151
|
Shen X, Jain A, Aladelokun O, Yan H, Gilbride A, Ferrucci LM, Lu L, Khan SA, Johnson CH. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: A narrative review. Front Mol Biosci 2022; 9:958666. [PMID: 36090030 PMCID: PMC9453556 DOI: 10.3389/fmolb.2022.958666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Asparagine (Asn) and enzymes that catalyze the metabolism of Asn have been linked to the regulation and propagation of colorectal cancer (CRC). Increased Asn and asparagine synthetase (ASNS) expression, both contribute to CRC progression and metastasis. In contradistinction, L-asparaginase (ASNase) which breaks down Asn, exhibits an anti-tumor effect. Metabolic pathways such as KRAS/PI3K/AKT/mTORC1 signaling and high SOX12 expression can positively regulate endogenous Asn production. Conversely, the tumor suppressor, TP53, negatively impacts ASNS, thus limiting Asn synthesis and reducing tumor burden. Asn abundance can be altered by factors extrinsic to the cancer cell such as diet, the microbiome, and therapeutic use of ASNase. Recent studies have shown that sex-related factors can also influence the regulation of Asn, and high Asn production results in poorer prognosis for female CRC patients but not males. In this narrative review, we critically review studies that have examined endogenous and exogenous modulators of Asn bioavailability and summarize the key metabolic networks that regulate Asn metabolism. We also provide new hypotheses regarding sex-related influences on Asn, including the involvement of the sex-steroid hormone estrogen and estrogen receptors. Further, we hypothesize that sex-specific factors that influence Asn metabolism can influence clinical outcomes in CRC patients.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Oladimeji Aladelokun
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Austin Gilbride
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Leah M. Ferrucci
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Sajid A. Khan
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| |
Collapse
|
152
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
153
|
Shi J, Wang L, Yin X, Wang L, Bo L, Liu K, Feng K, Lin S, Xu Y, Ning S, Zhao H. Comprehensive characterization of clonality of driver genes revealing their clinical relevance in colorectal cancer. Lab Invest 2022; 20:362. [PMID: 35962343 PMCID: PMC9373375 DOI: 10.1186/s12967-022-03529-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
Background Genomic studies of colorectal cancer have revealed the complex genomic heterogeneity of the tumor. The acquisition and selection of genomic alterations may be critical to understanding the initiation and progression of this disease. Methods In this study, we have systematically characterized the clonal architecture of 97 driver genes in 536 colorectal cancer patients from TCGA. Results A high proportion of clonal mutations in 93 driver genes were observed. 40 genes showed significant associations between their clonality and multiple clinicopathologic factors. Kaplan–Meier analysis suggested that the mutation clonality of ANK1, CASP8, SMAD2, and ARID1A had a significant impact on the CRC patients' outcomes. Multivariable analysis revealed that subclonal ANK1 mutations, clonal CASP8 mutations, and clonal SMAD2 mutations independently predicted for shorter overall survival after adjusting for clinicopathological factors. The poor outcome of the subclonal ANK1 mutation may be caused by upregulation of IL4I1, IDO1, IFNG and MAPK12 which showed potential roles in tumor immune evasion through accumulation of immunosuppressive cells such as regulatory T cells and myeloid derived suppressor cells. Conclusion These results suggested that the clonality of driver genes could act as prognostic markers and potential therapeutic targets in human colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03529-x.
Collapse
Affiliation(s)
- Jian Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.,Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Xiangzhe Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lixia Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lin Bo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Kailai Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ke Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Shihua Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
154
|
Parmar S, Easwaran H. Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterol Rep (Oxf) 2022; 10:goac035. [PMID: 35975243 PMCID: PMC9373935 DOI: 10.1093/gastro/goac035] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies have mapped key genetic changes in colorectal cancer (CRC) that impact important pathways contributing to the multistep models for CRC initiation and development. In parallel with genetic changes, normal and cancer tissues harbor epigenetic alterations impacting regulation of critical genes that have been shown to play profound roles in the tumor initiation. Cumulatively, these molecular changes are only loosely associated with heterogenous transcriptional programs, reflecting the heterogeneity in the various CRC molecular subtypes and the paths to CRC development. Studies from mapping molecular alterations in early CRC lesions and use of experimental models suggest that the intricate dependencies of various genetic and epigenetic hits shape the early development of CRC via different pathways and its manifestation into various CRC subtypes. We highlight the dependency of epigenetic and genetic changes in driving CRC development and discuss factors affecting epigenetic alterations over time and, by extension, risk for cancer.
Collapse
Affiliation(s)
- Sehej Parmar
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
155
|
Yang H, Li S, Qu Y, Li L, Li Y, Wang D. Anti-Colorectal Cancer Effects of Inonotus hispidus (Bull.: Fr.) P. Karst. Spore Powder through Regulation of Gut Microbiota-Mediated JAK/STAT Signaling. Nutrients 2022; 14:nu14163299. [PMID: 36014805 PMCID: PMC9415721 DOI: 10.3390/nu14163299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Inonotus hispidus (Bull.: Fr.) P. Karst. spore powder (IHS) contains polyphenols and triterpenoids with pharmacological effects. Here, we analyzed its composition, and we investigated the effects of IHS on colorectal cancer (CRC) in B6/JGpt-Apcem1Cin(min)/Gpt (ApcMin/+) mice and its potential mechanisms by analyzing gut microbiota and serum metabolomics. The enzyme-linked immunosorbent assays and Western blotting were used to confirm the changes in the cytokine and protein levels associated with IHS administration. The IHS affected the abundance of gut microbiota and the level of L-arginine (L-Arg). Furthermore, the IHS influenced T cells in ApcMin/+ mice by increasing the interleukin (IL)-2 and decreasing the IL-5, -6, and -10 levels, thus suppressing tumor development. Overall, IHS showed anti-CRC properties in ApcMin/+ mice by affecting the gut microbiota and serum metabolites, which in turn affected the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, and regulated the abundance of CD8+ T cells. These results provide experimental support for the potential future treatment of CRC with IHS.
Collapse
Affiliation(s)
- Hongxin Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Siyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (D.W.)
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (D.W.)
| |
Collapse
|
156
|
RNA Modifications in Gastrointestinal Cancer: Current Status and Future Perspectives. Biomedicines 2022; 10:biomedicines10081918. [PMID: 36009465 PMCID: PMC9405978 DOI: 10.3390/biomedicines10081918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 01/05/2023] Open
Abstract
Gastrointestinal (GI) cancer, referring to cancers of the digestive system such as colorectal cancer (CRC), gastric cancer (GC), and liver cancer, is a major cause of cancer-related deaths in the world. A series of genetic, epigenetic, and epitranscriptomic changes occur during the development of GI cancer. The identification of these molecular events provides potential diagnostic, prognostic, and therapeutic targets for cancer patients. RNA modification is required in the posttranscriptional regulation of RNA metabolism, including splicing, intracellular transport, degradation, and translation. RNA modifications such as N6-methyladenosine (m6A) and N1-methyladenosine (m1A) are dynamically regulated by three different types of regulators named methyltransferases (writers), RNA binding proteins (readers), and demethylases (erasers). Recent studies have pointed out that abnormal RNA modification contributes to GI tumorigenesis and progression. In this review, we summarize the latest findings on the functional significance of RNA modification in GI cancer and discuss the therapeutic potential of epitranscriptomic inhibitors for cancer treatment.
Collapse
|
157
|
Dai Y, Wang H, Sun R, Diao J, Ma Y, Shao M, Xu Y, Zhang Q, Gao Z, Zeng Z, Zhang L, Sun X. Modified Shenlingbaizhu Decoction represses the pluripotency of colorectal cancer stem cells by inhibiting TGF-β mediated EMT program. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154234. [PMID: 35689903 DOI: 10.1016/j.phymed.2022.154234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Modified Shenlingbaizhu Decoction (MSD) utilizes various phytomedicines has been applied to treat colorectal cancer (CRC). Colorectal cancer stem cells (CSCs) have proven to be tightly associated with CRC progression and metastasis. The mechanism of MSD's inhibitory effect on CSCs has not been determined. PURPOSE To figure out how MSD inhibits the pluripotency of CSCs and impedes the EMT program. METHODS The ingredients of MSD extracts were characterized by high-performance liquid chromatography (HPLC). BALB/c-nu mice were transplanted into EGFP labeled SW480 CRC cells and the tumor weight and volume were recorded before and after various doses of MSD treatment. The concentration of TGF-β1 was quantified with an Enzyme-linked immunosorbent assay. To delineate the logical relationship between EMT and CSCs regulated by MSD, TGF-β/Smad inhibitor and activator were adopted in tumor-bearing mice and diverse CRC cell lines. Cancer stem cell markers were analyzed by flow cytometry. In vitro analysis of cell motility and viability were done using CCK-8, wound healing, and invasion assay. Immunohistochemistry (IHC) and western blotting (WB) were used for detecting protein expression. The collected results were statistically analyzed with GraphPad Prism 8.0. RESULTS MSD treatment significantly reduced the size of colorectal cancer tumors and lowered the serum content of TGF-β1 in mice. Importantly, MSD markedly reduced the expression of pluripotent factors and depressed CD133+ stem cells in the tumor tissues. The TGF-β/Smad inhibitor neutralized the EMT signaling and lowered the pluripotency by dephosphorylation of SMAD2/3. Similarly, MSD attenuated the pluripotency by limiting TGF-β/Smad signaling-induced EMT in vivo. MSD inhibited colorectal cancer cell proliferation, migration, and invasion. CONCLUSIONS MSD inhibits the growth of colorectal cancer. It dampens the pluripotency of CSCs by repressing the TGF-β-induced EMT program.
