151
|
Moore AF, Gentry RC, Koculi E. DbpA is a region-specific RNA helicase. Biopolymers 2017; 107:10.1002/bip.23001. [PMID: 27813083 PMCID: PMC5179288 DOI: 10.1002/bip.23001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/12/2016] [Accepted: 10/31/2016] [Indexed: 11/11/2022]
Abstract
DbpA is a DEAD-box RNA helicase implicated in RNA structural rearrangements in the peptidyl transferase center. DbpA contains an RNA binding domain, responsible for tight binding of DbpA to hairpin 92 of 23S ribosomal RNA, and a RecA-like catalytic core responsible for double-helix unwinding. It is not known if DbpA unwinds only the RNA helices that are part of a specific RNA structure, or if DbpA unwinds any RNA helices within the catalytic core's grasp. In other words, it is not known if DbpA is a site-specific enzyme or region-specific enzyme. In this study, we used protein and RNA engineering to investigate if DbpA is a region-specific or a site-specific enzyme. Our data suggest that DbpA is a region-specific enzyme. This conclusion has an important implication for the physiological role of DbpA. It suggests that during ribosome assembly, DbpA could bind with its C-terminal RNA binding domain to hairpin 92, while its catalytic core may unwind any double-helices in its vicinity. The only requirement for a double-helix to serve as a DbpA substrate is for the double-helix to be positioned within the catalytic core's grasp.
Collapse
Affiliation(s)
- Anthony F.T. Moore
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Physical Sciences Bldg. Room 255, Orlando, FL 32816-2366, U.S.A
| | - Riley C. Gentry
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Physical Sciences Bldg. Room 255, Orlando, FL 32816-2366, U.S.A
| | - Eda Koculi
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Physical Sciences Bldg. Room 255, Orlando, FL 32816-2366, U.S.A
| |
Collapse
|
152
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
153
|
Huen J, Lin CL, Golzarroshan B, Yi WL, Yang WZ, Yuan HS. Structural Insights into a Unique Dimeric DEAD-Box Helicase CshA that Promotes RNA Decay. Structure 2017; 25:469-481. [PMID: 28238534 DOI: 10.1016/j.str.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/05/2017] [Accepted: 01/29/2017] [Indexed: 11/28/2022]
Abstract
CshA is a dimeric DEAD-box helicase that cooperates with ribonucleases for mRNA turnover. The molecular mechanism for how a dimeric DEAD-box helicase aids in RNA decay remains unknown. Here, we report the crystal structure and small-angle X-ray scattering solution structure of the CshA from Geobacillus stearothermophilus. In contrast to typical monomeric DEAD-box helicases, CshA is exclusively a dimeric protein with the RecA-like domains of each protomer forming a V-shaped structure. We show that the C-terminal domains protruding outward from the tip of the V-shaped structure is critical for mediating strong RNA binding and is crucial for efficient RNA-dependent ATP hydrolysis. We also show that RNA remains bound with CshA during ATP hydrolysis cycles and thus bulk RNAs could be unwound and degraded in a processive manner through cooperation between exoribonucleases and CshA. A dimeric helicase is hence preserved in RNA-degrading machinery for efficient RNA turnover in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jennifer Huen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Chia-Liang Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Bagher Golzarroshan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Wan-Li Yi
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC; Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, ROC.
| |
Collapse
|
154
|
Capitanio JS, Montpetit B, Wozniak RW. Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9. eLife 2017; 6. [PMID: 28221134 PMCID: PMC5338925 DOI: 10.7554/elife.18825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022] Open
Abstract
Beyond their role at nuclear pore complexes, some nucleoporins function in the nucleoplasm. One such nucleoporin, Nup98, binds chromatin and regulates gene expression. To gain insight into how Nup98 contributes to this process, we focused on identifying novel binding partners and understanding the significance of these interactions. Here we report on the identification of the DExH/D-box helicase DHX9 as an intranuclear Nup98 binding partner. Various results, including in vitro assays, show that the FG/GLFG region of Nup98 binds to N- and C-terminal regions of DHX9 in an RNA facilitated manner. Importantly, binding of Nup98 stimulates the ATPase activity of DHX9, and a transcriptional reporter assay suggests Nup98 supports DHX9-stimulated transcription. Consistent with these observations, our analysis revealed that Nup98 and DHX9 bind interdependently to similar gene loci and their transcripts. Based on our results, we propose that Nup98 functions as a co-factor that regulates DHX9 and, potentially, other RNA helicases.
Collapse
Affiliation(s)
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Canada.,Department of Viticulture and Enology, University of California, Davis, United states
| | | |
Collapse
|
155
|
Wang J, Rajbhandari P, Damianov A, Han A, Sallam T, Waki H, Villanueva CJ, Lee SD, Nielsen R, Mandrup S, Reue K, Young SG, Whitelegge J, Saez E, Black DL, Tontonoz P. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. J Clin Invest 2017; 127:987-1004. [PMID: 28192372 DOI: 10.1172/jci89484] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022] Open
Abstract
A highly orchestrated gene expression program establishes the properties that define mature adipocytes, but the contribution of posttranscriptional factors to the adipocyte phenotype is poorly understood. Here we have shown that the RNA-binding protein PSPC1, a component of the paraspeckle complex, promotes adipogenesis in vitro and is important for mature adipocyte function in vivo. Cross-linking and immunoprecipitation followed by RNA sequencing revealed that PSPC1 binds to intronic and 3'-untranslated regions of a number of adipocyte RNAs, including the RNA encoding the transcriptional regulator EBF1. Purification of the paraspeckle complex from adipocytes further showed that PSPC1 associates with the RNA export factor DDX3X in a differentiation-dependent manner. Remarkably, PSPC1 relocates from the nucleus to the cytoplasm during differentiation, coinciding with enhanced export of adipogenic RNAs. Mice lacking PSPC1 in fat displayed reduced lipid storage and adipose tissue mass and were resistant to diet-induced obesity and insulin resistance due to a compensatory increase in energy expenditure. These findings highlight a role for PSPC1-dependent RNA maturation in the posttranscriptional control of adipose development and function.
Collapse
|
156
|
You J, Wang X, Wang J, Yuan B, Zhang Y. DDX59 promotes DNA replication in lung adenocarcinoma. Cell Death Discov 2017; 3:16095. [PMID: 28090355 PMCID: PMC5220641 DOI: 10.1038/cddiscovery.2016.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
DEAD box proteins are multifunctional proteins involved in every aspect in RNA metabolism and have essential roles in many cellular activities. Despite their importance, many DEAD box proteins remain uncharacterized. In this report, we found DDX59 overexpressed in lung adenocarcinoma. DDX59 knockdown reduced cell proliferation, anchorage-independent cell growth, and caused reduction of tumor formation in immunocompromised mice. In multiple lung cancer cells, we found that DDX59 knockdown inhibits DNA synthesis; wild-type DDX59 but not helicase-defective mutant of DDX59 enhances DNA synthesis. DDX59 knockdown caused reduction of MCM protein levels, decreased the loading of MCM ring protein onto chromatin, and therefore inhibited DNA replication. Our study reveals for the first time that DDX59 has an important role in lung cancer development through promoting DNA replication.
Collapse
Affiliation(s)
- Jin You
- Department of Biology, Southern University of Science and Technology , Shenzhen, Guangdong, China
| | - Xingshun Wang
- Department of Biology, Southern University of Science and Technology , Shenzhen, Guangdong, China
| | - Jiuling Wang
- Department of Biology, Southern University of Science and Technology , Shenzhen, Guangdong, China
| | - Baolei Yuan
- Department of Biology, Southern University of Science and Technology , Shenzhen, Guangdong, China
| | - Yandong Zhang
- Department of Biology, Southern University of Science and Technology , Shenzhen, Guangdong, China
| |
Collapse
|
157
|
Nogales V, Reinhold WC, Varma S, Martinez-Cardus A, Moutinho C, Moran S, Heyn H, Sebio A, Barnadas A, Pommier Y, Esteller M. Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget 2016; 7:3084-97. [PMID: 26625211 PMCID: PMC4823092 DOI: 10.18632/oncotarget.6413] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022] Open
Abstract
Platinum-derived drugs such as cisplatin and carboplatin are among the most commonly used cancer chemotherapy drugs, but very few specific molecular and cellular markers predicting differential sensitivity to these agents in a given tumor type have been clearly identified. Epigenetic gene silencing is increasingly being recognized as a factor conferring distinct tumoral drug sensitivity, so we have used a comprehensive DNA methylation microarray platform to interrogate the widely characterized NCI60 panel of human cancer cell lines with respect to CpG methylation status and cisplatin/carboplatin sensitivity. Using this approach, we have found promoter CpG island hypermethylation-associated silencing of the putative DNA/RNA helicase Schlafen-11 (SLFN11) to be associated with increased resistance to platinum compounds. We have also experimentally validated these findings in vitro. In this setting, we also identified the BRCA1 interacting DHX9 RNA helicase (also known as RHA) as a protein partner for SLFN11, suggesting a mechanistic pathway for the observed chemoresistance effect. Most importantly, we have been able to extend these findings clinically, following the observation that those patients with ovarian and non-small cell lung cancer carrying SLFN11 hypermethylation had a poor response to both cisplatin and carboplatin treatments. Overall, these results identify SLFN11 epigenetic inactivation as a predictor of resistance to platinum drugs in human cancer.
