious heterotrophic bacteria. THE ISME JOURNAL 2021; 15:1585-1598. [PMID: 33495565 PMCID: PMC8163748 DOI: 10.1038/s41396-020-00872-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Microbes and their associated viruses are key drivers of biogeochemical processes in marine and soil biomes. While viruses of phototrophic cyanobacteria are well-represented in model systems, challenges of isolating marine microbial heterotrophs and their viruses have hampered experimental approaches to quantify the importance of viruses in nutrient recycling. A resurgence in cultivation efforts has improved the availability of fastidious bacteria for hypothesis testing, but this has not been matched by similar efforts to cultivate their associated bacteriophages. Here, we describe a high-throughput method for isolating important virus-host systems for fastidious heterotrophic bacteria that couples advances in culturing of hosts with sequential enrichment and isolation of associated phages. Applied to six monthly samples from the Western English Channel, we first isolated one new member of the globally dominant bacterial SAR11 clade and three new members of the methylotrophic bacterial clade OM43. We used these as bait to isolate 117 new phages, including the first known siphophage-infecting SAR11, and the first isolated phage for OM43. Genomic analyses of 13 novel viruses revealed representatives of three new viral genera, and infection assays showed that the viruses infecting SAR11 have ecotype-specific host ranges. Similar to the abundant human-associated phage ɸCrAss001, infection dynamics within the majority of isolates suggested either prevalent lysogeny or chronic infection, despite a lack of associated genes, or host phenotypic bistability with lysis putatively maintained within a susceptible subpopulation. Broader representation of important virus-host systems in culture collections and genomic databases will improve both our understanding of virus-host interactions, and accuracy of computational approaches to evaluate ecological patterns from metagenomic data.
Collapse
Affiliation(s)
| | | | | | - Emily Browne
- School of Biosciences, University of Exeter, Exeter, UK
| | - Michael J Allen
- School of Biosciences, University of Exeter, Exeter, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
181
|
Gabashvili E, Kobakhidze S, Koulouris S, Robinson T, Kotetishvili M. Bi- and Multi-directional Gene Transfer in the Natural Populations of Polyvalent Bacteriophages, and Their Host Species Spectrum Representing Foodborne Versus Other Human and/or Animal Pathogens. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:179-202. [PMID: 33484405 DOI: 10.1007/s12560-021-09460-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Unraveling the trends of phage-host versus phage-phage coevolution is critical for avoiding possible undesirable outcomes from the use of phage preparations intended for therapeutic, food safety or environmental safety purposes. We aimed to investigate a phenomenon of intergeneric recombination and its trajectories across the natural populations of phages predominantly linked to foodborne pathogens. The results from the recombination analyses, using a large array of the recombination detection algorithms imbedded in SplitsTree, RDP4, and Simplot software packages, provided strong evidence (fit: 100; P ≤ 0.014) for both bi- and multi-directional intergeneric recombination of the genetic loci involved collectively in phage morphogenesis, host specificity, virulence, replication, and persistence. Intergeneric recombination was determined to occur not only among conspecifics of the virulent versus temperate phages but also between the phages with these different lifestyles. The recombining polyvalent phages were suggested to interact with fairly large host species networks, including sometimes genetically very distinct species, such as e.g., Salmonella enterica and/or Escherichia coli versus Staphylococcus aureus or Yersinia pestis. Further studies are needed to understand whether phage-driven intergeneric recombination can lead to undesirable changes of intestinal and other microbiota in humans and animals.
Collapse
Affiliation(s)
- Ekaterine Gabashvili
- School of Natural Sciences and Medicine, Ilia State University, 1 Giorgi Tsereteli exit, 0162, Tbilisi, Georgia
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave., 0159, Tbilisi, Georgia
| | - Saba Kobakhidze
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave., 0159, Tbilisi, Georgia
| | - Stylianos Koulouris
- Engagement and Cooperation Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - Tobin Robinson
- Scientific Committee, and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - Mamuka Kotetishvili
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave., 0159, Tbilisi, Georgia.
