151
|
Muthu S, Bapat A, Jain R, Jeyaraman N, Jeyaraman M. Exosomal therapy-a new frontier in regenerative medicine. Stem Cell Investig 2021; 8:7. [PMID: 33969112 PMCID: PMC8100822 DOI: 10.21037/sci-2020-037] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
The recent advances in translational and nanomedicine have paved the way for developing the targeted drug delivery system at a greater pace among global researchers. On par with these technologies, exosomes act as a potential portal for cell-free drug delivery systems as these are bestowed with the native characteristics of the parent cell of origin. Exosomes, called extracellular vesicles (EcVs), are present in almost all cells, tissues, and body fluids. They help in intercellular signaling and maintains tissue homeostasis in the disease pathobiology. Researchers have characterized 9,769 proteins, 2,838 miRNAs, 3,408 mRNAs, and 1,116 lipids being present in exosomal cargo. The separation of exosomes from cells, tissues, and body fluids follow different patterned kinetics. Exosomes interact with the recipient cells through their surface receptor molecules and ligands and internalize within recipient cells through micropinocytosis and phagocytosis. Advancing technologies in regenerative medicine have facilitated the researchers to isolate exosomes from mesenchymal stem cells (MSCs) as these cells are blessed with supreme regenerative potentiality in targeting a disease. Exosomal cargo is a key player in establishing the diagnosis and executing therapeutic role whilst regulating a disease process. Various in vitro studies have exhibited the safety, efficacy, and therapeutic potentiality of exosomes in various cancers, neurodegenerative, cardiovascular, and orthopedic diseases. This article throws light on the composition, therapeutic role, and regulatory potentials of exosomes with the widening of the horizon in the field of regenerative medicine.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Government Hospital, Velayuthampalayam, Karur, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG), Lucknow, Uttar Pradesh, India
| | - Asawari Bapat
- Director of Quality and Regulatory Affairs, Infohealth FZE, Dubai, United Arab Emirates
| | - Rashmi Jain
- Indian Stem Cell Study Group (ISCSG), Lucknow, Uttar Pradesh, India
- School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG), Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG), Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
152
|
Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J, Santos HA. Engineered Extracellular Vesicles for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005709. [PMID: 33644908 DOI: 10.1002/adma.202005709] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer. As a result of their natural properties to mediate cell-to-cell communication and their high physiochemical stability and biocompatibility, EVs are considered as excellent delivery vehicles for a variety of therapeutic agents such as nucleic acids and proteins, drugs, and nanomaterials. Increasing studies have shown that EVs can be modified, engineered, or designed to improve their efficiency, specificity, and safety for cancer therapy. Herein, a comprehensive overview of the recent advances in the strategies and methodologies of engineering EVs for scalable production and improved cargo-loading and tumor-targeting is provided. Additionally, the potential applications of engineered EVs in cancer therapy are discussed by presenting prominent examples, and the opportunities and challenges for translating engineered EVs into clinical practice are evaluated.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
153
|
Narbute K, Pilipenko V, Pupure J, Klinovičs T, Auders J, Jonavičė U, Kriaučiūnaitė K, Pivoriūnas A, Kluša V. Time-Dependent Memory and Gait Improvement by Intranasally-Administered Extracellular Vesicles in Parkinson's Disease Model Rats. Cell Mol Neurobiol 2021; 41:605-613. [PMID: 32410106 PMCID: PMC11448553 DOI: 10.1007/s10571-020-00865-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
We have recently demonstrated that extracellular vesicles (EVs) derived from the human teeth stem cells improve motor symptoms and normalize tyrosine hydroxylase (TH) expression in the nigrostriatal structures of Parkinson's disease (PD) model rats obtained by 6-hydroxydopamine (6-OHDA) unilateral injection into the medial forebrain bundle (MFB). The aim of this study was to clarify: (1) how long therapeutic effects persist after discontinuation of 17-day intranasal administration of EVs in 6-OHDA rats; (2) may EVs reverse cognitive (learning/memory) dysfunction in these PD model rats; (3) whether and how the behavioral improvement may be related to the expression of TH and Nissl bodies count in the nigrostriatal structures. Our results demonstrated that in 6-OHDA rats, gait was normalized even ten days after discontinuation of EVs administration. EVs successfully reversed 6-OHDA-induced impairment in spatial learning/memory performance; however, the beneficial effect was shorter (up to post-treatment day 6) than that revealed for gait improvement. The shorter effect of EVs coincided with both full normalization of TH expression and Nissl bodies count in the nigrostriatal structures, while slight but significant increase in the 6-OHDA-decreased Nissl count persisted in the substantia nigra even on the post-treatment day 20, supposedly due to the continuation of protein synthesis in the living cells. The obtained data indicate the usefulness of further studies to find the optimal administration regimen which could be translated into clinical trials on PD patients, as well as to clarify other-apart from dopaminergic-neuromodulatory pathways involved in the EVs mechanism of action.
Collapse
Affiliation(s)
- Karīna Narbute
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas St, Riga, 1004, Latvia.
| | - Vladimirs Pilipenko
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas St, Riga, 1004, Latvia
| | - Jolanta Pupure
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas St, Riga, 1004, Latvia
| | - Toms Klinovičs
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas St, Riga, 1004, Latvia
| | - Jānis Auders
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas St, Riga, 1004, Latvia
| | - Ugnė Jonavičė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Vija Kluša
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas St, Riga, 1004, Latvia
| |
Collapse
|
154
|
Adamo G, Fierli D, Romancino DP, Picciotto S, Barone ME, Aranyos A, Božič D, Morsbach S, Raccosta S, Stanly C, Paganini C, Gai M, Cusimano A, Martorana V, Noto R, Carrotta R, Librizzi F, Randazzo L, Parkes R, Capasso Palmiero U, Rao E, Paterna A, Santonicola P, Iglič A, Corcuera L, Kisslinger A, Di Schiavi E, Liguori GL, Landfester K, Kralj-Iglič V, Arosio P, Pocsfalvi G, Touzet N, Manno M, Bongiovanni A. Nanoalgosomes: Introducing extracellular vesicles produced by microalgae. J Extracell Vesicles 2021; 10:e12081. [PMID: 33936568 PMCID: PMC8077145 DOI: 10.1002/jev2.12081] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular, inter-organismal and cross kingdom communication via extracellular vesicles (EVs) is intensively studied in basic science with high expectation for a large variety of bio-technological applications. EVs intrinsically possess many attributes of a drug delivery vehicle. Beyond the implications for basic cell biology, academic and industrial interests in EVs have increased in the last few years. Microalgae constitute sustainable and renewable sources of bioactive compounds with a range of sectoral applications, including the formulation of health supplements, cosmetic products and food ingredients. Here we describe a newly discovered subtype of EVs derived from microalgae, which we named nanoalgosomes. We isolated these extracellular nano-objects from cultures of microalgal strains, including the marine photosynthetic chlorophyte Tetraselmis chuii, using differential ultracentrifugation or tangential flow fractionation and focusing on the nanosized small EVs (sEVs). We explore different biochemical and physical properties and we show that nanoalgosomes are efficiently taken up by mammalian cell lines, confirming the cross kingdom communication potential of EVs. This is the first detailed description of such membranous nanovesicles from microalgae. With respect to EVs isolated from other organisms, nanoalgosomes present several advantages in that microalgae are a renewable and sustainable natural source, which could easily be scalable in terms of nanoalgosome production.
Collapse
Affiliation(s)
- Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - David Fierli
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Daniele P Romancino
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Maria E Barone
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Anita Aranyos
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Darja Božič
- University of Ljubljana (UL) Ljubljana Slovene
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Samuele Raccosta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Christopher Stanly
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Carolina Paganini
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Meiyu Gai
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Antonella Cusimano
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Vincenzo Martorana
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rosina Noto
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rita Carrotta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Fabio Librizzi
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Loredana Randazzo
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rachel Parkes
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | | | - Estella Rao
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Angela Paterna
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Ales Iglič
- University of Ljubljana (UL) Ljubljana Slovene
| | | | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS) - National Research Council of Italy (CNR) Naples Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) - National Research Council of Italy (CNR) Naples Italy
| | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Nicolas Touzet
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Mauro Manno
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| |
Collapse
|
155
|
Standardized procedure to measure the size distribution of extracellular vesicles together with other particles in biofluids with microfluidic resistive pulse sensing. PLoS One 2021; 16:e0249603. [PMID: 33793681 PMCID: PMC8016234 DOI: 10.1371/journal.pone.0249603] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/19/2021] [Indexed: 01/15/2023] Open
Abstract
The particle size distribution (PSD) of extracellular vesicles (EVs) and other submicron particles in biofluids is commonly measured by nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). A new technique for measuring the PSD is microfluidic resistive pulse sensing (MRPS). Because specific guidelines for measuring EVs together with other particles in biofluids with MRPS are lacking, we developed an operating procedure to reproducibly measure the PSD. The PSDs of particles in human plasma, conditioned medium of PC3 prostate cancer cell line (PC3 CM), and human urine were measured with MRPS (nCS1, Spectradyne LLC) to investigate: (i) the optimal diluent that reduces the interfacial tension of the sample while keeping EVs intact, (ii) the lower limit of detection (LoD) of particle size, (iii) the reproducibility of the PSD, (iv) the optimal dilution for measuring the PSD, and (v) the agreement in measured concentration between microfluidic cartridges with overlapping detection ranges. We found that the optimal diluent is 0.1% bovine serum albumin (w/v) in Dulbecco’s phosphate-buffered saline. Based on the shape of the PSD, which is expected to follow a power-law function within the full detection range, we obtained a lower LoD of 75 nm for plasma and PC3 CM and 65 nm for urine. Normalized PSDs are reproducible (R2 > 0.950) at dilutions between 10–100x for plasma, 5–20x for PC3 CM, and 2–4x for urine. Furthermore, sample dilution does not impact the dilution-corrected concentration when the microfluidic cartridges are operated within their specified concentration ranges. PSDs from microfluidic cartridges with overlapping detection ranges agreed well (R2 > 0.936) and when combined the overall PSD spanned 5 orders of magnitude of measured concentration. Based on these findings, we have developed operating guidelines to reproducibly measure the PSD of EVs together with other particles in biofluids with MRPS.