Collapse
Affiliation(s)
- Vanesa Nogales
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - William C Reinhold
- Genomics and Bioinformatics Group, Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anna Martinez-Cardus
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Holger Heyn
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Ana Sebio
- Department of Medical Oncology, Hospital de la Santa Ceu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Agusti Barnadas
- Department of Medical Oncology, Hospital de la Santa Ceu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
158
|
Wongpalee SP, Vashisht A, Sharma S, Chui D, Wohlschlegel JA, Black DL. Large-scale remodeling of a repressed exon ribonucleoprotein to an exon definition complex active for splicing. eLife 2016; 5. [PMID: 27882870 PMCID: PMC5122456 DOI: 10.7554/elife.19743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Polypyrimidine-tract binding protein PTBP1 can repress splicing during the exon definition phase of spliceosome assembly, but the assembly steps leading to an exon definition complex (EDC) and how PTBP1 might modulate them are not clear. We found that PTBP1 binding in the flanking introns allowed normal U2AF and U1 snRNP binding to the target exon splice sites but blocked U2 snRNP assembly in HeLa nuclear extract. Characterizing a purified PTBP1-repressed complex, as well as an active early complex and the final EDC by SILAC-MS, we identified extensive PTBP1-modulated changes in exon RNP composition. The active early complex formed in the absence of PTBP1 proceeded to assemble an EDC with the eviction of hnRNP proteins, the late recruitment of SR proteins, and binding of the U2 snRNP. These results demonstrate that during early stages of splicing, exon RNP complexes are highly dynamic with many proteins failing to bind during PTBP1 arrest. DOI:http://dx.doi.org/10.7554/eLife.19743.001
Collapse
Affiliation(s)
- Somsakul Pop Wongpalee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, Phoenix, United States
| | - Darryl Chui
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
159
|
Critical role of hnRNP A1 in activating KRAS transcription in pancreatic cancer cells: A molecular mechanism involving G4 DNA. Biochim Biophys Acta Gen Subj 2016; 1861:1389-1398. [PMID: 27888145 DOI: 10.1016/j.bbagen.2016.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 01/31/2023]
Abstract
KRAS is one of the most mutated genes in human cancer. Its crucial role in the tumourigenesis of pancreatic ductal adenocarcinoma (PDAC) has been widely demonstrated. As this deadly cancer does not sufficiently respond to conventional chemotherapies, it is important to increase our knowledge of pancreatic cancer biology, in particular how oncogenic KRAS is regulated. The promoter of KRAS contains a GA-element composed of runs of guanines that fold into a G4 structure. This unusual DNA conformation is recognized by several nuclear proteins, including MAZ and hnRNP A1. Recent data have revealed that KRAS is interconnected to ILK and hnRNP A1 in a circuitry that enables pancreatic cancer cells to maintain an aggressive phenotype. The present review illustrates recent advances on how KRAS is regulated in pancreatic cancer cells, focusing on the formation of G4 structures in the KRAS promoter and their interaction with hnRNP A1. The newly discovered KRAS-ILK-hnRNP A1 regulatory loop is discussed, emphasizing its potential as a therapeutic target for PDAC-specific molecules. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
|
160
|
Patrick EM, Srinivasan S, Jankowsky E, Comstock MJ. The RNA helicase Mtr4p is a duplex-sensing translocase. Nat Chem Biol 2016; 13:99-104. [PMID: 27870836 DOI: 10.1038/nchembio.2234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022]
Abstract
The conserved Saccharomyces cerevisiae Ski2-like RNA helicase Mtr4p plays essential roles in eukaryotic nuclear RNA processing. RNA helicase activity of Mtr4p is critical for biological functions of the enzyme, but the molecular basis for RNA unwinding is not understood. Here, single-molecule high-resolution optical trapping measurements reveal that Mtr4p unwinds RNA duplexes by 3'-to-5' translocation on the loading strand, that strand separation occurs in discrete steps of 6 base pairs and that a single Mtr4p molecule performs consecutive unwinding steps. We further show that RNA unwinding by Mtr4p requires interaction with upstream RNA duplex. Inclusion of Mtr4p within the TRAMP complex increases the rate constant for unwinding initiation but does not change the characteristics of Mtr4p's helicase mechanism. Our data indicate that Mtr4p utilizes a previously unknown unwinding mode that combines aspects of canonical translocating helicases and non-canonical duplex-sensing helicases, thereby restricting directional translocation to duplex regions.
Collapse
Affiliation(s)
- Eric M Patrick
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| | - Sukanya Srinivasan
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western University, Cleveland, Ohio, USA
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western University, Cleveland, Ohio, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
161
|
DHX33 Transcriptionally Controls Genes Involved in the Cell Cycle. Mol Cell Biol 2016; 36:2903-2917. [PMID: 27601587 DOI: 10.1128/mcb.00314-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023] Open
Abstract
The RNA helicase DHX33 has been shown to be a critical regulator of cell proliferation and growth. However, the underlying mechanisms behind DHX33 function remain incompletely understood. We present original evidence in multiple cell lines that DHX33 transcriptionally controls the expression of genes involved in the cell cycle, notably cyclin, E2F1, cell division cycle (CDC), and minichromosome maintenance (MCM) genes. DHX33 physically associates with the promoters of these genes and controls the loading of active RNA polymerase II onto these promoters. DHX33 deficiency abrogates cell cycle progression and DNA replication and leads to cell apoptosis. In zebrafish, CRISPR-mediated knockout of DHX33 results in downregulation of cyclin A2, cyclin B2, cyclin D1, cyclin E2, cdc6, cdc20, E2F1, and MCM complexes in DHX33 knockout embryos. Additionally, we found the overexpression of DHX33 in a subset of non-small-cell lung cancers and in Ras-mutated human lung cancer cell lines. Forced reduction of DHX33 in these cancer cells abolished tumor formation in vivo Our study demonstrates for the first time that DHX33 acts as a direct transcriptional regulator to promote cell cycle progression and plays an important role in driving cell proliferation during both embryo development and tumorigenesis.