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitation, 78 D. Uznadze St., 0102, Tbilisi, Georgia.
| |
Collapse
|
182
|
Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC, Smith DJ, Yancey CE, Zwiers CC, Denef VJ. The genetic and ecophysiological diversity of Microcystis. Environ Microbiol 2021; 23:7278-7313. [PMID: 34056822 DOI: 10.1111/1462-2920.15615] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob T Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Reagan M Errera
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Casey M Godwin
- School for Environment and Sustainability, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Jenan J Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Helena S Nitschky
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - McKenzie A Powers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Henry A Vanderploeg
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Kathryn C Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Claire C Zwiers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
183
|
Song K. Reads Binning Improves the Assembly of Viral Genome Sequences From Metagenomic Samples. Front Microbiol 2021; 12:664560. [PMID: 34093479 PMCID: PMC8175635 DOI: 10.3389/fmicb.2021.664560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Metagenomes can be considered as mixtures of viral, bacterial, and other eukaryotic DNA sequences. Mining viral sequences from metagenomes could shed insight into virus-host relationships and expand viral databases. Current alignment-based methods are unsuitable for identifying viral sequences from metagenome sequences because most assembled metagenomic contigs are short and possess few or no predicted genes, and most metagenomic viral genes are dissimilar to known viral genes. In this study, I developed a Markov model-based method, VirMC, to identify viral sequences from metagenomic data. VirMC uses Markov chains to model sequence signatures and construct a scoring model using a likelihood test to distinguish viral and bacterial sequences. Compared with the other two state-of-the-art viral sequence-prediction methods, VirFinder and PPR-Meta, my proposed method outperformed VirFinder and had similar performance with PPR-Meta for short contigs with length less than 400 bp. VirMC outperformed VirFinder and PPR-Meta for identifying viral sequences in contaminated metagenomic samples with eukaryotic sequences. VirMC showed better performance in assembling viral-genome sequences from metagenomic data (based on filtering potential bacterial reads). Applying VirMC to human gut metagenomes from healthy subjects and patients with type-2 diabetes (T2D) revealed that viral contigs could help classify healthy and diseased statuses. This alignment-free method complements gene-based alignment approaches and will significantly improve the precision of viral sequence identification.
Collapse
Affiliation(s)
- Kai Song
- School of Mathematics and Statistics, Qingdao University, Qingdao China
| |
Collapse
|
184
|
Guerrero-Bustamante CA, Dedrick RM, Garlena RA, Russell DA, Hatfull GF. Toward a Phage Cocktail for Tuberculosis: Susceptibility and Tuberculocidal Action of Mycobacteriophages against Diverse Mycobacterium tuberculosis Strains. mBio 2021; 12:e00973-21. [PMID: 34016711 PMCID: PMC8263002 DOI: 10.1128/mbio.00973-21] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The global health burden of human tuberculosis (TB) and the widespread antibiotic resistance of its causative agent Mycobacterium tuberculosis warrant new strategies for TB control. The successful use of a bacteriophage cocktail to treat a Mycobacterium abscessus infection suggests that phages could play a role in tuberculosis therapy. To assemble a phage cocktail with optimal therapeutic potential for tuberculosis, we have explored mycobacteriophage diversity to identify phages that demonstrate tuberculocidal activity and determined the phage infection profiles for a diverse set of strains spanning the major lineages of human-adapted strains of the Mycobacterium tuberculosis complex. Using a combination of genome engineering and bacteriophage genetics, we have assembled a five-phage cocktail that minimizes the emergence of phage resistance and cross-resistance to multiple phages, and which efficiently kills the M. tuberculosis strains tested. Furthermore, these phages function without antagonizing antibiotic effectiveness, and infect both isoniazid-resistant and -sensitive strains.IMPORTANCE Tuberculosis kills 1.5 million people each year, and resistance to commonly used antibiotics contributes to treatment failures. The therapeutic potential of bacteriophages against Mycobacterium tuberculosis offers prospects for shortening antibiotic regimens, provides new tools for treating multiple drug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB infections, and protects newly developed antibiotics against rapidly emerging resistance to them. Identifying a suitable suite of phages active against diverse M. tuberculosis isolates circumvents many of the barriers to initiating clinical evaluation of phages as part of the arsenal of antituberculosis therapeutics.