Collapse
Affiliation(s)
- Yu Dai
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hao Wang
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ruibo Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianxin Diao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ye Ma
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Meng Shao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yihua Xu
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qingyuan Zhang
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhuowei Gao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China; Shunde Hospital, Guangzhou University of Chinese Medicine, Foshan, 528333, Guangdong, China
| | - Zhiyun Zeng
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lihua Zhang
- Traditional Chinese Medicine Integrated Hospital, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China; Department of traditional Chinese medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
158
|
Bai H, Li QZ, Qi YC, Zhai YY, Jin W. The prediction of tumor and normal tissues based on the DNA methylation values of ten key sites. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194841. [PMID: 35798200 DOI: 10.1016/j.bbagrm.2022.194841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Abnormal DNA methylation can alter the gene expression to promote or inhibit tumorigenesis in colon adenocarcinoma (COAD). However, the finding important genes and key sites of abnormal DNA methylation which result in the occurrence of COAD is still an eventful task. Here, we studied the effects of DNA methylation in the 12 types of genomic features on the changes of gene expression in COAD, the 10 important COAD-related genes and the key abnormal DNA methylation sites were identified. The effects of important genes on the prognosis were verified by survival analysis. Moreover, it was shown that the important genes were participated in cancer pathways and were hub genes in a co-expression network. Based on the DNA methylation levels in the ten sites, the least diversity increment algorithm for predicting tumor tissues and normal tissues in seventeen cancer types are proposed. The better results are obtained in jackknife test. For example, the predictive accuracies are 94.17 %, 91.28 %, 89.04 % and 88.89 %, respectively, for COAD, rectum adenocarcinoma, pancreatic adenocarcinoma and cholangiocarcinoma. Finally, by computing enrichment score of infiltrating immunocytes and the activity of immune pathways, we found that the genes are highly correlated with immune microenvironment.
Collapse
Affiliation(s)
- Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.
| | - Ye-Chen Qi
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yuan-Yuan Zhai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Wen Jin
- Inner Mongolia key laboratory of gene regulation of the metabolic disease, Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010010, China
| |
Collapse
|
159
|
Jeon SA, Ha YJ, Kim JH, Kim JH, Kim SK, Kim YS, Kim SY, Kim JC. Genomic and transcriptomic analysis of Korean colorectal cancer patients. Genes Genomics 2022; 44:967-979. [PMID: 35751785 PMCID: PMC9273532 DOI: 10.1007/s13258-022-01275-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common type of diagnosed cancer in the world and has the second-highest mortality rate. Meanwhile, South Korea has the second-highest incidence rate for CRC in the world. OBJECTIVE To assess the possible influence of ethnicity on the molecular profile of colorectal cancer, we compared genomic and transcriptomic features of South Korean CRCs with European CRCs. METHODS We assembled a genomic and transcriptomic dataset of South Korean CRC patients (KOCRC; n = 126) from previous studies and European cases (EUCRC; n = 245) selected from The Cancer Genome Atlas (TCGA). Then, we compared the two datasets in terms of clinical data, driver genes, mutational signature, gene sets, consensus molecular subtype, and fusion genes. RESULTS These two cohorts showed similar profiles in driver mutations but differences in the mutation frequencies of some driver genes (including APC, TP53, PABPC1, FAT4, MUC7, HSPG2, GNAS, DENND5B, and BRAF). Analysis of hallmark pathways using genomic data sets revealed further differences between these populations in the WNT, TP53, and NOTCH signaling pathways. In consensus molecular subtype (CMS) analyses of the study cases, no BRAF mutations were found in the CMS1 subtype of KOCRC, which contrasts with previous findings. Fusion gene analysis identified oncogenic fusion of PTPRK-RSPO3 in a subset of KOCRC patients without APC mutations. CONCLUSIONS This study presents insights into the genomic landscape of KOCRCs and reveals some similarities and differences with EUCRCs at the molecular level.
Collapse
Affiliation(s)
- Sol A Jeon
- Personalized Genomic Medicine Research Center, Daejeon, South Korea
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Ye Jin Ha
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Yong Sung Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea.
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea.
| | - Jin Cheon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
160
|
Zhang X, Yuan JR, Wang X, Fu S, Wang RT, Wang GY. Association between c-type lectin-like receptor 2 and microsatellite instability in colorectal cancer: a cross-sectional study. BMC Cancer 2022; 22:823. [PMID: 35902826 PMCID: PMC9330644 DOI: 10.1186/s12885-022-09834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background As a transmembrane protein, C-type lectin-like receptor 2 (CLEC-2) is mainly expressed on platelets and released into plasma after platelet activation. Activated platelets participate in the regulation of innate immune cells. Patients with different microsatellite statuses have distinct immune profiles. This study aimed to investigate the association of plasma CLEC-2 levels with microsatellite status among colorectal cancer (CRC) patients. Methods A cross-sectional analysis of 430 CRC patients from Harbin Medical University Cancer Hospital was conducted. CLEC-2 levels were measured with fasting venous blood samples drawn from each participant before any treatment. The microsatellite status was evaluated with DNA obtained from fresh frozen tumor tissue samples. The other clinical data were collected and recorded based on the medical system records. Results CLEC-2 levels were significantly higher among patients with high microsatellite instability phenotype than the stable microsatellite group, adjusting for other confounding variables. Conclusions The increased CLEC-2 is associated with the high microsatellite instability subtype of CRC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, Heilongjiang, People's Republic of China, 150081
| | - Jia-Rui Yuan
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, Heilongjiang, People's Republic of China, 150081
| | - Xin Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, Heilongjiang, People's Republic of China, 150081
| | - Shuang Fu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, Heilongjiang, People's Republic of China, 150081
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, Heilongjiang, People's Republic of China, 150081.
| | - Guang-Yu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, Heilongjiang, People's Republic of China, 150081.
| |
Collapse
|
161
|
Caliceti C, Punzo A, Silla A, Simoni P, Roda G, Hrelia S. New Insights into Bile Acids Related Signaling Pathways in the Onset of Colorectal Cancer. Nutrients 2022; 14:nu14142964. [PMID: 35889921 PMCID: PMC9317521 DOI: 10.3390/nu14142964] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) ranks as the second among the causes of tumor death worldwide, with an estimation of 1.9 million new cases in 2020 and more than 900,000 deaths. This rate might increase by 60% over the next 10 years. These data are unacceptable considering that CRC could be successfully treated if diagnosed in the early stages. A high-fat diet promotes the hepatic synthesis of bile acids (BAs) increasing their delivery to the colonic lumen and numerous scientific reports correlate BAs, especially secondary BAs, with CRC incidence. We reviewed the physicochemical and biological characteristics of BAs, focusing on the major pathways involved in CRC risk and progression. We specifically pointed out the role of BAs as signaling molecules and the tangled relationships among their nuclear and membrane receptors with the big bang of molecular and cellular events that trigger CRC occurrence.
Collapse
Affiliation(s)
- Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
- Correspondence:
| | - Angela Punzo
- Department of Chemistry “Giacomo Ciamician” Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Alessia Silla
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Giulia Roda
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| |
Collapse
|
162
|
Kallikrein-Related Peptidase 6 (KLK6) as a Contributor toward an Aggressive Cancer Cell Phenotype: A Potential Role in Colon Cancer Peritoneal Metastasis. Biomolecules 2022; 12:biom12071003. [PMID: 35883559 PMCID: PMC9312869 DOI: 10.3390/biom12071003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Kallikrein-related peptidases (KLKs) are implicated in many cancer-related processes. KLK6, one of the 15 KLK family members, is a promising biomarker for diagnosis of many cancers and has been associated with poor prognosis of colorectal cancer (CRC) patients. Herein, we evaluated the expression and cellular functions of KLK6 in colon cancer-derived cell lines and in clinical samples from CRC patients. We showed that, although many KLKs transcripts are upregulated in colon cancer-derived cell lines, KLK6, KLK10, and KLK11 are the most highly secreted proteins. KLK6 induced calcium flux in HT29 cells by activation and internalization of protease-activated receptor 2 (PAR2). Furthermore, KLK6 induced extracellular signal–regulated kinases 1 and 2 (ERK1/2) phosphorylation. KLK6 suppression in HCT-116 colon cancer cells decreased the colony formation, increased cell adhesion to extracellular matrix proteins, and reduced spheroid formation and compaction. Immunohistochemistry (IHC) analysis demonstrated ectopic expression of KLK6 in human colon adenocarcinomas but not in normal epithelia. Importantly, high levels of KLK6 protein were detected in the ascites of CRC patients with peritoneal metastasis, but not in benign ascites. These data indicate that KLK6 overexpression is associated with aggressive CRC, and may be applied to differentiate between benign and malignant ascites.
Collapse
|
163
|
Munro MJ, Wickremesekera SK, Tan ST, Peng L. Proteomic analysis of low- and high-grade human colon adenocarcinoma tissues and tissue-derived primary cell lines reveals unique biological functions of tumours and new protein biomarker candidates. Clin Proteomics 2022; 19:27. [PMID: 35842572 PMCID: PMC9287856 DOI: 10.1186/s12014-022-09364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Colon cancer is the third most common cancer and second highest cause of cancer deaths worldwide. The aim of the study was to find new biomarkers for diagnosis, prognosis and therapeutic drug targets for this disease. Methods Four low-grade and four high-grade human colon adenocarcinoma tumours with patient-matched normal colon tissues were analysed. Additionally, tissue-derived primary cell lines were established from each tumour tissue. The cell lines were validated using DNA sequencing to confirm that they are a suitable in vitro model for colon adenocarcinoma based on conserved gene mutations. Label-free quantitation proteomics was performed to compare the proteomes of colon adenocarcinoma samples to normal colon samples, and of colon adenocarcinoma tissues to tissue-derived cell lines to find significantly differentially abundant proteins. The functions enriched within the differentially expressed proteins were assessed using STRING. Proteomics data was validated by Western blotting. Results A total of 4767 proteins were identified across all tissues, and 4711 across primary tissue-derived cell lines. Of these, 3302 proteins were detected in both the tissues and the cell lines. On average, primary cell lines shared about 70% of proteins with their parent tissue, and they retained mutations to key colon adenocarcinoma-related genes and did not diverge far genetically from their parent tissues. Colon adenocarcinoma tissues displayed upregulation of RNA processing, steroid biosynthesis and detoxification, and downregulation of cytoskeletal organisation and loss of normal muscle function. Tissue-derived cell lines exhibited increased interferon-gamma signalling and aberrant ferroptosis. Overall, 318 proteins were significantly up-regulated and 362 proteins significantly down-regulated by comparisons of high-grade with low-grade tumours and low-grade tumour with normal colon tissues from both sample types. Conclusions The differences exhibited between tissues and cell lines highlight the additional information that can be obtained from patient-derived primary cell lines. DNA sequencing and proteomics confirmed that these cell lines can be considered suitable in vitro models of the parent tumours. Various potential biomarkers for colon adenocarcinoma initiation and progression and drug targets were identified and discussed, including seven novel markers: ACSL4, ANK2, AMER3, EXOSC1, EXOSC6, GCLM, and TFRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09364-y.