Collapse
|
162
|
Jungfleisch J, Nedialkova DD, Dotu I, Sloan KE, Martinez-Bosch N, Brüning L, Raineri E, Navarro P, Bohnsack MT, Leidel SA, Díez J. A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 2016; 27:95-106. [PMID: 27821408 PMCID: PMC5204348 DOI: 10.1101/gr.209015.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
The impact of RNA structures in coding sequences (CDS) within mRNAs is poorly understood. Here, we identify a novel and highly conserved mechanism of translational control involving RNA structures within coding sequences and the DEAD-box helicase Dhh1. Using yeast genetics and genome-wide ribosome profiling analyses, we show that this mechanism, initially derived from studies of the Brome Mosaic virus RNA genome, extends to yeast and human mRNAs highly enriched in membrane and secreted proteins. All Dhh1-dependent mRNAs, viral and cellular, share key common features. First, they contain long and highly structured CDSs, including a region located around nucleotide 70 after the translation initiation site; second, they are directly bound by Dhh1 with a specific binding distribution; and third, complementary experimental approaches suggest that they are activated by Dhh1 at the translation initiation step. Our results show that ribosome translocation is not the only unwinding force of CDS and uncover a novel layer of translational control that involves RNA helicases and RNA folding within CDS providing novel opportunities for regulation of membrane and secretome proteins.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Danny D Nedialkova
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Ivan Dotu
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Katherine E Sloan
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Neus Martinez-Bosch
- Program of Cancer Research, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Lukas Brüning
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Emanuele Raineri
- Statistical Genomics, Centro Nacional de Analisis Genomica, 08028 Barcelona, Spain
| | - Pilar Navarro
- Program of Cancer Research, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Markus T Bohnsack
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, 37073 Göttingen, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Juana Díez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
163
|
Rohlman CE, Blanco MR, Walter NG. Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome. Methods Enzymol 2016; 581:257-283. [PMID: 27793282 DOI: 10.1016/bs.mie.2016.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spliceosome is a biomolecular machine that, in all eukaryotes, accomplishes site-specific splicing of introns from precursor messenger RNAs (pre-mRNAs) with high fidelity. Operating at the nanometer scale, where inertia and friction have lost the dominant role they play in the macroscopic realm, the spliceosome is highly dynamic and assembles its active site around each pre-mRNA anew. To understand the structural dynamics underlying the molecular motors, clocks, and ratchets that achieve functional accuracy in the yeast spliceosome (a long-standing model system), we have developed single-molecule fluorescence resonance energy transfer (smFRET) approaches that report changes in intra- and intermolecular interactions in real time. Building on our work using hidden Markov models (HMMs) to extract kinetic and conformational state information from smFRET time trajectories, we recognized that HMM analysis of individual state transitions as independent stochastic events is insufficient for a biomolecular machine as complex as the spliceosome. In this chapter, we elaborate on the recently developed smFRET-based Single-Molecule Cluster Analysis (SiMCAn) that dissects the intricate conformational dynamics of a pre-mRNA through the splicing cycle in a model-free fashion. By leveraging hierarchical clustering techniques developed for Bioinformatics, SiMCAn efficiently analyzes large datasets to first identify common molecular behaviors. Through a second level of clustering based on the abundance of dynamic behaviors exhibited by defined functional intermediates that have been stalled by biochemical or genetic tools, SiMCAn then efficiently assigns pre-mRNA FRET states and transitions to specific splicing complexes, with the potential to find heretofore undescribed conformations. SiMCAn thus arises as a general tool to analyze dynamic cellular machines more broadly.
Collapse
Affiliation(s)
| | - M R Blanco
- Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| | - N G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
164
|
Zhu DZ, Zhao XF, Liu CZ, Ma FF, Wang F, Gao XQ, Zhang XS. Interaction between RNA helicase ROOT INITIATION DEFECTIVE 1 and GAMETOPHYTIC FACTOR 1 is involved in female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5757-5768. [PMID: 27683728 PMCID: PMC5066494 DOI: 10.1093/jxb/erw341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
ROOT INITIATION DEFECTIVE 1 (RID1) is an Arabidopsis DEAH/RHA RNA helicase. It functions in hypocotyl de-differentiation, de novo meristem formation, and cell specification of the mature female gametophyte (FG). However, it is unclear how RID1 regulates FG development. In this study, we observed that mutations to RID1 disrupted the developmental synchrony and retarded the progression of FG development. RID1 exhibited RNA helicase activity, with a preference for unwinding double-stranded RNA in the 3' to 5' direction. Furthermore, we found that RID1 interacts with GAMETOPHYTIC FACTOR 1 (GFA1), which is an integral protein of the spliceosome component U5 small nuclear ribonucleoprotein (snRNP) particle. Substitution of specific RID1 amino acids (Y266F and T267I) inhibited the interaction with GFA1. In addition, the mutated RID1 could not complement the seed-abortion phenotype of the rid1 mutant. The rid1 and gfa1 mutants exhibited similar abnormalities in pre-mRNA splicing and down-regulated expression of some genes involved in FG development. Our results suggest that an interaction between RID1 and the U5 snRNP complex regulates essential pre-mRNA splicing of the genes required for FG development. This study provides new information regarding the mechanism underlying the FG developmental process.
Collapse
Affiliation(s)
- Dong Zi Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xue Fang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Chang Zhen Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Fang Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
165
|
Sinetova MA, Los DA. New insights in cyanobacterial cold stress responses: Genes, sensors, and molecular triggers. Biochim Biophys Acta Gen Subj 2016; 1860:2391-2403. [PMID: 27422804 DOI: 10.1016/j.bbagen.2016.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/16/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cold stress strongly induces the expression of ~100 genes in cyanobacteria. Some of these genes are necessary to protect cellular functions by adjustment of membranes, as well as transcriptional and translational machineries. About a half of cold-induced genes are not functionally characterized. A part of cold-induced genes is under control of a two-component regulatory system, consisting of histidine kinase Hik33 and response regulator Rre26. The mechanism(s) that control another part of cold-inducible genes are still unknown. SCOPE OF REVIEW The aim of this review is to summarise the latest findings in cyanobacterial cold-stress responses including transcriptomics, cold sensing, and molecular triggers. MAJOR CONCLUSIONS A feedback loop between the membrane fluidity and transcription of genes for fatty acid desaturases operates via the transmembrane red-light-activated cold sensor Hik33, which perceives cold-induced membrane rigidification as a change in its thickness. The cold-induced kinase activity of Hik33 is facilitated by interaction with a small protein, Ssl3451 - the third contributor to a canonical two-component regulatory system, which may explain the ability of some cyanobacterial histidine kinases to interact with different response regulators under different stress conditions. Other regulatory systems that control cold-stress responses operate via Ser/Thr protein kinase, SpkE, and via temperature-dependent changes in DNA supercoiling. Transcriptomic analysis shows that universal triggers of stress responses are reactive oxygen species and changes in redox status of plastoquinone pool. GENERAL SIGNIFICANCE Deeper understanding of molecular mechanisms of temperature sensing and regulation of cold-stress responses in photosynthetic cells provide a background for generation of cold-resistant crops.
Collapse
Affiliation(s)
- Maria A Sinetova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russian Federation
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russian Federation.
| |
Collapse
|
166
|
Abstract
Chromatin remodeling motors play essential roles in all DNA-based processes. These motors catalyze diverse outcomes ranging from sliding the smallest units of chromatin, known as nucleosomes, to completely disassembling chromatin. The broad range of actions carried out by these motors on the complex template presented by chromatin raises many stimulating mechanistic questions. Other well-studied nucleic acid motors provide examples of the depth of mechanistic understanding that is achievable from detailed biophysical studies. We use these studies as a guiding framework to discuss the current state of knowledge of chromatin remodeling mechanisms and highlight exciting open questions that would continue to benefit from biophysical analyses.
Collapse
Affiliation(s)
- Coral Y Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158; , , ,
| | - Stephanie L Johnson
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158; , , ,
| | - Nathan I Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158; , , ,
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158; , , ,
| |
Collapse
|
167
|
Conrad KS, Hurley JM, Widom J, Ringelberg CS, Loros JJ, Dunlap JC, Crane BR. Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock. EMBO J 2016; 35:1707-19. [PMID: 27340124 PMCID: PMC4969578 DOI: 10.15252/embj.201694327] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/23/2016] [Indexed: 11/09/2022] Open
Abstract
In the Neurospora crassa circadian clock, a protein complex of frequency (FRQ), casein kinase 1a (CK1a), and the FRQ-interacting RNA Helicase (FRH) rhythmically represses gene expression by the white-collar complex (WCC). FRH crystal structures in several conformations and bound to ADP/RNA reveal differences between FRH and the yeast homolog Mtr4 that clarify the distinct role of FRH in the clock. The FRQ-interacting region at the FRH N-terminus has variable structure in the absence of FRQ A known mutation that disrupts circadian rhythms (R806H) resides in a positively charged surface of the KOW domain, far removed from the helicase core. We show that changes to other similarly located residues modulate interactions with the WCC and FRQ A V142G substitution near the N-terminus also alters FRQ and WCC binding to FRH, but produces an unusual short clock period. These data support the assertion that FRH helicase activity does not play an essential role in the clock, but rather FRH acts to mediate contacts among FRQ, CK1a and the WCC through interactions involving its N-terminus and KOW module.