Collapse
Affiliation(s)
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
185
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses - Part I. BIOCHEMISTRY (MOSCOW) 2021; 86:319-337. [PMID: 33838632 DOI: 10.1134/s0006297921030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
186
|
Kopylov AI, Zabotkina EA. Virioplankton as an important component of plankton in the Volga Reservoirs. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The distribution of virioplankton, abundance and production, frequency of visibly infected cells of heterotrophic bacteria and autotrophic picocyanobacteria and their virus-induced mortality have been studied in mesotrophic and eutrophic reservoirs of the Upper and Middle Volga (Ivankovo, Uglich, Rybinsk, Gorky, Cheboksary, and Sheksna reservoirs). The abundance of planktonic viruses (VA) is on average by 4.6 ± 1.2 times greater than the abundance of bacterioplankton (BA). The distribution of VA in the Volga reservoirs was largely determined by the distribution of BA and heterotrophic bacterioplankton production (PB). There was a positive correlation between VA and BA and between VA and PB. In addition, BA and VA were both positively correlated with primary production of phytoplankton. Viral particles of 60 to 100 µm in size dominated in the phytoplankton composition. A large number of bacteria and picocyanobacteria with viruses attached to the surface of their cells were found in the reservoirs. Viruses as the most numerous component of plankton make a significant contribution to the formation of the planktonic microbial community biomass. The number of phages inside infected cells of bacteria and picocyanobacteria reached 74‒109 phages/cell. Easily digestible organic matter, which entered the aquatic environment as a result of viral lysis of bacteria and picocyanobacteria, could be an additional source of carbon for living bacteria. The results of long-term studies indicate a significant role of viruses in functioning of planktonic microbial communities in the Volga reservoirs.
Collapse
|
187
|
Fu X, Gong L, Liu Y, Lai Q, Li G, Shao Z. Bacillus pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation. Front Microbiol 2021; 12:571212. [PMID: 34025591 PMCID: PMC8139322 DOI: 10.3389/fmicb.2021.571212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Members of the Bacillus pumilus group (abbreviated as the Bp group) are quite diverse and ubiquitous in marine environments, but little is known about correlation with their terrestrial counterparts. In this study, 16 marine strains that we had isolated before were sequenced and comparative genome analyses were performed with a total of 52 Bp group strains. The analyses included 20 marine isolates (which included the 16 new strains) and 32 terrestrial isolates, and their evolutionary relationships, differentiation, and environmental adaptation. Results Phylogenomic analysis revealed that the marine Bp group strains were grouped into three species: B. pumilus, B. altitudinis and B. safensis. All the three share a common ancestor. However, members of B. altitudinis were observed to cluster independently, separating from the other two, thus diverging from the others. Consistent with the universal nature of genes involved in the functioning of the translational machinery, the genes related to translation were enriched in the core genome. Functional genomic analyses revealed that the marine-derived and the terrestrial strains showed differences in certain hypothetical proteins, transcriptional regulators, K+ transporter (TrK) and ABC transporters. However, species differences showed the precedence of environmental adaptation discrepancies. In each species, land specific genes were found with possible functions that likely facilitate survival in diverse terrestrial niches, while marine bacteria were enriched with genes of unknown functions and those related to transcription, phage defense, DNA recombination and repair. Conclusion Our results indicated that the Bp isolates show distinct genomic features even as they share a common core. The marine and land isolates did not evolve independently; the transition between marine and non-marine habitats might have occurred multiple times. The lineage exhibited a priority effect over the niche in driving their dispersal. Certain intra-species niche specific genes could be related to a strains adaptation to its respective marine or terrestrial environment(s). In summary, this report describes the systematic evolution of 52 Bp group strains and will facilitate future studies toward understanding their ecological role and adaptation to marine and/or terrestrial environments.