Collapse
|
156
|
Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14040289. [PMID: 33805145 PMCID: PMC8064082 DOI: 10.3390/ph14040289] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bone is a complex organ maintained by three main cell types: osteoblasts, osteoclasts, and osteocytes. During bone formation, osteoblasts deposit a mineralized organic matrix. Evidence shows that bone cells release extracellular vesicles (EVs): nano-sized bilayer vesicles, which are involved in intercellular communication by delivering their cargoes through protein–ligand interactions or fusion to the plasma membrane of the recipient cell. Osteoblasts shed a subset of EVs known as matrix vesicles (MtVs), which contain phosphatases, calcium, and inorganic phosphate. These vesicles are believed to have a major role in matrix mineralization, and they feature bone-targeting and osteo-inductive properties. Understanding their contribution in bone formation and mineralization could help to target bone pathologies or bone regeneration using novel approaches such as stimulating MtV secretion in vivo, or the administration of in vitro or biomimetically produced MtVs. This review attempts to discuss the role of MtVs in biomineralization and their potential application for bone pathologies and bone regeneration.
Collapse
|
157
|
Ullah M, Kodam SP, Mu Q, Akbar A. Microbubbles versus Extracellular Vesicles as Therapeutic Cargo for Targeting Drug Delivery. ACS NANO 2021; 15:3612-3620. [PMID: 33666429 DOI: 10.1021/acsnano.0c10689] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) and microbubbles are nanoparticles in drug-delivery systems that are both considered important for clinical translation. Current research has found that both microbubbles and EVs have the potential to be utilized as drug-delivery agents for therapeutic targets in various diseases. In combination with EVs, microbubbles are capable of delivering chemotherapeutic drugs to tumor sites and neighboring sites of damaged tissues. However, there are no standards to evaluate or to compare the benefits of EVs (natural carrier) versus microbubbles (synthetic carrier) as drug carriers. Both drug carriers are being investigated for release patterns and for pharmacokinetics; however, few researchers have focused on their targeted delivery or efficacy. In this Perspective, we compare EVs and microbubbles for a better understanding of their utility in terms of delivering drugs to their site of action and future clinical translation.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Sai Priyanka Kodam
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Qian Mu
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
158
|
Piombino C, Mastrolia I, Omarini C, Candini O, Dominici M, Piacentini F, Toss A. The Role of Exosomes in Breast Cancer Diagnosis. Biomedicines 2021; 9:biomedicines9030312. [PMID: 33803776 PMCID: PMC8003248 DOI: 10.3390/biomedicines9030312] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
The importance of molecular re-characterization of metastatic disease with the purpose of monitoring tumor evolution has been acknowledged in numerous clinical guidelines for the management of advanced malignancies. In this context, an attractive alternative to overcome the limitations of repeated tissue sampling is represented by the analysis of peripheral blood samples as a 'liquid biopsy'. In recent years, liquid biopsies have been studied for the early diagnosis of cancer, the monitoring of tumor burden, tumor heterogeneity and the emergence of molecular resistance, along with the detection of minimal residual disease. Interestingly, liquid biopsy consents the analysis of circulating tumor cells, circulating tumor DNA and extracellular vesicles (EVs). In particular, EVs play a crucial role in cell communication, carrying transmembrane and nonmembrane proteins, as well as metabolites, lipids and nucleic acids. Of all EVs, exosomes mirror the biological fingerprints of the parental cells from which they originate, and therefore, are considered one of the most promising predictors of early cancer diagnosis and treatment response. The present review discusses current knowledge on the possible applications of exosomes in breast cancer (BC) diagnosis, with a focus on patients at higher risk.
Collapse
Affiliation(s)
- Claudia Piombino
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence: (I.M.); (A.T.)
| | - Claudia Omarini
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
| | | | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Rigenerand srl, Medolla, 41036 Modena, Italy;
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Federico Piacentini
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy; (C.P.); (C.O.); (M.D.); (F.P.)
- Division of Oncology, Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence: (I.M.); (A.T.)
| |
Collapse
|
159
|
Trappe A, Donnelly SC, McNally P, Coppinger JA. Role of extracellular vesicles in chronic lung disease. Thorax 2021; 76:1047-1056. [PMID: 33712504 PMCID: PMC8461402 DOI: 10.1136/thoraxjnl-2020-216370] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
To explore the role of extracellular vesicles (EVs) in chronic lung diseases. EVs are emerging as mediators of intercellular communication and possible diagnostic markers of disease. EVs harbour cargo molecules including RNA, lipids and proteins that they transfer to recipient cells. EVs are intercellular communicators within the lung microenvironment. Due to their disease-specific cargoes, EVs have the promise to be all-in-one complex multimodal biomarkers. EVs also have potential as drug carriers in chronic lung disease. Descriptive discussion of key studies of EVs as contributors to disease pathology, as biomarkers and as potential therapies with a focus on chronic obstructive pulmonary disorder (COPD), cystic fibrosis (CF), asthma, idiopathic pulmonary fibrosis and lung cancer. We provide a broad overview of the roles of EV in chronic respiratory disease. Recent advances in profiling EVs have shown their potential as biomarker candidates. Further studies have provided insight into their disease pathology, particularly in inflammatory processes across a spectrum of lung diseases. EVs are on the horizon as new modes of drug delivery and as therapies themselves in cell-based therapeutics. EVs are relatively untapped sources of information in the clinic that can help further detail the full translational nature of chronic lung disorders.
Collapse
Affiliation(s)
- Anne Trappe
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,CF Research Group, National Children's Research Centre, Childrens Health Ireland (CHI) at Crumlin, Dublin 12, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Trinity College Dublin & Tallaght University Hospital, Dublin, Ireland
| | - Paul McNally
- CF Research Group, National Children's Research Centre, Childrens Health Ireland (CHI) at Crumlin, Dublin 12, Ireland.,Department of Paediatrics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Judith A Coppinger
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland .,CF Research Group, National Children's Research Centre, Childrens Health Ireland (CHI) at Crumlin, Dublin 12, Ireland
| |
Collapse
|
160
|
Zhang L, He F, Gao L, Cong M, Sun J, Xu J, Wang Y, Hu Y, Asghar S, Hu L, Qiao H. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile. Int J Nanomedicine 2021; 16:1575-1586. [PMID: 33664572 PMCID: PMC7924256 DOI: 10.2147/ijn.s293067] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exosomes are a type of membrane vesicles secreted by living cells. Recent studies suggest exosome-like nanovesicles (ELNVs) from fruits and vegetables are involved in tissue renewal process and functional regulation against inflammatory diseases or cancers. However, there are few reports on ELNVs derived from medicinal plants. METHODS ELNVs derived from Asparagus cochinchinensis (Lour.) Merr. (ACNVs) were isolated and characterized. Cytotoxicity, antiproliferative and apoptosis-inducing capacity of ACNVs against hepatoma carcinoma cell were assessed. The endocytosis mechanism of ACNVs was evaluated on Hep G2 cells in the presence of different endocytosis inhibitors. In vivo distribution of ACNVs was detected in healthy and tumor-bearing mice after scavenger receptors (SRs) blockade. PEG engineering of ACNVs was achieved through optimizing the pharmacokinetic profiles. In vivo antitumor activity and toxicity were evaluated in Hep G2 cell xenograft model. RESULTS ACNVs were isolated and purified using a differential centrifugation method accompanied by sucrose gradient ultracentrifugation. The optimized ACNVs had an average size of about 119 nm and showed a typical cup-shaped nanostructure containing lipids, proteins, and RNAs. ACNVs were found to possess specific antitumor cell proliferation activity associated with an apoptosis-inducing pathway. ACNVs could be internalized into tumor cells mainly via phagocytosis, but they were quickly cleared once entering the blood. Blocking the SRs or PEGylation decoration prolonged the blood circulation time and increased the accumulation of ACNVs in tumor sites. In vivo antitumor results showed that PEGylated ACNVs could significantly inhibit tumor growth without side effects. CONCLUSION This study provides a promising functional nano platform derived from edible Asparagus cochinchinensis that can be used in antitumor therapy with negligible side effects.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Fengjun He
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Lina Gao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Minghui Cong
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Juan Sun
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jialu Xu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yutong Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yang Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Hongzhi Qiao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| |
Collapse
|
161
|
Yepes-Molina L, Hernández JA, Carvajal M. Nanoencapsulation of Pomegranate Extract to Increase Stability and Potential Dermatological Protection. Pharmaceutics 2021; 13:271. [PMID: 33671421 PMCID: PMC7922654 DOI: 10.3390/pharmaceutics13020271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 12/02/2022] Open
Abstract
Pomegranate extract (PG-E) has been reported to exert a protective effect on the skin due to its antioxidant activity. Ingredients rich in phenolic compounds are unstable in extract solutions, and, therefore, the use of a suitable nanosystem to encapsulate this type of extract could be necessary in different biotechnological applications. Thus, we investigated the capacity of Brassica oleracea L. (cauliflower) inflorescence vesicles (CI-vesicles) to encapsulate PG-E and determined the stability and the antioxidant capacity of the system over time. In addition, the protective effect against UV radiation and heavy metals in HaCaT cells was also tested. The CI-vesicles had an entrapment efficiency of around 50%, and accelerated stability tests did not show significant changes in the parameters tested. The results for the HaCaT cells showed the non-cytotoxicity of the CI-vesicles containing PG-E and their protection against heavy metals (lead acetate and mercuric chloride) and UV-B radiation through a reduction of oxidative stress. The reduction of the percentage of deleted mtDNA (mtDNA4977, "common deletion") in UV-treated HaCaT cells due to the presence of CI-vesicles containing PG-E indicated the mechanism of protection. Therefore, the effects of CI-vesicles loaded with PG-E against oxidative stress support their utilization as natural cosmeceuticals to protect skin health against external damage from environmental pollution and UV radiation.
