151
|
Fan Z, Wu C, Chen M, Jiang Y, Wu Y, Mao R, Fan Y. The generation of PD-L1 and PD-L2 in cancer cells: From nuclear chromatin reorganization to extracellular presentation. Acta Pharm Sin B 2022; 12:1041-1053. [PMID: 35530130 PMCID: PMC9069407 DOI: 10.1016/j.apsb.2021.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- ADAM17, a disintegrin and metalloprotease 17
- APCs, antigen-presenting cells
- AREs, adenylate and uridylate (AU)-rich elements
- ATF3, activating transcription factor 3
- CD273/274, cluster of differentiation 273/274
- CDK4, cyclin-dependent kinase 4
- CMTM6, CKLF like MARVEL transmembrane domain containing 6
- CSN5, COP9 signalosome subunit 5
- CTLs, cytotoxic T lymphocytes
- EMT, epithelial to mesenchymal transition
- EpCAM, epithelial cell adhesion molecule
- Exosome
- FACS, fluorescence-activated cell sorting
- GSDMC, Gasdermin C
- GSK3β, glycogen synthase kinase 3 beta
- HSF1, heat shock transcription factor 1
- Hi-C, high throughput chromosome conformation capture
- ICB, immune checkpoint blockade
- IFN, interferon
- IL-6, interleukin 6
- IRF1, interferon regulatory factor 1
- Immune checkpoint blockade
- JAK, Janus kinase 1
- NFκB, nuclear factor kappa B
- NSCLC, non-small cell lung cancer
- OTUB1, OTU deubiquitinase, ubiquitin aldehyde binding 1
- PARP1, poly(ADP-ribose) polymerase 1
- PD-1, programmed cell death-1
- PD-L1
- PD-L1, programmed death-ligand 1
- PD-L2
- PD-L2, programmed death ligand 2
- Post-transcriptional regulation
- Post-translational regulation
- SP1, specificity protein 1
- SPOP, speckle-type POZ protein
- STAG2, stromal antigen 2
- STAT3, signal transducer and activator of transcription 3
- T2D, type 2 diabetes
- TADs, topologically associating domains
- TFEB, transcription factor EB
- TFs, transcription factors
- TNFα, tumor necrosis factor-alpha
- TTP, tristetraprolin
- Topologically associating domain
- Transcription
- UCHL1, ubiquitin carboxy-terminal hydrolase L1
- USP22, ubiquitin specific peptidase 22
- dMMR, deficient DNA mismatch repair
- irAEs, immune related adverse events
Collapse
Affiliation(s)
- Zhiwei Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Changyue Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Miaomiao Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yuanyuan Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
152
|
Zhang X, Lao M, Xu J, Duan Y, Yang H, Li M, Ying H, He L, Sun K, Guo C, Chen W, Jiang H, Zhang X, Bai X, Liang T. Combination cancer immunotherapy targeting TNFR2 and PD-1/PD-L1 signaling reduces immunosuppressive effects in the microenvironment of pancreatic tumors. J Immunother Cancer 2022; 10:e003982. [PMID: 35260434 PMCID: PMC8906048 DOI: 10.1136/jitc-2021-003982] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDS In advanced pancreatic ductal adenocarcinoma (PDAC), immune therapy, including immune checkpoint inhibitors, has limited efficacy, encouraging the study of combination therapy. METHODS Tumor necrosis factor receptor 2 (TNFR2) was analyzed via immunohistochemistry, immunofluorescence, western blotting, and ELISAs. The in vitro mechanism that TNFR2 regulates programmed cell death 1 ligand 1 (PD-L1) was investigated using immunofluorescence, immunohistochemistry, flow cytometry, western blotting, and chromatin immunoprecipitation (ChIP). In vivo efficacy and mechanistic studies, using C57BL/6 mice and nude mice with KPC cell-derived subcutaneous and orthotopic tumors, employed antibodies against TNFR2 and PD-L1. Survival curves were constructed for the orthotopic model and a genetically engineered PDAC model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre). Mass cytometry, immunohistochemistry, and flow cytometry analyzed local and systemic alterations in the immunophenotype. RESULTS TNFR2 showed high expression and is a prognostic factor in CD8+ T cell-enriched pancreatic cancer. TNFR2 promotes tumorigenesis and progression of pancreatic cancer via dual effect: suppressing cancer immunogenicity and partially accelerating tumor growth. TNFR2 positivity correlated with PD-L1, and in vitro and in vivo, it could regulate the expression of PDL1 at the transcription level via the p65 NF-κB pathway. Combining anti-TNFR2 and PD-L1 antibodies eradicated tumors, prolonged overall survival in pancreatic cancer, and induced strong antitumor immune memory and secondary prevention by reducing the infiltration of Tregs and tumor-associated macrophages and inducing CD8+ T cell activation in the PDAC microenvironment. Finally, the antitumor immune response derived from combination therapy is mainly dependent on CD8+ T cells, partially dependent on CD4+ T cells, and independent of natural killer cells. CONCLUSIONS Anti-TNFR2 and anti-PD-L1 combination therapy eradicated tumors by inhibiting their growth, relieving tumor immunosuppression, and generating robust memory recall.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Wen Chen
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Haitao Jiang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
153
|
Velez-Delgado A, Donahue KL, Brown KL, Du W, Irizarry-Negron V, Menjivar RE, Lasse Opsahl EL, Steele NG, The S, Lazarus J, Sirihorachai VR, Yan W, Kemp SB, Kerk SA, Bollampally M, Yang S, Scales MK, Avritt FR, Lima F, Lyssiotis CA, Rao A, Crawford HC, Bednar F, Frankel TL, Allen BL, Zhang Y, Pasca di Magliano M. Extrinsic KRAS Signaling Shapes the Pancreatic Microenvironment Through Fibroblast Reprogramming. Cell Mol Gastroenterol Hepatol 2022; 13:1673-1699. [PMID: 35245687 PMCID: PMC9046274 DOI: 10.1016/j.jcmgh.2022.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Oncogenic Kirsten Rat Sarcoma virus (KRAS) is the hallmark mutation of human pancreatic cancer and a driver of tumorigenesis in genetically engineered mouse models of the disease. Although the tumor cell-intrinsic effects of oncogenic Kras expression have been widely studied, its role in regulating the extensive pancreatic tumor microenvironment is less understood. METHODS Using a genetically engineered mouse model of inducible and reversible oncogenic Kras expression and a combination of approaches that include mass cytometry and single-cell RNA sequencing we studied the effect of oncogenic KRAS in the tumor microenvironment. RESULTS We have discovered that non-cell autonomous (ie, extrinsic) oncogenic KRAS signaling reprograms pancreatic fibroblasts, activating an inflammatory gene expression program. As a result, fibroblasts become a hub of extracellular signaling, and the main source of cytokines mediating the polarization of protumorigenic macrophages while also preventing tissue repair. CONCLUSIONS Our study provides fundamental knowledge on the mechanisms underlying the formation of the fibroinflammatory stroma in pancreatic cancer and highlights stromal pathways with the potential to be exploited therapeutically.
Collapse
Affiliation(s)
| | | | | | - Wenting Du
- Department of Surgery, Ann Arbor, Michigan
| | | | | | | | - Nina G Steele
- Department of Cell and Developmental Biology, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan
| | | | | | - Wei Yan
- Department of Surgery, Ann Arbor, Michigan
| | - Samantha B Kemp
- Molecular and Cellular Pathology Program, Ann Arbor, Michigan
| | | | | | - Sion Yang
- Life Sciences and Arts College, Ann Arbor, Michigan
| | - Michael K Scales
- Department of Cell and Developmental Biology, Ann Arbor, Michigan
| | | | | | - Costas A Lyssiotis
- Cancer Biology Program, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - Arvind Rao
- Cancer Biology Program, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan; Michigan Institute of Data Science, Ann Arbor, Michigan; Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Cancer Biology Program, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan
| | - Timothy L Frankel
- Department of Surgery, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, Ann Arbor, Michigan; Cancer Biology Program, Ann Arbor, Michigan; Department of Surgery, Ann Arbor, Michigan; Cellular and Molecular Biology Program, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
154
|
Tang S, Shi L, Luker BT, Mickler C, Suresh B, Lesinski GB, Fan D, Liu Y, Luo M. Modulation of the tumor microenvironment by armed vesicular stomatitis virus in a syngeneic pancreatic cancer model. Virol J 2022; 19:32. [PMID: 35197076 PMCID: PMC8867845 DOI: 10.1186/s12985-022-01757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
Background The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma is a major factor that limits the benefits of immunotherapy, especially immune checkpoint blockade. One viable strategy for reverting the immunosuppressive conditions is the use of an oncolytic virus (OV) in combination with other immunotherapy approaches. Infection of PDAC cells with a robust OV can change the tumor microenvironment and increase tumor antigen release by its lytic activities. These changes in the tumor may improve responses to immunotherapy, including immune checkpoint blockade. However, a more potent OV may be required for efficiently infecting pancreatic tumors that may be resistant to OV. Methods Vesicular stomatitis virus, a rapid replicating OV, was armed to express the Smac protein during virus infection (VSV-S). Adaptation by limited dilution largely increased the selective infection of pancreatic cancer cells by VSV-S. The engineered OV was propagated to a large quantity and evaluated for their antitumor activities in an animal model. Results In a syngeneic KPC model, intratumoral injection of VSV-S inhibited tumor growth, and induced increasing tumor infiltration of neutrophils and elimination of myeloid derived suppressor cells and macrophages in the tumor. More importantly, M2-like macrophages were eliminated preferentially over those with an M1 phenotype. Reduced levels of arginase 1, TGF-β and IL-10 in the tumor also provided evidence for reversion of the immunosuppressive conditions by VSV-S infection. In several cases, tumors were completely cleared by VSV-S treatment, especially when combined with anti-PD-1 therapy. A long-term survival of 44% was achieved. Conclusions The improved OV, VSV-S, was shown to drastically alter the immune suppressive tumor microenvironment when intratumorally injected. Our results suggest that the combination of potent OV treatment with immune checkpoint blockade may be a promising strategy to treat pancreatic cancer more effectively.