Collapse
Affiliation(s)
- Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Yang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
188
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
189
|
Nikulin NA, Zimin AA. Influence of Non-canonical DNA Bases on the Genomic Diversity of Tevenvirinae. Front Microbiol 2021; 12:632686. [PMID: 33889139 PMCID: PMC8056088 DOI: 10.3389/fmicb.2021.632686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 12/03/2022] Open
Abstract
The Tevenvirinae viruses are some of the most common viruses on Earth. Representatives of this subfamily have long been used in the molecular biology studies as model organisms – since the emergence of the discipline. Tevenvirinae are promising agents for phage therapy in animals and humans, since their representatives have only lytic life cycle and many of their host bacteria are pathogens. As confirmed experimentally, some Tevenvirinae have non-canonical DNA bases. Non-canonical bases can play an essential role in the diversification of closely related viruses. The article performs a comparative and evolutionary analysis of Tevenvirinae genomes and components of Tevenvirinae genomes. A comparative analysis of these genomes and the genes associated with the synthesis of non-canonical bases allows us to conclude that non-canonical bases have a major influence on the divergence of Tevenvirinae viruses within the same habitats. Supposedly, Tevenvirinae developed a strategy for changing HGT frequency in individual populations, which was based on the accumulation of proteins for the synthesis of non-canonical bases and proteins that used those bases as substrates. Owing to this strategy, ancestors of Tevenvirinae with the highest frequency of HGT acquired genes that allowed them to exist in a certain niche, and ancestors with the lowest HGT frequency preserved the most adaptive of those genes. Given the origin and characteristics of genes associated with the synthesis of non-canonical bases in Tevenvirinae, one can assume that other phages may have similar strategies. The article demonstrates the dependence of genomic diversity of closely related Tevenvirinae on non-canonical bases.
Collapse
Affiliation(s)
- Nikita A Nikulin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Andrei A Zimin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
190
|
Botella L, Jung T. Multiple Viral Infections Detected in Phytophthora condilina by Total and Small RNA Sequencing. Viruses 2021; 13:v13040620. [PMID: 33916635 PMCID: PMC8067226 DOI: 10.3390/v13040620] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Marine oomycetes have recently been shown to be concurrently infected by (−)ssRNA viruses of the order Bunyavirales. In this work, even higher virus variability was found in a single isolate of Phytophthora condilina, a recently described member of Phytophthora phylogenetic Clade 6a, which was isolated from brackish estuarine waters in southern Portugal. Using total and small RNA-seq the full RdRp of 13 different potential novel bunya-like viruses and two complete toti-like viruses were detected. All these viruses were successfully confirmed by reverse transcription polymerase chain reaction (RT-PCR) using total RNA as template, but complementarily one of the toti-like and five of the bunya-like viruses were confirmed when dsRNA was purified for RT-PCR. In our study, total RNA-seq was by far more efficient for de novo assembling of the virus sequencing but small RNA-seq showed higher read numbers for most viruses. Two main populations of small RNAs (21 nts and 25 nts-long) were identified, which were in accordance with other Phytophthora species. To the best of our knowledge, this is the first study using small RNA sequencing to identify viruses in Phytophthora spp.