Collapse
Affiliation(s)
- Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, E-30100 Murcia, Spain;
| | - José A. Hernández
- Biotechnology of Fruit Trees Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, E-30100 Murcia, Spain;
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, E-30100 Murcia, Spain;
| |
Collapse
|
162
|
Han Y, Jones TW, Dutta S, Zhu Y, Wang X, Narayanan SP, Fagan SC, Zhang D. Overview and Update on Methods for Cargo Loading into Extracellular Vesicles. Processes (Basel) 2021; 9. [PMID: 33954091 PMCID: PMC8096148 DOI: 10.3390/pr9020356] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enormous library of pharmaceutical compounds presents endless research avenues. However, several factors limit the therapeutic potential of these drugs, such as drug resistance, stability, off-target toxicity, and inadequate delivery to the site of action. Extracellular vesicles (EVs) are lipid bilayer-delimited particles and are naturally released from cells. Growing evidence shows that EVs have great potential to serve as effective drug carriers. Since EVs can not only transfer biological information, but also effectively deliver hydrophobic drugs into cells, the application of EVs as a novel drug delivery system has attracted considerable scientific interest. Recently, EVs loaded with siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, or therapeutic drugs show improved delivery efficiency and drug effect. In this review, we summarize the methods used for the cargo loading into EVs, including siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, and therapeutic drugs. Furthermore, we also include the recent advance in engineered EVs for drug delivery. Finally, both advantages and challenges of EVs as a new drug delivery system are discussed. Here, we encourage researchers to further develop convenient and reliable loading methods for the potential clinical applications of EVs as drug carriers in the future.
Collapse
Affiliation(s)
- Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Timothy W. Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Xiaoyun Wang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Susan C. Fagan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-6491; Fax: +1-706-721-3994
| |
Collapse
|
163
|
Wang X, HuangFu C, Zhu X, Liu J, Gong X, Pan Q, Ma X. Exosomes and Exosomal MicroRNAs in Age-Associated Stroke. Curr Vasc Pharmacol 2021; 19:587-600. [PMID: 33563154 DOI: 10.2174/1570161119666210208202621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function, and are implicated in the initiation and progression of stroke. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Changmei HuangFu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiudeng Zhu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Jiehong Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xinqin Gong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| |
Collapse
|
164
|
Shi J, Jiang X, Gao S, Zhu Y, Liu J, Gu T, Shi E. Gene-modified Exosomes Protect the Brain Against Prolonged Deep Hypothermic Circulatory Arrest. Ann Thorac Surg 2021; 111:576-585. [PMID: 32652066 DOI: 10.1016/j.athoracsur.2020.05.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neurologic deficit remains a major complication after cardiovascular surgeries with deep hypothermic circulatory arrest (DHCA). We hypothesized that exosomes derived from bone marrow mesenchymal stem cells (MSCs) may conduct cerebral protection against prolonged DHCA in rats, and overexpressing microRNA-214 (miR-214) may further enhance the neuroprotection. METHODS Cultured MSCs were transfected with lentivirus vectors containing pre-miR-214 or control vectors. Exosomes were isolated by centrifugation. The DHCA was conducted for 60 minutes when the pericranial temperature was cooled to 18°C. Exosomes from MSCs, MSCs transfected with control vectors, or pre-miR-214 were administered by intracerebroventricular injection 1 day before DHCA. RESULTS Transfection of pre-miR-214 significantly enhanced the miR-214 expression in exosomes from MSCs. All exosome-pretreating groups exhibited lower levels of interleukin-1β and tumor necrosis factor-α, higher capillary density, more significant neurogenesis and angiogenesis, and more normal neurons in the hippocampus than those of the control group. Exosome pretreatment markedly improved the spatial learning and memory function and vestibulomotor function. Compared with exosomes from MSCs or MSCs transfected with control vectors, miR-214-enriched exosomes remarkably enhanced the miR-214 level and expressions of phosphor-protein kinase B and Bcl-2, inhibited expressions of phosphate and tension homology, Bcl-2 interacting mediator of cell death, Bcl-2-associated X protein, and cleaved Caspase-3, and increased the number of survival neurons. Significantly better neurologic functions were also detected in rats pretreated with miR-214-enriched exosomes. CONCLUSIONS Exosomes from MSCs conduct powerful neuroprotection against cerebral injury induced by DHCA, which can be further enhanced by genetic modification of the exosomes to overexpress miR-214.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China; Department of Thoracic Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shilun Gao
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yubao Zhu
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jinduo Liu
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tianxiang Gu
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Enyi Shi
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
165
|
Hu W, Xiong H, Ru Z, Zhao Y, Zhou Y, Xie K, Xiao W, Xiong Z, Wang C, Yuan C, Shi J, Du Q, Zhang X, Yang H. Extracellular vesicles-released parathyroid hormone-related protein from Lewis lung carcinoma induces lipolysis and adipose tissue browning in cancer cachexia. Cell Death Dis 2021; 12:134. [PMID: 33510128 PMCID: PMC7843996 DOI: 10.1038/s41419-020-03382-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Cancer cachexia is a metabolic disorder characterized by skeletal muscle wasting and white adipose tissue browning. Specific functions of several hormones, growth factors, and cytokines derived from tumors can trigger cachexia. Moreover, adipose tissue lipolysis might explain weight loss that occurs owing to cachexia. Extracellular vesicles (EVs) are involved in intercellular communication. However, whether EVs participate in lipolysis induced by cancer cachexia has not been thoroughly investigated. Using Lewis lung carcinoma (LLC) cell culture, we tested whether LLC cell-derived EVs can induce lipolysis in 3T3-L1 adipocytes. EVs derived from LLC cells were isolated and characterized biochemically and biophysically. Western blotting and glycerol assay were used to study lipolysis. LLC cell-derived EVs induced lipolysis in vivo and vitro. EVs fused directly with target 3T3-L1 adipocytes and transferred parathyroid hormone-related protein (PTHrP), activating the PKA signaling pathway in 3T3-L1 adipocytes. Blocking PTHrP activity in LLC-EVs using a neutralizing antibody and by knocking down PTHR expression prevented lipolysis in adipocytes. Inhibiting the PKA signaling pathway also prevents the lipolytic effects of EVs. In vivo, suppression of LLC-EVs release by knocking down Rab27A alleviated white adipose tissue browning and lipolysis. Our data showed that LLC cell-derived EVs induced adipocyte lipolysis via the extracellular PTHrP-mediated PKA pathway. Our data demonstrate that LLC-EVs induce lipolysis in vitro and vivo by delivering PTHrP, which interacts with PTHR. The lipolytic effect of LLC-EVs was abrogated by PTHR knockdown and treatment with a neutralizing anti-PTHrP antibody. Together, these data show that LLC-EV-induced lipolysis is mediated by extracellular PTHrP. These findings suggest a novel mechanism of lipid droplet loss and identify a potential therapeutic strategy for cancer cachexia.
Collapse
Affiliation(s)
- Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Hairong Xiong
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zeyuan Ru
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yan Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yali Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Kairu Xie
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Cheng Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Changfei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Quansheng Du
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
166
|
Chain CY, Daza Millone MA, Cisneros JS, Ramirez EA, Vela ME. Surface Plasmon Resonance as a Characterization Tool for Lipid Nanoparticles Used in Drug Delivery. Front Chem 2021; 8:605307. [PMID: 33490037 PMCID: PMC7817952 DOI: 10.3389/fchem.2020.605307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The development of drug carriers based in lipid nanoparticles (LNPs) aims toward the synthesis of non-toxic multifunctional nanovehicles that can bypass the immune system and allow specific site targeting, controlled release and complete degradation of the carrier components. Among label free techniques, Surface Plasmon Resonance (SPR) biosensing is a versatile tool to study LNPs in the field of nanotherapeutics research. SPR, widely used for the analysis of molecular interactions, is based on the immobilization of one of the interacting partners to the sensor surface, which can be easily achieved in the case of LNPs by hydrophobic attachment onto commercial lipid- capture sensor chips. In the last years SPR technology has emerged as an interesting strategy for studying molecular aspects of drug delivery that determines the efficacy of the nanotherapeutical such as LNPs' interactions with biological targets, with serum proteins and with tumor extracelullar matrix. Moreover, SPR has contributed to the obtention and characterization of LNPs, gathering information about the interplay between components of the formulations, their response to organic molecules and, more recently, the quantification and molecular characterization of exosomes. By the combination of available sensor platforms, assay quickness and straight forward platform adaptation for new carrier systems, SPR is becoming a high throughput technique for LNPs' characterization and analysis.
Collapse
Affiliation(s)
- Cecilia Yamil Chain
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Antonieta Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - José Sebastián Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - Eduardo Alejandro Ramirez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| |
Collapse
|
167
|
Almiñana C, Rudolf Vegas A, Tekin M, Hassan M, Uzbekov R, Fröhlich T, Bollwein H, Bauersachs S. Isolation and Characterization of Equine Uterine Extracellular Vesicles: A Comparative Methodological Study. Int J Mol Sci 2021; 22:ijms22020979. [PMID: 33478136 PMCID: PMC7835857 DOI: 10.3390/ijms22020979] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) have been identified in the uterine fluid in different species and have been pointed as key players in the embryo-maternal dialogue, maternal recognition of pregnancy and establishment of pregnancy. However, little is known about the uterine EVs in the mare. Therefore, the present study aimed at characterizing EVs from uterine lavage of cyclic mares by comparing five EVs isolation methods and the combination of them: (1) ultracentrifugation (UC); (2) concentration of lavage volume by Centricon ultrafiltration (CE); (3) the use of CE with different washing steps (phosphate-buffered saline with or without trehalose); (4) size-exclusion chromatography with iZON-qEV columns, and (5) a combination of the methods with best results based on EVs yield, purity, and protein cargo profiles. Transmission electron microscopy and Western blotting confirmed the isolation of EVs by all methods but with quantitative and qualitative differences. Mass spectrometry provided differences in protein profiles between methods, number of identified proteins, and protein classes. Our results indicate that the combination of CE/trehalose/iZON/UC is an optimal method to isolate equine uterine EVs with good yield and purity that can be applied in future studies to determine the role of equine uterine EVs in embryo-maternal interactions.
Collapse
Affiliation(s)
- Carmen Almiñana
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315 Lindau, Switzerland; (A.R.V.); (S.B.)
- UMR85 PRC, INRAE, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France
- Correspondence:
| | - Alba Rudolf Vegas
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315 Lindau, Switzerland; (A.R.V.); (S.B.)