Collapse
Affiliation(s)
- Sijia Tang
- Institute of Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Lei Shi
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Breona T Luker
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Channen Mickler
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Bhavana Suresh
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Yuan Liu
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA. .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
155
|
Zheng S, Hu C, Lin H, Li G, Xia R, Zhang X, Su D, Li Z, Zhou Q, Chen R. circCUL2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-κB signaling pathway. J Exp Clin Cancer Res 2022; 41:71. [PMID: 35189958 PMCID: PMC8862589 DOI: 10.1186/s13046-021-02237-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by clusters of cancer cells surrounded by a dense desmoplastic stroma. However, little is known about stromal cell heterogeneity in the pancreatic tumor microenvironment. Methods We conducted circRNA profiling in primary fibroblasts by high-throughput sequencing and detected circCUL2 levels in PDAC tissues by qRT–PCR. We subsequently investigated the effect of circCUL2 on inflammatory cancer-associated fibroblast (iCAF) activation, heterogeneity and protumor activity by ELISA, flow cytometry, colony formation and transwell assays in vitro and by xenograft models in vivo. The regulatory effect of circCUL2 on miR-203a-3p/MyD88/IL6 was examined by RNA pulldown, FISH, and luciferase reporter assays. Results We identified that circCUL2 was specifically expressed in cancer-associated fibroblasts (CAFs) but not in cancer cells. Moreover, the enrichment of circCUL2 in tumor tissues was significantly correlated with the poor prognosis of PDAC patients. Upregulation of circCUL2 expression in normal fibroblasts (NFs) induced the iCAF phenotype, and then iCAFs promoted PDAC progression through IL6 secretion in vitro. Furthermore, circCUL2-transduced NFs promoted tumorigenesis and metastasis of PDAC cells in vivo, which was blocked by an anti-IL6 antibody. Mechanistically, circCUL2 functioned as a ceRNA and modulated the miR-203a-3p/MyD88/NF-κB/IL6 axis, thereby further activating the STAT3 signaling pathway in pancreatic cancer cells to induce PDAC progression. Conclusions We showed that the circCUL2/miR-203a-5p/MyD88/NF-κB/IL6 axis contributes to the induction of iCAFs and established a distinct fibroblast niche for PDAC progression, which could help the development of strategies that selectively target tumor-promoting CAFs in PDAC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02237-6.
Collapse
|
156
|
Wang Y, Zheng K, Xiong H, Huang Y, Chen X, Zhou Y, Qin W, Su J, Chen R, Qiu H, Yuan X, Wang Y, Zou Y. PARP Inhibitor Upregulates PD-L1 Expression and Provides a New Combination Therapy in Pancreatic Cancer. Front Immunol 2022; 12:762989. [PMID: 34975854 PMCID: PMC8718453 DOI: 10.3389/fimmu.2021.762989] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent improvements in treatment modalities, pancreatic cancer remains a highly lethal tumor with mortality rate increasing every year. Poly (ADP-ribose) polymerase (PARP) inhibitors are now used in pancreatic cancer as a breakthrough in targeted therapy. This study focused on whether PARP inhibitors (PARPis) can affect programmed death ligand-1 (PD-L1) expression in pancreatic cancer and whether immune checkpoint inhibitors of PD-L1/programmed death 1 (PD-1) can enhance the anti-tumor effects of PARPis. Here we found that PARPi, pamiparib, up-regulated PD-L1 expression on the surface of pancreatic cancer cells in vitro and in vivo. Mechanistically, pamiparib induced PD-L1 expression via JAK2/STAT3 pathway, at least partially, in pancreatic cancer. Importantly, pamiparib attenuated tumor growth; while co-administration of pamiparib with PD-L1 blockers significantly improved the therapeutic efficacy in vivo compared with monotherapy. Combination therapy resulted in an altered tumor immune microenvironment with a significant increase in windiness of CD8+ T cells, suggesting a potential role of CD8+ T cells in the combination therapy. Together, this study provides evidence for the clinical application of PARPis with anti-PD-L1/PD-1 drugs in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuqiong Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfang Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
157
|
Liu L, Huang X, Shi F, Song J, Guo C, Yang J, Liang T, Bai X. Combination therapy for pancreatic cancer: anti-PD-(L)1-based strategy. J Exp Clin Cancer Res 2022; 41:56. [PMID: 35139879 PMCID: PMC8827285 DOI: 10.1186/s13046-022-02273-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Mortality associated with pancreatic cancer is among the highest of all malignancies, with a 5-year overall survival of 5-10%. Immunotherapy, represented by the blocking antibodies against programmed cell death protein 1 or its ligand 1 (anti-PD-(L)1), has achieved remarkable success in a number of malignancies. However, due to the immune-suppressive tumor microenvironment, the therapeutic efficacy of anti-PD-(L)1 in pancreatic cancer is far from expectation. To address such a fundamental issue, chemotherapy, radiotherapy, targeted therapy and even immunotherapy itself, have individually been attempted to combine with anti-PD-(L)1 in preclinical and clinical investigation. This review, with a particular focus on pancreatic cancer therapy, collects current anti-PD-(L)1-based combination strategy, highlights potential adverse effects of accumulative combination, and further points out future direction in optimization of combination, including targeting post-translational modification of PD-(L)1 and improving precision of treatment.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
158
|
Diverse and precision therapies open new horizons for patients with advanced pancreatic ductal adenocarcinoma. Hepatobiliary Pancreat Dis Int 2022; 21:10-24. [PMID: 34538570 DOI: 10.1016/j.hbpd.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common cause of cancer-related death, and most patients are with advanced disease when diagnosed. At present, despite a variety of treatments have been developed for PDAC, few effective treatment options are available; on the other hand, PDAC shows significant resistance to chemoradiotherapy, targeted therapy, and immunotherapy due to its heterogeneous genetic profile, molecular signaling pathways, and complex tumor immune microenvironment. Nevertheless, over the past decades, there have been many new advances in the key theory and understanding of the intrinsic mechanisms and complexity of molecular biology and molecular immunology in pancreatic cancer, based on which more and more diverse new means and reasonable combination strategies for PDAC treatment have been developed and preliminary breakthroughs have been made. With the continuous exploration, from surgical local treatment to comprehensive medical management, the research-diagnosis-management system of pancreatic cancer is improving. This review focused on the variety of treatments for advanced PDAC, including traditional chemotherapy, targeted therapy, immunotherapy, microenvironment matrix regulation as well as the treatment targeting epigenetics, metabolism and cancer stem cells. We pointed out the current research bottlenecks and future exploration directions.
Collapse
|
159
|
Constantin A, Iovănescu V, Cazacu IM, Ungureanu BS, Copăescu C, Stroescu C, Bejinariu N, Săftoiu A. Evaluation of MMR Status and PD-L1 Expression Using Specimens Obtained by EUS-FNB in Patients with Pancreatic Ductal Adenocarcinoma (PDAC). Diagnostics (Basel) 2022; 12:294. [PMID: 35204385 PMCID: PMC8871161 DOI: 10.3390/diagnostics12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Deficient DNA mismatch repair status (dMMR)/high microsatellite instability have been shown to be predictive biomarkers for immune checkpoint inhibitor drugs which block the programmed death protein-1/programmed death ligand-1 (PD-1/PD-L1) interaction between tumor cells and activated T cells. The aim of this study was to determine the prevalence of MMR status and quantification of PD-L1 expression in pancreatic endoscopic ultrasound-guided fine-needle biopsy (EUS FNB) specimens. Immunochemistry (IHC) was performed on consecutive archived treatment-naïve formalin-fixed paraffin-embedded EUS-FNB samples. The specimens were considered to have PD-L1 expression if PD-L1 was expressed in ≥1% of tumor cells and a high level of expression if ≥50%. Tumors with absent nuclear staining of DNA mismatch repair proteins (MLH1, MSH2, MSH6, or PMS2) were classified as dMMR. A total of 28 treatment-naïve patients who underwent EUS-FNB and had a final diagnosis of pancreatic ductal adenocarcinoma (PDAC) were included in the study. All the EUS-FNB samples were adequate for the evaluation of MMR and PD-L1 expression. None of the patients with PDAC included in the study had a dMMR tumor. PD-L1 expression was identified in 39% of the cohort (n = 11). Expression thresholds of ≥1%, ≥10%, and ≥50% in tumor cells were identified in 11 (39%), 4 (14%), and 1 (4%) patients, respectively. The evaluation of MMR status and PD-L1 can be successfully performed on EUS-FNB pancreatic specimens. Furthermore, MMR expression failed to show utility in recognizing immunotherapy vulnerability in pancreatic cancer; the only recommendation for testing remains for patients with heritable cancers. Meanwhile high PD-L1 expression was correlated with poor prognosis. This association may identify a subgroup of patients where immune checkpoints inhibitors could provide therapeutic benefits, spotlighting the role of EUS-FNB in the field of immune-oncology.
Collapse
Affiliation(s)
- Alina Constantin
- Department of Gastroenterology, Ponderas Academic Hospital, 014142 Bucharest, Romania;
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
| | - Vlad Iovănescu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
| | - Irina Mihaela Cazacu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Bogdan Silviu Ungureanu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
| | - Cătălin Copăescu
- Department of Gastroenterology, Ponderas Academic Hospital, 014142 Bucharest, Romania;
| | - Cezar Stroescu
- Department of Surgery, St. Mary Hospital, 011172 Bucharest, Romania;
| | - Nona Bejinariu
- Santomar Oncodiagnostic, Regina Maria Histopathology Laboratory, 400350 Cluj Napoca, Romania;
| | - Adrian Săftoiu
- Department of Gastroenterology, Ponderas Academic Hospital, 014142 Bucharest, Romania;
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
| |
Collapse
|
160
|
Xiao Z, Li J, Yu Q, Zhou T, Duan J, Yang Z, Liu C, Xu F. An Inflammatory Response Related Gene Signature Associated with Survival Outcome and Gemcitabine Response in Patients with Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2022; 12:778294. [PMID: 35002712 PMCID: PMC8733666 DOI: 10.3389/fphar.2021.778294] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with an extremely low 5-year survival rate. Accumulating evidence has unveiled that inflammatory response promotes tumor progression, enhances angiogenesis, and causes local immunosuppression. Herein, we aim to develop an inflammatory related prognostic signature, and found it could be used to predict gemcitabine response in PDAC. Methods: PDAC cohorts with mRNA expression profiles and clinical information were systematically collected from the four public databases. An inflammatory response related genes (IRRGs) prognostic signature was constructed by LASSO regression analysis. Kaplan–Meier survival analysis, receiver operating characteristic analysis, principal component analysis, and univariate and multivariate Cox analyses were carried out to evaluate effectiveness, and reliability of the signature. The correlation between gemcitabine response and risk score was evaluated in the TCGA-PAAD cohort. The GDSC database, pRRophetic algorithm, and connectivity map analysis were used to predict gemcitabine sensitivity and identify potential drugs for the treatment of PDAC. Finally, we analyzed differences in frequencies of gene mutations, infiltration of immune cells, as well as biological functions between different subgroups divided by the prognostic signature. Results: We established a seven IRRGs (ADM, DCBLD2, EREG, ITGA5, MIF, TREM1, and BTG2) signature which divided the PDAC patients into low- and high-risk groups. Prognostic value of the signature was validated in 11 PDAC cohorts consisting of 1337 PDAC patients from 6 countries. A nomogram that integrated the IRRGs signature and clinicopathologic factors of PDAC patients was constructed. The risk score showed positive correlation with gemcitabine resistance. Two drugs (BMS-536924 and dasatinib) might have potential therapeutic implications in high-risk PDAC patients. We found that the high-risk group had higher frequencies of KRAS, TP53, and CDKN2A mutations, increased infiltration of macrophages M0, neutrophils, and macrophages M2 cells, as well as upregulated hypoxia and glycolysis pathways, while the low-risk group had increased infiltration of CD8+ T, naïve B, and plasma and macrophages M1 cells. Conclusion: We constructed and validated an IRRGs signature that could be used to predict the prognosis and gemcitabine response of patients with PDAC, as well as two drugs (BMS-536924 and dasatinib) may contribute to PDAC treatment.