Collapse
Affiliation(s)
- Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic;
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, Na Sadkach 1780, 37005 Ceske Budejovice, Czech Republic
- Correspondence: ; Tel.: +420-389-032-942
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic;
| |
Collapse
|
191
|
Xu M, Xu M, Tu Q. Comparative evaluation of Vibrio delineation methodologies in post-genomic era. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:209-217. [PMID: 33533180 DOI: 10.1111/1758-2229.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Vibrios are widespread in both marine and coastal water environments and are recognized as one of the most important prokaryotic pathogens because they may potentially threaten the health of both aquacultures and human beings. However, owing to highly similar physiological and biochemical properties, accurate classification and identification of Vibrio strains remains challenging. This hampers further research on the physiology, pathogeny, genomics, epidemics, and ecology of vibrios. Here, we comparatively evaluated multiple approaches including 16S rRNA gene identity, average nucleotide identity (ANI), gene content similarity and mutilocus sequence analysis (MLSA) to investigate their ability in delineating Vibrio strains. In addition, we also evaluated the possibility of applying bacterial prophages in classifying and identifying Vibrio strains. Our results showed that MLSA outperformed other methods in discriminating Vibrio species, suggesting that the other four approaches should be used with cautions in Vibrio delineation. Interestingly, we also found that prophages identified in Vibrio strains were highly specific at strain- and species-level, suggesting that prophages held the potential to be used for microbial species, sub-species, and strain-level identifications. This study is expected to provide valuable insights into the taxonomic identification and classification of complex microbial groups in the post-genomic era.
Collapse
Affiliation(s)
- Mengzhao Xu
- Department of Marine Sciences, Ocean College, Zhejiang University, Zhoushan, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qichao Tu
- Institute for Marine Science and Technology, Shandong University, Qingdao, China
| |
Collapse
|
192
|
Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, Mulholland MR, Hallam SJ, Ulloa O, Sullivan MB. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. THE ISME JOURNAL 2021; 15:981-998. [PMID: 33199808 PMCID: PMC8115048 DOI: 10.1038/s41396-020-00825-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.
Collapse
Affiliation(s)
- M. Consuelo Gazitúa
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA ,Viromica Consulting, Santiago, Chile
| | - Dean R. Vik
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Simon Roux
- grid.451309.a0000 0004 0449 479XDOE Joint Genome Institute, Berkeley, CA USA
| | - Ann C. Gregory
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Benjamin Bolduc
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Brittany Widner
- grid.261368.80000 0001 2164 3177Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA USA ,grid.56466.370000 0004 0504 7510Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Margaret R. Mulholland
- grid.261368.80000 0001 2164 3177Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA USA
| | - Steven J. Hallam
- grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - Osvaldo Ulloa
- grid.5380.e0000 0001 2298 9663Departamento de Oceanografía & Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Matthew B. Sullivan
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH USA
| |
Collapse
|
193
|
Bonetti G, Trevathan-Tackett SM, Carnell PE, Macreadie PI. The potential of viruses to influence the magnitude of greenhouse gas emissions in an inland wetland. WATER RESEARCH 2021; 193:116875. [PMID: 33550166 DOI: 10.1016/j.watres.2021.116875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Wetlands are among the earth's most efficient ecosystems for carbon sequestration, but can also emit potent greenhouse gases (GHGs) depending on how they are managed. Global management strategies have sought to maximize carbon drawdown by wetlands by manipulating wetland hydrology to inhibit bacterially-mediated emissions. However, it has recently been hypothesized within wetlands that viruses have the potential to dictate the magnitude and direction of GHG emissions by attacking prokaryotes involved in the carbon cycle. Here we tested this hypothesis in a whole-ecosystem manipulation by hydrologically-restoring a degraded wetland ('rewetting') and investigated the changes in GHG emissions, prokaryotes, viruses, and virus-host interactions. We found that hydrological restoration significantly increased prokaryotic diversity, methanogenic Methanomicrobia, as well as putative iron/sulfate-cyclers (Geobacteraceae), nitrogen-cyclers (Nitrosomonadaceae), and fermentative bacteria (Koribacteraceae). These results provide insights into successional microbial community shifts during rehabilitation. Additionally, in response to watering, viral-induced prokaryotic mortality declined by 77%, resulting in limited carbon released by viral shunt that was significantly correlated with the 2.8-fold reduction in wetland carbon emissions. Our findings highlight, for the first time, the potential implications of viral infections in soil prokaryotes on wetland greenhouse gas dynamics and confirm the importance of wetland rehabilitation as a tool to offset carbon emissions.