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland; (M.T.); (M.H.); (H.B.)
| | - Muhittin Tekin
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland; (M.T.); (M.H.); (H.B.)
| | - Mubbashar Hassan
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland; (M.T.); (M.H.); (H.B.)
| | - Rustem Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université de Tours, 37032 Tours, France;
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, 81377 Munich, Germany;
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland; (M.T.); (M.H.); (H.B.)
| | - Stefan Bauersachs
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315 Lindau, Switzerland; (A.R.V.); (S.B.)
| |
Collapse
|
168
|
Lathwal S, Yerneni SS, Boye S, Muza UL, Takahashi S, Sugimoto N, Lederer A, Das SR, Campbell PG, Matyjaszewski K. Engineering exosome polymer hybrids by atom transfer radical polymerization. Proc Natl Acad Sci U S A 2021; 118:e2020241118. [PMID: 33384328 PMCID: PMC7812758 DOI: 10.1073/pnas.2020241118] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exosomes are emerging as ideal drug delivery vehicles due to their biological origin and ability to transfer cargo between cells. However, rapid clearance of exogenous exosomes from the circulation as well as aggregation of exosomes and shedding of surface proteins during storage limit their clinical translation. Here, we demonstrate highly controlled and reversible functionalization of exosome surfaces with well-defined polymers that modulate the exosome's physiochemical and pharmacokinetic properties. Using cholesterol-modified DNA tethers and complementary DNA block copolymers, exosome surfaces were engineered with different biocompatible polymers. Additionally, polymers were directly grafted from the exosome surface using biocompatible photo-mediated atom transfer radical polymerization (ATRP). These exosome polymer hybrids (EPHs) exhibited enhanced stability under various storage conditions and in the presence of proteolytic enzymes. Tuning of the polymer length and surface loading allowed precise control over exosome surface interactions, cellular uptake, and preserved bioactivity. EPHs show fourfold higher blood circulation time without altering tissue distribution profiles. Our results highlight the potential of precise nanoengineering of exosomes toward developing advanced drug and therapeutic delivery systems using modern ATRP methods.
Collapse
Affiliation(s)
- Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
- The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Susanne Boye
- Polymer Separation Group, Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Upenyu L Muza
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, 7602 Stellenbosch, South Africa
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research, Konan University, 650-0047 Kobe, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research, Konan University, 650-0047 Kobe, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology, Konan University, 650-0047 Kobe, Japan
| | - Albena Lederer
- Polymer Separation Group, Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, 7602 Stellenbosch, South Africa
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213;
- The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Phil G Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213;
- Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA 15213
| | | |
Collapse
|
169
|
Berger A, Araújo-Filho I, Piffoux M, Nicolás-Boluda A, Grangier A, Boucenna I, Real CC, Marques FLN, de Paula Faria D, do Rego ACM, Broudin C, Gazeau F, Wilhelm C, Clément O, Cellier C, Buchpiguel CA, Rahmi G, Silva AKA. Local administration of stem cell-derived extracellular vesicles in a thermoresponsive hydrogel promotes a pro-healing effect in a rat model of colo-cutaneous post-surgical fistula. NANOSCALE 2021; 13:218-232. [PMID: 33326529 DOI: 10.1039/d0nr07349k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs), especially from stem/stromal cells (SCs), represent a cell-free alternative in regenerative medicine holding promises to promote tissue healing while providing safety and logistic advantages in comparison to cellular counterparts. Herein, we hypothesize that SC EVs, administered locally in a thermoresponsive gel, is a therapeutic strategy for managing post-surgical colo-cutaneous fistulas. This disease is a neglected and challenging condition associated to low remission rates and high refractoriness. Herein, EVs from a murine SC line were produced by a high-yield scalable method in bioreactors. The post-surgical intestinal fistula model was induced via a surgical cecostomy communicating the cecum and the skin in Wistar rats. Animals were treated just after cecostomy with PBS, thermoresponsive Pluronic F-127 hydrogel alone or containing SC EVs. A PET-monitored biodistribution investigation of SC EVs labelled with 89Zr was performed. Fistula external orifice and output assessment, probe-based confocal laser endomicroscopy, MRI and histology were carried out for therapy follow-up. The relevance of percutaneous EV administration embedded in the hydrogel vehicle was indicated by the PET-biodistribution study. Local administration of SC EVs in the hydrogel reduced colo-cutaneous fistula diameter, output, fibrosis and inflammation while increasing the density of neo-vessels when compared to the PBS and gel groups. This multi-modal investigation pointed-out the therapeutic potential of SC EVs administered locally and in a thermoresponsive hydrogel for the management of challenging post-surgical colon fistulas in a minimally-invasive cell-free strategy.
Collapse
Affiliation(s)
- Arthur Berger
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Université de Paris, 75015, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Xiao Z, Lei T, Liu Y, Yang Y, Bi W, Du H. The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson's disease. Stem Cell Res Ther 2021; 12:5. [PMID: 33407864 PMCID: PMC7789713 DOI: 10.1186/s13287-020-01957-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease worldwide, is caused by the loss of dopaminergic (DAergic) neurons in the substantia nigra resulting in a series of motor or non-motor disorders. Current treatment methods are unable to stop the progression of PD and may bring certain side effects. Cell replacement therapy has brought new hope for the treatment of PD. Recently, human dental tissue-derived mesenchymal stem cells have received extensive attention. Currently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are considered to have strong potential for the treatment of these neurodegenerative diseases. These cells are considered to be ideal cell sources for the treatment of PD on account of their unique characteristics, such as neural crest origin, immune rejection, and lack of ethical issues. In this review, we briefly describe the research investigating cell therapy for PD and discuss the application and progress of DPSCs and SHED in the treatment of PD. This review offers significant and comprehensive guidance for further clinical research on PD.
Collapse
Affiliation(s)
- Zhuangzhuang Xiao
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Tong Lei
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Yanyan Liu
- Kangyanbao (Beijing) Stem Cell Technology Co., Ltd, Beijing, 102600, China
| | - Yanjie Yang
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Wangyu Bi
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Hongwu Du
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
171
|
Kumar A, Zhou L, Zhi K, Raji B, Pernell S, Tadrous E, Kodidela S, Nookala A, Kochat H, Kumar S. Challenges in Biomaterial-Based Drug Delivery Approach for the Treatment of Neurodegenerative Diseases: Opportunities for Extracellular Vesicles. Int J Mol Sci 2020; 22:E138. [PMID: 33375558 PMCID: PMC7795247 DOI: 10.3390/ijms22010138] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Biomaterials have been the subject of numerous studies to pursue potential therapeutic interventions for a wide variety of disorders and diseases. The physical and chemical properties of various materials have been explored to develop natural, synthetic, or semi-synthetic materials with distinct advantages for use as drug delivery systems for the central nervous system (CNS) and non-CNS diseases. In this review, an overview of popular biomaterials as drug delivery systems for neurogenerative diseases is provided, balancing the potential and challenges associated with the CNS drug delivery. As an effective drug delivery system, desired properties of biomaterials are discussed, addressing the persistent challenges such as targeted drug delivery, stimuli responsiveness, and controlled drug release in vivo. Finally, we discuss the prospects and limitations of incorporating extracellular vesicles (EVs) as a drug delivery system and their use for biocompatible, stable, and targeted delivery with limited immunogenicity, as well as their ability to be delivered via a non-invasive approach for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | - Lina Zhou
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38104, USA; (K.Z.); (B.R.); (H.K.)
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38104, USA; (K.Z.); (B.R.); (H.K.)
| | - Shelby Pernell
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | - Erene Tadrous
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | | | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38104, USA; (K.Z.); (B.R.); (H.K.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| |
Collapse
|
172
|
Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics. Int J Mol Sci 2020; 22:ijms22010014. [PMID: 33374978 PMCID: PMC7792591 DOI: 10.3390/ijms22010014] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes are cell-secreted nanovesicles that naturally contain biomolecular cargoes such as lipids, proteins, and nucleic acids. Exosomes mediate intercellular communication, enabling the transfer biological signals from the donor cells to the recipient cells. Recently, exosomes are emerging as promising drug delivery vehicles due to their strong stability in blood circulation, high biocompatibility, low immunogenicity, and natural targeting ability. In particular, exosomes derived from specific types of cells can carry endogenous signaling molecules with therapeutic potential for cancer treatment, thus presenting a significant impact on targeted drug delivery and therapy. Furthermore, exosomes can be engineered to display targeting moieties on their surface or to load additional therapeutic agents. Therefore, a comprehensive understanding of exosome biogenesis and the development of efficient exosome engineering techniques will provide new avenues to establish convincing clinical therapeutic strategies based on exosomes. This review focuses on the therapeutic applications of exosomes derived from various cells and the exosome engineering technologies that enable the accurate delivery of various types of cargoes to target cells for cancer therapy.
Collapse
|
173
|
The Functional Heterogeneity of Neutrophil-Derived Extracellular Vesicles Reflects the Status of the Parent Cell. Cells 2020; 9:cells9122718. [PMID: 33353087 PMCID: PMC7766779 DOI: 10.3390/cells9122718] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Similar to other cell types, neutrophilic granulocytes also release extracellular vesicles (EVs), mainly medium-sized microvesicles/microparticles. According to published data, authors have reached a consensus on the physical parameters (size, density) and chemical composition (surface proteins, proteomics) of neutrophil-derived EVs. In contrast, there is large diversity and even controversy in the reported functional properties. Part of the discrepancy may be ascribed to differences in the viability of the starting cells, in eliciting factors, in separation techniques and in storage conditions. However, the most recent data from our laboratory prove that the same population of neutrophils is able to generate EVs with different functional properties, transmitting pro-inflammatory or anti-inflammatory effects on neighboring cells. Previously we have shown that Mac-1 integrin is a key factor that switches anti-inflammatory EV generation into pro-inflammatory and antibacterial EV production. This paper reviews current knowledge on the functional alterations initiated by neutrophil-derived EVs, listing their effects according to the triggering agents and target cells. We summarize the presence of neutrophil-derived EVs in pathological processes and their perspectives in diagnostics and therapy. Finally, the functional heterogeneity of differently triggered EVs indicates that neutrophils are capable of producing a broad spectrum of EVs, depending on the environmental conditions prevailing at the time of EV genesis.