Collapse
Affiliation(s)
- Zhijun Xiao
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jinyin Li
- Department of Pharmacy, Xuhui Central Hospital of Shanghai, Shanghai, China
| | - Qian Yu
- Division of Interventional Radiology, University of Chicago, Chicago, IL, United States
| | - Ting Zhou
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jingjing Duan
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Zhen Yang
- Department of Central Laboratory, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Cuicui Liu
- Department of Clinical Laboratory, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Feng Xu
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.,Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| |
Collapse
|
161
|
Wang W, Cheng B, Yu Q. Cancer-associated fibroblasts as accomplices to confer therapeutic resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:889-901. [PMID: 36627901 PMCID: PMC9771752 DOI: 10.20517/cdr.2022.67] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 04/21/2023]
Abstract
The "seed and soil" concept has reformed paradigms for cancer treatment in the past decade. Accumulating evidence indicates that the intimate crosstalk between cancer cells and stromal cells plays a tremendous role in tumor progression. Cancer-associated fibroblasts (CAFs), the largest population of stroma cells, influence therapeutic effects through diverse mechanisms. Herein, we summarize the recent advances in the versatile functions of CAFs regarding their heterogeneity, and we mainly discuss the pro-tumorigenic functions of CAFs which promote tumorigenesis and confer therapeutic resistance to tumors. Targeting CAFs is emerging as one of the most appealing strategies in anticancer therapies. The endeavors to target or reprogram the specific subtypes of CAFs provide great cancer treatment opportunities, which may provide a better clinical benefit to cancer patients.
Collapse
Affiliation(s)
- Wenyu Wang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Bing Cheng
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Qiang Yu
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore 138672, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore
- Correspondence to: Prof. Qiang Yu, Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore. E-mail:
| |
Collapse
|
162
|
Hrabák P, Kalousová M, Krechler T, Zima T. Pancreatic stellate cells - rising stars in pancreatic pathologies. Physiol Res 2021. [DOI: 10.33549//physiolres.934783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pluripotent pancreatic stellate cells (PSCs) receive growing interest in past decades. Two types of PSCs are recognized –vitamin A accumulating quiescent PSCs and activated PSCs- the main producents of extracellular matrix in pancreatic tissue. PSCs plays important role in pathogenesis of pancreatic fibrosis in pancreatic cancer and chronic pancreatitis. PSCs are intensively studied as potential therapeutical target because of their important role in developing desmoplastic stroma in pancreatic cancer. There also exists evidence that PSC are involved in other pathologies like type-2 diabetes mellitus. This article brings brief characteristics of PSCs and recent advances in research of these cells.
Collapse
Affiliation(s)
| | - M Kalousová
- 2Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | | | | |
Collapse
|
163
|
Bedhiafi T, Inchakalody VP, Fernandes Q, Mestiri S, Billa N, Uddin S, Merhi M, Dermime S. The potential role of vitamin C in empowering cancer immunotherapy. Biomed Pharmacother 2021; 146:112553. [PMID: 34923342 DOI: 10.1016/j.biopha.2021.112553] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin C also known as L-ascorbic acid is a nutrient naturally occurring in many fruits and vegetables and widely known for its potent antioxidant activity. Several studies have highlighted the importance of using high dose vitamin C as an adjuvant anti-cancer therapy. Interestingly, it has been shown that vitamin C is able to modulate the anti-cancer immune response and to help to overcome the resistance to immune checkpoints blockade (ICB) drugs such as cytotoxic T-lymphocyte antigen 4 (CLTA-4) and programmed cell death ligand 1 (PD-L1/PD-1) inhibitors. Indeed, it was reported that vitamin C regulates several mechanisms developed by cancer cells to escape T cells immune response and resist ICB. Understanding the role of vitamin C in the anti-tumor immune response will pave the way to the development of novel combination therapies that would enhance the response of cancer patients to ICB immunotherapy. In this review, we discuss the effect of vitamin C on the immune system and its potential role in empowering cancer immunotherapy through its pro-oxidant potential, its ability to modulate epigenetic factors and its capacity to regulate the expression of different cytokines involved in the immune response.
Collapse
Affiliation(s)
- Takwa Bedhiafi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute and dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
164
|
Alhobayb T, Peravali R, Ashkar M. The Relationship between Acute and Chronic Pancreatitis with Pancreatic Adenocarcinoma: Review. Diseases 2021; 9:diseases9040093. [PMID: 34940031 PMCID: PMC8700754 DOI: 10.3390/diseases9040093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with poor prognosis, leading to significant cancer-related mortality and an overall five-year survival rate of about nine percent. Acute and chronic pancreatitis have been associated with PDAC through common risk factors based on multiple epidemiological studies. Acute pancreatitis (AP) might be one of the earliest manifestations of PDAC, but evolving chronic pancreatitis (CP) following recurrent bouts of AP has been proposed as a risk factor for cancer development in the setting of persistent inflammation and ongoing exposure to carcinogens. This review aims to highlight the evidence supporting the relationship between acute and chronic pancreatitis with PDAC.
Collapse
Affiliation(s)
- Tamara Alhobayb
- Department of Medicine, Division of Gastroenterology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Rahul Peravali
- Department of Internal Medicine, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Motaz Ashkar
- Department of Medicine, Division of Gastroenterology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
- Correspondence:
| |
Collapse
|
165
|
Vaish U, Jain T, Are AC, Dudeja V. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma: An Update on Heterogeneity and Therapeutic Targeting. Int J Mol Sci 2021; 22:13408. [PMID: 34948209 PMCID: PMC8706283 DOI: 10.3390/ijms222413408] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related morbidity and mortality in the western world, with limited therapeutic strategies and dismal long-term survival. Cancer-associated fibroblasts (CAFs) are key components of the pancreatic tumor microenvironment, maintaining the extracellular matrix, while also being involved in intricate crosstalk with cancer cells and infiltrating immunocytes. Therefore, they are potential targets for developing therapeutic strategies against PDAC. However, recent studies have demonstrated significant heterogeneity in CAFs with respect to their origins, spatial distribution, and functional phenotypes within the PDAC tumor microenvironment. Therefore, it is imperative to understand and delineate this heterogeneity prior to targeting CAFs for PDAC therapy.
Collapse
Affiliation(s)
| | | | | | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (U.V.); (T.J.); (A.C.A.)
| |
Collapse
|
166
|
Li Z, Sun G, Sun G, Cheng Y, Wu L, Wang Q, Lv C, Zhou Y, Xia Y, Tang W. Various Uses of PD1/PD-L1 Inhibitor in Oncology: Opportunities and Challenges. Front Oncol 2021; 11:771335. [PMID: 34869005 PMCID: PMC8635629 DOI: 10.3389/fonc.2021.771335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The occurrence and development of cancer are closely related to the immune escape of tumor cells and immune tolerance. Unlike previous surgical, chemotherapy, radiotherapy and targeted therapy, tumor immunotherapy is a therapeutic strategy that uses various means to stimulate and enhance the immune function of the body, and ultimately achieves the goal of controlling tumor cells.With the in-depth understanding of tumor immune escape mechanism and tumor microenvironment, and the in-depth study of tumor immunotherapy, immune checkpoint inhibitors represented by Programmed Death 1/Programmed cell Death-Ligand 1(PD-1/PD-L1) inhibitors are becoming increasingly significant in cancer medication treatment. employ a variety of ways to avoid detection by the immune system, a single strategy is not more effective in overcoming tumor immune evasion and metastasis. Combining different immune agents or other drugs can effectively address situations where immunotherapy is not efficacious, thereby increasing the chances of success and alternative access to alternative immunotherapy. Immune combination therapies for cancer have become a hot topic in cancer treatment today. In this paper, several combination therapeutic modalities of PD1/PD-L1 inhibitors are systematically reviewed. Finally, an analysis and outlook are provided in the context of the recent advances in combination therapy with PD1/PD-L1 inhibitors and the pressing issues in this field.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yichan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
167
|
Kujan O, Agag M, Smaga M, Vaishnaw Y, Idrees M, Shearston K, Farah CS. PD-1/PD-L1, Treg-related proteins, and tumour-infiltrating lymphocytes are associated with the development of oral squamous cell carcinoma. Pathology 2021; 54:409-416. [PMID: 34872754 DOI: 10.1016/j.pathol.2021.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Cancer immunomodulation has been implicated in the development of oral squamous cell carcinoma (OSCC), however the role of specific immunomodulatory proteins is not completely understood, particularly in the early stages of the disease. Oral potentially malignant disorders such as leukoplakia commonly precede OSCC but not all will undergo malignant transformation. The aim of this study was to evaluate the diagnostic utility of specific immunomodulator proteins and their role in the progression of OSCC. Samples from 101 patients were included in the study. Cases were classified based on histopathology into four groups: non-dysplastic epithelial hyperplasia/keratosis, low-grade dysplasia, high-grade dysplasia, and OSCC. The PD-1/PD-L1 pathway, as well as regulatory T cell (Treg)-related proteins including FOXP3, TGF-β, IL-6, and IL-10 were immunohistochemically quantified. The number of tumour-infiltrating lymphocytes (TILs) was also assessed for each case. Multinominal regression models were undertaken to assess the significance of each protein in predicting the histopathological grade of oral epithelial disorders, and three diagnostic models were assessed. Significant positive associations were found between the immunoreactive score of each protein and the histopathological grade, p<0.05 suggesting that the PD-1/PD-L1 pathway, Treg-related proteins, and TILs are associated with the development of OSCC. Diagnostic models using the investigated proteins and TILs predicted the grade of oral epithelial disorder, p<0.05. The associated accuracy of this approach was 84.92%. Our findings support the notion that immunomodulation events may play a role in evading the immune system and contributing to potential malignant transformation of oral epithelial disorders. Our data also provide supporting evidence for the potential application of immune checkpoint inhibitors in the chemoprevention of OSCC. Further longitudinal studies to assess individual T-cell populations within the immune microenvironment of various oral potentially malignant disorders are warranted.
Collapse
Affiliation(s)
- Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia.
| | - Muhamed Agag
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Monika Smaga
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Yash Vaishnaw
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Majdy Idrees
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Kate Shearston
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research and Education, Nedlands, WA, Australia; Oral, Maxillofacial and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, Australia; Anatomical Pathology, Australian Clinical Labs, Subiaco, WA, Australia
| |
Collapse
|
168
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
169
|
Pretta A, Lai E, Persano M, Donisi C, Pinna G, Cimbro E, Parrino A, Spanu D, Mariani S, Liscia N, Dubois M, Migliari M, Impera V, Saba G, Pusceddu V, Puzzoni M, Ziranu P, Scartozzi M. Uncovering key targets of success for immunotherapy in pancreatic cancer. Expert Opin Ther Targets 2021; 25:987-1005. [PMID: 34806517 DOI: 10.1080/14728222.2021.2010044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite available treatment options, pancreatic ductal adenocarcinoma (PDAC) is frequently lethal. Recent immunotherapy strategies have failed to yield any notable impact. Therefore, research is focussed on unearthing new drug targets and therapeutic strategies to tackle this malignancy and attain more positive outcomes for patients. AREAS COVERED In this perspective article, we evaluate the main resistance mechanisms to immune checkpoint inhibitors (ICIs) and the approaches to circumvent them. We also offer an assessment of concluded and ongoing trials of PDAC immunotherapy. Literature research was performed on Pubmed accessible through keywords such as: 'pancreatic ductal adenocarcinoma,' 'immunotherapy,' 'immunotherapy resistance,' 'immune escape,' 'biomarkers.' Papers published between 2000 and 2021 were selected. EXPERT OPINION The tumor microenvironment is a critical variable of treatment resistance because of its role as a physical barrier and inhibitory immune signaling. Promising therapeutic strategies appear to be a combination of immunotherapeutics with other targeted treatments. Going forward, predictive biomarkers are required to improve patient selection. Biomarker-driven trials could enhance approaches for assessing the role of immunotherapy in PDAC.