Collapse
Affiliation(s)
- Giuditta Bonetti
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Burwood Campus, Victoria 3125, Australia..
| | - Stacey M Trevathan-Tackett
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Burwood Campus, Victoria 3125, Australia..
| | - Paul E Carnell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Queenscliff Campus, Queenscliff, VIC 3225, Australia.
| | - Peter I Macreadie
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Burwood Campus, Victoria 3125, Australia..
| |
Collapse
|
194
|
Baum L, Nguyen MTHD, Jia Y, Biazik J, Thomas T. Characterization of a novel roseophage and the morphological and transcriptional response of the sponge symbiont Ruegeria AU67 to infection. Environ Microbiol 2021; 23:2532-2549. [PMID: 33754443 DOI: 10.1111/1462-2920.15474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Sponges have recently been recognized to contain complex communities of bacteriophages; however, little is known about how they interact with their bacterial hosts. Here, we isolated a novel phage, called Ruegeria phage Tedan, and characterized its impact on the bacterial sponge symbiont Ruegeria AU67 on a morphological and molecular level. Phage Tedan was structurally, genomically and phylogenetically characterized to be affiliated with the genus Xiamenvirus of the family Siphoviridae. Through microscopic observations and transcriptomic analysis, we show that phage Tedan upon infection induces a process leading to metabolic and morphological changes in its host. These changes would render Ruegeria AU67 better adapted to inhabit the sponge holobiont due to an improved utilization of ecologically relevant energy and carbon sources as well as a potential impediment of phagocytosis by the sponge through cellular enlargement. An increased survival or better growth of the bacterium in the sponge environment will likely benefit the phage reproduction. Our results point towards the possibility that phages from host-associated environments require, and have thus evolved, different strategies to interact with their host when compared to those phages from free-living or planktonic environments.
Collapse
Affiliation(s)
- Lisa Baum
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mary T H D Nguyen
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yunke Jia
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joanna Biazik
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
195
|
Yang M, Xia Q, Du S, Zhang Z, Qin F, Zhao Y. Genomic Characterization and Distribution Pattern of a Novel Marine OM43 Phage. Front Microbiol 2021; 12:651326. [PMID: 33841378 PMCID: PMC8024684 DOI: 10.3389/fmicb.2021.651326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Bacteriophages have a significant impact on the structure and function of marine microbial communities. Phages of some major bacterial lineages have recently been shown to dominate the marine viral communities. However, phages that infect many important bacterial clades still remained unexplored. Members of the marine OM43 clade are methylotrophs that play important roles in C1 metabolism. OM43 phages (phages that infect the OM43 bacteria) represent an understudied viral group with only one known isolate. In this study, we describe the genomic characterization and biogeography of an OM43 phage that infects the strain HTCC2181, designated MEP301. MEP301 has a genome size of 34,774 bp. We found that MEP301 is genetically distinct from other known phage isolates and only displays significant sequence similarity with some metagenomic viral genomes (MVGs). A total of 12 MEP301-type MVGs were identified from metagenomic datasets. Comparative genomic and phylogenetic analyses revealed that MEP301-type phages can be separated into two subgroups (subgroup I and subgroup II). We also performed a metagenomic recruitment analysis to determine the relative abundance of reads mapped to these MEP301-type phages, which suggested that subgroup I MEP301-type phages are present predominantly in the cold upper waters with lower salinity. Notably, subgroup II phages have an inverse different distribution pattern, implying that they may infect hosts from a distinct OM43 subcluster. Our study has expanded the knowledge about the genomic diversity of marine OM43 phages and identified a new phage group that is widespread in the ocean.