Collapse
Affiliation(s)
- Karen S Conrad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine, Hanover, NH, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
168
|
Khoshnevis S, Askenasy I, Johnson MC, Dattolo MD, Young-Erdos CL, Stroupe ME, Karbstein K. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation. PLoS Biol 2016; 14:e1002480. [PMID: 27280440 PMCID: PMC4900678 DOI: 10.1371/journal.pbio.1002480] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed “helicases,” their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked. During ribosomal biogenesis, Rrp5 is unusual in being required for assembly of both small and large subunits. This study demonstrates a role for ATP hydrolysis by the DEAD-box protein Rok1 in releasing Rrp5 from pre-40S subunits. Assembly of the small and large ribosomal subunits requires two separate machineries. The assembly factor Rrp5 is unusual in being one of only three proteins required for assembly of both subunits. While it binds cotranscriptionally during early stages of small subunit assembly, it departs with large subunit intermediates after the separation of these precursors. How Rrp5 switches from interacting with small subunit precursors to binding large subunit precursors remains unknown but is potentially important, as it could regulate the interplay between small and large subunit assembly. Here, we show that the DEAD-box protein Rok1, a member of a ubiquitous class of RNA-dependent ATPases, releases Rrp5 from assembling small subunits to allow for its function in large subunit assembly. We show that a complex of Rrp5, Rok1, and adenosine triphosphate (ATP) binds small subunits or mimics of ribosomal RNA more tightly than does a complex of Rrp5, Rok1, and adenosine diphosphate (ADP). In cells, interconversion between the ATP and the ADP-form of Rok1 is required for release of Rrp5 from nascent small subunits and for binding to assembling large subunits. Furthermore, we show that the release of snR30, which leads to formation of a large substructure on small subunits, also requires Rok1-mediated release of Rrp5.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Triphosphate/metabolism
- Binding Sites/genetics
- DEAD-box RNA Helicases/chemistry
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Hydrolysis
- Models, Molecular
- Molecular Conformation
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Domains
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sohail Khoshnevis
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Isabel Askenasy
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Matthew C. Johnson
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Maria D. Dattolo
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- The Benjamin School, Palm Beach Gardens, Florida, United States of America
| | - Crystal L. Young-Erdos
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - M. Elizabeth Stroupe
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (MES); (KK)
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail: (MES); (KK)
| |
Collapse
|
169
|
Cruz-Reyes J, Mooers BHM, Abu-Adas Z, Kumar V, Gulati S. DEAH-RHA helicase•Znf cofactor systems in kinetoplastid RNA editing and evolutionarily distant RNA processes. RNA & DISEASE 2016; 3. [PMID: 27540585 PMCID: PMC4987287 DOI: 10.14800/rd.1336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-zinc finger proteins are an emerging class of cofactors in DEAH-RHA RNA helicases across highly divergent eukaryotic lineages. DEAH-RHA helicase•zinc finger cofactor partnerships predate the split of kinetoplastid protozoa, which include several human pathogens, from other eukaryotic lineages 100-400 Ma. Despite a long evolutionary history, the prototypical DEAH-RHA domains remain highly conserved. This short review focuses on a recently identified DEAH-RHA helicase•zinc finger cofactor system in kinetoplastid RNA editing, and its potential functional parallels with analogous systems in embryogenesis control in nematodes and antivirus protection in humans.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Blaine H M Mooers
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zakaria Abu-Adas
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vikas Kumar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Shelly Gulati
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
170
|
The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 2016; 17:426-38. [PMID: 27251421 DOI: 10.1038/nrm.2016.50] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA helicases comprise the largest family of enzymes involved in the metabolism of mRNAs, the processing and fate of which rely on their packaging into messenger ribonucleoprotein particles (mRNPs). In this Review, we describe how the capacity of some RNA helicases to either remodel or lock the composition of mRNP complexes underlies their pleiotropic functions at different steps of the gene expression process. We illustrate the roles of RNA helicases in coordinating gene expression steps and programmes, and propose that RNA helicases function as molecular drivers and guides of the progression of their mRNA substrates from one RNA-processing factory to another, to a productive mRNA pool that leads to protein synthesis or to unproductive mRNA pools that are stored or degraded.
Collapse
|
171
|
Fourmann JB, Dybkov O, Agafonov DE, Tauchert MJ, Urlaub H, Ficner R, Fabrizio P, Lührmann R. The target of the DEAH-box NTP triphosphatase Prp43 in Saccharomyces cerevisiae spliceosomes is the U2 snRNP-intron interaction. eLife 2016; 5. [PMID: 27115347 PMCID: PMC4866824 DOI: 10.7554/elife.15564] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
The DEAH-box NTPase Prp43 and its cofactors Ntr1 and Ntr2 form the NTR complex and are required for disassembling intron-lariat spliceosomes (ILS) and defective earlier spliceosomes. However, the Prp43 binding site in the spliceosome and its target(s) are unknown. We show that Prp43 fused to Ntr1's G-patch motif (Prp43_Ntr1GP) is as efficient as the NTR in ILS disassembly, yielding identical dissociation products and recognizing its natural ILS target even in the absence of Ntr1’s C-terminal-domain (CTD) and Ntr2. Unlike the NTR, Prp43_Ntr1GP disassembles earlier spliceosomal complexes (A, B, Bact), indicating that Ntr2/Ntr1-CTD prevents NTR from disrupting properly assembled spliceosomes other than the ILS. The U2 snRNP-intron interaction is disrupted in all complexes by Prp43_Ntr1GP, and in the spliceosome contacts U2 proteins and the pre-mRNA, indicating that the U2 snRNP-intron interaction is Prp43’s major target. DOI:http://dx.doi.org/10.7554/eLife.15564.001
Collapse
Affiliation(s)
- Jean-Baptiste Fourmann
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dmitry E Agafonov
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marcel J Tauchert
- Department of Molecular Structure Biology, Institute for Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bionalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structure Biology, Institute for Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
172
|
Adhvaryu K, Firoozi G, Motavaze K, Lakin-Thomas P. PRD-1, a Component of the Circadian System of Neurospora crassa, Is a Member of the DEAD-box RNA Helicase Family. J Biol Rhythms 2016; 31:258-71. [PMID: 27029286 DOI: 10.1177/0748730416639717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The circadian rhythms found in almost all organisms are driven by molecular oscillators, including transcription/translation feedback loops (TTFLs). However, TTFL-independent oscillators can drive rhythms in both eukaryotes and prokaryotes. The fungus Neurospora crassa is a model organism for studying the molecular mechanism of the circadian clock. Although a circadian TTFL involving the proteins FRQ, WC-1, and WC-2 is well-characterized in N. crassa, rhythms can still be observed in the absence of this feedback loop. These rhythms are said to be driven by 1 or more FRQ-less oscillator(s) (FLOs). The prd-1 mutation lengthens the period in frq wild type and was previously shown to severely disrupt FRQ-less rhythms in frq null mutants under several different conditions; therefore, the prd-1 gene product is a candidate for a component of a FLO. We report here that prd-1 also disrupts free-running rhythms in wc-1 null mutants, confirming its effects on FRQ-less rhythms. We have now mapped and identified the prd-1 gene as NCU07839, a DEAD-box RNA helicase dbp-2 Complementation with the wild-type gene corrects the rhythm defects of the prd-1 mutant in the complete circadian system (when the FRQ-based TTFL is intact) and also the free-running FRQ-less rhythm on low choline. A PRD-1-GFP fusion protein localizes to the nucleus. The prd-1 mutant has a single base pair change in the first base of an intron that results in abnormally spliced transcripts. FRQ-less rhythms on low choline, or entrained to heat pulses, were only marginally affected in strains carrying deletions of 2 other RNA helicases (prd-6 and msp-8). We conclude that PRD-1 is a member of an RNA helicase family that may be specifically involved in regulating rhythmicity in N. crassa in both the complete circadian system and FLO(s).
Collapse
Affiliation(s)
| | | | - Kamyar Motavaze
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 1R4, Canada
| | | |
Collapse
|
173
|
Kumar V, Madina BR, Gulati S, Vashisht AA, Kanyumbu C, Pieters B, Shakir A, Wohlschlegel JA, Read LK, Mooers BHM, Cruz-Reyes J. REH2C Helicase and GRBC Subcomplexes May Base Pair through mRNA and Small Guide RNA in Kinetoplastid Editosomes. J Biol Chem 2016; 291:5753-5764. [PMID: 26769962 PMCID: PMC4786712 DOI: 10.1074/jbc.m115.708164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/05/2016] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial mRNAs in Trypanosoma brucei undergo extensive insertion and deletion of uridylates that are catalyzed by the RNA editing core complex (RECC) and directed by hundreds of small guide RNAs (gRNAs) that base pair with mRNA. RECC is largely RNA-free, and accessory mitochondrial RNA-binding complex 1 (MRB1) variants serve as scaffolds for the assembly of mRNA-gRNA hybrids and RECC. However, the molecular steps that create higher-order holoenzymes ("editosomes") are unknown. Previously, we identified an RNA editing helicase 2-associated subcomplex (REH2C) and showed that REH2 binds RNA. Here we showed that REH2C is an mRNA-associated ribonucleoprotein (mRNP) subcomplex with editing substrates, intermediates, and products. We isolated this mRNP from mitochondria lacking gRNA-bound RNP (gRNP) subcomplexes and identified REH2-associated cofactors 1 and 2 ((H2)F1 and (H2)F2). (H2)F1 is an octa-zinc finger protein required for mRNP-gRNP docking, pre-mRNA and RECC loading, and RNP formation with a short synthetic RNA duplex. REH2 and other eukaryotic DEAH/RHA-type helicases share a conserved regulatory C-terminal domain cluster that includes an oligonucleotide-binding fold. Recombinant REH2 and (H2)F1 constructs associate in a purified complex in vitro. We propose a model of stepwise editosome assembly that entails controlled docking of mRNP and gRNP modules via specific base pairing between their respective mRNA and gRNA cargo and regulatory REH2 and (H2)F1 subunits of the novel mRNP that may control specificity checkpoints in the editing pathway.