Collapse
Affiliation(s)
- Andrea Pretta
- Medical Oncology Unit, Sapienza University of Rome, Rome Italy.,Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giovanna Pinna
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Erika Cimbro
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Alissa Parrino
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Nicole Liscia
- Medical Oncology Unit, Sapienza University of Rome, Rome Italy.,Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valentino Impera
- Medical Oncology Unit, Sapienza University of Rome, Rome Italy.,Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| |
Collapse
|
170
|
Schoonderwoerd MJA, Hakuno SK, Sassen M, Kuhlemaijer EB, Paauwe M, Slingerland M, Fransen MF, Hawinkels LJAC. Targeting Endoglin Expressing Cells in the Tumor Microenvironment Does Not Inhibit Tumor Growth in a Pancreatic Cancer Mouse Model. Onco Targets Ther 2021; 14:5205-5220. [PMID: 34744438 PMCID: PMC8565992 DOI: 10.2147/ott.s322276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer and is known to have low immunogenicity and an immunosuppressive microenvironment. It is also characterized by high accumulation of dense stroma, composed of mostly cancer-associated fibroblasts (CAFs). Multiple subsets of CAFs are described, with one of them expressing the transforming growth factor (TGF)-β co-receptor endoglin. In previous work, we and others have shown that endoglin-expressing CAFs stimulate tumor progression and metastasis. Therefore, in this study, we set out to investigate the role of endoglin-expressing CAFs in pancreatic cancer progression. Methods First, we investigated the expression of endoglin on CAFs in both human tissues as well as a mouse model for PDAC. Since CAF-specific endoglin expression was high, we targeted endoglin by using the endoglin neutralizing antibody TRC105 in the murine KPC model for PDAC. Results Although some signs of immune activation were observed, TRC105 did not affect tumor growth. Since 90% of the CD8+ T-cells expressed the immune checkpoint PD-1, we investigated the combination with a PD1 checkpoint inhibitor, which did not enhance therapeutic responses. Finally, genetic deletion of endoglin from collagen 1a1 expressing cells also did not affect the growth of the mouse KPC tumors. Conclusion Our results show that although endoglin is highly expressed on PDAC-CAFs and signaling is efficiently inhibited by TRC105, this does not result in decreased tumor growth in the KPC model for pancreatic cancer.
Collapse
Affiliation(s)
- Mark J A Schoonderwoerd
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarah K Hakuno
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn Sassen
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eleonore B Kuhlemaijer
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Madelon Paauwe
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marije Slingerland
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
171
|
Stump CT, Roehle K, Manjarrez Orduno N, Dougan SK. Radiation combines with immune checkpoint blockade to enhance T cell priming in a murine model of poorly immunogenic pancreatic cancer. Open Biol 2021; 11:210245. [PMID: 34784792 PMCID: PMC8595997 DOI: 10.1098/rsob.210245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
Radiation has been a pillar of cancer therapy for decades. The effects of radiation on the anti-tumour immune response are variable across studies and have not been explicitly defined in poorly immunogenic tumour types. Here, we employed combination checkpoint blockade immunotherapy with stereotactic body radiation therapy and examined the effect on tumour growth and immune infiltrates in subcutaneous and orthotopic mouse models of pancreatic cancer. Although immune checkpoint blockade and radiation were ineffective alone, their combination produced a modest growth delay in both irradiated and non-irradiated tumours that corresponded with significant increases in CD8+ T cells, CD4+ T cells and tumour-specific T cells as identified by IFNγ ELISpot. We conclude that radiation enhances priming of tumour-specific T cells in poorly immunogenic tumours and that the frequency of these T cells can be further increased by combination with immune checkpoint blockade.
Collapse
Affiliation(s)
- Courtney T Stump
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA 02215, USA
| | - Kevin Roehle
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | | | - Stephanie K Dougan
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
172
|
Bent EH, Millán-Barea LR, Zhuang I, Goulet DR, Fröse J, Hemann MT. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat Commun 2021; 12:6218. [PMID: 34711820 PMCID: PMC8553783 DOI: 10.1038/s41467-021-26407-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
Cytotoxic chemotherapeutics primarily function through DNA damage-induced tumor cell apoptosis, although the inflammation provoked by these agents can stimulate anti-cancer immune responses. The mechanisms that control these distinct effects and limit immunogenic responses to DNA-damage mediated cell death in vivo are currently unclear. Using a mouse model of BCR-ABL+ B-cell acute lymphoblastic leukemia, we show that chemotherapy-induced anti-cancer immunity is suppressed by the tumor microenvironment through production of the cytokine IL-6. The chemotherapeutic doxorubicin is curative in IL-6-deficient mice through the induction of CD8+ T-cell-mediated anti-cancer responses, while moderately extending lifespan in wild type tumor-bearing mice. We also show that IL-6 suppresses the effectiveness of immune-checkpoint inhibition with anti-PD-L1 blockade. Our results suggest that IL-6 is a key regulator of anti-cancer immune responses induced by genotoxic stress and that its inhibition can switch cancer cell clearance from primarily apoptotic to immunogenic, promoting and maintaining durable anti-tumor immune responses.
Collapse
Affiliation(s)
- Eric H Bent
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Luis R Millán-Barea
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Iris Zhuang
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Daniel R Goulet
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Julia Fröse
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Michael T Hemann
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
173
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 1169] [Impact Index Per Article: 292.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
174
|
Lu C, Klement JD, Smith AD, Yang D, Waller JL, Browning DD, Munn DH, Liu K. p50 suppresses cytotoxic T lymphocyte effector function to regulate tumor immune escape and response to immunotherapy. J Immunother Cancer 2021; 8:jitc-2020-001365. [PMID: 33051343 PMCID: PMC7555101 DOI: 10.1136/jitc-2020-001365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background NF-κB is a key link between inflammation and cancer. Previous studies of NF-κB have largely focused on tumor cells, and the intrinsic function of NF-κB in T cells in tumor development and response to immunotherapy is largely unknown. We aimed at testing the hypothesis that NF-κB1 (p50) activation in T cells underlies human colon cancer immune escape and human cancer non-response to anti-PD-1 immunotherapy. Methods We screened NF-κB activation in human colon carcinoma and used mouse models to determine p50 function in tumor cells and immune cells. RNA-Seq was used to identify p50 target genes. p50 binding to target gene promoters were determined by electrophoresis mobility shift assay and chromatin immunoprecipitation. A p50 activation score was generated from gene expression profiling and used to link p50 activation to T-cell activation and function pre-nivolumab and post-nivolumab immunotherapy in human patients with cancer. Results p50 is the dominant form of NF-κB that is highly activated in immune cells in the human colorectal carcinoma microenvironment and neighboring non-neoplastic colon epithelial cells. Tumor cell intrinsic p50 signaling and T-cell intrinsic p50 signaling exert opposing functions in tumor growth control in vivo. Deleting Nfkb1 in tumor cells increased whereas in T cells decreased tumor growth in preclinical mouse models. Gene expression profiling identified Gzmb as a p50 target in T cells. p50 binds directly to a previously uncharacterized κB sequence at the Gzmb promoter in T cells, resulting in repression of Gzmb expression in tumor-infiltrating cytotoxic T lymphocytes (CTLs) to induce a dysfunctional CTL phenotype to promote tumor immune escape. p50 activation is inversely correlated with both GZMB expression and T-cell tumor infiltration in human colorectal carcinoma. Furthermore, nivolumab immunotherapy decreased p50 activation and increased GZMB expression in human patients with melanoma. Conclusions Inflammation activates p50 that binds to the Gzmb promoter to repress granzyme B expression in T cells, resulting in CTL dysfunction to confer tumor immune escape and decreased response to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States .,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Alyssa D Smith
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Jennifer L Waller
- Department of Population Health Sciences, Augusta University, Augusta, Georgia, United States
| | - Darren D Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States .,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| |
Collapse
|
175
|
Anti-IL-6 cytokine treatment has no impact on elevated hematocrit and splenomegaly in a polycythemia vera mouse model. Blood Adv 2021; 6:399-404. [PMID: 34559181 PMCID: PMC8791576 DOI: 10.1182/bloodadvances.2021004379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Somatic mutations in JAK2, MPL and Calreticulin and inflammation play a key role in pathophysiology of chronic myeloproliferative neoplasia (CMN). One of the most prominent cytokines elevated in serum of Polycythemia vera patients is interleukin-6 (IL-6). Currently, it is being discussed whether suppression of inflammation by anti-cytokine approaches as anti-IL-6 treatment may be therapeutically useful in CMN. We here sought to investigate the efficacy of anti-IL-6 treatment on inflammatory cytokines, hematocrit and splenomegaly in CMN like disease. JAK2-V617F knock-in mice (JAK2+/V617F) were treated for three weeks with anti-IL-6 antibody (Ab) or IgG-control. Upon anti-IL-6 Ab treatment, serum levels of CXCL2 and CXCL10 were significantly reduced. In addition, CXCL1, CCL11, M-CSF, G-CSF, IL-17, IL-12p40 and CCL2 were reduced by a factor of 0.3 - 0.8. Partly, this was also achieved by applying high-dose IgG. Hematocrit, erythrocyte and leukocyte counts were elevated in JAK2+/V617F mice but were not reduced by anti-IL6 Ab treatment. In addition, there was no apparent amelioration of splenomegaly and spleen histopathology. In conclusion, anti-IL-6 Ab treatment did not result in improvement of hematological disease parameters but was shown to modulate the serum cytokine signature.
Collapse
|
176
|
Ware MB, El-Rayes BF, Lesinski GB. Mirage or long-awaited oasis: reinvigorating T-cell responses in pancreatic cancer. J Immunother Cancer 2021; 8:jitc-2020-001100. [PMID: 32843336 PMCID: PMC7449491 DOI: 10.1136/jitc-2020-001100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is plagued by a dismal 5-year survival rate, early onset of metastasis and limited efficacy of systemic therapies. This scenario highlights the need to fervently pursue novel therapeutic strategies to treat this disease. Recent research has uncovered complicated dynamics within the tumor microenvironment (TME) of PDAC. An abundant stroma provides a framework for interactions between cancer-associated fibroblasts, suppressive myeloid cells and regulatory lymphocytes, which together create an inhospitable environment for adaptive immune responses. This accounts for the poor infiltration and exhausted phenotypes of effector T cells within pancreatic tumors. Innovative studies in genetically engineered mouse models have established that with appropriate pharmacological modulation of suppressive elements in the TME, T cells can be prompted to regress pancreatic tumors. In light of this knowledge, innovative combinatorial strategies involving immunotherapy and targeted therapies working in concert are rapidly emerging. This review will highlight recent advances in the field related to immune suppression in PDAC, emerging preclinical data and rationale for ongoing immunotherapy clinical trials. In particular, we draw attention to foundational findings involving T-cell activity in PDAC and encourage development of novel therapeutics to improve T-cell responses in this challenging disease.