Collapse
Affiliation(s)
- Matthew J Munro
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, 6140, New Zealand.,Gillies McIndoe Research Institute, Newtown, PO Box 7184, Wellington, 6242, New Zealand
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Newtown, PO Box 7184, Wellington, 6242, New Zealand.,Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Department of General Surgery, Wellington Regional Hospital, Wellington, 6021, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, PO Box 7184, Wellington, 6242, New Zealand. .,Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, 5040, New Zealand. .,Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia.
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, 6140, New Zealand.
| |
Collapse
|
164
|
The Tissue-Associated Microbiota in Colorectal Cancer: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143385. [PMID: 35884445 PMCID: PMC9317273 DOI: 10.3390/cancers14143385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Growing evidence shows a close relationship between the microbiome and colorectal cancer, but most studies analyze fecal samples. However, solid information on the microbial community that is present locally in the intestinal tumor tissues is lacking. Therefore, the aim of this systematic review was to compile evidence on the relationship between tissue-associated microbiota and colorectal cancer. Among 5080 screened publications, 39 were eligible and included in the analysis. Despite the heterogeneity in methodologies and reporting between studies, 12 groups of bacteria with strong positive and 18 groups of bacteria with strong negative associations with colorectal cancer were identified. Such knowledge may ultimately be used in novel strategies that aim to prevent, detect, and treat colorectal cancer in the upcoming years. Abstract The intestinal microbiome is associated with colorectal cancer. Although the mucosal microbiota better represents an individual’s local microbiome, studies on the colorectal cancer microbiota mainly reflect knowledge obtained from fecal samples. This systematic review aimed to summarize the current evidence on the relationship between the mucosal-associated bacterial microbiota and colorectal cancer. Searches were conducted in PubMed and Web of Science databases for publications comparing the mucosal microbiome of colorectal cancer patients with that of healthy controls, or with that of non-cancerous mucosal tissues. The primary outcomes were differences in microbial diversity and taxonomy. The Newcastle-Ottawa Scale was used to assess the quality of the included studies. Of the 5080 studies identified, 39 were eligible and included in the systematic review. No consistent results were identified for the α- and β-diversity, due to high heterogeneity in reporting and to differences in metrics and statistical approaches, limiting study comparability. Qualitative synthesis of microbial taxonomy identified 12 taxa with strong positive and 18 taxa with strong negative associations with colorectal cancer. Fusobacterium, Campylobacter, Parvimonas, Peptostreptococcus, Streptococcus, and Granulicatella were defined as enriched in colorectal cancer. Despite the methodological limitations of the studies, consistent evidence on bacterial taxa associated with colorectal cancer was identified. Prospective studies in large and well-characterized patient populations will be crucial to validate these findings.
Collapse
|
165
|
Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
|
166
|
Colorectal cancer-derived exosomes and modulation KRAS signaling. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2074-2080. [PMID: 35789981 DOI: 10.1007/s12094-022-02877-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and one of the main causes of cancer-associated mortality. At the period of diagnosis, metastases to other tissues will be present in around 30% of CRC individuals. Individuals with CRC continue to have a poor prognosis despite advances in medication. There is a growing body of literature that CRC develops as a result of the aggregation of various mutations in tumor oncogenes or suppressor genes and that diagnosing cancer in its initial phases may assist in increasing the overall lifespan of individuals with the illness. On the other hand, tumor cells may discharge exosomes in response to oncogenic mutations. By Inhibiting signaling pathways, including the Kirsten rat sarcoma virus (KRAS) mechanism, which is important in a variety of cell activities, exosomes have been shown to cause colorectal cancer in animal studies. The purpose of this review was to summarize the latest discoveries on the modulation of KRAS signaling by exosomes extracted from colorectal cancer.
Collapse
|
167
|
Bykanova MA, Solodilova MA, Azarova IE, Klyosova EY, Bushueva OY, Polonikova AA, Churnosov MI, Polonikov AV. Genetic variation at the catalytic subunit of glutamate cysteine ligase contributes to the susceptibility to sporadic colorectal cancer: a pilot study. Mol Biol Rep 2022; 49:6145-6154. [PMID: 35386070 DOI: 10.1007/s11033-022-07406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Glutathione is a tripeptide detoxifying a variety of exogenous and endogenous free radicals and carcinogens, and a deficiency of glutathione is associated with an increased host susceptibility to oxidative stress, a pathological condition implicated in the development and progression of cancer. The catalytic subunit of glutamate-cysteine ligase (GCLC) is an enzyme responsible for the initial and rate-limiting step of glutathione biosynthesis. METHODS AND RESULTS The aim of this pilot study was to investigate whether genetic variation at the GCLC gene contributes to the risk of colorectal cancer (CRC). DNA samples from 681 unrelated Russian individuals (283 patients with CRC and 398 age- and sex-matched healthy controls) were genotyped for six common functional SNPs of the GCLC gene (SNPs) such as rs12524494, rs17883901, rs606548, rs636933, rs648595 and rs761142 of the GCLC gene using the MassARRAY-4 system. We found that genotype rs606548-C/T is significantly associated with increased risk of CRC regardless of sex and age (OR 2.24; 95% CI 1.24-4.03; P = 0.007, FDR = 0.04). Moreover, ten GCLC genotype combinations showed association with the risk of CRC (P < 0.05). Functional SNP annotation enabled establishing the CRC-associated polymorphisms are associated with a decreased GCLC expression that may be attributed to epigenetic effects of histone modifications operating in a colon-specific manner. CONCLUSIONS The present study was the first to show that genetic variation at the catalytic subunit of glutamate-cysteine ligase may contribute to the risk of colorectal cancer risk. However, further genetic association studies with a larger sample size are required to substantiate the role of GCLC gene polymorphisms in the development of sporadic colorectal cancer.
Collapse
Affiliation(s)
- Marina A Bykanova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk, 305041, Russian Federation.
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk, Russian Federation, 305041.
| | - Maria A Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk, Russian Federation, 305041
| | - Iuliia E Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk, Russian Federation, 305041
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk, Russian Federation, 305041
| | - Elena Y Klyosova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk, Russian Federation, 305041
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk, Russian Federation, 305041
| | - Olga Y Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk, 305041, Russian Federation
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk, Russian Federation, 305041
| | - Anna A Polonikova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk, Russian Federation, 305041
| | - Mikhail I Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, Belgorod, Russian Federation, 308015
| | - Alexey V Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk, Russian Federation, 305041
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk, Russian Federation, 305041
| |
Collapse
|
168
|
From Intestinal Epithelial Homeostasis to Colorectal Cancer: Autophagy Regulation in Cellular Stress. Antioxidants (Basel) 2022; 11:antiox11071308. [PMID: 35883800 PMCID: PMC9311735 DOI: 10.3390/antiox11071308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
The intestinal epithelium is continuously exposed to abundant stress stimuli, which relies on an evolutionarily conserved process, autophagy, to maintain its homeostasis by degrading and recycling unwanted and damaged intracellular substances. Otherwise, disruption of this balance will result in the development of a wide range of disorders, including colorectal cancer (CRC). Dysregulated autophagy is implicated in the regulation of cellular responses to stress during the development, progression, and treatment of CRC. However, experimental investigations addressing the impact of autophagy in different phases of CRC have generated conflicting results, showing that autophagy is context-dependently related to CRC. Thus, both inhibition and activation of autophagy have been proposed as therapeutic strategies against CRC. Here, we will discuss the multifaceted role of autophagy in intestinal homeostasis and CRC, which may provide insights for future research directions.
Collapse
|
169
|
Mokhtari K, Mahdevar M, Hajipour M, Esmaeili M, Peymani M, Mirzaei S, Nasr-Esfahani MH, Hashemi M, Hushmandi K, Ghaedi K. Title: Involvement of unsaturated fatty acid biosynthesis in CRC progression based on in vitro and in silico studies. Biomed Pharmacother 2022; 153:113338. [PMID: 35779418 DOI: 10.1016/j.biopha.2022.113338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of the risk factors concerns of colorectal cancer (CRC), the most common type of gastrointestinal cancer, due to the changing lifestyle and especially diet. There are various molecular pathways associated with obesity and the risk of CRC incidence, such as insulin resistance or elevated plasma free fatty acids, which alter the signaling pathways of intestinal epithelial cells. The aim of this study was to better understand the significance of unsaturated fatty acid biosynthesis on pathogenesis of colon cancer in obese. Based on GSE20931 dataset, obese individuals affected by CRC had higher increased gene expression than non-obese individuals. The analysis showed that in obese individuals, the 16 signaling pathway genes were activated and increased (FDR <0.05) significantly. The biosynthetic pathway of unsaturated fatty acids showed a cross-talk with the arachidonic acid metabolism pathway and the PPAR signaling pathway is influenced and regulated via these pathways. The biosynthetic pathway of unsaturated fatty acids consisting of 22 genes, were analyzed using GEO data and revealed that 4 genes (HSD17B12, TECR, FADS2, ELOVL5) from this pathway were significantly increased (FDR <0.05). These data were validated based on TCGA data (Adj.p.value <0.001). The expression level of candidate genes in HT-29 cells decreased significantly (P.value <0.01), and PPARγ expression increased under linoleic acid treatment (200 μM) compared to control cells. Moreover, in presence of linoleic acid treatment, migration, colony formation, and proliferation decreased (P.value <0.01) in presence of treatment. In summary, the Biosynthesis pathway of unsaturated fatty acids is an interesting and critical pathway in CRC.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Mahdevar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maral Hajipour
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Esmaeili
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
170
|
Allen J, Rosendahl Huber A, Pleguezuelos-Manzano C, Puschhof J, Wu S, Wu X, Boot C, Saftien A, O’Hagan HM, Wang H, van Boxtel R, Clevers H, Sears CL. Colon Tumors in Enterotoxigenic Bacteroides fragilis (ETBF)-Colonized Mice Do Not Display a Unique Mutational Signature but Instead Possess Host-Dependent Alterations in the APC Gene. Microbiol Spectr 2022; 10:e0105522. [PMID: 35587635 PMCID: PMC9241831 DOI: 10.1128/spectrum.01055-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is consistently found at higher frequency in individuals with sporadic and hereditary colorectal cancer (CRC) and induces tumorigenesis in several mouse models of CRC. However, whether specific mutations induced by ETBF lead to colon tumor formation has not been investigated. To determine if ETBF-induced mutations impact the Apc gene, and other tumor suppressors or proto-oncogenes, we performed whole-exome sequencing and whole-genome sequencing on tumors isolated after ETBF and sham colonization of Apcmin/+ and Apcmin/+Msh2fl/flVC mice, as well as whole-genome sequencing of organoids cocultured with ETBF. Our results indicate that ETBF-induced tumor formation results from loss of heterozygosity (LOH) of Apc, unless the mismatch repair system is disrupted, in which case, tumor formation results from new acquisition of protein-truncating mutations in Apc. In contrast to polyketide synthase-positive Escherichia coli (pks+ E. coli), ETBF does not produce a unique mutational signature; instead, ETBF-induced tumors arise from errors in DNA mismatch repair and homologous recombination DNA damage repair, established pathways of tumor formation in the colon, and the same genetic mechanism accounting for sham tumors in these mouse models. Our analysis informs how this procarcinogenic bacterium may promote tumor formation in individuals with inherited predispositions to CRC, such as Lynch syndrome or familial adenomatous polyposis (FAP). IMPORTANCE Many studies have shown that microbiome composition in both the mucosa and the stool differs in individuals with sporadic and hereditary colorectal cancer (CRC). Both human and mouse models have established a strong association between particular microbes and colon tumor induction. However, the genetic mechanisms underlying putative microbe-induced colon tumor formation are not well established. In this paper, we applied whole-exome sequencing and whole-genome sequencing to investigate the impact of ETBF-induced genetic changes on tumor formation. Additionally, we performed whole-genome sequencing of human colon organoids exposed to ETBF to validate the mutational patterns seen in our mouse models and begin to understand their relevance in human colon epithelial cells. The results of this study highlight the importance of ETBF colonization in the development of sporadic CRC and in individuals with hereditary tumor conditions, such as Lynch syndrome and familial adenomatous polyposis (FAP).