Collapse
|
174
|
Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther 2020; 29:13-31. [PMID: 33278566 DOI: 10.1016/j.ymthe.2020.11.030] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Plant exosome-like nanovesicles, being innately replete with bioactive lipids, proteins, RNA, and other pharmacologically active molecules, offer unique morphological and compositional characteristics as natural nanocarriers. Furthermore, their compelling physicochemical traits underpin their modulative role in physiological processes, all of which have fostered the concept that these nanovesicles may be highly proficient in the development of next-generation biotherapeutic and drug delivery nanoplatforms to meet the ever-stringent demands of current clinical challenges. This review systemically deals with various facets of plant exosome-like nanovesicles ranging from their origin and isolation to identification of morphological composition, biological functions, and cargo-loading mechanisms. Efforts are made to encompass their biotherapeutic roles by elucidating their immunological modulating, anti-tumor, regenerative, and anti-inflammatory roles. We also shed light on re-engineering these nanovesicles into robust, innocuous, and non-immunogenic nanovectors for drug delivery through multiple stringent biological hindrances to various targeted organs such as intestine and brain. Finally, recent advances centered around plant exosome-like nanovesicles along with new insights into transdermal, transmembrane and targeting mechanisms of these vesicles are also elucidated. We expect that the continuing development of plant exosome-like nanovesicle-based therapeutic and delivery nanoplatforms will promote their clinical applications.
Collapse
Affiliation(s)
- Haseeb Anwar Dad
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ao-Qing Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
175
|
Hettich BF, Ben‐Yehuda Greenwald M, Werner S, Leroux J. Exosomes for Wound Healing: Purification Optimization and Identification of Bioactive Components. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002596. [PMID: 33304765 PMCID: PMC7709981 DOI: 10.1002/advs.202002596] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/11/2020] [Indexed: 05/14/2023]
Abstract
Human mesenchymal stem cell exosomes have been shown to promote cutaneous wound healing. Their bioactivity is most often attributed to their protein and nucleic acid components, while the function of exosomal lipids remains comparatively unexplored. This work specifically assesses the involvement of lipids and the transmembrane enzyme CD73 in the exosomes' biological activity in stimulating the cutaneous wound healing process. Since exosome preparation processes are not harmonized yet, certain production and purification parameters are first systematically investigated, enabling the optimization of a standardized protocol delivering high exosome integrity, yield, and purity. An in situ enzymatic assay is introduced to specifically assess the vesicle functionality, and quantitative proteomics is employed to establish the cell culture conditions yielding a stable exosome protein profile. Using a combination of in vitro approaches, CD73 and constitutional lipids of HPV-16 E6/E7 transformed human bone marrow stromal cell-derived exosomes are identified as key bioactive components promoting the exosome-driven acceleration of processes required for wound repair. A pilot wound healing study in mice indeed suggests a role of lipids in the exosomes' biological activity. Strikingly, the extent of the bioactivity of these exosomal components is found to be dependent on the target cell type.
Collapse
Affiliation(s)
- Britta F. Hettich
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | | | - Sabine Werner
- Institute of Molecular Health SciencesDepartment of BiologyETH ZurichZurich8093Switzerland
| | - Jean‐Christophe Leroux
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| |
Collapse
|
176
|
The Role of Extracellular Vesicles in Demyelination of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21239111. [PMID: 33266211 PMCID: PMC7729475 DOI: 10.3390/ijms21239111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
It is being increasingly demonstrated that extracellular vesicles (EVs) are deeply involved in the physiology of the central nervous system (CNS). Processes such as synaptic activity, neuron-glia communication, myelination and immune response are modulated by EVs. Likewise, these vesicles may participate in many pathological processes, both as triggers of disease or, on the contrary, as mechanisms of repair. EVs play relevant roles in neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases, in viral infections of the CNS and in demyelinating pathologies such as multiple sclerosis (MS). This review describes the involvement of these membrane vesicles in major demyelinating diseases, including MS, neuromyelitis optica, progressive multifocal leukoencephalopathy and demyelination associated to herpesviruses.
Collapse
|
177
|
Self-complementarity in adeno-associated virus enhances transduction and gene expression in mouse cochlear tissues. PLoS One 2020; 15:e0242599. [PMID: 33227033 PMCID: PMC7682903 DOI: 10.1371/journal.pone.0242599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/06/2020] [Indexed: 12/03/2022] Open
Abstract
Sensorineural hearing loss is one of the most common disabilities worldwide. Such prevalence necessitates effective tools for studying the molecular workings of cochlear cells. One prominent and effective vector for expressing genes of interest in research models is adeno-associated virus (AAV). However, AAV efficacy in transducing cochlear cells can vary for a number of reasons including serotype, species, and methodology, and oftentimes requires high multiplicity of infection which can damage the sensory cells. Reports in other systems suggest multiple approaches can be used to enhance AAV transduction including self-complementary vector design and pharmacological inhibition of degradation. Here we produced AAV to drive green fluorescent protein (GFP) expression in explanted neonatal mouse cochleae. Treatment with eeyarestatin I, tyrphostin 23, or lipofectamine 2000 did not result in increased transduction, however, self-complementary vector design resulted in significantly more GFP positive cells when compared to single-stranded controls. Similarly, self-complementary AAV2 vectors demonstrated enhanced transduction efficiency compared to single stranded AAV2 when injected via the posterior semicircular canal, in vivo. Self-complementary vectors for AAV1, 8, and 9 serotypes also demonstrated robust GFP transduction in cochlear cells in vivo, though these were not directly compared to single stranded vectors. These findings suggest that second-strand synthesis may be a rate limiting step in AAV transduction of cochlear tissues and that self-complementary AAV can be used to effectively target large numbers of cochlear cells in vitro and in vivo.
Collapse
|
178
|
Affiliation(s)
- Gautam N Shenoy
- Research Scientist, Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York, USA
| |
Collapse
|
179
|
O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21:585-606. [PMID: 32457507 PMCID: PMC7249041 DOI: 10.1038/s41580-020-0251-y] [Citation(s) in RCA: 1138] [Impact Index Per Article: 227.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.
Collapse
Affiliation(s)
- Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
180
|
Zhao Z, Muth DC, Mulka K, Liao Z, Powell BH, Hancock GV, Metcalf Pate KA, Witwer KW. miRNA profiling of primate cervicovaginal lavage and extracellular vesicles reveals miR-186-5p as a potential antiretroviral factor in macrophages. FEBS Open Bio 2020; 10:2021-2039. [PMID: 33017084 PMCID: PMC7530394 DOI: 10.1002/2211-5463.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Cervicovaginal secretions, or their components collected, are referred to as cervicovaginal lavage (CVL). CVL constituents have utility as biomarkers and play protective roles in wound healing and against HIV-1 infection. However, several components of cervicovaginal fluids are less well understood, such as extracellular RNAs and their carriers, for example, extracellular vesicles (EVs). EVs comprise a wide array of double-leaflet membrane extracellular particles and range in diameter from 30 nm to over one micron. The aim of this study was to determine whether differentially regulated CVL microRNAs (miRNAs) might influence retrovirus replication. To this end, we characterized EVs and miRNAs of primate CVL during the menstrual cycle and simian immunodeficiency virus (SIV) infection of macaques. EVs were enriched by stepped ultracentrifugation, and miRNA profiles were assessed with a medium-throughput stem-loop/hydrolysis probe qPCR platform. Whereas hormone cycling was abnormal in infected subjects, EV concentration correlated with progesterone concentration in uninfected subjects. miRNAs were present predominantly in the EV-depleted CVL supernatant. Only a small number of CVL miRNAs changed during the menstrual cycle or SIV infection, for example, miR-186-5p, which was depleted in retroviral infection. This miRNA inhibited HIV replication in infected macrophages in vitro. In silico target prediction and pathway enrichment analyses shed light on the probable functions of miR-186-5p in hindering HIV infections via immunoregulation, T-cell regulation, disruption of viral pathways, etc. These results provide further evidence for the potential of EVs and small RNAs as biomarkers or effectors of disease processes in the reproductive tract.
Collapse
Affiliation(s)
- Zezhou Zhao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Dillon C. Muth
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kathleen Mulka
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Zhaohao Liao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Bonita H. Powell
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | | | - Kelly A. Metcalf Pate
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
181
|
Quijano LM, Naranjo JD, El-Mossier SO, Turner NJ, Pineda Molina C, Bartolacci J, Zhang L, White L, Li H, Badylak SF. Matrix-Bound Nanovesicles: The Effects of Isolation Method upon Yield, Purity, and Function. Tissue Eng Part C Methods 2020; 26:528-540. [PMID: 33012221 PMCID: PMC7869881 DOI: 10.1089/ten.tec.2020.0243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Identification of matrix-bound nanovesicles (MBV) as ubiquitous components of the extracellular matrix (ECM) raises questions regarding their biologic functions and their potential theranostic application. Unlike liquid-phase extracellular vesicles (e.g., exosomes), MBV are tightly bound to the ECM, which makes their isolation and harvesting more challenging. The indiscriminate use of different methods to harvest MBV can alter or disrupt their structural and/or functional integrity. The objective of the present study was to compare the effect of various MBV harvesting methods upon yield, purity, and biologic activity. Combinations of four methods to solubilize the ECM (collagenase [COL], liberase [LIB], or proteinase K [PK] and nonenzymatic elution with potassium chloride) and four isolation methods (ultracentrifugation, ultrafiltration [UF], density barrier, and size exclusion chromatography [SEC]) were used to isolate MBV from urinary bladder-derived ECM. All combinations of solubilization and isolation methods allowed for the harvesting of MBV, however, distinct differences were noted. The highest yield, purity, cellular uptake, and biologic activity were seen with MBV isolated by a combination of liberase or collagenase followed by SEC. The combination of proteinase K and UF was shown to have detrimental effects on bioactivity. The results show the importance of selecting appropriate MBV harvesting methods for the characterization and evaluation of MBV and for analysis of their potential theranostic application. Impact statement Identification of matrix-bound nanovesicles (MBV) as ubiquitous components of the extracellular matrix (ECM) has raised questions regarding their biologic functions and their potential theranostic application. This study demonstrates that the harvesting methods used can result in samples with physical and biochemical properties that are unique to the isolation and solubilization methods used. Consequently, developing harvesting methods that minimize sample contamination with ECM remnants and/or solubilization agents will be essential in determining the theranostic potential of MBV in future studies.