Collapse
Affiliation(s)
- Michael Brandon Ware
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Bassel F El-Rayes
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
177
|
DiToro D, Basu R. Emerging Complexity in CD4 +T Lineage Programming and Its Implications in Colorectal Cancer. Front Immunol 2021; 12:694833. [PMID: 34489941 PMCID: PMC8417887 DOI: 10.3389/fimmu.2021.694833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The intestinal immune system has the difficult task of protecting a large environmentally exposed single layer of epithelium from pathogens without allowing inappropriate inflammatory responses. Unmitigated inflammation drives multiple pathologies, including the development of colorectal cancer. CD4+T cells mediate both the suppression and promotion of intestinal inflammation. They comprise an array of phenotypically and functionally distinct subsets tailored to a specific inflammatory context. This diversity of form and function is relevant to a broad array of pathologic and physiologic processes. The heterogeneity underlying both effector and regulatory T helper cell responses to colorectal cancer, and its impact on disease progression, is reviewed herein. Importantly, T cell responses are dynamic; they exhibit both quantitative and qualitative changes as the inflammatory context shifts. Recent evidence outlines the role of CD4+T cells in colorectal cancer responses and suggests possible mechanisms driving qualitative alterations in anti-cancer immune responses. The heterogeneity of T cells in colorectal cancer, as well as the manner and mechanism by which they change, offer an abundance of opportunities for more specific, and likely effective, interventional strategies.
Collapse
Affiliation(s)
- Daniel DiToro
- Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH MIT and Harvard, Cambridge, MA, United States
| | - Rajatava Basu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
178
|
Li E, Huang X, Zhang G, Liang T. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy. J Exp Clin Cancer Res 2021; 40:279. [PMID: 34479614 PMCID: PMC8414725 DOI: 10.1186/s13046-021-02055-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Dysregulated expression and activation of receptor tyrosine kinases (RTKs) are associated with a range of human cancers. However, current RTK-targeting strategies exert little effect on pancreatic cancer, a highly malignant tumor with complex immune microenvironment. Given that immunotherapy for pancreatic cancer still remains challenging, this study aimed to elucidate the prognostic role of RTKs in pancreatic tumors with different immunological backgrounds and investigate their targeting potential in pancreatic cancer immunotherapy. METHODS Kaplan-Meier plotter was used to analyze the prognostic significance of each of the all-known RTKs to date in immune "hot" and "cold" pancreatic cancers. Gene Expression Profiling Interactive Analysis-2 was applied to assess the differential expression of RTKs between pancreatic tumors and normal pancreatic tissues, as well as its correlation with immune checkpoints (ICPs). One hundred and fifty in-house clinical tissue specimens of pancreatic cancer were collected for expression and correlation validation via immunohistochemical analysis. Two pancreatic cancer cell lines were used to demonstrate the regulatory effects of RTKs on ICPs by biochemistry and flow cytometry. Two in vivo models bearing pancreatic tumors were jointly applied to investigate the combinational regimen of RTK inhibition and immune checkpoint blockade for pancreatic cancer immunotherapy. RESULTS MET was identified as a pancreatic cancer-specific RTK, which is significantly associated with prognosis in both immune "hot" and "cold" pancreatic cancers. MET was observed to be highly upregulated in pancreatic cancer tissues, and positively correlated with PD-L1 levels. Elevated MET and PD-L1 expressions were closely associated with lymph node metastasis, tumor TNM stage, and overall survival in pancreatic cancer. Mechanistically, MET could interact with PD-L1, and maintain its expression level in multiple ways. MET deficiency was found to facilitate lymphocyte infiltration into pancreatic tumors. Finally, significant benefits of combining MET inhibition with PD-1/PD-L1 blockage were verified in both orthotopic and subcutaneous mouse models of pancreatic cancer. CONCLUSIONS This study systematically investigated the potential effectiveness of a novel pancreatic cancer immunotherapy targeting RTKs, and revealed the function of MET in PD-L1 regulation as well as the combined therapeutic efficacy of MET and PD-L1 in pancreatic cancer.
Collapse
Affiliation(s)
- Enliang Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, 310009, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310058, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, 310003, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310058, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, 310003, Hangzhou, Zhejiang, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, 310009, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310058, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, 310003, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310058, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
179
|
Koikawa K, Kibe S, Suizu F, Sekino N, Kim N, Manz TD, Pinch BJ, Akshinthala D, Verma A, Gaglia G, Nezu Y, Ke S, Qiu C, Ohuchida K, Oda Y, Lee TH, Wegiel B, Clohessy JG, London N, Santagata S, Wulf GM, Hidalgo M, Muthuswamy SK, Nakamura M, Gray NS, Zhou XZ, Lu KP. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell 2021; 184:4753-4771.e27. [PMID: 34388391 PMCID: PMC8557351 DOI: 10.1016/j.cell.2021.07.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.
Collapse
Affiliation(s)
- Kazuhiro Koikawa
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shin Kibe
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Futoshi Suizu
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Nobufumi Sekino
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nami Kim
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Benika J Pinch
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dipikaa Akshinthala
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ana Verma
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giorgio Gaglia
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yutaka Nezu
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Shizhong Ke
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chenxi Qiu
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tae Ho Lee
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Babara Wegiel
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sandro Santagata
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gerburg M Wulf
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Manuel Hidalgo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Senthil K Muthuswamy
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Kun Ping Lu
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
180
|
Zhang Z, Zhang C, Luo Y, Zhang G, Wu P, Sun N, He J. RNA N 6 -methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: Current landscape and therapeutic potential. Clin Transl Med 2021; 11:e525. [PMID: 34586737 PMCID: PMC8473646 DOI: 10.1002/ctm2.525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022] Open
Abstract
N6 -methyladenosine (m6 A), the newest and most prevalent layer of internal epigenetic modification in eukaryotic mRNA, has been demonstrated to play a critical role in cancer biology. Increasing evidence has highlighted that the interaction between cancer stem cells (CSCs) and the tumor immune microenvironment (TIME) is the root cause of tumorigenesis, metastasis, therapy resistance, and recurrence. In recent studies, the m6 A modification has been tightly linked to this CSC-TIME interplay, participating in the regulation of CSCs and TIME remolding. Interestingly, the m6 A modification has also been identified as a novel decisive factor in the efficacy of immunotherapies-particularly anti-PD-1/PD-L1 monotherapies-by changing the plasticity of the TIME. Given the functional importance of the m6 A modification in the crosstalk between CSCs and the TIME, targeting m6 A regulators will open new avenues to overcome therapeutic resistance, especially for immune checkpoint-based immunotherapy. In the present review, we summarize the current landscape of m6 A modifications in CSCs and the TIME, and also prospect the underling role of m6 A modifications at the crossroads of CSCs and the TIME for the first time. Additionally, to provide the possibility of modulating m6 A modifications as an emerging therapeutic strategy, we also explore the burgeoning inhibitors and technologies targeting m6 A regulators. Lastly, considering recent advances in m6 A-seq technologies and cancer drug development, we propose the future directions of m6 A modification in clinical applications, which may not only help to improve individualized monitoring and therapy but also provide enhanced and durable responses in patients with insensitive tumors.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
181
|
Mohamed Abd-El-Halim Y, El Kaoutari A, Silvy F, Rubis M, Bigonnet M, Roques J, Cros J, Nicolle R, Iovanna J, Dusetti N, Mas E. A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. EBioMedicine 2021; 71:103541. [PMID: 34425307 PMCID: PMC8379629 DOI: 10.1016/j.ebiom.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by an important heterogeneity, reflected by different clinical outcomes and chemoresistance. During carcinogenesis, tumor cells display aberrant glycosylated structures, synthetized by deregulated glycosyltransferases, supporting the tumor progression. In this study, we aimed to determine whether PDAC could be stratified through their glycosyltransferase expression profiles better than the current binary classification (basal-like and classical) in order to improve detection of patients with poor prognosis. Methods Bioinformatic analysis of 169 glycosyltransferase RNA sequencing data were performed for 74 patient-derived xenografts (PDX) of resected and unresectable tumors. The Australian cohort of International Cancer Genome Consortium and the microarray dataset from Puleo patient's cohort were used as independent validation datasets. Findings New PDAC stratification based on glycosyltransferase expression profile allowed to distinguish different groups of patients with distinct clinical outcome (p-value = 0.007). A combination of 19 glycosyltransferases differentially expressed in PDX defined a glyco-signature, whose prognostic value was validated on datasets including resected whole tumor tissues. The glyco-signature was able to discriminate three clusters of PDAC patients on the validation cohorts, two clusters displaying a short overall survival compared to one cluster having a better prognosis. Both poor prognostic clusters having different glyco-profiles in Puleo patient's cohort were correlated with stroma activated or desmoplastic subtypes corresponding to distinct microenvironment features (p-value < 0.0001). Besides, differential expression and enrichment analyses revealed deregulated functional pathways specific to different clusters. Interpretation This study identifies a glyco-signature relevant for a prognostic use, potentially applicable to resected and unresectable PDAC. Furthermore, it provides new potential therapeutic targets. Funding This work was supported by INCa (Grants number 2018-078 and 2018-079), Fondation ARC (Grant number ARCPJA32020070002326), Cancéropôle PACA, DGOS (labelization SIRIC, Grant number 6038), Amidex Foundation and Ligue Nationale Contre le Cancer and by institutional fundings from INSERM and the Aix-Marseille Université.
Collapse
Affiliation(s)
- Yousra Mohamed Abd-El-Halim
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Abdessamad El Kaoutari
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Françoise Silvy
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Marion Rubis
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Martin Bigonnet
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Julie Roques
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Jérôme Cros
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Rémy Nicolle
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - Juan Iovanna
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nelson Dusetti
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | - Eric Mas
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| |
Collapse
|
182
|
Kandikattu HK, Venkateshaiah SU, Mishra A. Chronic Pancreatitis and the Development of Pancreatic Cancer. Endocr Metab Immune Disord Drug Targets 2021; 20:1182-1210. [PMID: 32324526 DOI: 10.2174/1871530320666200423095700] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Pancreatitis is a fibro-inflammatory disorder of the pancreas that can occur acutely or chronically as a result of the activation of digestive enzymes that damage pancreatic cells, which promotes inflammation. Chronic pancreatitis with persistent fibro-inflammation of the pancreas progresses to pancreatic cancer, which is the fourth leading cause of cancer deaths across the globe. Pancreatic cancer involves cross-talk of inflammatory, proliferative, migratory, and fibrotic mechanisms. In this review, we discuss the role of cytokines in the inflammatory cell storm in pancreatitis and pancreatic cancer and their role in the activation of SDF1α/CXCR4, SOCS3, inflammasome, and NF-κB signaling. The aberrant immune reactions contribute to pathological damage of acinar and ductal cells, and the activation of pancreatic stellate cells to a myofibroblast-like phenotype. We summarize several aspects involved in the promotion of pancreatic cancer by inflammation and include a number of regulatory molecules that inhibit that process.