Collapse
Affiliation(s)
- Jawara Allen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Axel Rosendahl Huber
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinqun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
| | - Aurelia Saftien
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
| | - Heather M. O’Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
- Cell, Molecular and Cancer Biology Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Hao Wang
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
| | - Ruben van Boxtel
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cynthia L. Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
| |
Collapse
|
171
|
Dohmen J, Semaan A, Kobilay M, Zaleski M, Branchi V, Schlierf A, Hettwer K, Uhlig S, Hartmann G, Kalff JC, Matthaei H, Lingohr P, Holdenrieder S. Diagnostic Potential of Exosomal microRNAs in Colorectal Cancer. Diagnostics (Basel) 2022; 12:diagnostics12061413. [PMID: 35741223 PMCID: PMC9221658 DOI: 10.3390/diagnostics12061413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Despite the significance of colonoscopy for early diagnosis of colorectal adenocarcinoma (CRC), population-wide screening remains challenging, mainly because of low acceptance rates. Herein, exosomal (exo-miR) and free circulating microRNA (c-miR) may be used as liquid biopsies in CRC to identify individuals at risk. Direct comparison of both compartments has shown inconclusive results, which is why we directly compared a panel of 10 microRNAs in this entity. Methods: Exo-miR and c-miR levels were measured using real-time quantitative PCR after isolation from serum specimens in a cohort of 69 patients. Furthermore, results were compared to established tumor markers CEA and CA 19-9. Results: Direct comparison of exo- and c-miR biopsy results showed significantly higher microRNA levels in the exosomal compartment (p < 0.001). Exo-Let7, exo-miR-16 and exo-miR-23 significantly differed between CRC and healthy controls (all p < 0.05), while no c-miR showed this potential. Sensitivity and specificity can be further enhanced using combinations of multiple exosomal miRNAs. Conclusions: Exosomal microRNA should be considered as a promising biomarker in CRC for future studies. Nonetheless, results may show interference with common comorbidities, which must be taken into account in future studies.
Collapse
Affiliation(s)
- Jonas Dohmen
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Alexander Semaan
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
| | - Martin Zaleski
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Anja Schlierf
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Karina Hettwer
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Steffen Uhlig
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Jörg C. Kalff
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
172
|
Identification of a Genomic Instability-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer Based on Bioinformatic Analysis. DISEASE MARKERS 2022; 2022:4556585. [PMID: 35711569 PMCID: PMC9197617 DOI: 10.1155/2022/4556585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
Abstract
Background. In recent years, a growing body of research has revealed that long noncoding RNAs (lncRNAs) participate in regulating genomic instability. Materials and Methods. We obtained RNA expression profiles, somatic mutation profiles, clinical information, and pathological features of colorectal cancer (CRC) from The Cancer Genome Atlas project. We divided the cohort into two groups based on mutation frequency and identified genomic instability-related lncRNAs (GI-lncRNAs) using R software. We further analyzed the function of identified GI-lncRNAs and established a prognostic model through Cox regression. Using the established prognostic model, we divided the cohort into the high- and low-risk groups and further verified the prognostic differences between the two groups as well as the predictive power of prognosis-related lncRNAs in the genomic instability of CRC. Results. We identified a total of 143 GI-lncRNAs that were differentially expressed between the higher mutation frequency group and the lower mutation frequency group. According to Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses, a series of cancer-associated terms were enriched. We further constructed a prognostic model that included five GI-lncRNAs (lncRNA PTPRD-AS1, lncRNA AC009237.14, lncRNA LINC00543, lncRNA AP003555.1, and lncRNA AL109615.3). We confirmed that the expression of the five GI-lncRNAs was associated with prognosis and the mutation of critical genes in the CRC patient cohort. Conclusions. The present research further confirmed the vital function of GI-lncRNAs in the genomic instability of CRC. The five GI-lncRNAs identified in our study are potential biomarkers and need to be studied in more depth.
Collapse
|
173
|
Sohrabi H, Bolandi N, Hemmati A, Eyvazi S, Ghasemzadeh S, Baradaran B, Oroojalian F, Reza Majidi M, de la Guardia M, Mokhtarzadeh A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
174
|
Li J, Ji Y, Chen N, Wang H, Fang C, Yin X, Jiang Z, Dong Z, Zhu D, Fu J, Zhou W, Jiang R, He L, Hantao Z, Shi G, Cheng L, Su X, Dai L, Deng H. A specific upregulated lncRNA in colorectal cancer promotes cancer progression. JCI Insight 2022; 7:158855. [PMID: 35617032 PMCID: PMC9462503 DOI: 10.1172/jci.insight.158855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNA (lncRNA) plays a crucial role in the pathogenesis of various diseases, including colorectal cancer (CRC). The gene mutations of Adenomatous polyposis coli (APC) were found in most colorectal cancer patients. They are functioned as an important inducer of tumorigenesis. Based on our microarray results, we identified a specific upregulated lncRNA in colorectal cancer (SURC). Further analysis showed that high SURC expression correlated with poorer disease-free survival and overall survival in patients with colorectal cancer. Besides, we found that mutated APC genes can promote the transcription of SURC by reducing the degradation of β-catenin protein in colorectal cancer. Functional assays revealed that knockdown of SURC impaired CRC cell proliferation, colony formation, cell cycle and tumor growth. Additionally, SURC can promote CCND2 expression by inhibiting the expression of miR-185-5p in CRC cells. In conclusion, we demonstrate that SURC is a specific upregulated lncRNA in CRC and the SURC/miR-185-5p/CCND2 axis may be targetable for CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Junshu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Ji
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Yin
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyuan Jiang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhexu Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiamei Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wencheng Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiyi Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling He
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Hantao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
175
|
Xing J, Fang Y, Zhang W, Zhang H, Tang D, Wang D. Bacterial driver-passenger model in biofilms: a new mechanism in the development of colorectal cancer. Clin Transl Oncol 2022; 24:784-795. [PMID: 35000132 DOI: 10.1007/s12094-021-02738-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease of the intestinal epithelium and ranks the third largest diagnosed malignancy in the world. Many studies have shown that the high risk of CRC is believed to be related to the formation of biofilms. To prove causation, it will be significant to decipher which specific bacteria in biofilms initiate and maintain CRC and fully describe their underlying mechanisms. Here we introduce a bacterial driver-passenger model. This model added a novel and compelling angle to the role of microorganisms, putting more emphasis on the transformation of bacterial composition in biofilms which play different roles in the development of CRC. In this model, bacterial drivers can initiate the formation of CRC through genotoxicity, while bacterial passengers maintain the CRC process through metabolites. On the basis of these pathogens, we further turned our attention to strategies that can inhibit and eradicate these pathogenic biofilms, with the aim of finding new ways to hinder colorectal carcinogenesis.
Collapse
Affiliation(s)
- J Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Y Fang
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - W Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - H Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - D Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - D Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| |
Collapse
|
176
|
Ling X, Wu W, Aljahdali IAM, Liao J, Santha S, Fountzilas C, Boland PM, Li F. FL118, acting as a 'molecular glue degrader', binds to dephosphorylates and degrades the oncoprotein DDX5 (p68) to control c-Myc, survivin and mutant Kras against colorectal and pancreatic cancer with high efficacy. Clin Transl Med 2022; 12:e881. [PMID: 35604033 PMCID: PMC9126027 DOI: 10.1002/ctm2.881] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a difficult-to-treat cancer, is expected to become the second-largest cause of cancer-related deaths by 2030, while colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer deaths. Currently, there is no effective treatment for PDAC patients. The development of novel agents to effectively treat these cancers remains an unmet clinical need. FL118, a novel anticancer small molecule, exhibits high efficacy against cancers; however, the direct biochemical target of FL118 is unknown. METHODS FL118 affinity purification, mass spectrometry, Nanosep centrifugal device and isothermal titration calorimetry were used for identifying and confirming FL118 binding to DDX5/p68 and its binding affinity. Immunoprecipitation (IP), western blots, real-time reverse transcription PCR, gene silencing, overexpression (OE) and knockout (KO) were used for analysing gene/protein function and expression. Chromatin IP was used for analysing protein-DNA interactions. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromid assay and human PDAC/CRC cell/tumour models were used for determining PDAC/CRC cell/tumour in vitro and in vivo growth. RESULTS We discovered that FL118 strongly binds to dephosphorylates and degrades the DDX5 oncoprotein via the proteasome degradation pathway without decreasing DDX5 mRNA. Silencing and OE of DDX5 indicated that DDX5 is a master regulator for controlling the expression of multiple oncogenic proteins, including survivin, Mcl-1, XIAP, cIAP2, c-Myc and mutant Kras. Genetic manipulation of DDX5 in PDAC cells affects tumour growth. PDAC cells with DDX5 KO are resistant to FL118 treatment. Our human tumour animal model studies further indicated that FL118 exhibits high efficacy to eliminate human PDAC and CRC tumours that have a high expression of DDX5, while FL118 exhibits less effectiveness in PDAC and CRC tumours with low DDX5 expression. CONCLUSION DDX5 is a bona fide FL118 direct target and can act as a biomarker for predicting PDAC and CRC tumour sensitivity to FL118. This would greatly impact FL118 precision medicine for patients with advanced PDAC or advanced CRC in the clinic. FL118 may act as a 'molecular glue degrader' to directly glue DDX5 and ubiquitination regulators together to degrade DDX5.