Collapse
Affiliation(s)
- Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Xia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
196
|
Abstract
Viruses are ubiquitous and abundant in the oceans, and viral metagenomes (viromes) have been investigated extensively via several large-scale ocean sequencing projects. However, there have not been any systematic viromic studies in estuaries. Here, we investigated the viromes of the Delaware Bay and Chesapeake Bay, two Mid-Atlantic estuaries. Deep sequencing generated a total of 48,190 assembled viral sequences (>5 kb) and 26,487 viral populations (9,204 virus clusters and 17,845 singletons), including 319 circular viral contigs between 7.5 kb and 161.8 kb. Unknown viruses represented the vast majority of the dominant populations, while the composition of known viruses, such as pelagiphage and cyanophage, appeared to be relatively consistent across a wide range of salinity gradients and in different seasons. A difference between estuarine and ocean viromes was reflected by the proportions of Myoviridae, Podoviridae, Siphoviridae, Phycodnaviridae, and a few well-studied virus representatives. The difference in viral community between the Delaware Bay and Chesapeake Bay is significantly more pronounced than the difference caused by temperature or salinity, indicating strong local profiles caused by the unique ecology of each estuary. Interestingly, a viral contig similar to phages infecting Acinetobacter baumannii (“Iraqibacter”) was found to be highly abundant in the Delaware Bay but not in the Chesapeake Bay, the source of which is yet to be identified. Highly abundant viruses in both estuaries have close hits to viral sequences derived from the marine single-cell genomes or long-read single-molecule sequencing, suggesting that important viruses are still waiting to be discovered in the estuarine environment. IMPORTANCE This is the first systematic study about spatial and temporal variation of virioplankton communities in estuaries using deep metagenomics sequencing. It is among the highest-quality viromic data sets to date, showing remarkably consistent sequencing depth and quality across samples. Our results indicate that there exists a large pool of abundant and diverse viruses in estuaries that have not yet been cultivated, their genomes only available thanks to single-cell genomics or single-molecule sequencing, demonstrating the importance of these methods for viral discovery. The spatiotemporal pattern of these abundant uncultivated viruses is more variable than that of cultured viruses. Despite strong environmental gradients, season and location had surprisingly little impact on the viral community within an estuary, but we saw a significant distinction between the two estuaries and also between estuarine and open ocean viromes.
Collapse
|
197
|
Sholar SA, Stepanova OA. The Role of Viruses and Viral Lysis in Changing the Optical Properties of the Water Environment of their Habitat. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
198
|
Moon K, Cho JC. Metaviromics coupled with phage-host identification to open the viral 'black box'. J Microbiol 2021; 59:311-323. [PMID: 33624268 DOI: 10.1007/s12275-021-1016-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Viruses are found in almost all biomes on Earth, with bacteriophages (phages) accounting for the majority of viral particles in most ecosystems. Phages have been isolated from natural environments using the plaque assay and liquid medium-based dilution culturing. However, phage cultivation is restricted by the current limitations in the number of culturable bacterial strains. Unlike prokaryotes, which possess universally conserved 16S rRNA genes, phages lack universal marker genes for viral taxonomy, thus restricting cultureindependent analyses of viral diversity. To circumvent these limitations, shotgun viral metagenome sequencing (i.e., metaviromics) has been developed to enable the extensive sequencing of a variety of viral particles present in the environment and is now widely used. Using metaviromics, numerous studies on viral communities have been conducted in oceans, lakes, rivers, and soils, resulting in many novel phage sequences. Furthermore, auxiliary metabolic genes such as ammonic monooxygenase C and β-lactamase have been discovered in viral contigs assembled from viral metagenomes. Current attempts to identify putative bacterial hosts of viral metagenome sequences based on sequence homology have been limited due to viral sequence variations. Therefore, culture-independent approaches have been developed to predict bacterial hosts using single-cell genomics and fluorescentlabeling. This review focuses on recent viral metagenome studies conducted in natural environments, especially in aquatic ecosystems, and their contributions to phage ecology. Here, we concluded that although metaviromics is a key tool for the study of viral ecology, this approach must be supplemented with phage-host identification, which in turn requires the cultivation of phage-bacteria systems.