Collapse
Affiliation(s)
- Hemanth K Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha U Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
183
|
Wang M, Zhai X, Li J, Guan J, Xu S, Li Y, Zhu H. The Role of Cytokines in Predicting the Response and Adverse Events Related to Immune Checkpoint Inhibitors. Front Immunol 2021; 12:670391. [PMID: 34367136 PMCID: PMC8339552 DOI: 10.3389/fimmu.2021.670391] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the overall survival (OS) and progression-free survival (PFS) of patients with advanced cancer has been significantly improved due to the application of immune checkpoint inhibitors (ICIs). Low response rate and high occurrence of immune-related adverse events (irAEs) make urgently need for ideal predictive biomarkers to identity efficient population and guide treatment strategies. Cytokines are small soluble proteins with a wide range of biological activity that are secreted by activated immune cells or tumor cells and act as a bridge between innate immunity, infection, inflammation and cancer. Cytokines can be detected in peripheral blood and suitable for dynamic detection. During the era of ICIs, many studies investigated the role of cytokines in prediction of the efficiency and toxicity of ICIs. Herein, we review the relevant studies on TNF-α, IFN-γ, IL-6, IL-8, TGF-β and other cytokines as biomarkers for predicting ICI-related reactions and adverse events, and explore the immunomodulatory mechanisms. Finally, the most important purpose of this review is to help identify predictors of ICI to screen patients who are most likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingyuan Guan
- Department of Cardiology, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Shuhui Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - YuYing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
184
|
Rudno-Rudzińska J, Kielan W, Guziński M, Płochocki M, Antończyk A, Kulbacka J. New therapeutic strategy: Personalization of pancreatic cancer treatment-irreversible electroporation (IRE), electrochemotherapy (ECT) and calcium electroporation (CaEP) - A pilot preclinical study. Surg Oncol 2021; 38:101634. [PMID: 34303953 DOI: 10.1016/j.suronc.2021.101634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
In this study, irreversible electroporation (IRE), electrochemotherapy (ECT), and calcium electroporation (CaEP) techniques were investigated as new strategies for human pancreatic cancer. Qualification of the patients, best "therapeutic moment" for each patient, safety, and complications after procedures were examined. In this pilot study were included 13 patients in this study, which were operated on in different pancreatic cancer stages. Patients underwent IRE or ECT with intravenous admission of cisplatin or electroporation with calcium intratumoral administration. The IRE procedure was safe for the patients. Medium overall survival for IRE, IRE + CTH, and IRE + CaCl2 was respectively: 16, 29.5, and 19 months comparing to 10 months in control chemotherapy (CTH) group. Thus, IRE, ECT, and CaEP can be effective strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Julia Rudno-Rudzińska
- Department of General and Oncological Surgery, Medical University Hospital, Borowska 213, 50-556, Wroclaw, Poland.
| | - Wojciech Kielan
- Department of General and Oncological Surgery, Medical University Hospital, Borowska 213, 50-556, Wroclaw, Poland
| | - Maciej Guziński
- Department of Radiology Medical University Hospital, Borowska213, 50-556, Wroclaw, Poland
| | - Maciej Płochocki
- Department of Oncology Medical University Hospital, Borowska 213, 50-556, Wroclaw, Poland
| | - Agnieszka Antończyk
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 51, 50-366, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland.
| |
Collapse
|
185
|
Geng X, Chen H, Zhao L, Hu J, Yang W, Li G, Cheng C, Zhao Z, Zhang T, Li L, Sun B. Cancer-Associated Fibroblast (CAF) Heterogeneity and Targeting Therapy of CAFs in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:655152. [PMID: 34336821 PMCID: PMC8319605 DOI: 10.3389/fcell.2021.655152] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease that typically features a dramatic desmoplastic reaction, especially fibroblasts. The roles of cancer-associated fibroblasts (CAFs) in PDAC have received more attention in recent years. As increasing evidence suggests the heterogeneity of CAFs in PDAC, different CAF subtypes have been shown to support tumor growth, while others suppress cancer proliferation. Myofibrotic CAFs (myCAFs) show alpha-smooth muscle actin (α-SMA)high interleukin-6 (IL-6)low myofibroblastic features, are activated by direct contact with tumor cells, and are located in the periglandular region. Inflammatory CAFs (iCAFs) show α-SMAlow IL-6high inflammatory features, are activated by paracrine factors secreted from tumor cells, and are located away from cancer cells. Antigen-presenting CAFs (apCAFs) show major histocompatibility complex II (MHC II) family genes that are highly expressed. CAFs have also been gradually explored as diagnostic and prognostic markers in pancreatic cancer. Targeted therapy of CAFs in PDAC has gradually attracted attention. With the deepening of related studies, some meaningful positive and negative results have surfaced, and CAFs may be the key to unlocking the door to pancreatic cancer treatment. Our review summarizes recent advances in the heterogeneity, function, and markers of CAFs in pancreatic cancer, as well as research and treatment targeting CAFs in pancreatic cancer.
Collapse
Affiliation(s)
- Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Abdominal Endoscopic Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Zhao
- Department of Gynecology, Qinghai University Affiliated Hospital, Xining, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
186
|
Du W, Pasca di Magliano M, Zhang Y. Therapeutic Potential of Targeting Stromal Crosstalk-Mediated Immune Suppression in Pancreatic Cancer. Front Oncol 2021; 11:682217. [PMID: 34290984 PMCID: PMC8287251 DOI: 10.3389/fonc.2021.682217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
The stroma-rich, immunosuppressive microenvironment is a hallmark of pancreatic ductal adenocarcinoma (PDA). Tumor cells and other cellular components of the tumor microenvironment, such as cancer associated fibroblasts, CD4+ T cells and myeloid cells, are linked by a web of interactions. Their crosstalk not only results in immune evasion of PDA, but also contributes to pancreatic cancer cell plasticity, invasiveness, metastasis, chemo-resistance, immunotherapy-resistance and radiotherapy-resistance. In this review, we characterize several prevalent populations of stromal cells in the PDA microenvironment and describe how the crosstalk among them drives and maintains immune suppression. We also summarize therapeutic approaches to target the stroma. With a better understanding of the complex cellular and molecular networks in PDA, strategies aimed at sensitizing PDA to chemotherapy or immunotherapy through re-programing the tumor microenvironment can be designed, and in turn lead to improved clinical treatment for pancreatic cancer patients.
Collapse
Affiliation(s)
- Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
187
|
Lu C, Liu Z, Klement JD, Yang D, Merting AD, Poschel D, Albers T, Waller JL, Shi H, Liu K. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer 2021; 9:e002624. [PMID: 34326167 PMCID: PMC8323468 DOI: 10.1136/jitc-2021-002624] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite PD-L1 (Programmed death receptor ligand-1) expression on tumor cells and cytotoxic T lymphocytes tumor infiltration in the tumor microenvironment, human pancreatic cancer stands out as one of the human cancers that does not respond to immune checkpoint inhibitor (ICI) immunotherapy. Epigenome dysregulation has emerged as a major mechanism in T cell exhaustion and non-response to ICI immunotherapy, we, therefore, aimed at testing the hypothesis that an epigenetic mechanism compensates PD-L1 function to render pancreatic cancer non-response to ICI immunotherapy. METHODS Two orthotopic pancreatic tumor mouse models were used for chromatin immunoprecipitation-Seq and RNA-Seq to identify genome-wide dysregulation of H3K4me3 and gene expression. Human pancreatic tumor and serum were analyzed for osteopontin (OPN) protein level and for correlation with patient prognosis. OPN and PD-L1 cellular location were determined in the tumors using flow cytometry. The function of WDR5-H3K4me3 axis in OPN expression were determined by Western blotting. The function of H3K4me3-OPN axis in pancreatic cancer immune escape and response to ICI immunotherapy was determined in an orthotopic pancreatic tumor mouse model. RESULTS Mouse pancreatic tumors have a genome-wide increase in H3K4me3 deposition as compared with normal pancreas. OPN and its receptor CD44 were identified being upregulated in pancreatic tumors by their promoter H3K4me3 deposition. OPN protein is increased in both tumor cells and tumor-infiltrating immune cells in human pancreatic carcinoma and is inversely correlated with pancreatic cancer patient survival. OPN is primarily expressed in tumor cells and monocytic myeloid-derived suppressor cells (M-MDSCs), whereas PD-L1 is expressed in tumor cells, M-MDSCs, polymorphonuclear MDSCs and tumor-associated macrophages. WDR5 is essential for H3K4me3-specific histone methyltransferase activity that regulates OPN expression in tumor cells and MDSCs. Inhibition of WDR5 significantly decreased OPN protein level. Inhibition of WDR5 or knocking out of OPN suppressed orthotopic mouse pancreatic tumor growth. Inhibition of WDR5 also significantly increased efficacy of anti-PD-1 immunotherapy in suppression of mouse pancreatic tumor growth in vivo. CONCLUSIONS OPN compensates PD-L1 function to promote pancreatic cancer immune escape. Pharmacological inhibition of the WDR5-H3K4me3 epigenetic axis is effective in suppressing pancreatic tumor immune escape and in improving efficacy of anti-PD-1 immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, Nanchang University, Nanchang, China
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Alyssa D Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Dakota Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Thomas Albers
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
| | - Jennifer L Waller
- Department of Population Health Science, Medical College of Georgia, Augusta, Georgia, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
188
|
Chen S, Huang F, Chen S, Chen Y, Li J, Li Y, Lian G, Huang K. Bioinformatics-Based Identification of Tumor Microenvironment-Related Prognostic Genes in Pancreatic Cancer. Front Genet 2021; 12:632803. [PMID: 34276760 PMCID: PMC8277941 DOI: 10.3389/fgene.2021.632803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Growing evidence has highlighted that the immune and stromal cells that infiltrate in pancreatic cancer microenvironment significantly influence tumor progression. However, reliable microenvironment-related prognostic gene signatures are yet to be established. The present study aimed to elucidate tumor microenvironment-related prognostic genes in pancreatic cancer. Methods We applied the ESTIMATE algorithm to categorize patients with pancreatic cancer from TCGA dataset into high and low immune/stromal score groups and determined their differentially expressed genes. Then, univariate and LASSO Cox regression was performed to identify overall survival-related differentially expressed genes (DEGs). And multivariate Cox regression analysis was used to screen independent prognostic genes and construct a risk score model. Finally, the performance of the risk score model was evaluated by Kaplan-Meier curve, time-dependent receiver operating characteristic and Harrell’s concordance index. Results The overall survival analysis demonstrated that high immune/stromal score groups were closely associated with poor prognosis. The multivariate Cox regression analysis indicated that the signatures of four genes, including TRPC7, CXCL10, CUX2, and COL2A1, were independent prognostic factors. Subsequently, the risk prediction model constructed by those genes was superior to AJCC staging as evaluated by time-dependent receiver operating characteristic and Harrell’s concordance index, and both KRAS and TP53 mutations were closely associated with high risk scores. In addition, CXCL10 was predominantly expressed by tumor associated macrophages and its receptor CXCR3 was highly expressed in T cells at the single-cell level. Conclusions This study comprehensively investigated the tumor microenvironment and verified immune/stromal-related biomarkers for pancreatic cancer.