Collapse
Affiliation(s)
- Vikas Kumar
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Bhaskara R Madina
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Shelly Gulati
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Ajay A Vashisht
- the Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Chiedza Kanyumbu
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Brittany Pieters
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Afzal Shakir
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - James A Wohlschlegel
- the Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Laurie K Read
- the Department of Microbiology and Immunology, University of Buffalo School of Medicine, Buffalo, New York, and
| | - Blaine H M Mooers
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jorge Cruz-Reyes
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843,.
| |
Collapse
|
174
|
Ruminski DJ, Watson PY, Mahen EM, Fedor MJ. A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo. RNA (NEW YORK, N.Y.) 2016; 22:416-27. [PMID: 26759451 PMCID: PMC4748819 DOI: 10.1261/rna.055178.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/05/2015] [Indexed: 05/24/2023]
Abstract
RNAs must assemble into specific structures in order to carry out their biological functions, but in vitro RNA folding reactions produce multiple misfolded structures that fail to exchange with functional structures on biological time scales. We used carefully designed self-cleaving mRNAs that assemble through well-defined folding pathways to identify factors that differentiate intracellular and in vitro folding reactions. Our previous work showed that simple base-paired RNA helices form and dissociate with the same rate and equilibrium constants in vivo and in vitro. However, exchange between adjacent secondary structures occurs much faster in vivo, enabling RNAs to quickly adopt structures with the lowest free energy. We have now used this approach to probe the effects of an extensively characterized DEAD-box RNA helicase, Mss116p, on a series of well-defined RNA folding steps in yeast. Mss116p overexpression had no detectable effect on helix formation or dissociation kinetics or on the stability of interdomain tertiary interactions, consistent with previous evidence that intracellular factors do not affect these folding parameters. However, Mss116p overexpression did accelerate exchange between adjacent helices. The nonprocessive nature of RNA duplex unwinding by DEAD-box RNA helicases is consistent with a branch migration mechanism in which Mss116p lowers barriers to exchange between otherwise stable helices by the melting and annealing of one or two base pairs at interhelical junctions. These results suggest that the helicase activity of DEAD-box proteins like Mss116p distinguish intracellular RNA folding pathways from nonproductive RNA folding reactions in vitro and allow RNA structures to overcome kinetic barriers to thermodynamic equilibration in vivo.
Collapse
Affiliation(s)
- Dana J Ruminski
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Peter Y Watson
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Elisabeth M Mahen
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Martha J Fedor
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
175
|
Recruitment, Duplex Unwinding and Protein-Mediated Inhibition of the Dead-Box RNA Helicase Dbp2 at Actively Transcribed Chromatin. J Mol Biol 2016; 428:1091-1106. [PMID: 26876600 DOI: 10.1016/j.jmb.2016.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
RNA helicases play fundamental roles in modulating RNA structures and facilitating RNA-protein (RNP) complex assembly in vivo. Previously, our laboratory demonstrated that the DEAD-box RNA helicase Dbp2 in Saccharomyces cerevisiae is required to promote efficient assembly of the co-transcriptionally associated mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)(+)RNA. We also found that Yra1 associates directly with Dbp2 and functions as an inhibitor of Dbp2-dependent duplex unwinding, suggestive of a cycle of unwinding and inhibition by Dbp2. To test this, we undertook a series of experiments to shed light on the order of events for Dbp2 in co-transcriptional mRNP assembly. We now show that Dbp2 is recruited to chromatin via RNA and forms a large, RNA-dependent complex with Yra1 and Mex67. Moreover, single-molecule fluorescence resonance energy transfer and bulk biochemical assays show that Yra1 inhibits unwinding in a concentration-dependent manner by preventing the association of Dbp2 with single-stranded RNA. This inhibition prevents over-accumulation of Dbp2 on mRNA and stabilization of a subset of RNA polymerase II transcripts. We propose a model whereby Yra1 terminates a cycle of mRNP assembly by Dbp2.
Collapse
|
176
|
Martínez-Montiel N, Morales-Lara L, Hernández-Pérez JM, Martínez-Contreras RD. In Silico Analysis of the Structural and Biochemical Features of the NMD Factor UPF1 in Ustilago maydis. PLoS One 2016; 11:e0148191. [PMID: 26863136 PMCID: PMC4749658 DOI: 10.1371/journal.pone.0148191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/14/2016] [Indexed: 11/23/2022] Open
Abstract
The molecular mechanisms regulating the accuracy of gene expression are still not fully understood. Among these mechanisms, Nonsense-mediated Decay (NMD) is a quality control process that detects post-transcriptionally abnormal transcripts and leads them to degradation. The UPF1 protein lays at the heart of NMD as shown by several structural and functional features reported for this factor mainly for Homo sapiens and Saccharomyces cerevisiae. This process is highly conserved in eukaryotes but functional diversity can be observed in various species. Ustilago maydis is a basidiomycete and the best-known smut, which has become a model to study molecular and cellular eukaryotic mechanisms. In this study, we performed in silico analysis to investigate the structural and biochemical properties of the putative UPF1 homolog in Ustilago maydis. The putative homolog for UPF1 was recognized in the annotated genome for the basidiomycete, exhibiting 66% identity with its human counterpart at the protein level. The known structural and functional domains characteristic of UPF1 homologs were also found. Based on the crystal structures available for UPF1, we constructed different three-dimensional models for umUPF1 in order to analyze the secondary and tertiary structural features of this factor. Using these models, we studied the spatial arrangement of umUPF1 and its capability to interact with UPF2. Moreover, we identified the critical amino acids that mediate the interaction of umUPF1 with UPF2, ATP, RNA and with UPF1 itself. Mutating these amino acids in silico showed an important effect over the native structure. Finally, we performed molecular dynamic simulations for UPF1 proteins from H. sapiens and U. maydis and the results obtained show a similar behavior and physicochemical properties for the protein in both organisms. Overall, our results indicate that the putative UPF1 identified in U. maydis shows a very similar sequence, structural organization, mechanical stability, physicochemical properties and spatial organization in comparison to the NMD factor depicted for Homo sapiens. These observations strongly support the notion that human and fungal UPF1 could perform equivalent biological activities.
Collapse
Affiliation(s)
- Nancy Martínez-Montiel
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Laura Morales-Lara
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Rebeca D. Martínez-Contreras
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
177
|
Zhao L, Mao Y, Zhou J, Zhao Y, Cao Y, Chen X. Multifunctional DDX3: dual roles in various cancer development and its related signaling pathways. Am J Cancer Res 2016; 6:387-402. [PMID: 27186411 PMCID: PMC4859668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023] Open
Abstract
DEAD-box RNA helicase 3 (DDX3) is a highly conserved family member of DEAD-box protein, which is a cluster of ATP-dependent and the largest family of RNA helicase. DEAD-box family is characterized by the regulation of ATPase and helicase activities, the modulation of RNA metabolism, and the actors of RNA binding proteins or molecular chaperones to interact with other proteins or RNA. For DDX3, it exerts its multifaceted roles in viral manipulation, stress response, hypoxia, radiation response and apoptosis, and is closely related to cancer development and progression. DDX3 has dual roles in different cancer types and can act as either an oncogene or tumor suppressor gene during cancer progression. In the present review, we mainly provide an overview of current knowledge on dual roles of DDX3 in various types of cancer, including breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma, oral squamous cell carcinoma, Ewing sarcoma, glioblastoma multiforme and gallbladder carcinoma, and illustrate the regulatory mechanisms for leading these two controversial biological effects. Furthermore, we summarize the essential signaling pathways that DDX3 participated, especially the Wnt/β-catenin signaling and EMT related signaling (TGF-β, Notch, Hedgehog pathways), which are crucial to DDX3 mediated cancer metastasis process. Thoroughly exploring the dual roles of DDX3 in cancer development and the essential signaling pathways it involved, it will help us open new perspectives to develop novel promising targets to elevate therapeutic effects and facilitate the "Personalized medicine" or "Precision medicine" to come into clinic.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Yuelong Zhao
- School of Computer Science and Engineering, South China University of TechnologyGuangzhou 510640, Guangdong, China
| | - Ya Cao
- Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
178
|
Cugusi S, Li Y, Jin P, Lucchesi JC. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts. PLoS Genet 2016; 12:e1005761. [PMID: 26752049 PMCID: PMC4710571 DOI: 10.1371/journal.pgen.1005761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi) and microRNA (miRNA) pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss) RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.