Collapse
Affiliation(s)
- Kira Moon
- Biological Resources Utilization Division, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
199
|
Biogeographic and Evolutionary Patterns of Trace Element Utilization in Marine Microbial World. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:958-972. [PMID: 33631428 PMCID: PMC9402790 DOI: 10.1016/j.gpb.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/23/2019] [Accepted: 06/06/2019] [Indexed: 12/01/2022]
Abstract
Trace elements are required by all organisms, which are key components of many enzymes catalyzing important biological reactions. Many trace element-dependent proteins have been characterized; however, little is known about their occurrence in microbial communities in diverse environments, especially the global marine ecosystem. Moreover, the relationships between trace element utilization and different types of environmental stressors are unclear. In this study, we used metagenomic data from the Global Ocean Sampling expedition project to identify the biogeographic distribution of genes encoding trace element-dependent proteins (for copper, molybdenum, cobalt, nickel, and selenium) in a variety of marine and non-marine aquatic samples. More than 56,000 metalloprotein and selenoprotein genes corresponding to nearly 100 families were predicted, becoming the largest dataset of marine metalloprotein and selenoprotein genes reported to date. In addition, samples with enriched or depleted metalloprotein/selenoprotein genes were identified, suggesting an active or inactive usage of these micronutrients in various sites. Further analysis of interactions among the elements showed significant correlations between some of them, especially those between nickel and selenium/copper. Finally, investigation of the relationships between environmental conditions and metalloprotein/selenoprotein families revealed that many environmental factors might contribute to the evolution of different metalloprotein and/or selenoprotein genes in the marine microbial world. Our data provide new insights into the utilization and biological roles of these trace elements in extant marine microbes, and might also be helpful for the understanding of how these organisms have adapted to their local environments.
Collapse
|
200
|
Tittes C, Schwarzer S, Pfeiffer F, Dyall-Smith M, Rodriguez-Franco M, Oksanen HM, Quax TEF. Cellular and Genomic Properties of Haloferax gibbonsii LR2-5, the Host of Euryarchaeal Virus HFTV1. Front Microbiol 2021; 12:625599. [PMID: 33664716 PMCID: PMC7921747 DOI: 10.3389/fmicb.2021.625599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 01/14/2023] Open
Abstract
Hypersaline environments are the source of many viruses infecting different species of halophilic euryarchaea. Information on infection mechanisms of archaeal viruses is scarce, due to the lack of genetically accessible virus–host models. Recently, a new archaeal siphovirus, Haloferax tailed virus 1 (HFTV1), was isolated together with its host belonging to the genus Haloferax, but it is not infectious on the widely used model euryarcheon Haloferax volcanii. To gain more insight into the biology of HFTV1 host strain LR2-5, we studied characteristics that might play a role in its virus susceptibility: growth-dependent motility, surface layer, filamentous surface structures, and cell shape. Its genome sequence showed that LR2-5 is a new strain of Haloferax gibbonsii. LR2-5 lacks obvious viral defense systems, such as CRISPR-Cas, and the composition of its cell surface is different from Hfx. volcanii, which might explain the different viral host range. This work provides first deep insights into the relationship between the host of halovirus HFTV1 and other members of the genus Haloferax. Given the close relationship to the genetically accessible Hfx. volcanii, LR2-5 has high potential as a new model for virus–host studies in euryarchaea.
Collapse
Affiliation(s)
- Colin Tittes
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sabine Schwarzer
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mike Dyall-Smith
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|