Collapse
Affiliation(s)
- Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feifei Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangxiang Chen
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
189
|
Qian H, Li H, Xie J, Lu X, Li F, Wang W, Tang X, Shi M, Jiang L, Li H, Chen H, Peng C, Xu Z, Deng X, Shen B. Immunity-Related Gene Signature Identifies Subtypes Benefitting From Adjuvant Chemotherapy or Potentially Responding to PD1/PD-L1 Blockage in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:682261. [PMID: 34249934 PMCID: PMC8264789 DOI: 10.3389/fcell.2021.682261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Tumor microenvironment comprises of a variety of cell types, which is quite complex and involved in chemotherapy and immune checkpoint blockage resistance. In order to explore the mechanisms involved in tumor immune microenvironment in pancreatic ductal adenocarcinoma (PDAC), we first constructed an immunity-related 18-gene signature using The Cancer Genome Atlas (TCGA) PDAC project data. Then we applied the 18-gene signature to divide PDAC patients into low score and high score groups. Patients in high score group showed inferior prognosis, which was validated in another four independent cohorts, including Ruijin cohort. High score group showed significant enrichment of pathways involved in cell division and cell cycle especially in G1/S phase transition. In high score group, IHC analysis revealed higher levels of the proliferative indexes of Ki67 and PCNA than that in low score group. Prognostic analysis confirmed that patients in high score group could benefit from the gemcitabine-based adjuvant chemotherapy. In low score group, the programmed cell death 1 ligand 1(PD-L1) (+) cases showed worse prognosis but higher T cell infiltration than PD-L1(−) cases. Our immunity-related 18-gene signature could effectively predict PDAC prognosis, and it might be a practical predictive tool to identify PDAC subtype benefitting from gemcitabine-based adjuvant chemotherapy or potentially responding to PD1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Hao Qian
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhe Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Xie
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongxiong Lu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
190
|
Pradhan RN, Krishnamurty AT, Fletcher AL, Turley SJ, Müller S. A bird's eye view of fibroblast heterogeneity: A pan-disease, pan-cancer perspective. Immunol Rev 2021; 302:299-320. [PMID: 34164824 DOI: 10.1111/imr.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts, custodians of tissue architecture and function, are no longer considered a monolithic entity across tissues and disease indications. Recent advances in single-cell technologies provide an unrestricted, high-resolution view of fibroblast heterogeneity that exists within and across tissues. In this review, we summarize a compendium of single-cell transcriptomic studies and provide a comprehensive accounting of fibroblast subsets, many of which have been described to occupy specific niches in tissues at homeostatic and pathologic states. Understanding this heterogeneity is particularly important in the context of cancer, as the diverse cancer-associated fibroblast (CAF) phenotypes in the tumor microenvironment (TME) are directly impacted by the expression phenotypes of their predecessors. Relationships between these heterogeneous populations often accompany and influence response to therapy in cancer and fibrosis. We further highlight the importance of integrating single-cell studies to deduce common fibroblast phenotypes across disease states, which will facilitate the identification of common signaling pathways, gene regulatory programs, and cell surface markers that are going to advance drug discovery and targeting.
Collapse
|
191
|
Gorchs L, Kaipe H. Interactions between Cancer-Associated Fibroblasts and T Cells in the Pancreatic Tumor Microenvironment and the Role of Chemokines. Cancers (Basel) 2021; 13:2995. [PMID: 34203869 PMCID: PMC8232575 DOI: 10.3390/cancers13122995] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Less than 10% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) survive 5 years or more, making it one of the most fatal cancers. Accumulation of T cells in pancreatic tumors is associated with better prognosis, but immunotherapies to enhance the anti-tumor activity of infiltrating T cells are failing in this devastating disease. Pancreatic tumors are characterized by a desmoplastic stroma, which mainly consists of activated cancer-associated fibroblasts (CAFs). Pancreatic CAFs have emerged as important regulators of the tumor microenvironment by contributing to immune evasion through the release of chemokines, cytokines, and growth factors, which alters T-cell migration, differentiation and cytotoxic activity. However, recent discoveries have also revealed that subsets of CAFs with diverse functions can either restrain or promote tumor progression. Here, we discuss our current knowledge about the interactions between CAFs and T cells in PDAC and summarize different therapy strategies targeting the CAF-T cell axis with focus on CAF-derived soluble immunosuppressive factors and chemokines. Identifying the functions of different CAF subsets and understanding their roles in T-cell trafficking within the tumor may be fundamental for the development of an effective combinational treatment for PDAC.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 14152 Stockholm, Sweden
| |
Collapse
|
192
|
Rupert JE, Narasimhan A, Jengelley DH, Jiang Y, Liu J, Au E, Silverman LM, Sandusky G, Bonetto A, Cao S, Lu X, O’Connell TM, Liu Y, Koniaris LG, Zimmers TA. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med 2021; 218:e20190450. [PMID: 33851955 PMCID: PMC8185651 DOI: 10.1084/jem.20190450] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Most patients with pancreatic adenocarcinoma (PDAC) suffer cachexia; some do not. To model heterogeneity, we used patient-derived orthotopic xenografts. These phenocopied donor weight loss. Furthermore, muscle wasting correlated with mortality and murine IL-6, and human IL-6 associated with the greatest murine cachexia. In cell culture and mice, PDAC cells elicited adipocyte IL-6 expression and IL-6 plus IL-6 receptor (IL6R) in myocytes and blood. PDAC induced adipocyte lipolysis and muscle steatosis, dysmetabolism, and wasting. Depletion of IL-6 from malignant cells halved adipose wasting and abolished myosteatosis, dysmetabolism, and atrophy. In culture, adipocyte lipolysis required soluble (s)IL6R, while IL-6, sIL6R, or palmitate induced myotube atrophy. PDAC cells activated adipocytes to induce myotube wasting and activated myotubes to induce adipocyte lipolysis. Thus, PDAC cachexia results from tissue crosstalk via a feed-forward, IL-6 trans-signaling loop. Malignant cells signal via IL-6 to muscle and fat, muscle to fat via sIL6R, and fat to muscle via lipids and IL-6, all targetable mechanisms for treatment of cachexia.
Collapse
Affiliation(s)
- Joseph E. Rupert
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | | | - Yanlin Jiang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Jianguo Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Ernie Au
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN
| | - Libbie M. Silverman
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - George Sandusky
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
| | - Sha Cao
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Xiaoyu Lu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas M. O’Connell
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
| | - Yunlong Liu
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
| | - Teresa A. Zimmers
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
193
|
Actin-Binding Proteins as Potential Biomarkers for Chronic Inflammation-Induced Cancer Diagnosis and Therapy. ACTA ACUST UNITED AC 2021; 2021:6692811. [PMID: 34194957 PMCID: PMC8203385 DOI: 10.1155/2021/6692811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Actin-binding proteins (ABPs), by interacting with actin, regulate the polymerization, depolymerization, bundling, and cross-linking of actin filaments, directly or indirectly, thereby mediating the maintenance of cell morphology, cell movement, and many other biological functions. Consequently, these functions of ABPs help regulate cancer cell invasion and metastasis when cancer occurs. In recent years, a variety of ABPs have been found to be abnormally expressed in various cancers, indicating that the detection and interventions of unusual ABP expression to alter this are available for the treatment of cancer. The early stages of most cancer development involve long-term chronic inflammation or repeated stimulation. This is the case for breast cancer, gastric cancer, lung cancer, prostate cancer, liver cancer, esophageal cancer, pancreatic cancer, melanoma, and colorectal cancer. This article discusses the relationship between chronic inflammation and the above-mentioned cancers, emphatically introduces relevant research on the abnormal expression of ABPs in chronic inflammatory diseases, and reviews research on the expression of different ABPs in the above-mentioned cancers. Furthermore, there is a close relationship between ABP-induced inflammation and cancer. In simple terms, abnormal expression of ABPs contributes to the chronic inflammation developing into cancer. Finally, we provide our viewpoint regarding these unusual ABPs serving as potential biomarkers for chronic inflammation-induced cancer diagnosis and therapy, and interventions to reverse the abnormal expression of ABPs represent a potential approach to preventing or treating the corresponding cancers.
Collapse
|
194
|
Revisiting IL-6 expression in the tumor microenvironment of classical Hodgkin lymphoma. Blood Adv 2021; 5:1671-1681. [PMID: 33720338 DOI: 10.1182/bloodadvances.2020003664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
Interleukin-6 (IL-6) can induce therapeutic resistance for several cancer agents currently used to treat classical Hodgkin lymphoma (cHL). We aimed to investigate whether the presence of IL-6+ leukocytes and IL-6+ Hodgkin-Reed-Sternberg (HRS) cells in the tumor microenvironment (TME) was associated with adverse survival outcomes, expression of other immune markers, and serum IL-6 levels. We used a contemporarily treated cohort (n = 136), with a median follow-up of 13.8 years (range, 0.59-15.9 years). We performed immunohistochemistry with an IL-6 antibody on tissue microarrays from diagnostic biopsies of cHL patients. Patients with IL-6+ leukocytes ≥1% (n = 54 of 136) had inferior event-free survival (hazard ratio [HR] = 3.58; 95% confidence interval [CI], 1.80-7.15) and overall survival (HR = 6.71; 95% CI, 2.51-17.99). The adverse survival was maintained in multivariate Cox regression and propensity score-matched analyses, adjusting for well-known poor-prognostic covariates. The presence of IL-6+ HRS cells and high serum IL-6 levels were not associated with survival. IL-6+ leukocytes correlated with increased proportions of IL-6+ HRS cells (P < .01), CD138+ plasma cells (P < .01), CD68+ macrophages (P = .02), and tryptase-positive mast cells (P < .01). IL-6+ HRS cells correlated with increased proportions of CD68+ macrophages (P = .03), programmed death-ligand 1-positive (PD-L1+) leukocytes (P = .04), and PD-L1+ HRS cells (P < .01). Serum-IL-6 lacked correlation with IL-6 expression in the TME. This is the first study highlighting the adverse prognostic impact of IL-6+ leukocytes in the TME in a cohort of contemporarily treated adult patients with cHL.