Collapse
Affiliation(s)
- Xiang Ling
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Canget BioTekpharma LLCBuffaloNew YorkUSA
| | - Wenjie Wu
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Canget BioTekpharma LLCBuffaloNew YorkUSA
| | - Ieman A. M. Aljahdali
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of Cellular & Molecular BiologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | | | | | - Christos Fountzilas
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Developmental Therapeutics (DT) ProgramRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Patrick M. Boland
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Present address:
Development of Medical Oncology, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Fengzhi Li
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Developmental Therapeutics (DT) ProgramRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| |
Collapse
|
177
|
Groll T, Silva M, Sarker RSJ, Tschurtschenthaler M, Schnalzger T, Mogler C, Denk D, Schölch S, Schraml BU, Ruland J, Rad R, Saur D, Weichert W, Jesinghaus M, Matiasek K, Steiger K. Comparative Study of the Role of Interepithelial Mucosal Mast Cells in the Context of Intestinal Adenoma-Carcinoma Progression. Cancers (Basel) 2022; 14:cancers14092248. [PMID: 35565377 PMCID: PMC9105816 DOI: 10.3390/cancers14092248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mast cells (MCs) are crucial players in the relationship between the tumor microenvironment (TME) and cancer cells and have been shown to influence angiogenesis and progression of human colorectal cancer (CRC). However, the role of MCs in the TME is controversially discussed as either pro- or anti-tumorigenic. Genetically engineered mouse models (GEMMs) are the most frequently used in vivo models for human CRC research. In the murine intestine there are at least three different MC subtypes: interepithelial mucosal mast cells (ieMMCs), lamina proprial mucosal mast cells (lpMMCs) and connective tissue mast cells (CTMCs). Interepithelial mucosal mast cells (ieMMCs) in (pre-)neoplastic intestinal formalin-fixed paraffin-embedded (FFPE) specimens of mouse models (total lesions n = 274) and human patients (n = 104) were immunohistochemically identified and semiquantitatively scored. Scores were analyzed along the adenoma-carcinoma sequence in humans and 12 GEMMs of small and large intestinal cancer. The presence of ieMMCs was a common finding in intestinal adenomas and carcinomas in mice and humans. The number of ieMMCs decreased in the course of colonic adenoma-carcinoma sequence in both species (p < 0.001). However, this dynamic cellular state was not observed for small intestinal murine tumors. Furthermore, ieMMC scores were higher in GEMMs with altered Wnt signaling (active β-catenin) than in GEMMs with altered MAPK signaling and wildtypes (WT). In conclusion, we hypothesize that, besides stromal MCs (lpMMCs/CTMCs), particularly the ieMMC subset is important for onset and progression of intestinal neoplasia and may interact with the adjacent neoplastic epithelial cells in dependence on the molecular environment. Moreover, our study indicates the need for adequate GEMMs for the investigation of the intestinal immunologic TME.
Collapse
Affiliation(s)
- Tanja Groll
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universitaet (LMU), 80539 Munich, Germany;
| | - Miguel Silva
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
| | - Rim Sabrina Jahan Sarker
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Markus Tschurtschenthaler
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (M.T.); (R.R.); (D.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Theresa Schnalzger
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Daniela Denk
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universitaet (LMU), 80539 Munich, Germany;
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, 68167 Mannheim, Germany
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Barbara U. Schraml
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, 82152 Planegg-Martinsried, Germany;
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Jürgen Ruland
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (M.T.); (R.R.); (D.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (M.T.); (R.R.); (D.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
| | - Moritz Jesinghaus
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Institute of Pathology, University Hospital Marburg, 35043 Marburg, Germany
| | - Kaspar Matiasek
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universitaet (LMU), 80539 Munich, Germany;
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-6075; Fax: +49-89-4140-4865
| |
Collapse
|
178
|
Jiang X, Jiang Z, Jiang M, Sun Y. Berberine as a Potential Agent for the Treatment of Colorectal Cancer. Front Med (Lausanne) 2022; 9:886996. [PMID: 35572960 PMCID: PMC9096113 DOI: 10.3389/fmed.2022.886996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and deadly malignancies worldwide. The incidence of CRC has been increasing, especially in young people. Although great advances have been made in managing CRC, the prognosis is unfavorable. Numerous studies have shown that berberine (BBR) is a safe and effective agent presenting significant antitumor effects. Nevertheless, the detailed underlying mechanism in treating CRC remains indistinct. In this review, we herein offer beneficial evidence for the utilization of BBR in the management and treatment of CRC, and describe the underlying mechanism(s). The review emphasizes several therapeutic effects of BBR and confirms that BBR could suppress CRC by modulating gene expression, the cell cycle, the inflammatory response, oxidative stress, and several signaling pathways. In addition, BBR also displays antitumor effects in CRC by regulating the gut microbiota and mucosal barrier function. This review emphasizes BBR as a potentially effective and safe drug for CRC therapy.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yan Sun
| |
Collapse
|
179
|
Hsu KS, Adileh M, Martin ML, Makarov V, Chen J, Wu C, Bodo S, Klingler S, Sauvé CEG, Szeglin BC, Smith JJ, Fuks Z, Riaz N, Chan TA, Nishimura M, Paty PB, Kolesnick R. Colorectal cancer develops inherent radiosensitivity that can be predicted using patient-derived organoids. Cancer Res 2022; 82:2298-2312. [PMID: 35472075 DOI: 10.1158/0008-5472.can-21-4128] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Identifying colorectal cancer patient populations responsive to chemotherapy or chemoradiation therapy before surgery remains a challenge. Recently validated mouse protocols for organoid irradiation employ the single hit multi-target (SHMT) algorithm, which yields a single value, the D0, as a measure of inherent tissue radiosensitivity. Here we translate these protocols to human tissue to evaluate radioresponsiveness of patient-derived organoids (PDOs) generated from normal human intestines and rectal tumors of patients undergoing neoadjuvant therapy. While PDOs from adenomas with a logarithmically-expanded Lgr5+-intestinal stem cell population retain the radioresistant phenotype of normal colorectal PDOs, malignant transformation yields PDOs from a large patient subpopulation displaying marked radiosensitivity due to reduced homologous recombination-mediated DNA repair. A proof-of-principle pilot clinical trial demonstrated that rectal cancer patient responses to neoadjuvant chemoradiation, including complete response, correlate closely with their PDO D0 values. Overall, upon transformation to colorectal adenocarcinoma, broad radiation sensitivity occurs in a large subset of patients that can be identified using SHMT analysis of PDO radiation responses.
Collapse
Affiliation(s)
- Kuo-Shun Hsu
- Memorial Sloan Kettering Cancer Center, New York City, United States
| | - Mohammad Adileh
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Vladimir Makarov
- Memorial Sloan Kettering Cancer Center, Cleveland, OH, United States
| | - Jiapeng Chen
- Memorial Sloan Kettering Cancer Center, Manhattan, New York, United States
| | - Chao Wu
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sahra Bodo
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Stefan Klingler
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Bryan C Szeglin
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - J Joshua Smith
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zvi Fuks
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, Manhattan, New York, United States
| | | | - Makoto Nishimura
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Philip B Paty
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | |
Collapse
|
180
|
Liu H, Li Y, Lv Y, Guo Z, Guo S. LncRNA AK077216 affects the survival of colorectal adenocarcinoma patients via miR-34a. Arab J Gastroenterol 2022; 23:65-69. [PMID: 35484046 DOI: 10.1016/j.ajg.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 06/02/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND STUDY AIMS It has been reported that long non-coding RNA (lncRNA) AK077216 involves in osteoclastogenesis and bone resorption. Our preliminary data has revealed that AK077216 was downregulated in colorectal adenocarcinoma (CRA) and it was closely correlated with miR-34a. This study was carried out to explore the role of AK077216 in CRA with a focus on its interactions with miR-34a. PATIENTS AND METHODS Paired CRA and non-tumor tissues collected from 66 CRA patients were subjected to RNA preparations, followed by RT-qPCRs to determine the expression levels of AK077216 and miR-34a. The interactions between AK077216 and miR-34a were analyzed with overexpression assays. Transwell assays were carried out to explore the roles of AK077216 and miR-34a in regulating CRA cell invasion and migration. RESULTS AK077216 was downregulated in CRA tissues compared to that in non-tumor tissues of CRA patients. During a 5-year follow-up, patients with lower expression levels of AK077216 in CRA tissues showed significantly lower overall survival. MiR-34a was upregulated in CRA tissues and inversely correlated with AK077216. Overexpression of AK077216 decreased the expression levels of miR-34a, while overexpression of miR-34a did not affect the expression of AK077216. Overexpression of AK077216 inhibited CRA cell migration and invasion, while overexpression of miR-34a accelerated cancer cell migration and invasion and attenuated the effects of overexpression on AK077216 on cell behaviors. CONCLUSION Therefore, AK077216 may inhibit CRA cell migration and invasion by downregulating miR-34a.
Collapse
Affiliation(s)
- Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, Shanxi Province 046000, PR China
| | - Yongsheng Li
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, Shanxi Province 046000, PR China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, Shanxi Province 046000, PR China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, Shanxi Province 046000, PR China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, Shanxi Province 046000, PR China.
| |
Collapse
|
181
|
The Synergistic Cooperation between TGF-β and Hypoxia in Cancer and Fibrosis. Biomolecules 2022; 12:biom12050635. [PMID: 35625561 PMCID: PMC9138354 DOI: 10.3390/biom12050635] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine regulating homeostasis and immune responses in adult animals and humans. Aberrant and overactive TGF-β signaling promotes cancer initiation and fibrosis through epithelial–mesenchymal transition (EMT), as well as the invasion and metastatic growth of cancer cells. TGF-β is a key factor that is active during hypoxic conditions in cancer and is thereby capable of contributing to angiogenesis in various types of cancer. Another potent role of TGF-β is suppressing immune responses in cancer patients. The strong tumor-promoting effects of TGF-β and its profibrotic effects make it a focus for the development of novel therapeutic strategies against cancer and fibrosis as well as an attractive drug target in combination with immune regulatory checkpoint inhibitors. TGF-β belongs to a family of cytokines that exert their function through signaling via serine/threonine kinase transmembrane receptors to intracellular Smad proteins via the canonical pathway and in combination with co-regulators such as the adaptor protein and E3 ubiquitin ligases TRAF4 and TRAF6 to promote non-canonical pathways. Finally, the outcome of gene transcription initiated by TGF-β is context-dependent and controlled by signals exerted by other growth factors such as EGF and Wnt. Here, we discuss the synergistic cooperation between TGF-β and hypoxia in development, fibrosis and cancer.