Collapse
Affiliation(s)
- Lina M. Quijano
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Juan D. Naranjo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Salma O. El-Mossier
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Neill J. Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph Bartolacci
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Zhang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisa White
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Hui Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
182
|
Colombo F, Norton EG, Cocucci E. Microscopy approaches to study extracellular vesicles. Biochim Biophys Acta Gen Subj 2020; 1865:129752. [PMID: 32991970 DOI: 10.1016/j.bbagen.2020.129752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) have drawn the attention of both biological researchers and clinical physicians due to their function in mediating cell-to-cell communication and relevance as potential diagnostic markers. Since their discovery, the small size and heterogeneity of EVs has posed a hindrance to their characterization as well as to the definition of their biological significance. SCOPE OF THE REVIEW Recent technological advances have considerably expanded the tools available for EV studies. In particular, the combination of novel microscope setups with high resolution imaging and the flexibility in EV labelling allows for the precise detection and characterization of the molecular composition of single EVs. Here we will review the microscopy techniques that have been applied to unravel the mechanism of EV-mediated intercellular communication and to study their molecular composition. MAJOR CONCLUSIONS Microscopy technologies have largely contributed to our understanding of molecular processes, including EV biology. As we discuss in this review, careful experimental planning is necessary to identify the most appropriate technique to use to answer a specific question. GENERAL SIGNIFICANCE The considerations regarding microscopy and experimental planning that are discussed here are applicable to the characterization of other small structures, including synthetic nanovectors and viruses.
Collapse
Affiliation(s)
- Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erienne G Norton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
183
|
Ueno Y, Hira K, Miyamoto N, Kijima C, Inaba T, Hattori N. Pleiotropic Effects of Exosomes as a Therapy for Stroke Recovery. Int J Mol Sci 2020; 21:ijms21186894. [PMID: 32962207 PMCID: PMC7555640 DOI: 10.3390/ijms21186894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stroke is the leading cause of disability, and stroke survivors suffer from long-term sequelae even after receiving recombinant tissue plasminogen activator therapy and endovascular intracranial thrombectomy. Increasing evidence suggests that exosomes, nano-sized extracellular membrane vesicles, enhance neurogenesis, angiogenesis, and axonal outgrowth, all the while suppressing inflammatory reactions, thereby enhancing functional recovery after stroke. A systematic literature review to study the association of stroke recovery with exosome therapy was carried out, analyzing species, stroke model, source of exosomes, behavioral analyses, and outcome data, as well as molecular mechanisms. Thirteen studies were included in the present systematic review. In the majority of studies, exosomes derived from mesenchymal stromal cells or stem cells were administered intravenously within 24 h after transient middle cerebral artery occlusion, showing a significant improvement of neurological severity and motor functions. Specific microRNAs and molecules were identified by mechanistic investigations, and their amplification was shown to further enhance therapeutic effects, including neurogenesis, angiogenesis, axonal outgrowth, and synaptogenesis. Overall, this review addresses the current advances in exosome therapy for stroke recovery in preclinical studies, which can hopefully be preparatory steps for the future development of clinical trials involving stroke survivors to improve functional outcomes.
Collapse
Affiliation(s)
- Yuji Ueno
- Correspondence: ; Tel.: +81-3-3813-3111; Fax: +81-3-5800-0547
| | | | | | | | | | | |
Collapse
|
184
|
Dehghani L, Hashemi SM, Saadatnia M, Zali A, Oraee-Yazdani S, Heidari Keshel S, Khojasteh A, Soleimani M. Stem Cell-Derived Exosomes as Treatment for Stroke: a Systematic Review. Stem Cell Rev Rep 2020; 17:428-438. [PMID: 32935221 DOI: 10.1007/s12015-020-10024-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The therapeutic potential of stem cells may largely be mediated by paracrine factors contained in exosomes released from intracellular endosomes. A systematic review was performed to identify the effects of stem cell-derived exosomes for their ability to induce restorative effects in animal models of stroke. METHODS PubMed, Scopus, and ISI Web of Science databases were searched for all available articles testing stem cell-derived exosomes as therapeutic interventions in animal models of stroke until April 2020. The STAIR scale was used to assess the quality of the included studies. RESULTS A total of 994 published articles were identified in the systematic search. After screening for eligibility, a total of 16 datasets were included. Type of cerebral ischemia was transient in majority studies and most studies used rat or mice adipose tissue-derived stem cells/bone marrow-derived stem cells. Eight studies indicated improved functional recovery while 8 were able to show reduced infarct volume as a result of exosome therapy. The beneficial effects were mainly attributed to reduced inflammation and oxidative stress, enhanced neurogenesis, angiogenesis, and neurite remodeling. Also, 4 studies demonstrated that exosomes hold great promise as an endogenous drug delivery nano-system. CONCLUSION In preclinical studies, use of stem cell-derived exosomes is strongly associated with improved neurological recovery and reduced brain infarct volume following stroke. Improved preclinical study quality in terms of treatment allocation reporting, randomization and blinding will accelerate needed progress towards clinical trials that should assess feasibility and safety of this therapeutic approach in humans. Graphical abstract.
Collapse
Affiliation(s)
- Leila Dehghani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saadatnia
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Medical Nanotechnology and Tissue engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
185
|
Martellucci S, Orefice NS, Angelucci A, Luce A, Caraglia M, Zappavigna S. Extracellular Vesicles: New Endogenous Shuttles for miRNAs in Cancer Diagnosis and Therapy? Int J Mol Sci 2020; 21:ijms21186486. [PMID: 32899898 PMCID: PMC7555972 DOI: 10.3390/ijms21186486] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular Vesicles (EVs) represent a heterogeneous population of membranous cell-derived structures, including cargo-oriented exosomes and microvesicles. EVs are functionally associated with intercellular communication and play an essential role in multiple physiopathological conditions. Shedding of EVs is frequently increased in malignancies and their content, including proteins and nucleic acids, altered during carcinogenesis and cancer progression. EVs-mediated intercellular communication between tumor cells and between tumor and stromal cells can modulate, through cargo miRNA, the survival, progression, and drug resistance in cancer conditions. These consolidated suggestions and EVs’ stability in bodily fluids have led to extensive investigations on the potential employment of circulating EVs-derived miRNAs as tumor biomarkers and potential therapeutic vehicles. In this review, we highlight the current knowledge about circulating EVs-miRNAs in human cancer and the application limits of these tools, discussing their clinical utility and challenges in functions such as in biomarkers and instruments for diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: or ; Tel.: +1-608-262-21-89
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, 83031 Avellino, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| |
Collapse
|
186
|
Xin L, Lin X, Zhou F, Li C, Wang X, Yu H, Pan Y, Fei H, Ma L, Zhang S. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater 2020; 113:252-266. [PMID: 32574858 DOI: 10.1016/j.actbio.2020.06.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Endometrial traumas may cause intrauterine adhesions (IUAs), leading to infertility. Conventional methods in clinic have not solved the problem of endometrial regeneration in severe cases. Umbilical cord-derived mesenchymal stem cell (UC-MSC)-based therapies have shown some promising achievements in the treatment of IUAs. However, the limitations of potential tumorigenicity, low infusion and low retention are still controversial and restricted the clinical application of MSCs. In contrast, UC-MSC-derived exosomes exhibit a similar function to their source cells and are expected to overcome these limitations. Therefore, a novel and viable cell-free therapeutic strategy by UC-MSC-derived exosomes was proposed in this study. Here, we designed a construct of exosomes and collagen scaffold (CS/Exos) for endometrial regeneration in a rat endometrium-damage model, and investigated the regeneration mechanism through macrophage immunomodulation. The CS/Exos transplantation potently induced (i) endometrium regeneration, (ii) collagen remodeling, (iii) increased the expression of the estrogen receptor α/progesterone receptor, and (iv) restored fertility. Mechanistically, CS/Exos facilitated CD163+ M2 macrophage polarization, reduced inflammation, and increased anti-inflammatory responses in vivo and in vitro. By RNA-seq, miRNAs enriched in exosomes were the main mediator for exosomes-induced macrophage polarization. Overall, we demonstrated that CS/Exos treatment facilitated endometrium regeneration and fertility restoration by immunomodulatory functions of miRNAs. Our research highlights the therapeutic prospects of CS/Exos for the management of IUAs. STATEMENT OF SIGNIFICANCE: Severe endometrial traumas always result in intrauterine adhesions (IUAs) and infertility. The limited outcomes by conventional methods in the clinic make it very important to develop new strategies for endometrium regeneration and fertility restoration. In this study, an exosome-laden scaffold (CS/Exos) was designed and the transplantation of CS/Exos potently induced (i) endometrium regeneration, (ii) collagen remodeling, (iii) increased the expression of the estrogen receptor α/progesterone receptor, and (iv) restored fertility. In mechanism, the construct of CS/Exos facilitated M2 macrophage polarization, reduced inflammation, and increased anti-inflammatory responses. Furthermore, miRNAs enriched in exosomes were the main mediator for exosome-induced macrophage polarization. This study highlights the therapeutic prospects of CS/Exos and the translational application for the management of severe IUAs.