Collapse
Affiliation(s)
- Simona Cugusi
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta
| | - John C. Lucchesi
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
179
|
Huang CK, Shen YL, Huang LF, Wu SJ, Yeh CH, Lu CA. The DEAD-Box RNA Helicase AtRH7/PRH75 Participates in Pre-rRNA Processing, Plant Development and Cold Tolerance in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:174-91. [PMID: 26637537 DOI: 10.1093/pcp/pcv188] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/18/2015] [Indexed: 05/18/2023]
Abstract
DEAD-box RNA helicases belong to an RNA helicase family that plays specific roles in various RNA metabolism processes, including ribosome biogenesis, mRNA splicing, RNA export, mRNA translation and RNA decay. This study investigated a DEAD-box RNA helicase, AtRH7/PRH75, in Arabidopsis. Expression of AtRH7/PRH75 was ubiquitous; however, the levels of mRNA accumulation were increased in cell division regions and were induced by cold stress. The phenotypes of two allelic AtRH7/PRH75-knockout mutants, atrh7-2 and atrh7-3, resembled auxin-related developmental defects that were exhibited in several ribosomal protein mutants, and were more severe under cold stress. Northern blot and circular reverse transcription-PCR (RT-PCR) analyses indicated that unprocessed 18S pre-rRNAs accumulated in the atrh7 mutants. The atrh7 mutants were hyposensitive to the antibiotic streptomycin, which targets ribosomal small subunits, suggesting that AtRH7 was also involved in ribosome assembly. In addition, the atrh7-2 and atrh7-3 mutants displayed cold hypersensitivity and decreased expression of CBF1, CBF2 and CBF3, which might be responsible for the cold intolerance. The present study indicated that AtRH7 participates in rRNA biogenesis and is also involved in plant development and cold tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC These authors contributed equally to this work
| | - Yu-Lien Shen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC These authors contributed equally to this work
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chin-Hui Yeh
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| |
Collapse
|
180
|
Ivanov KI, Eskelin K, Bašić M, De S, Lõhmus A, Varjosalo M, Mäkinen K. Molecular insights into the function of the viral RNA silencing suppressor HCPro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:30-45. [PMID: 26611351 DOI: 10.1111/tpj.13088] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 05/23/2023]
Abstract
Potyviral helper component proteinase (HCPro) is a well-characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus-infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S-adenosyl-L-methionine synthase and S-adenosyl-L-homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus-infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC-mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome-associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Katri Eskelin
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Marta Bašić
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Swarnalok De
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Andres Lõhmus
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
181
|
Gasiorek M, Schneider HJ. Unwinding DNA and RNA with Synthetic Complexes: On the Way to Artificial Helicases. Chemistry 2015; 21:18328-32. [PMID: 26503404 DOI: 10.1002/chem.201502738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 01/04/2023]
Abstract
Synthetic helicases can be designed on the basis of ligands that bind more strongly to single-stranded nucleic acids than to double-stranded nucleic acids. This can be achieved with ligands containing phenyl groups, which intercalate into single strands, but due to their small size not into double strands. Moreover, two phenyl rings are combined with a distance that allows bis-intercalation with only single strands and not double strands. In this respect, such ligands also mimic single-strand binding (SSB) proteins. Exploration with more than 23 ligands, mostly newly synthesised, shows that the distance between the phenyl rings and between those and the linker influence the DNA unwinding efficiency, which can reach a melting point decrease of almost ΔTm =50 °C at much lower concentrations than that with any other known artificial helicases. Conformational pre-organisation of the ligand plays a decisive role in optimal efficiency. Substituents at the phenyl rings have a large effect, and increase, for example, in the order of H<F<Cl<Br, which illustrates the strong role of dispersive interactions in intercalation. Studies with homopolymers revealed significant selectivity: for example, with a ligand concentration of 40 μM at 35 °C, only GC double strands melt (ΔTm =48 °C), whereas the AT strand remains untouched, and with poly(rA)-poly(rU) as an RNA model one observes unfolding at 29 °C with a concentration of only 30 μM.
Collapse
Affiliation(s)
- Martin Gasiorek
- FR Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken (Germany)
| | - Hans-Jörg Schneider
- FR Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken (Germany).
| |
Collapse
|
182
|
Aditi, Glass L, Dawson TR, Wente SR. An amyotrophic lateral sclerosis-linked mutation in GLE1 alters the cellular pool of human Gle1 functional isoforms. Adv Biol Regul 2015; 62:25-36. [PMID: 26776475 DOI: 10.1016/j.jbior.2015.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal late onset motor neuron disease with underlying cellular defects in RNA metabolism. In prior studies, two deleterious heterozygous mutations in the gene encoding human (h)Gle1 were identified in ALS patients. hGle1 is an mRNA processing modulator that requires inositol hexakisphosphate (IP6) binding for function. Interestingly, one hGLE1 mutation (c.1965-2A>C) results in a novel 88 amino acid C-terminal insertion, generating an altered protein. Like hGle1A, at steady state, the altered protein termed hGle1-IVS14-2A>C is absent from the nuclear envelope rim and localizes to the cytoplasm. hGle1A performs essential cytoplasmic functions in translation and stress granule regulation. Therefore, we speculated that the ALS disease pathology results from altered cellular pools of hGle1 and increased cytoplasmic hGle1 activity. GFP-hGle1-IVS14-2A>C localized to stress granules comparably to GFP-hGle1A, and rescued stress granule defects following siRNA-mediated hGle1 depletion. As described for hGle1A, overexpression of the hGle1-IVS14-2A>C protein also induced formation of larger SGs. Interestingly, hGle1A and the disease associated hGle1-IVS14-2A>C overexpression induced the formation of distinct cytoplasmic protein aggregates that appear similar to those found in neurodegenerative diseases. Strikingly, the ALS-linked hGle1-IVS14-2A>C protein also rescued mRNA export defects upon depletion of endogenous hGle1, acting in a potentially novel bi-functional manner. We conclude that the ALS-linked hGle1-c.1965-2A>C mutation generates a protein isoform capable of both hGle1A- and hGle1B-ascribed functions, and thereby uncoupled from normal mechanisms of hGle1 regulation.
Collapse
Affiliation(s)
- Aditi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Laura Glass
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.
| |
Collapse
|
183
|
Ding H, Guo M, Vidhyasagar V, Talwar T, Wu Y. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase. PLoS One 2015; 10:e0140755. [PMID: 26474416 PMCID: PMC4608764 DOI: 10.1371/journal.pone.0140755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI). The Q motif, consisting of nine amino acids (GFXXPXPIQ) with an invariant glutamine (Q) residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.
Collapse
Affiliation(s)
- Hao Ding
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Manhong Guo
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Venkatasubramanian Vidhyasagar
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Tanu Talwar
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Yuliang Wu
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
184
|
Xia H, Wang P, Wang GC, Yang J, Sun X, Wu W, Qiu Y, Shu T, Zhao X, Yin L, Qin CF, Hu Y, Zhou X. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLoS Pathog 2015. [PMID: 26218680 PMCID: PMC4517893 DOI: 10.1371/journal.ppat.1005067] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our understanding of enteroviruses and the two types of RNA remodeling activities. Enteroviruses contain a large number of closely related human pathogens, including poliovirus, EV71, and coxsackie viruses, and cause ~3 billion infections annually. Among the nonstructural proteins of enteroviruses or picornaviruses, protein 2CATPase is the most conserved and complex but the least understood. On the basis of sequence analyses, this protein has been predicted as a putative superfamily 3 (SF3) helicase that supposedly plays a pivotal role in enteroviral RNA replication. However, attempts to determine the helicase activity associated with 2CATPase have been unsuccessful. We found that eukaryotically expressed EV71 or CAV16 2CATPase does possess an ATP-dependent RNA helicase activity that 3′→5′ unwinds RNA helices like other SF3 helicases; surprisingly, it also functions as an RNA chaperone that remodels RNA structures in an ATP-independent manner. Moreover, we determined the domain requirements for these two RNA remodeling activities associated with 2CATPase and provide both in vitro and cellular evidence of their potential roles during viral RNA replication. Additionally, our study provides the first evidence that RNA helicase and chaperoning activities can be integrated within one protein, thereby introducing an extended view of RNA remodeling proteins.