Collapse
|
182
|
Dissection of Immune Profiles in Microsatellite Stable and Low Microsatellite Instability Colon Adenocarcinoma by Multiomics Data Analysis. JOURNAL OF ONCOLOGY 2022; 2022:8588164. [PMID: 35466314 PMCID: PMC9033404 DOI: 10.1155/2022/8588164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
Background Although microsatellite instability (MSI) is an indicator for active immunotherapy response, only 15% of colon adenocarcinoma (COAD) patients are with MSI. An investigation into the immune profiles in low MSI (MSI-L) and microsatellite stable (MSS) COAD remains lacking, whereas such exploration may provide new insights into COAD immunity. Methods We hierarchically clustered MSI-L/MSS COAD based on the enrichment levels of 28 immune signatures to identify its immune-specific subtypes. We also comprehensively compared molecular and clinicopathologic profiles among these subtypes. Results We identified three immune subtypes of MSI-L/MSS COAD (IM-H, IM-M, and IM-L), which had high, medium, and low immune signature scores, respectively. We demonstrated that this subtyping method was reproducible and predictable by analyzing five different datasets, including four bulk tumor datasets and one single-cell dataset. IM-H was characterized by high immunity, high stemness, strong potential of proliferation, invasion and metastasis, epithelial-mesenchymal transition, elevated expression of oncogenic pathways, low tumor purity, low intratumor heterogeneity (ITH), genomic instability, inferior response to chemotherapy, and unfavorable prognosis. IM-M was characterized by the highest ratio of immunostimulatory to immunosuppressive signatures, the best response to chemotherapy, and favorable prognosis. IM-L was characterized by low immunity, high tumor purity, high ITH, and genomic stability. Conclusion The immune-specific subtyping of MSI-L/MSS COAD may provide new insights into the tumor immunity as well as clinical implications for immunotherapy of the COAD patients who lack MSI.
Collapse
|
183
|
Wang Y, Boland CR, Goel A, Wodarz D, Komarova NL. Aspirin's effect on kinetic parameters of cells contributes to its role in reducing incidence of advanced colorectal adenomas, shown by a multiscale computational study. eLife 2022; 11:71953. [PMID: 35416770 PMCID: PMC9007589 DOI: 10.7554/elife.71953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aspirin intake has been shown to lead to significant protection against colorectal cancer, for example with an up to twofold reduction in colorectal adenoma incidence rates at higher doses. The mechanisms contributing to protection are not yet fully understood. While aspirin is an anti-inflammatory drug and can thus influence the tumor microenvironment, in vitro and in vivo experiments have recently shown that aspirin can also have a direct effect on cellular kinetics and fitness. It reduces the rate of tumor cell division and increases the rate of cell death. The question arises whether such changes in cellular fitness are sufficient to significantly contribute to the epidemiologically observed protection. To investigate this, we constructed a class of mathematical models of in vivo evolution of advanced adenomas, parameterized it with available estimates, and calculated population level incidence. Fitting the predictions to age incidence data revealed that only a model that included colonic crypt competition can account for the observed age-incidence curve. This model was then used to predict modified incidence patterns if cellular kinetics were altered as a result of aspirin treatment. We found that changes in cellular fitness that were within the experimentally observed ranges could reduce advanced adenoma incidence by a sufficient amount to account for age incidence data in aspirin-treated patient cohorts. While the mechanisms that contribute to the protective effect of aspirin are likely complex and multi-factorial, our study demonstrates that direct aspirin-induced changes of tumor cell fitness can significantly contribute to epidemiologically observed reduced incidence patterns.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Mathematics, University of California Irvine, Irvine, United States
| | - C Richard Boland
- Department of Medicine, University of California San Diego School of Medicine, San Diego, United States
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, United States
| | - Dominik Wodarz
- Department of Mathematics, University of California Irvine, Irvine, United States.,Department of Population Health and Disease Prevention, University of California Irvine, Irvine, United States
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, United States
| |
Collapse
|
184
|
Cronin P, Murphy CL, Barrett M, Ghosh TS, Pellanda P, O'Connor EM, Zulquernain SA, Kileen S, McCourt M, Andrews E, O'Riordain MG, Shanahan F, O'Toole PW. Colorectal microbiota after removal of colorectal cancer. NAR Cancer 2022; 4:zcac011. [PMID: 35399186 PMCID: PMC8991967 DOI: 10.1093/narcan/zcac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
The colonic microbiome has been implicated in the pathogenesis of colorectal cancer (CRC) and intestinal microbiome alterations are not confined to the tumour. Since data on whether the microbiome normalises or remains altered after resection of CRC are conflicting, we studied the colonic microbiota of patients after resection of CRC. We profiled the microbiota using 16S rRNA gene amplicon sequencing in colonic biopsies from patients after resection of CRC (n = 63) in comparison with controls (n = 52), subjects with newly diagnosed CRC (n = 93) and polyps (i = 28). The colonic microbiota after surgical resection remained significantly different from that of controls in 65% of patients. Genus-level profiling and beta-diversity confirmed two distinct groups of patients after resection of CRC: one with an abnormal microbiota similar to that of patients with newly diagnosed CRC and another similar to non-CRC controls. Consumption levels of several dietary ingredients and cardiovascular drugs co-varied with differences in microbiota composition suggesting lifestyle factors may modulate differential microbiome trajectories after surgical resection. This study supports investigation of the colonic microbiota as a marker of risk for development of CRC.
Collapse
Affiliation(s)
- Peter Cronin
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Clodagh L Murphy
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Maurice Barrett
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | | | - Paola Pellanda
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Eibhlis M O'Connor
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | | | - Shane Kileen
- Cork University Hospital, Cork, T12 DC4A, Ireland
| | | | | | | | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
185
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
186
|
Morris A, Hoyle R, Pagare PP, Uz Zaman S, Ma Z, Li J, Zhang Y. Exploration of Naphthoquinone Analogs in Targeting the TCF-DNA Interaction to Inhibit the Wnt/β-catenin Signaling Pathway. Bioorg Chem 2022; 124:105812. [DOI: 10.1016/j.bioorg.2022.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
|
187
|
Wang Y, Wang Y, Hu F, Zeng L, Chen Z, Jiang M, Lin S, Guo W, Li D. Surface-Functionalized Terahertz Metamaterial Biosensor Used for the Detection of Exosomes in Patients. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3739-3747. [PMID: 35298154 DOI: 10.1021/acs.langmuir.1c03286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their stability in bodily fluids, exosomes have attracted increased attention as colorectal cancer (CRC) biomarkers for early diagnosis. To validate the potential of the plasma exosomes as a novel biomarker for the monitoring of CRC, we demonstrated a terahertz (THz) metamaterials (MMs) biosensor for the detection of exosomes in this work. The biosensor with two resonant frequencies is designed using full wave electromagnetic simulation software based on the finite integration time domain (FITD) method and fabricated by a surface micromachining process. The biosensor surface is first modified using Au nanoparticles (AuNPs), and then, anti-KRAS and anti-CD147, which are specific to the exosomes, are modified on the AuNPs assembled with HS-poly(ethylene glycol)-COOH (HS-PEG-COOH). Exosomes used in the experiment are extracted via the instructions in the exosomes isolation and purification kit and identified by using transmission electron microscopy (TEM), Western blot (WB), and nanoparticle tracking analysis (NTA). The biosensor covered with plasma-derived exosomes of CRC patients has a different resonance frequency shift compared to that with healthy-control-derived exosomes. This study proposes an emerging and quick method for diagnosing the CRC.
Collapse
Affiliation(s)
- Yao Wang
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yuanli Wang
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
- Precision Medicine Laboratory, The First People's Hospital of Qinzhou, Qinzhou 535000, China
| | - Fangrong Hu
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lizhen Zeng
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhencheng Chen
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Mingzhu Jiang
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
- Institute of Information Technology of Guilin, Guilin 541004, China
| | - Shangjun Lin
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Wei Guo
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Dongxia Li
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
188
|
Bagaria J, Kim KO, Bagyinszky E, An SSA, Baek JH. Discriminating Potential Genetic Markers for Complete Response and Non-Complete Response Patients to Neoadjuvant Chemotherapy with Locally Advanced Rectal Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074008. [PMID: 35409691 PMCID: PMC8997875 DOI: 10.3390/ijerph19074008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Background: Neoadjuvant chemoradiotherapy (nCRT) prior to surgery is considered standard therapy for locally advanced rectal cancer. Unfortunately, most patients with rectal cancer are resistant to radiotherapy. This might be a genetic cause. The role of certain rectal cancer-causing genes has not been completely elucidated. This study aims to investigate the genes responsible for locally advanced rectal cancer patients not reacting to radiotherapy. Methods: Whole exome sequencing of the DNA samples was performed on the samples. Bioinformatic analysis on the subjects was established. Individual genetic information was screened to identify differently expressed genes that more frequently appeared in non-complete response (NCR) compared to complete response (CR) patients after nCRT. All variations were verified by Sanger sequencing. Results: Genotyping information and pathway analyses of the samples indicated genes such as FLCN, CALML5, and ANTXR1 to be commonly mutated in CR group, whereas genes such as GALNTL14, CNKSR1, ACD, and CUL3 were more commonly mutated in the NCR group. Chi-square test revealed some significant variants (<0.05) such as rs3744124 (FLCN), rs28365986 (ANTXR1), rs10904516 (CALML5), rs3738952 (CUL3), rs13394 and rs2293013 (PIH1D1), rs2274531 (GPA33), rs4963048 (BRSK2), rs17883366 (IL3RA), rs2297575 (PSMD5), rs2288101 (GALNT14), and rs11954652 (DCTN4). Conclusion: Identifying an array of genes that separate NCRs from CRs would lead to finding genetic biomarkers for early detection of rectal cancer patients that are resistant to nCRT. A further investigation to validate the significance of genetic biomarkers to segregate NCRs from CRs should be performed with a larger CRC dataset. Protein expression levels, as well as transcriptomic analysis, would also help us understand the mechanism of how these genes could play a role in preventing radiation therapy to patients. This would be essential to prevent redundant radiation therapy.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
| | - Kyung-Ok Kim
- Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
- Correspondence: (S.S.A.A.); (J.-H.B.); Tel.: +82-10-4344-9633 (S.S.A.A.); +82-10-5248-6656 (J.-H.B.)