Collapse
|
187
|
Kumar A, Kodidela S, Tadrous E, Cory TJ, Walker CM, Smith AM, Mukherjee A, Kumar S. Extracellular Vesicles in Viral Replication and Pathogenesis and Their Potential Role in Therapeutic Intervention. Viruses 2020; 12:E887. [PMID: 32823684 PMCID: PMC7472073 DOI: 10.3390/v12080887] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) have shown their potential as a carrier of molecular information, and they have been involved in physiological functions and diseases caused by viral infections. Virus-infected cells secrete various lipid-bound vesicles, including endosome pathway-derived exosomes and microvesicles/microparticles that are released from the plasma membrane. They are released via a direct outward budding and fission of plasma membrane blebs into the extracellular space to either facilitate virus propagation or regulate the immune responses. Moreover, EVs generated by virus-infected cells can incorporate virulence factors including viral protein and viral genetic material, and thus can resemble noninfectious viruses. Interactions of EVs with recipient cells have been shown to activate signaling pathways that may contribute to a sustained cellular response towards viral infections. EVs, by utilizing a complex set of cargos, can play a regulatory role in viral infection, both by facilitating and suppressing the infection. EV-based antiviral and antiretroviral drug delivery approaches provide an opportunity for targeted drug delivery. In this review, we summarize the literature on EVs, their associated involvement in transmission in viral infections, and potential therapeutic implications.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Erene Tadrous
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Theodore James Cory
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Crystal Martin Walker
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Amber Marie Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ahona Mukherjee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| |
Collapse
|
188
|
Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis 2020; 35:851-868. [PMID: 32297170 PMCID: PMC7988906 DOI: 10.1007/s11011-020-00573-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the leading cause of disability among adults as well as the 2nd leading cause of death globally. Ischemic stroke accounts for about 85% of strokes, and currently, tissue plasminogen activator (tPA), whose therapeutic window is limited to up to 4.5 h for the appropriate population, is the only FDA approved drug in practice and medicine. After a stroke, a cascade of pathophysiological events results in the opening of the blood-brain barrier (BBB) through which further complications, disabilities, and mortality are likely to threaten the patient's health. Strikingly, tPA administration in eligible patients might cause hemorrhagic transformation and sustained damage to BBB integrity. One must, therefore, delineate upon stroke onset which cellular and molecular factors mediate BBB permeability as well as what key roles BBB rupture plays in the pathophysiology of stroke. In this review article, given our past findings of mechanisms underlying BBB opening in stroke animal models, we elucidate cellular, subcellular, and molecular factors involved in BBB permeability after ischemic stroke. The contribution of each factor to stroke severity and outcome is further discussed. Determinant factors in BBB permeability and stroke include mitochondria, miRNAs, matrix metalloproteinases (MMPs), immune cells, cytokines, chemokines, and adhesion proteins. Once these factors are interrogated and their roles in the pathophysiology of stroke are determined, novel targets for drug discovery and development can be uncovered in addition to novel therapeutic avenues for human stroke management.
Collapse
Affiliation(s)
- Sajad Sarvari
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Faezeh Moakedi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Emily Hone
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - James W Simpkins
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Xuefang Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA.
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
189
|
Song J, Chen ZH, Zheng CJ, Song KH, Xu GY, Xu S, Zou F, Ma XS, Wang HL, Jiang JY. Exosome-Transported circRNA_0000253 Competitively Adsorbs MicroRNA-141-5p and Increases IDD. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1087-1099. [PMID: 32858458 PMCID: PMC7473879 DOI: 10.1016/j.omtn.2020.07.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The pathogenesis of intervertebral disc degeneration (IDD) is complex, and a better understanding of IDD pathogenesis may provide a better method for the treatment of IDD. Exosomes are 40-100 nm nanosized vesicles that are released from many cell types into the extracellular space. We speculated that exosome-transported circular RNAs (circRNAs) could regulate IDD. Exosomes from different degenerative grades were isolated and added to nucleus pulposus cells (NPCs), and indicators of proliferation and apoptosis were detected. Based on the previous circRNA microarray results, the top 10 circRNAs were selected. PCR was performed to determine the circRNA with the maximum upregulation. Competing endogenous RNA (ceRNA) analysis was carried out, and the sponged microRNA (miRNA) was identified. Further functional verification of the selected circRNA was carried out in vivo and in vitro. NPCs of different degenerative grades secreted exosomes, which could regulate IDD. circRNA_0000253 was selected as having the maximum upregulation in degenerative NPC exosomes. ceRNA analysis showed that circRNA_0000253 could adsorb miRNA-141-5p to downregulate SIRT1. circRNA_0000253 was confirmed to increase IDD by adsorbing miRNA-141-5p and downregulating SIRT1 in vivo and in vitro. Exosomal circRNA_0000253 owns the maximum upregulation in degenerative NPC exosomes and could promote IDD by adsorbing miRNA-141-5p and downregulating SIRT1.
Collapse
Affiliation(s)
- Jian Song
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen-Hao Chen
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chao-Jun Zheng
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ke-Han Song
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang-Yu Xu
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shun Xu
- Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai 200240, China
| | - Fei Zou
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiao-Sheng Ma
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Hong-Li Wang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jian-Yuan Jiang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
190
|
Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J Clin Med 2020; 9:jcm9072309. [PMID: 32708116 PMCID: PMC7408650 DOI: 10.3390/jcm9072309] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Hearing impairment is the most frequent sensory deficit in humans of all age groups, from children (1/500) to the elderly (more than 50% of the over-75 s). Over 50% of congenital deafness are hereditary in nature. The other major causes of deafness, which also may have genetic predisposition, are aging, acoustic trauma, ototoxic drugs such as aminoglycosides, and noise exposure. Over the last two decades, the study of inherited deafness forms and related animal models has been instrumental in deciphering the molecular, cellular, and physiological mechanisms of disease. However, there is still no curative treatment for sensorineural deafness. Hearing loss is currently palliated by rehabilitation methods: conventional hearing aids, and for more severe forms, cochlear implants. Efforts are continuing to improve these devices to help users to understand speech in noisy environments and to appreciate music. However, neither approach can mediate a full recovery of hearing sensitivity and/or restoration of the native inner ear sensory epithelia. New therapeutic approaches based on gene transfer and gene editing tools are being developed in animal models. In this review, we focus on the successful restoration of auditory and vestibular functions in certain inner ear conditions, paving the way for future clinical applications.
Collapse
|
191
|
Effects of the Insulted Neuronal Cells-Derived Extracellular Vesicles on the Survival of Umbilical Cord-Derived Mesenchymal Stem Cells following Cerebral Ischemia/Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9768713. [PMID: 32724498 PMCID: PMC7382764 DOI: 10.1155/2020/9768713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) engraftment is a potential therapy for cerebral ischemic stroke. However, the harsh microenvironment induced by cerebral ischemia/reperfusion restricts the survival rate and therapeutic efficiency of the engrafted UC-MSCs. In this study, we explored whether small extracellular vesicles (EVs) derived from injured neuronal cells following exposure to cerebral ischemia/reperfusion insult affect the survival of transplanted UC-MSCs. To establish a simulation of cerebral ischemia/reperfusion microenvironment comprising engrafted UC-MSCs and neuronal cells, we cocultured EVs derived from injured N2A cells, caused by exposure to oxygen-glucose deprivation and reperfusion (OGD/R) insult, with UC-MSCs in a conditioned medium. Coculture of UC-MSCs with EVs exacerbated the OGD/R-induced apoptosis and oxidative stress. Suppression of EVs-release via knock-down of Rab27a effectively protected the UC-MSCs from OGD/R-induced insult. Moreover, hypoxia preconditioning not only elevated the survival of UC-MSCs but also improved the paracrine mechanism of injured N2A cells. Altogether, these results show that EVs from injured N2A cells exacerbates OGD/R-induced injury on transplanted UC-MSCs in vitro. Hypoxia preconditioning enhances the survival of the engrafted-UC-MSCs; hence, thus could be an effective approach for improving UC-MSCs therapy in ischemic stroke.
Collapse
|
192
|
Li C, Donninger H, Eaton J, Yaddanapudi K. Regulatory Role of Immune Cell-Derived Extracellular Vesicles in Cancer: The Message Is in the Envelope. Front Immunol 2020; 11:1525. [PMID: 32765528 PMCID: PMC7378739 DOI: 10.3389/fimmu.2020.01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of membrane-surrounded structures. Besides serving as a harbor for the unwanted material exocytosed by cells, EVs play a critical role in conveying intact protein, genetic, and lipid contents that are important for intercellular communication. EVs, broadly comprised of microvesicles and exosomes, are released to the extracellular environment from nearly all cells either via shedding from the plasma membrane or by originating from the endosomal system. Exosomes are 40–150 nm, endosome-derived small EVs (sEVs) that are released by cells into the extracellular environment. This review focuses on the biological properties of immune cell-derived sEVs, including composition and cellular targeting and mechanisms by which these immune cell-derived sEVs influence tumor immunity either by suppressing or promoting tumor growth, are discussed. The final section of this review discusses how the biological properties of immune cell-derived sEVs can be manipulated to improve their immunogenicity.
Collapse
Affiliation(s)
- Chi Li
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Howard Donninger
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - John Eaton
- Department of Medicine, University of Louisville, Louisville, KY, United States.,Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, United States.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
193
|
Hunsberger J, Simon C, Zylberberg C, Ramamoorthy P, Tubon T, Bedi R, Gielen K, Hansen C, Fischer L, Johnson J, Baraniak P, Mahdavi B, Pereira T, Hadjisavas M, Eaker S, Miller C. Improving patient outcomes with regenerative medicine: How the Regenerative Medicine Manufacturing Society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training. Stem Cells Transl Med 2020; 9:728-733. [PMID: 32222115 PMCID: PMC7308637 DOI: 10.1002/sctm.19-0389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Regenerative Medicine Manufacturing Society (RMMS) is the first and only professional society dedicated toward advancing manufacturing solutions for the field of regenerative medicine. RMMS's vision is to provide greater patient access to regenerative medicine therapies through innovative manufacturing solutions. Our mission is to identify unmet needs and gaps in regenerative medicine manufacturing and catalyze the generation of new ideas and solutions by working with private and public stakeholders. We aim to accomplish our mission through outreach and education programs and securing grants for public-private collaborations in regenerative medicine manufacturing. This perspective will cover four impact areas that the society's leadership team has identified as critical: (a) cell manufacturing and scale-up/out, respectively, for allogeneic and autologous cell therapies, (b) standards for regenerative medicine, (c) 3D bioprinting, and (d) artificial intelligence-enabled automation. In addition to covering these areas and ways in which the society intends to advance the field in a collaborative nature, we will also discuss education and training. Education and training is an area that is critical for communicating the current challenges, developing solutions to accelerate the commercialization of the latest technological advances, and growing the workforce in the rapidly expanding sector of regenerative medicine.