Collapse
Affiliation(s)
- Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peipei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Guang-Chuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xianlin Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenzhe Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting Shu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaolu Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
185
|
García-García C, Frieda KL, Feoktistova K, Fraser CS, Block SM. RNA BIOCHEMISTRY. Factor-dependent processivity in human eIF4A DEAD-box helicase. Science 2015; 348:1486-8. [PMID: 26113725 DOI: 10.1126/science.aaa5089] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During eukaryotic translation initiation, the small ribosomal subunit, assisted by initiation factors, locates the messenger RNA start codon by scanning from the 5' cap. This process is powered by the eukaryotic initiation factor 4A (eIF4A), a DEAD-box helicase. eIF4A has been thought to unwind structures formed in the untranslated 5' region via a nonprocessive mechanism. Using a single-molecule assay, we found that eIF4A functions instead as an adenosine triphosphate-dependent processive helicase when complexed with two accessory proteins, eIF4G and eIF4B. Translocation occurred in discrete steps of 11 ± 2 base pairs, irrespective of the accessory factor combination. Our findings support a memory-less stepwise mechanism for translation initiation and suggest that similar factor-dependent processivity may be shared by other members of the DEAD-box helicase family.
Collapse
Affiliation(s)
| | - Kirsten L Frieda
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Kateryna Feoktistova
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA 95616, USA
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA 95616, USA
| | - Steven M Block
- Department of Biology, Stanford University, Stanford, CA 94305, USA. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
186
|
Liu YC, Cheng SC. Functional roles of DExD/H-box RNA helicases in Pre-mRNA splicing. J Biomed Sci 2015; 22:54. [PMID: 26173448 PMCID: PMC4503299 DOI: 10.1186/s12929-015-0161-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/29/2015] [Indexed: 01/30/2023] Open
Abstract
Splicing of precursor mRNA takes place via two consecutive steps of transesterification catalyzed by a large ribonucleoprotein complex called the spliceosome. The spliceosome is assembled through ordered binding to the pre-mRNA of five small nuclear RNAs and numerous protein factors, and is disassembled after completion of the reaction to recycle all components. Throughout the splicing cycle, the spliceosome changes its structure, rearranging RNA-RNA, RNA-protein and protein-protein interactions, for positioning and repositioning of splice sites. DExD/H-box RNA helicases play important roles in mediating structural changes of the spliceosome by unwinding of RNA duplexes or disrupting RNA-protein interactions. DExD/H-box proteins are also implicated in the fidelity control of the splicing process at various steps. This review summarizes the functional roles of DExD/H-box proteins in pre-mRNA splicing according to studies conducted mostly in yeast and will discuss the concept of the complicated splicing reaction based on recent findings.
Collapse
Affiliation(s)
- Yen-Chi Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| |
Collapse
|
187
|
D'Heygère F, Schwartz A, Coste F, Castaing B, Boudvillain M. ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis. Nucleic Acids Res 2015; 43:6099-111. [PMID: 25999346 PMCID: PMC4499133 DOI: 10.1093/nar/gkv505] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
Abstract
The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal 'RNA binding' domain and by a non-canonical R-loop residue in its C-terminal 'motor' domain. We also show that the 'motor' domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors.
Collapse
Affiliation(s)
- François D'Heygère
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France Ecole doctorale Santé, Sciences Biologiques et Chimie du Vivant (ED 549), Université d'Orléans, Orléans, France
| | - Annie Schwartz
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France ITP Sciences Biologiques & Chimie du Vivant, Université d'Orléans, Orléans, France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France ITP Sciences Biologiques & Chimie du Vivant, Université d'Orléans, Orléans, France
| |
Collapse
|
188
|
Madina BR, Kumar V, Mooers BHM, Cruz-Reyes J. Native Variants of the MRB1 Complex Exhibit Specialized Functions in Kinetoplastid RNA Editing. PLoS One 2015; 10:e0123441. [PMID: 25928631 PMCID: PMC4415780 DOI: 10.1371/journal.pone.0123441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/04/2015] [Indexed: 12/20/2022] Open
Abstract
Adaptation and survival of Trypanosoma brucei requires editing of mitochondrial mRNA by uridylate (U) insertion and deletion. Hundreds of small guide RNAs (gRNAs) direct the mRNA editing at over 3,000 sites. RNA editing is controlled during the life cycle but the regulation of substrate and stage specificity remains unknown. Editing progresses in the 3' to 5' direction along the pre-mRNA in blocks, each targeted by a unique gRNA. A critical editing factor is the mitochondrial RNA binding complex 1 (MRB1) that binds gRNA and transiently interacts with the catalytic RNA editing core complex (RECC). MRB1 is a large and dynamic complex that appears to be comprised of distinct but related subcomplexes (termed here MRBs). MRBs seem to share a 'core' complex of proteins but differ in the composition of the 'variable' proteins. Since some proteins associate transiently the MRBs remain imprecisely defined. MRB1 controls editing by unknown mechanisms, and the functional relevance of the different MRBs is unclear. We previously identified two distinct MRBs, and showed that they carry mRNAs that undergo editing. We proposed that editing takes place in the MRBs because MRBs stably associate with mRNA and gRNA but only transiently interact with RECC, which is RNA free. Here, we identify the first specialized functions in MRBs: 1) 3010-MRB is a major scaffold for RNA editing, and 2) REH2-MRB contains a critical trans-acting RNA helicase (REH2) that affects multiple steps of editing function in 3010-MRB. These trans effects of the REH2 include loading of unedited mRNA and editing in the first block and in subsequent blocks as editing progresses. REH2 binds its own MRB via RNA, and conserved domains in REH2 were critical for REH2 to associate with the RNA and protein components of its MRB. Importantly, REH2 associates with a ~30 kDa RNA-binding protein in a novel ~15S subcomplex in RNA-depleted mitochondria. We use these new results to update our model of MRB function and organization.
Collapse
Affiliation(s)
- Bhaskara R. Madina
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States of America
| | - Vikas Kumar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States of America
| | - Blaine H. M. Mooers
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
189
|
Treffers EE, Tas A, Scholte FE, Van MN, Heemskerk MT, de Ru AH, Snijder EJ, van Hemert MJ, van Veelen PA. Temporal SILAC-based quantitative proteomics identifies host factors involved in chikungunya virus replication. Proteomics 2015; 15:2267-80. [DOI: 10.1002/pmic.201400581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Emmely E. Treffers
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
- Department of Immunohematology and Blood transfusion; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Florine E.M. Scholte
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Myrthe N. Van
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Matthias T. Heemskerk
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Arnoud H. de Ru
- Department of Immunohematology and Blood transfusion; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Eric J. Snijder
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Martijn J. van Hemert
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Peter A. van Veelen
- Department of Immunohematology and Blood transfusion; Leiden University Medical Center; ZA Leiden The Netherlands
| |
Collapse
|
190
|
Affiliation(s)
- Rick Russell
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
191
|
Cugusi S, Kallappagoudar S, Ling H, Lucchesi JC. The Drosophila Helicase Maleless (MLE) is Implicated in Functions Distinct From its Role in Dosage Compensation. Mol Cell Proteomics 2015; 14:1478-88. [PMID: 25776889 PMCID: PMC4458714 DOI: 10.1074/mcp.m114.040667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/06/2022] Open
Abstract
Helicases are ubiquitous enzymes that unwind or remodel single or double-stranded nucleic acids, and that participate in a vast array of metabolic pathways. The ATP-dependent DEXH-box RNA/DNA helicase MLE was first identified as a core member of the chromatin remodeling MSL complex, responsible for dosage compensation in Drosophila males. Although this complex does not assemble in females, MLE is present. Given the multiplicity of functions attributed to its mammalian ortholog RNA helicase A, we have carried out an analysis for the purpose of determining whether MLE displays the same diversity. We have identified a number of different proteins that associate with MLE, implicating its role in specific pathways. We have documented this association in selected examples that include the spliceosome complex, heterogeneous Nuclear Ribonucleoproteins involved in RNA Processing and in Heterochromatin Protein 1 deposition, and the NuRD complex.