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (S.S.A.A.); (J.-H.B.); Tel.: +82-10-4344-9633 (S.S.A.A.); +82-10-5248-6656 (J.-H.B.)
| |
Collapse
|
189
|
Ravichandran R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166400. [PMID: 35341960 DOI: 10.1016/j.bbadis.2022.166400] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.
Collapse
Affiliation(s)
- Rakesh Ravichandran
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
190
|
PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nat Commun 2022; 13:1627. [PMID: 35338151 PMCID: PMC8956581 DOI: 10.1038/s41467-022-29309-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
PUMILIO (PUM) proteins belong to the highly conserved PUF family post-transcriptional regulators involved in diverse biological processes. However, their function in carcinogenesis remains under-explored. Here, we report that Pum1 and Pum2 display increased expression in human colorectal cancer (CRC). Intestine-specific knockout of Pum1 and Pum2 in mice significantly inhibits the progression of colitis-associated cancer in the AOM/DSS model. Knockout or knockdown of Pum1 and/or Pum2 in human CRC cells result in a significant decrease in the tumorigenicity and delayed G1/S transition. We identify p21/Cdkn1a as a direct target of PUM1. Abrogation of the PUM1 binding site in the p21 mRNA also results in decreased cancer cell growth and delayed G1/S transition. Furthermore, intravenous injection of nanoparticle-encapsulated anti-Pum1 and Pum2 siRNAs reduces colorectal tumor growth in murine orthotopic colon cancer models. These findings reveal the requirement of PUM proteins for CRC progression and their potential as therapeutic targets. RNA binding proteins can contribute to colorectal cancer (CRC) initiation and development. Here the authors show that PUMILIO proteins, PUM1 and PUM2 contribute to CRC growth by inhibiting p21 expression.
Collapse
|
191
|
Sun D, Wang W, Guo F, Pitter MR, Du W, Wei S, Grove S, Vatan L, Chen Y, Kryczek I, Fearon ER, Fang JY, Zou W. DOT1L affects colorectal carcinogenesis via altering T cell subsets and oncogenic pathway. Oncoimmunology 2022; 11:2052640. [PMID: 35309733 PMCID: PMC8928792 DOI: 10.1080/2162402x.2022.2052640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Chronic inflammation and oncogenic pathway activation are key-contributing factors in colorectal cancer pathogenesis. However, colorectal intrinsic mechanisms linking these two factors in cancer development are poorly defined. Here, we show that intestinal epithelial cell (IEC)-specific deletion of Dot1l histone methyltransferase (Dot1lΔIEC) reduced H3K79 dimethylation (H3K79me2) in IECs and inhibited intestinal tumor formation in ApcMin- and AOM-DSS-induced colorectal cancer models. IEC-Dot1l abrogation was accompanied by alleviative colorectal inflammation and reduced Wnt/β-catenin signaling activation. Mechanistically, Dot1l deficiency resulted in an increase in Foxp3+RORϒ+ regulatory T (Treg) cells and a decrease in inflammatory Th17 and Th22 cells, thereby reducing local inflammation in the intestinal tumor microenvironment. Furthermore, Dot1l deficiency caused a reduction of H3K79me2 occupancies in the promoters of the Wnt/β-catenin signaling genes, thereby diminishing Wnt/β-catenin oncogenic signaling pathway activation in colorectal cancer cells. Clinically, high levels of tumor H3K79me2 were detected in patients with colorectal carcinomas as compared to adenomas, and negatively correlated with RORϒ+FOXP3+ Treg cells. Altogether, we conclude that DOT1L is an intrinsic molecular node connecting chronic immune activation and oncogenic signaling pathways in colorectal cancer. Our work suggests that targeting the DOT1L pathway may control colorectal carcinogenesis. Significance: IEC-intrinsic DOT1L controls T cell subset balance and key oncogenic pathway activation, impacting colorectal carcinogenesis.
Collapse
Affiliation(s)
- Danfeng Sun
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Weichao Wang
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Fangfang Guo
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Michael R. Pitter
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
- Division of Gastroenterology and Hepatology,Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Wan Du
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Shuang Wei
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Sara Grove
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Linda Vatan
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Yingxuan Chen
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Ilona Kryczek
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Eric R. Fearon
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Jing-Yuan Fang
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
| | - Weiping Zou
- Departments of Surgery,University of Michigan, Ann Arbor, Michigan, United States
- Division of Gastroenterology and Hepatology,Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
192
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
193
|
Liu Q, Guo L, Lou Z, Xiang X, Shao J. Super-enhancers and novel therapeutic targets in colorectal cancer. Cell Death Dis 2022; 13:228. [PMID: 35277481 PMCID: PMC8917125 DOI: 10.1038/s41419-022-04673-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Transcription factors, cofactors, chromatin regulators, and transcription apparatuses interact with transcriptional regulatory elements, including promoters, enhancers, and super-enhancers (SEs), to coordinately regulate the transcription of target genes and thereby control cell behaviors. Among these transcriptional regulatory components and related elements, SEs often play a central role in determining cell identity and tumor initiation and progression. Therefore, oncogenic SEs, which are generated within cancer cells in oncogenes and other genes important in tumor pathogenesis, have emerged as attractive targets for novel cancer therapeutic strategies in recent years. Herein, we review the identification, formation and activation modes, and regulatory mechanisms for downstream genes and pathways of oncogenic SEs. We also review the therapeutic strategies and compounds targeting oncogenic SEs in colorectal cancer and other malignancies.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Guo
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyuan Lou
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
194
|
Wang L, Tu H, Zeng L, Gao R, Luo S, Xiong C. Identification and in silico Analysis of Nonsense SNPs of Human Colorectal Cancer Protein. J Oleo Sci 2022; 71:363-370. [PMID: 35236796 DOI: 10.5650/jos.ess21313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent disease in the world, with an estimated 1.2 million new cases each year. Spontaneous CRCs account for around 70% of all CRCs, are caused by somatic mutations. Minor variations or single-nucleotide polymorphisms (SNPs) in oncogene or tumor-suppressor genes cause familial CRC. MSH2 and MSH6 genes are located on chromosome 2. These genes products are involved in the repair of DNA replication defects. If these proteins are changed, the replication errors are not rectified, resulting in damaged DNA leading to colorectal cancer. We employed a variety of computational methodologies to find nsSNPs that are harmful to the structure and function of the MSH6 protein and could be causing CRC in our study. SIFT, PROVEAN, Poly- Phen-2, PhD-SNP, and SNPs&GO were among the in silico methods used to do the computational research. According to the findings, mutations of G932Q, E1234Q, and F1104Q are important alterations in native MSH6 protein rs35717727 that may contribute to its dysfunction and, ultimately, disease. The study also provided three-dimensional structures of the native MSH6 protein and mutations. These nsSNPs should be considered as key target mutations in many disorders involving MSH6 dysfunction in future studies. This is the first thorough study to use in silico technologies to assess MSH6 gene variants, and it will be extremely useful in planning largescale investigations and developing precision medicines to treat disorders caused by these polymorphisms. Additionally, animal models of various autoimmune disorders with these mutations could aid in determining their precise involvement.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, First People's Hospital of Jiujiang City
| | - Huiyang Tu
- Department of Oncology, First People's Hospital of Jiujiang City
| | - Lingzhi Zeng
- Department of Oncology, First People's Hospital of Jiujiang City
| | - Ruichen Gao
- Department of Oncology, First People's Hospital of Jiujiang City
| | - Sumei Luo
- Department of Oncology, First People's Hospital of Jiujiang City
| | - Chao Xiong
- Department of Oncology, First People's Hospital of Jiujiang City
| |
Collapse
|
195
|
Guo S, Gu J, Zhang D, Wang X, Li S. The elderly harbor greater proportions of advanced histology in subcentimeter adenomas: implications for screening colonoscopy approaches. Eur J Gastroenterol Hepatol 2022; 34:281-287. [PMID: 34593701 DOI: 10.1097/meg.0000000000002284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Screening and surveillance for colorectal cancer can reduce both the incidence of this disease and mortality rates attributed to it. Normally, surveillance intervals should be based on baseline colonoscopy findings, and clinicians focus on advanced polyps and perform patient risk stratification to devise surveillance schedules. The aim of the study was to determine differences in advanced colorectal polyp characteristics and consequent risk stratifications in patients of different age groups. MATERIAL AND METHODS We retrospectively reviewed 14 312 patients during a 5-year period; a total of 13 842 polyps were stratified by their sizes, locations, and histologies. Participants were categorized into three age groups, the <45 years group, the 45-59 years group and the >59 years group, and each group was further stratified as normal, low risk, and high risk. RESULTS The <45 years group included 2431 subjects, the 45-59 years group 6258 subjects, and the >59 years group 5623 subjects. The frequency of adenoma and advanced polyps in the proximal colon slightly increased with age. Only 1.0% in the <45 years and 1.3% in the 45-59 years groups of subcentimeter polyps were identified as advanced polyps, less than that in the >59 years group (2.1%). Most patients, especially the elderly, considered as high risk had multiple subcentimeter adenomas. CONCLUSION The processing strategy proposed for subcentimeter polyps in the elderly still needs to be further explored in the future. Clinicians should recognize the importance of performing a detailed scan of the entire colon.