Collapse
|
195
|
Kauffmann-Guerrero D, Kahnert K, Kiefl R, Sellmer L, Walter J, Behr J, Tufman A. Systemic inflammation and pro-inflammatory cytokine profile predict response to checkpoint inhibitor treatment in NSCLC: a prospective study. Sci Rep 2021; 11:10919. [PMID: 34035415 PMCID: PMC8149421 DOI: 10.1038/s41598-021-90397-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022] Open
Abstract
Treatment with single agent immune checkpoint inhibitors (ICIs) has tremendously changed second line therapy in NSCLC. However, there are still no reliable biomarkers predicting response and survival in this group of patients. PD-L1 revealed to be a correlating, but no perfect marker. Therefore, we sought to investigate in this prospective study, whether inflammation status and cytokine profile could serve as additional biomarkers guiding treatment decision for single agent ICIs in NSCLC. 29 stage IV NSCLC patients receiving single agent PD-1 checkpoint-inhibitor in second line were prospectively enrolled. Inflammatory scores and cytokine profiles (IL-6, IL-8, IL-10, IFN-γ and TNFα) have been obtained before treatment and at the time of the first staging. Cytokine profiles were correlated with response and survival. Patients with signs of pre-therapeutic inflammation (elevated, NLR, SII, IL-6, IL-8) showed significantly lower response to ICI treatment and reduced PFS. Contrary, elevated levels of IFN-γ revealed to characterize a subgroup of patients, who significantly benefits from ICI treatment. Furthermore, low systemic inflammation and high levels of IFN-γ characterized patients with long term-response to ICI treatment. Pre-therapeutic assessment of inflammation and cytokine profiles has the ability to predict response and survival in NSCLC patients treated with single agent ICIs.
Collapse
Affiliation(s)
- Diego Kauffmann-Guerrero
- Divison of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V and Thoracic Oncology Centre Munich (TOM), University of Munich (LMU), Munich, Germany. .,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany. .,Department of Respiratory Medicine and Thoracic Oncology, Hospital of the University of Munich, Ziemssenstraße 1, 80336, Munich, Germany.
| | - Kathrin Kahnert
- Divison of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V and Thoracic Oncology Centre Munich (TOM), University of Munich (LMU), Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rosemarie Kiefl
- Divison of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V and Thoracic Oncology Centre Munich (TOM), University of Munich (LMU), Munich, Germany
| | - Laura Sellmer
- Divison of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V and Thoracic Oncology Centre Munich (TOM), University of Munich (LMU), Munich, Germany
| | - Julia Walter
- Divison of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V and Thoracic Oncology Centre Munich (TOM), University of Munich (LMU), Munich, Germany
| | - Jürgen Behr
- Divison of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V and Thoracic Oncology Centre Munich (TOM), University of Munich (LMU), Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Amanda Tufman
- Divison of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V and Thoracic Oncology Centre Munich (TOM), University of Munich (LMU), Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
196
|
STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer. Cell Immunol 2021; 366:104384. [PMID: 34182334 DOI: 10.1016/j.cellimm.2021.104384] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
Despite impressive clinical success, cancer immunotherapy based on immune checkpoint blockade remains ineffective in colorectal cancer (CRC). Stimulator of interferon genes (STING) is a novel potential target and STING agonists have shown potential anti-tumor efficacy. Combined therapy based on synergistic mechanism can overcome the resistance. However, STING agonists-based combination therapies are deficient. We designed different immunotherapy combinations, including STING agonist, indoleamine 2,3 dioxygenase (IDO) inhibitor and PD-1 blockade, with purpose of exploring which option can effectively inhibit CRC growth. To further explore the possible reasons of therapeutic effectiveness, we observed the combination therapy in C57BL/6Tmem173gt mice. Our findings demonstrated that STING agonist diABZI combined with IDO inhibitor 1-MT significantly inhibited tumor growth, even better than the three-drug combination, promoted the recruitment of CD8+ T cells and dendritic cells, and decreased the infiltration of myeloid-derived suppressor cells. We conclude that diABZI combined with 1-MT is a promising option for CRC.
Collapse
|
197
|
Haanen J, Ernstoff M, Wang Y, Menzies A, Puzanov I, Grivas P, Larkin J, Peters S, Thompson J, Obeid M. Rechallenge patients with immune checkpoint inhibitors following severe immune-related adverse events: review of the literature and suggested prophylactic strategy. J Immunother Cancer 2021; 8:jitc-2020-000604. [PMID: 32532839 PMCID: PMC7295425 DOI: 10.1136/jitc-2020-000604] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with cancer who developed severe, grade 3 or 4 immune-related adverse events (irAEs) during therapy with immune checkpoint inhibitors are at risk for developing severe toxicities again on rechallenge with checkpoint inhibitors. Consequently, medical oncologists and multidisciplinary teams are hesitant to retreat in this scenario, despite the fact that a number of patients may derive clinical benefit from this approach. Balancing such clinical benefit and treatment-related toxicities for each patient is becoming increasingly challenging as more and more patients with cancer are being treated with checkpoint inhibitors. In this manuscript, we provide an extensive overview of the relevant literature on retreatment after toxicity, and suggest prophylactic approaches to minimize the risk of severe irAE following rechallenge with immune checkpoint blockade, since treatment may be lifesaving in a number of occasions.
Collapse
Affiliation(s)
- John Haanen
- Netherlands Cancer Institute, Division of Medical Oncology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marc Ernstoff
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York 14263, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander Menzies
- Melanoma Institute Australia and The University of Sydney, Sydeny, New South Wales, Australia.,Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York 14263, USA
| | - Petros Grivas
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - John Thompson
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Service of Immunology and Allergy, rue du Bugnon 46, CH-1011 Lausanne, Switzerland .,Centre Hospitalier Universitaire Vaudois (CHUV), Vaccine and Immunotherapy Center, rue du Bugnon 17, CH-1011 Lausanne, Switzerland
| |
Collapse
|
198
|
Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M, Taniguchi K. Inflammation-Induced Tumorigenesis and Metastasis. Int J Mol Sci 2021; 22:ijms22115421. [PMID: 34063828 PMCID: PMC8196678 DOI: 10.3390/ijms22115421] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation, especially chronic inflammation, plays a pivotal role in tumorigenesis and metastasis through various mechanisms and is now recognized as a hallmark of cancer and an attractive therapeutic target in cancer. In this review, we discuss recent advances in molecular mechanisms of how inflammation promotes tumorigenesis and metastasis and suppresses anti-tumor immunity in various types of solid tumors, including esophageal, gastric, colorectal, liver, and pancreatic cancer as well as hematopoietic malignancies.
Collapse
Affiliation(s)
- Sana Hibino
- Research Center for Advanced Science and Technology, Department of Inflammology, The University of Tokyo, Tokyo 153-0041, Japan;
| | - Tetsuro Kawazoe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Hidenori Kasahara
- National Center for Global Health and Medicine, Department of Stem Cell Biology, Research Institute, Tokyo 162-8655, Japan;
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan;
| | | | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence: ; Tel.: +81-11-706-5050
| |
Collapse
|
199
|
Gu M, Gao Y, Chang P. KRAS Mutation Dictates the Cancer Immune Environment in Pancreatic Ductal Adenocarcinoma and Other Adenocarcinomas. Cancers (Basel) 2021; 13:cancers13102429. [PMID: 34069772 PMCID: PMC8157241 DOI: 10.3390/cancers13102429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The vast majority of patients with pancreatic ductal adenocarcinomas harbor KRAS mutations in their tumors. Functionally, mutated KRAS is not only dedicated to tumor cell proliferation, survival and invasiveness, but also causing the immunosuppression in this cancer. In this situation, current data indicating the therapeutic effects of immune checkpoint inhibitors on pancreatic ductal adenocarcinomas are still not satisfying. In order to reflect the present bottleneck of immune checkpoint inhibitors in managing this cancer, we mainly provide information associated with the mechanism by which KRAS mutations establish the immunosuppressive milieus in pancreatic ductal adenocarcinomas. Together with other advances in this field, future directions to overcome the KRAS mutation-induced immunosuppression in pancreatic ductal adenocarcinomas are raised as well. Meanwhile, lung adenocarcinomas and colorectal adenocarcinomas are enumerated to compare with pancreatic ductal adenocarcinomas, aiming to indicate the specificity of KRAS mutations in dictating tumoral immune milieus among these cancers. Abstract Generally, patients with pancreatic ductal adenocarcinoma, especially those with wide metastatic lesions, have a poor prognosis. Recently, a breakthrough in improving their survival has been achieved by using first-line chemotherapy, such as gemcitabine plus nab-paclitaxel or oxaliplatin plus irinotecan plus 5-fluorouracil plus calcium folinate. Unfortunately, regimens with high effectiveness are still absent in second- or later-line settings. In addition, although immunotherapy using checkpoint inhibitors definitively represents a novel method for metastatic cancers, monotherapy using checkpoint inhibitors is almost completely ineffective for pancreatic ductal adenocarcinomas largely due to the suppressive immune milieu in such tumors. Critically, the genomic alteration pattern is believed to impact cancer immune environment. Surprisingly, KRAS gene mutation is found in almost all pancreatic ductal adenocarcinomas. Moreover, KRAS mutation is indispensable for pancreatic carcinogenesis. On these bases, a relationship likely exists between this oncogene and immunosuppression in this cancer. During pancreatic carcinogenesis, KRAS mutation-driven events, such as metabolic reprogramming, cell autophagy, and persistent activation of the yes-associated protein pathway, converge to cause immune evasion. However, intriguingly, KRAS mutation can dictate a different immune environment in other types of adenocarcinoma, such as colorectal adenocarcinoma and lung adenocarcinoma. Overall, the KRAS mutation can drive an immunosuppression in pancreatic ductal adenocarcinomas or in colorectal carcinomas, but this mechanism is not true in KRAS-mutant lung adenocarcinomas, especially in the presence of TP53 inactivation. As a result, the response of these adenocarcinomas to checkpoint inhibitors will vary.
Collapse
Affiliation(s)
- Meichen Gu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China;
| | - Yanli Gao
- Department of Pediatric Ultrasound, The First Hospital of Jilin University, Changchun 130021, China;
| | - Pengyu Chang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China;
- Correspondence: ; Tel.: +86-88783840; Fax: +86-431-88783840
| |
Collapse
|
200
|
Zong Z, Wei Y, Ren J, Zhang L, Zhou F. The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Mol Cancer 2021; 20:76. [PMID: 34001144 PMCID: PMC8126512 DOI: 10.1186/s12943-021-01363-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious public health concern. Patients with cancer have been disproportionately affected by this pandemic. Increasing evidence has documented that patients with malignancies are highly susceptible to severe infections and mortality from COVID-19. Recent studies have also elucidated the molecular relationship between the two diseases, which may not only help optimize cancer care during the pandemic but also expand the treatment for COVID-19. In this review, we highlight the clinical and molecular similarities between cancer and COVID-19 and summarize the four major signaling pathways at the intersection of COVID-19 and cancer, namely, cytokine, type I interferon (IFN-I), androgen receptor (AR), and immune checkpoint signaling. In addition, we discuss the advantages and disadvantages of repurposing anticancer treatment for the treatment of COVID-19.
Collapse
Affiliation(s)
- Zhi Zong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yujun Wei
- Anhui Anlong Gene Technology Co., Ltd, Hefei, 230041, China
| | - Jiang Ren
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|