Collapse
Affiliation(s)
- Simona Cugusi
- From the ‡Department of Biology, Emory University, Atlanta, Georgia 30322
| | | | - Huiping Ling
- From the ‡Department of Biology, Emory University, Atlanta, Georgia 30322
| | - John C Lucchesi
- From the ‡Department of Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
192
|
Ozgur S, Buchwald G, Falk S, Chakrabarti S, Prabu JR, Conti E. The conformational plasticity of eukaryotic RNA-dependent ATPases. FEBS J 2015; 282:850-63. [PMID: 25645110 DOI: 10.1111/febs.13198] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
RNA helicases are present in all domains of life and participate in almost all aspects of RNA metabolism, from transcription and processing to translation and decay. The diversity of pathways and substrates that they act on is reflected in the diversity of their individual functions, structures, and mechanisms. However, RNA helicases also share hallmark properties. At the functional level, they promote rearrangements of RNAs and RNP particles by coupling nucleic acid binding and release with ATP hydrolysis. At the molecular level, they contain two domains homologous to the bacterial RecA recombination protein. This conserved catalytic core is flanked by additional domains, which typically regulate the ATPase activity in cis. Binding to effector proteins targets or regulates the ATPase activity in trans. Structural and biochemical studies have converged on the plasticity of RNA helicases as a fundamental property that is used to control their timely activation in the cell. In this review, we focus on the conformational regulation of conserved eukaryotic RNA helicases.
Collapse
Affiliation(s)
- Sevim Ozgur
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
193
|
Krepl M, Havrila M, Stadlbauer P, Banas P, Otyepka M, Pasulka J, Stefl R, Sponer J. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes? J Chem Theory Comput 2015; 11:1220-43. [PMID: 26579770 DOI: 10.1021/ct5008108] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report over 30 μs of unrestrained molecular dynamics simulations of six protein-RNA complexes in explicit solvent. We utilize the AMBER ff99bsc0χ(OL3) RNA force field combined with the ff99SB protein force field and its more recent ff12SB version with reparametrized side-chain dihedrals. The simulations show variable behavior, ranging from systems that are essentially stable to systems with progressive deviations from the experimental structure, which we could not stabilize anywhere close to the starting experimental structure. For some systems, microsecond-scale simulations are necessary to achieve stabilization after initial sizable structural perturbations. The results show that simulations of protein-RNA complexes are challenging and every system should be treated individually. The simulations are affected by numerous factors, including properties of the starting structures (the initially high force field potential energy, resolution limits, conformational averaging, crystal packing, etc.), force field imbalances, and real flexibility of the studied systems. These factors, and thus the simulation behavior, differ from system to system. The structural stability of simulated systems does not correlate with the size of buried interaction surface or experimentally determined binding affinities but reflects the type of protein-RNA recognition. Protein-RNA interfaces involving shape-specific recognition of RNA are more stable than those relying on sequence-specific RNA recognition. The differences between the protein force fields are considerably smaller than the uncertainties caused by sampling and starting structures. The ff12SB improves description of the tyrosine side-chain group, which eliminates some problems associated with tyrosine dynamics.
Collapse
Affiliation(s)
- M Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - M Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - P Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - P Banas
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , Tř. 17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | - M Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , Tř. 17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | | | | | - J Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
194
|
Unzippers, resolvers and sensors: a structural and functional biochemistry tale of RNA helicases. Int J Mol Sci 2015; 16:2269-93. [PMID: 25622248 PMCID: PMC4346836 DOI: 10.3390/ijms16022269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/28/2022] Open
Abstract
The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes.
Collapse
|
195
|
Ward WL, Russell R. Key points to consider when studying RNA remodeling by proteins. Methods Mol Biol 2015; 1259:1-16. [PMID: 25579576 DOI: 10.1007/978-1-4939-2214-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cellular RNAs depend on proteins for efficient folding to specific functional structures and for transitions between functional structures. This dependence arises from intrinsic properties of RNA structure. Specifically, RNAs possess stable local structure, largely in the form of helices, and they have abundant opportunities to form alternative helices and tertiary contacts and therefore to populate alternative structures. Proteins with RNA chaperone activity, either ATP-dependent or ATP-independent, can promote structural transitions by interacting with single-stranded RNA (ssRNA) to compete away partner interactions and then release ssRNA so that it can form new interactions. In this chapter we review the basic properties of RNA and the proteins that function as chaperones and remodelers. We then use these properties as a foundation to explore key points for the design and interpretation of experiments that probe RNA rearrangements and their acceleration by proteins.
Collapse
Affiliation(s)
- W Luke Ward
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 105 E, 24th St. Stop A5300, Austin, TX, 78712, USA
| | | |
Collapse
|
196
|
Abstract
A diverse population of large RNA molecules controls every aspect of cellular function, and yet we know very little about their molecular structures. However, robust technologies developed for visualizing ribozymes and riboswitches, together with new approaches for mapping RNA inside cells, provide the foundation for visualizing the structures of long noncoding RNAs, mRNAs, and viral RNAs, thereby facilitating new mechanistic insights.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology and Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
197
|
Schroeder SJ. Probing viral genomic structure: alternative viewpoints and alternative structures for satellite tobacco mosaic virus RNA. Biochemistry 2014; 53:6728-37. [PMID: 25320869 DOI: 10.1021/bi501051k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral RNA structure prediction is a valuable tool for development of drugs against viral disease. This work discusses different approaches to predicting encapsidated viral RNA and highlights satellite tobacco mosaic virus (STMV) RNA as a model system with excellent crystallography data. Fundamentally important issues for debate include thermodynamic versus kinetic control of virus assembly and the possible consequences of quasi-species in the primary structure on RNA secondary structure prediction of a single structure or an ensemble of structures. Multiple computational tools and chemical reagents are now available for improved viral RNA structure prediction. Two different predicted structures for encapsidated STMV RNA result from differences in three main areas: a different approach and philosophy to studying encapsidated viral RNA, an emphasis on different RNA motifs, and technical differences in computational methods and chemical reagents. The experiments with traditional chemical probing and SHAPE reagents are compared in terms of chemistry, results, and interpretation for STMV RNA as well as other RNA protein assemblies, such as the 5'UTR of HIV and the ribosome. This discussion of the challenges of viral RNA structure prediction will lead to new experiments and improved future predictions for viral RNA.
Collapse
Affiliation(s)
- Susan J Schroeder
- Department of Chemistry and Biochemistry and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
198
|
Mallam AL, Sidote DJ, Lambowitz AM. Molecular insights into RNA and DNA helicase evolution from the determinants of specificity for a DEAD-box RNA helicase. eLife 2014; 3:e04630. [PMID: 25497230 PMCID: PMC4383044 DOI: 10.7554/elife.04630] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/10/2014] [Indexed: 01/07/2023] Open
Abstract
How different helicase families with a conserved catalytic 'helicase core' evolved to function on varied RNA and DNA substrates by diverse mechanisms remains unclear. In this study, we used Mss116, a yeast DEAD-box protein that utilizes ATP to locally unwind dsRNA, to investigate helicase specificity and mechanism. Our results define the molecular basis for the substrate specificity of a DEAD-box protein. Additionally, they show that Mss116 has ambiguous substrate-binding properties and interacts with all four NTPs and both RNA and DNA. The efficiency of unwinding correlates with the stability of the 'closed-state' helicase core, a complex with nucleotide and nucleic acid that forms as duplexes are unwound. Crystal structures reveal that core stability is modulated by family-specific interactions that favor certain substrates. This suggests how present-day helicases diversified from an ancestral core with broad specificity by retaining core closure as a common catalytic mechanism while optimizing substrate-binding interactions for different cellular functions.
Collapse
Affiliation(s)
- Anna L Mallam
- Institute for Cellular
and Molecular Biology, University of Texas at
Austin, Austin, United States,Department of Molecular
Biosciences, University of Texas at
Austin, Austin, United States
| | - David J Sidote
- Institute for Cellular
and Molecular Biology, University of Texas at
Austin, Austin, United States,Department of Molecular
Biosciences, University of Texas at
Austin, Austin, United States
| | - Alan M Lambowitz
- Institute for Cellular
and Molecular Biology, University of Texas at
Austin, Austin, United States,Department of Molecular
Biosciences, University of Texas at
Austin, Austin, United States,For correspondence:
| |
Collapse
|