Collapse
Affiliation(s)
- Joshua Hunsberger
- Regenerative Medicine Manufacturing SocietyWinston‐SalemNorth CarolinaUSA
| | - Carl Simon
- National Institute of Standards and TechnologyGaithersburgMarylandUSA
| | | | | | | | - Ram Bedi
- University of WashingtonSeattleWashingtonUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Extracellular Vesicles in Viral Infections of the Nervous System. Viruses 2020; 12:v12070700. [PMID: 32605316 PMCID: PMC7411781 DOI: 10.3390/v12070700] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Almost all types of cells release extracellular vesicles (EVs) into the extracellular space. EVs such as exosomes and microvesicles are membrane-bound vesicles ranging in size from 30 to 1000 nm in diameter. Under normal conditions, EVs mediate cell to cell as well as inter-organ communication via the shuttling of their cargoes which include RNA, DNA and proteins. Under pathological conditions, however, the number, size and content of EVs are found to be altered and have been shown to play crucial roles in disease progression. Emerging studies have demonstrated that EVs are involved in many aspects of viral infection-mediated neurodegenerative diseases. In the current review, we will describe the interactions between EV biogenesis and the release of virus particles while also reviewing the role of EVs in various viral infections, such as HIV-1, HTLV, Zika, CMV, EBV, Hepatitis B and C, JCV, and HSV-1. We will also discuss the potential uses of EVs and their cargoes as biomarkers and therapeutic vehicles for viral infections.
Collapse
|
195
|
Curley N, Levy D, Do MA, Brown A, Stickney Z, Marriott G, Lu B. Sequential deletion of CD63 identifies topologically distinct scaffolds for surface engineering of exosomes in living human cells. NANOSCALE 2020; 12:12014-12026. [PMID: 32463402 PMCID: PMC7313400 DOI: 10.1039/d0nr00362j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Exosomes are cell-derived extracellular vesicles that have great potential in the field of nano-medicine. However, a fundamental challenge in the engineering of exosomes is the design of biocompatible molecular scaffolds on their surface to enable cell targeting and therapeutic functions. CD63 is a hallmark protein of natural exosomes that is highly enriched on the external surface of the membrane. We have previously described engineering of CD63 for use as a molecular scaffold in order to introduce cell-targeting features to the exosome surface. Despite this initial success, the restrictive M-shaped topology of full-length CD63 may hinder specific applications that require N- or C-terminal display of cell-targeting moieties on the outer surface of the exosome. In this study, we describe new and topologically distinct CD63 scaffolds that enable robust and flexible surface engineering of exosomes. In particular, we conducted sequential deletions of the transmembrane helix of CD63 to generate a series of CD63 truncates, each genetically-fused to a fluorescent protein. Molecular and cellular characterization studies showed truncates of CD63 harboring the transmembrane helix 3 (TM3) correctly targeted and anchored to the exosome membrane and exhibited distinct n-, N-, Ω-, or I-shaped membrane topologies in the exosomal membrane. We further established that these truncates retained robust membrane-anchoring and exosome-targeting activities when stably expressed in the HEK293 cells. Moreover, HEK293 cells produced engineered exosomes in similar quantities to cells expressing full-length CD63. Based on the results of our systematic sequential deletion studies, we propose a model to understand molecular mechanisms that underlie membrane-anchoring and exosome targeting features of CD63. In summary, we have established new and topologically distinct scaffolds based on engineering of CD63 that enables flexible engineering of the exosome surface for applications in disease-targeted drug delivery and therapy.
Collapse
Affiliation(s)
- Natalie Curley
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Daniel Levy
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Mai Anh Do
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Annie Brown
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Zachary Stickney
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Biao Lu
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| |
Collapse
|
196
|
Zhou S, Gao B, Sun C, Bai Y, Cheng D, Zhang Y, Li X, Zhao J, Xu D. Vascular Endothelial Cell-derived Exosomes Protect Neural Stem Cells Against Ischemia/reperfusion Injury. Neuroscience 2020; 441:184-196. [PMID: 32502570 DOI: 10.1016/j.neuroscience.2020.05.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Vascular endothelial cells were activated during acute ischemic brain injury, which could induce neural progenitor cell proliferation and migration. However, the mechanism was still unknown. In the current study, we explored whether vascular endothelial cells promoted neural progenitor cell proliferation and whether migration occurs via exosome communication. The acute middle cerebral artery occlusion (MCAO) model was prepared, and exosomes were isolated from bEnd.3 cells by ultracentrifugation. In the exosome injection (Exos) group and PBS injection (control) group, exosomes or PBS were injected intraventricularly into rats' brains 2 h after MCAO surgery, respectively. Sham group rats received the same surgical but did not cause middle cerebral artery occlusion. The infarct volume was reduced on day 21 after ischemic brain injury by MRI, and neurobehavioral outcomes were improved on day 7, 14, and 21 by exosome injection compared with the control (p < 0.05). On the 21st day after MCAO, the animals were euthanized, and the number of BrdU/nestin-positive cells was measured by immunofluorescence. BrdU/nestin-positive cells in Exos group rats were significantly increased (p < 0.05) in the peri infarct area, the ipsilateral DG zone of the hippocampus, and the ventral sub-regions of SVZ when compared with the rats in the control group. Further, in vitro study demonstrated that neural progenitor cell proliferation and migration were activated after exosomes treatment, and cell apoptosis was attenuated compared to the control (p < 0.05). Our study suggested that exosomes should be essential for the reconstruction of neuronal vascular units and brain protection in an acute ischemic injured brain.
Collapse
Affiliation(s)
- Shaoting Zhou
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Beiyao Gao
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Chengcheng Sun
- Rehabilitation Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yulong Bai
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Dandan Cheng
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Ye Zhang
- Rehabilitation Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Xutong Li
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China.
| | - Dongsheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
197
|
Extracellular vesicles for tumor targeting delivery based on five features principle. J Control Release 2020; 322:555-565. [DOI: 10.1016/j.jconrel.2020.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
198
|
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication in normal cellular process and pathological conditions by facilitating the transport of cellular content from one cell to another. EVs as conveyors of various biological molecules with their ability to redirect effects on a target cell physiological function in cell type-specific manner makes EVs an excellent candidate for drug delivery vehicle in disease therapy. Moreover, unique characteristics and contents of EVs which differ depends on cellular origin and physiological state make them a valuable source of diagnostic biomarker. Herein, we review the current progress in extracellular vesicle (EV) analysis, its transition from biomedical research to advancing therapy, and recent pioneered approaches to characterize and quantify EVs' subclasses with an emphasis on the integration of advanced technologies for both qualitative and quantitative analysis of EVs in different clinical tissue/body fluid samples.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
199
|
Dogrammatzis C, Waisner H, Kalamvoki M. Cloaked Viruses and Viral Factors in Cutting Edge Exosome-Based Therapies. Front Cell Dev Biol 2020; 8:376. [PMID: 32528954 PMCID: PMC7264115 DOI: 10.3389/fcell.2020.00376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) constitute a heterogeneous group of vesicles released by all types of cells that play a major role in intercellular communication. The field of EVs started gaining attention since it was realized that these vesicles are not waste bags, but they carry specific cargo and they communicate specific messages to recipient cells. EVs can deliver different types of RNAs, proteins, and lipids from donor to recipient cells and they can influence recipient cell functions, despite their limited capacity for cargo. EVs have been compared to viruses because of their size, cell entry pathways, and biogenesis and to viral vectors because they can be loaded with desired cargo, modified, and re-targeted. These properties along with the fact that EVs are stable in body fluids, they can be produced and purified in large quantities, they can cross the blood-brain barrier, and autologous EVs do not appear to cause major adverse effects, have rendered them attractive for therapeutic use. Here, we discuss the potential for therapeutic use of EVs derived from virus infected cells or EVs carrying viral factors. We have focused on six major concepts: (i) the role of EVs in virus-based oncolytic therapy or virus-based gene delivery approaches; (ii) the potential use of EVs for developing viral vaccines or optimizing already existing vaccines; (iii) the role of EVs in delivering RNAs and proteins in the context of viral infections and modulating the microenvironment of infection; (iv) how to take advantage of viral features to design effective means of EV targeting, uptake, and cargo packaging; (v) the potential of EVs in antiviral drug delivery; and (vi) identification of novel antiviral targets based on EV biogenesis factors hijacked by viruses for assembly and egress. It has been less than a decade since more attention was given to EV research and some interesting concepts have already been developed. In the coming years, additional information on EV biogenesis, how they are hijacked and utilized by pathogens, and their impact on the microenvironment of infection is expected to indicate avenues to optimize existing therapeutic tools and develop novel approaches.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
200
|
MiR-519d-3p in Trophoblastic Cells: Effects, Targets and Transfer to Allogeneic Immune Cells via Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21103458. [PMID: 32422900 PMCID: PMC7278925 DOI: 10.3390/ijms21103458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Members of the placenta-specific miRNA cluster C19MC, including miR-519d, are secreted by fetal trophoblast cells within extracellular vesicles (EVs). Trophoblast-derived EVs can be internalized by the autologous trophoblast and surrounding maternal immune cells, resulting in coordination of cellular responses. The study of functions and targets of placental miRNAs in the donor and recipient cells may contribute to the understanding of the immune tolerance essential in pregnancy. Here, we report that miR-519d-3p levels correlate positively with cell proliferation and negatively with migration in trophoblastic cell lines. Inhibition of miR-519d-3p in JEG-3 cells increases caspase-3 activation and apoptosis. PDCD4 and PTEN are targeted by miR-519d-3p in a cell type-specific manner. Transfection of trophoblastic cell lines with miR-519d mimic results in secretion of EVs containing elevated levels of this miRNA (EVmiR-519d). Autologous cells enhance their proliferation and decrease their migration ability when treated with EVmiR-519d. NK92 cells incorporate EV-delivered miR-519d-3p at higher levels than Jurkat T cells. EVmiR-519d increases the proliferation of Jurkat T cells but decreases that of NK92 cells. Altogether, miR-519d-3p regulates pivotal trophoblast cell functions, can be transferred horizontally via EVs to maternal immune cells and exerts functions therein. Vesicular miRNA transfer from fetal trophoblasts to maternal immune cells may contribute to the immune tolerance in pregnancy.
Collapse
|