Collapse
Affiliation(s)
| | | | | | - Xiaoying Wang
- Department of Pathology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | |
Collapse
|
196
|
Venugopal A, Carethers JM. Epidemiology and biology of early onset colorectal cancer. EXCLI JOURNAL 2022; 21:162-182. [PMID: 35221839 PMCID: PMC8859644 DOI: 10.17179/excli2021-4456] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in men or women in the United States. Average-risk screening that begins at age 50 years has reduced incidence and mortality of CRC in those over 50 years of age, whereas CRC incidence in those under age 50 years (early onset colorectal cancer (eoCRC)) has recently and dramatically increased. In this review, we summarize the recent literature including risk factors for eoCRC, differences in clinicopathologic presentation and outcomes in eoCRC, and emerging evidence regarding the molecular pathways that are altered in eoCRC compared to later onset CRC (loCRC). Epidemiologic studies of eoCRC show predominance in distal colon and rectum, and association with several modifiable risk factors, including diabetes, obesity, diet, sedentary time, alcohol consumption and smoking. Data regarding potential risk factors of prior antibiotic exposure and microbiome alterations or direct carcinogen exposure are still emerging. Aggressive clinicopathologic features of eoCRC at presentation may be due to delay in diagnosis or more aggressive tumor biology. EoCRC outcomes are similar to loCRC when matched for stage, but overall mortality is greater due to higher frequency of advanced disease at a younger presentation, with more life-years lost. There are only few molecular evaluations of eoCRC to date, with findings of potential increase in TP53 and CTNNB1 somatic mutation and decrease in APC, KRAS and BRAF somatic mutation, compared to loCRC. Other findings include LINE-1 hypomethylation, absence of microsatellite instability (MSI-H), presence of chromosomal instability (CIN) or microsatellite and chromosomal stability (MACS). These studies are only now emerging and have not yet identified a specific molecular signature defining eoCRC. Further research evaluating genetic and molecular differences as well as environmental triggers for eoCRCs should provide a clearer understanding to inform targeted screening for pre-symptomatic at-risk younger individuals.
Collapse
Affiliation(s)
- Anand Venugopal
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John M Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
197
|
Zheng X, Song J, Yu C, Zhou Z, Liu X, Yu J, Xu G, Yang J, He X, Bai X, Luo Y, Bao Y, Li H, Yang L, Xu M, Song N, Su X, Xu J, Ma X, Shi H. Single-cell transcriptomic profiling unravels the adenoma-initiation role of protein tyrosine kinases during colorectal tumorigenesis. Signal Transduct Target Ther 2022; 7:60. [PMID: 35221332 PMCID: PMC8882672 DOI: 10.1038/s41392-022-00881-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/29/2022] Open
Abstract
The adenoma-carcinoma sequence is a well-accepted roadmap for the development of sporadic colorectal cancer. However, cellular heterogeneity in aberrant epithelial cells limits our understanding of carcinogenesis in colorectal tissues. Here, we performed a single-cell RNA sequencing survey of 54,788 cells from patient-matched tissue samples, including blood, normal tissue, para-cancer, polyp, and colorectal cancer. At each stage of carcinogenesis, we characterized cell types, transcriptional signatures, and differentially expressed genes of distinct cell populations. The molecular signatures of epithelial cells at normal, benign, and malignant stages were defined at the single-cell scale. Adenoma and carcinoma precursor cell populations were identified and characterized followed by validation with large cohort biopsies. Protein tyrosine kinases (PTKs) BMX and HCK were identified as potential drivers of adenoma initiation. Specific BMX and HCK upregulations were observed in adenoma precursor cell populations from normal and adenoma biopsies. Overexpression of BMX and HCK significantly promoted colorectal epithelial cell proliferation. Importantly, in the organoid culture system, BMX and HCK upregulations resulted in the formation of multilayered polyp-like buds protruding towards the organoid lumen, mimicking the pathological polyp morphology often observed in colorectal cancer. Molecular mechanism analysis revealed that upregulation of BMX or HCK activated the JAK-STAT pathway. In conclusion, our work improved the current knowledge regarding colorectal epithelial evolution during carcinogenesis at the single-cell resolution. These findings may lead to improvements in colorectal cancer diagnosis and treatment.
Collapse
|
198
|
Wang H, Luo K, Guan Z, Li Z, Xiang J, Ou S, Tao Y, Ran S, Ye J, Ma T, Qiao T, Zhang Z, Jin Y, Song Y, Huang R. Identification of the Crucial Role of CCL22 in F. nucleatum-Related Colorectal Tumorigenesis that Correlates With Tumor Microenvironment and Immune Checkpoint Therapy. Front Genet 2022; 13:811900. [PMID: 35295948 PMCID: PMC8918684 DOI: 10.3389/fgene.2022.811900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant cancer worldwide with the second highest mortality. Gut microbiota can educate the tumor microenvironment (TME), consequently influencing the efficacy of immune checkpoint inhibitors (ICIs). Fusobacterium nucleatum is one of the most crucial bacteria contributing to colorectal tumorigenesis, but the molecular mechanisms between F. nucleatum and TME or ICIs are poorly investigated. In the present study, we firstly analyzed differentially expressed genes and the biological functions between F. nucleatum-infected and uninfected CRC cell lines, with the findings that CCL22 mRNA expression was markedly upregulated after F. nucleatum infection. Moreover, the survival analysis showed that CCL22 was significantly associated with the overall survival of CRC patients. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis suggested that CCL22 was related to immune-related terms. Furthermore, the ESTIMATE analysis indicated that the high-CCL22-expression subgroup had a higher immune/stromal/estimate score and lower tumor purity. The CIBERSORT analysis indicated that the high-CCL22-expression group had more immune-suppressive cells and less antitumor immune cells. In addition, immune checkpoint genes and cytotoxic genes were positively correlated with CCL22 expression. The immunophenoscore analysis suggested that CCL22 was associated with the IPS-CTLA4 and PD1/PD-L1/PD-L2 score. Interestingly, CCL22 expression in the KRAS and APC mutation groups was markedly reduced compared to that of the wild groups. In summary, our study provided evidence that CCL22 might play a crucial role in F. nucleatum-related colorectal tumorigenesis and correlate with TME and ICIs, which deserves further study.
Collapse
Affiliation(s)
- Hufei Wang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kangjia Luo
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zilong Guan
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xiang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Suwen Ou
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangbao Tao
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songlin Ran
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinhua Ye
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianyi Ma
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianyu Qiao
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiming Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yinghu Jin
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Rui Huang, ; Yanni Song, ; Yinghu Jin,
| | - Yanni Song
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Rui Huang, ; Yanni Song, ; Yinghu Jin,
| | - Rui Huang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Rui Huang, ; Yanni Song, ; Yinghu Jin,
| |
Collapse
|
199
|
Descarpentrie J, Araúzo-Bravo MJ, He Z, François A, González Á, Garcia-Gallastegi P, Badiola I, Evrard S, Pernot S, Creemers JWM, Khatib AM. Role of Furin in Colon Cancer Stem Cells Malignant Phenotype and Expression of LGR5 and NANOG in KRAS and BRAF-Mutated Colon Tumors. Cancers (Basel) 2022; 14:1195. [PMID: 35267511 PMCID: PMC8909039 DOI: 10.3390/cancers14051195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Proprotein convertases or PCs are known to regulate the malignant phenotype of colon cancer cells by different mechanisms, but their effects on cancer stem cells (CSCs) have been less widely investigated. Here, we report that PCs expression is altered in colon CSCs, and the inhibition of their activity reduced colon CSCs growth, survival, and invasion in three-dimensional spheroid cultures. In vivo, repression of PCs activity by the general PC inhibitors α1-PDX, Spn4A, or decanoyl-RVKR-chloromethylketone (CMK) significantly reduced tumor expression levels of the stem cell markers LGR5 and NANOG that are associated with reduced tumor xenografts. Further analysis revealed that reduced tumor growth mediated by specific silencing of the convertase Furin in KRAS or BRAF mutated-induced colon tumors was associated with reduced expression of LGR5 and NANOG compared to wild-type KRAS and BRAF tumors. Analysis of various calcium regulator molecules revealed that while the calcium-transporting ATPase 4 (ATP2B4) is downregulated in all the Furin-silenced colon cancer cells, the Ca2+-mobilizing P2Y receptors, was specifically repressed in BRAF mutated cells and ORAI1 and CACNA1H in KRAS mutated cells. Taken together, our findings indicate that PCs play an important role in the malignant phenotype of colon CSCs and stem cell markers' expression and highlight PCs repression, particularly of Furin, to target colon tumors with KRAS or BRAF mutation.
Collapse
Affiliation(s)
- Jean Descarpentrie
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastian, Spain;
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing 400042, China;
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Alexia François
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Álvaro González
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Patricia Garcia-Gallastegi
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Serge Evrard
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| | | | - John W. M. Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Abdel-Majid Khatib
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| |
Collapse
|
200
|
Du C, Liu X, Li M, Zhao Y, Li J, Wen Z, Liu M, Yang M, Fu B, Wei M. Analysis of 5-Methylcytosine Regulators and DNA Methylation-Driven Genes in Colon Cancer. Front Cell Dev Biol 2022; 9:657092. [PMID: 35174154 PMCID: PMC8842075 DOI: 10.3389/fcell.2021.657092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Epigenetic-driven events are important molecular mechanisms of carcinogenesis. The 5-methylcytosine (5mC) regulators play important roles in the methylation-driven gene expression. However, the effect of the 5mC regulators on the oncogenic pathways in colon cancer (CC) remains unclear. Also, the clinical value of such epigenetic-driven events needs further research. Methods: The transcriptome and matching epigenetic data were obtained from The Cancer Genome Atlas dataset. The gene set variation analysis identified the oncogenic pathways adjusted by 5mC regulators. The “edgeR” and “methylmix” package identified the differential expression genes of DNA methylation-driven genes. The correlation between 5mC regulators or transcription factors and shortlisted genes was investigated by calculating the Spearman's rank correlation coefficient. Among them, the genes related to diagnosis were screened out based on differential gene expression in extracellular vesicles (EVs) by the “limma” package and histology by immunohistochemistry. Then, a risk signature was constructed by fitting the generalized linear model and validated by the receiver operating characteristic curve. Results: MYC targets pathway and phosphatidylinositol-3-kinase–AKT–mammalian target of rapamycin signaling pathway were identified as the hallmark-related pathways associated with 5mC regulators. Also, the P53 pathway was subject to the influence of regulators' expression. A five methylation-driven gene signature (FIRRE, MYBL2, TGFBI, AXIN2, and SLC35D3) was developed as the biomarker for CC diagnosis. Meanwhile, those genes positively related to 5mC regulators and interacted with their relevant or transcription factors. Conclusion: In general, 5mC regulators are positively related to each other and DNA methylation-driven genes, with the relationship of multiple active and inhibitory pathways related to cancer. Meanwhile, the signature (FIRRE, MYBL2, TGFBI, AXIN2, and SLC35D3) can prefigure prospective diagnosis in CC.
Collapse
Affiliation(s)
- Cheng Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - XinLi Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Mingwei Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yi Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Jie Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Zhikang Wen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Meina Yang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|