151
|
A Single Amino Acid Substitution, Found in Mammals with Low Susceptibility to Prion Diseases, Delays Propagation of Two Prion Strains in Highly Susceptible Transgenic Mouse Models. Mol Neurobiol 2019; 56:6501-6511. [PMID: 30847740 DOI: 10.1007/s12035-019-1535-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/22/2019] [Indexed: 01/05/2023]
Abstract
Specific variations in the amino acid sequence of prion protein (PrP) are key determinants of susceptibility to prion diseases. We previously showed that an amino acid substitution specific to canids confers resistance to prion diseases when expressed in mice and demonstrated its dominant-negative protective effect against a variety of infectious prion strains of different origins and characteristics. Here, we show that expression of this single amino acid change significantly increases survival time in transgenic mice expressing bank vole cellular prion protein (PrPC), which is inherently prone to misfolding, following inoculation with two distinct prion strains (the CWD-vole strain and an atypical strain of spontaneous origin). This amino acid substitution hinders the propagation of both prion strains, even when expressed in the context of a PrPC uniquely susceptible to a wide range of prion isolates. Non-inoculated mice expressing this substitution experience spontaneous prion formation, but showing an increase in survival time comparable to that observed in mutant mice inoculated with the atypical strain. Our results underscore the importance of this PrP variant in the search for molecules with therapeutic potential against prion diseases.
Collapse
|
152
|
Ziska A, Tatzelt J, Dudek J, Paton AW, Paton JC, Zimmermann R, Haßdenteufel S. The signal peptide plus a cluster of positive charges in prion protein dictate chaperone-mediated Sec61 channel gating. Biol Open 2019; 8:bio.040691. [PMID: 30745438 PMCID: PMC6451349 DOI: 10.1242/bio.040691] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Sec61-complex as a dynamic polypeptide-conducting channel mediates protein transport into the human endoplasmic reticulum (ER) with the help of additional components. ER membrane resident Hsp40-type co-chaperone Sec63 as well as the ER lumenal Hsp70-type chaperone BiP were proposed to facilitate channel opening in a precursor-specific fashion. Here, we report on their rules of engagement in ER import of the prion protein (PrP) by addressing sixteen PrP-related variants which differ in their signal peptides and mature parts, respectively. Transport into the ER of semi-permeabilized human cells was analyzed upon depletion of the components by siRNA- or toxin-treatment. The results are consistent with the view of separate functions of BiP and Sec63 and strongly suggest that the co-chaperone/chaperone-pair facilitates Sec61 channel gating to the open state when precursor polypeptides with weak signal peptides in combination with detrimental features in the adjacent mature part were targeted. Thus, we expand the view of chaperone-mediated Sec61 channel gating by providing a novel example of a polybasic motif that interferes with signal peptide-mediated Sec61 channel gating. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anke Ziska
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University, 44801 Bochum, Germany
| | - Johanna Dudek
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Adrienne W Paton
- School of Molecular and Biomedical Sciences, Research Centre for Infectious Disease, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - James C Paton
- School of Molecular and Biomedical Sciences, Research Centre for Infectious Disease, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Richard Zimmermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Sarah Haßdenteufel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
153
|
Gao LP, Shi Q, Xiao K, Wang J, Zhou W, Chen C, Dong XP. The genetic Creutzfeldt-Jakob disease with E200K mutation: analysis of clinical, genetic and laboratory features of 30 Chinese patients. Sci Rep 2019; 9:1836. [PMID: 30755683 PMCID: PMC6372685 DOI: 10.1038/s41598-019-38520-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022] Open
Abstract
Genetic Creutzfeldt-Jakob disease (gCJD) with E200K mutation is one of the common subtypes of human genetic prion diseases worldwide. In this study, we systematically analyzed 30 Chinese E200K gCJD cases for their epidemiological, clinical, laboratory and genetic features. The patients came from 12 different provinces, majority in northern part of China. The onset age varied from 42 to 71 year-old (y), with the median of was 57 y. The CYP4X1 gene rs9793471 SNP was tested. Only one patient’s rs9793471 genotype was GA and the others’ were AA. The gender ratio (M: F) was 1:1.73 (11:19). The foremost symptoms and clinical progression of Chinese E200K gCJD patients were quite similar as sporadic CJD cases. Only a few cases (4/30) recalled clearly disease related family history. 74.1% (20/27), 86.7% (26/30) and 50.0% (13/26) of the cases were CSF 14-3-3 positive, sCJD associated abnormalities on MRI and special PSWC on EEG, respectively. The median clinical duration was 9 months (varying from 2 to 26 months). All 30 Chinese E200K gCJD patients were M129M and E219E homozygous. 21 members from 3 families conducted PRNP sequencing and 16 asymptomatic carriers of E200K mutation with M129M and E219E homozygous were identified. This is the largest study on E200K gCJD patients in China, which would benefit to the knowledge of E200K gCJD.
Collapse
Affiliation(s)
- Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China.
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China. .,Center of Global Public Health, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China.
| |
Collapse
|
154
|
Otero A, Duque Velásquez C, Johnson C, Herbst A, Bolea R, Badiola JJ, Aiken J, McKenzie D. Prion protein polymorphisms associated with reduced CWD susceptibility limit peripheral PrP CWD deposition in orally infected white-tailed deer. BMC Vet Res 2019; 15:50. [PMID: 30717795 PMCID: PMC6360794 DOI: 10.1186/s12917-019-1794-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
Background Chronic wasting disease (CWD) is a prion disease affecting members of the Cervidae family. PrPC primary structures play a key role in CWD susceptibility resulting in extended incubation periods and regulating the propagation of CWD strains. We analyzed the distribution of abnormal prion protein (PrPCWD) aggregates in brain and peripheral organs from orally inoculated white-tailed deer expressing four different PRNP genotypes: Q95G96/Q95G96 (wt/wt), S96/wt, H95/wt and H95/S96 to determine if there are substantial differences in the deposition pattern of PrPCWD between different PRNP genotypes. Results Although we detected differences in certain brain areas, globally, the different genotypes showed similar PrPCWD deposition patterns in the brain. However, we found that clinically affected deer expressing H95 PrPC, despite having the longest survival periods, presented less PrPCWD immunoreactivity in particular peripheral organs. In addition, no PrPCWD was detected in skeletal muscle of any of the deer. Conclusions Our data suggest that expression of H95-PrPC limits peripheral accumulation of PrPCWD as detected by immunohistochemistry. Conversely, infected S96/wt and wt/wt deer presented with similar PrPCWD peripheral distribution at terminal stage of disease, suggesting that the S96-PrPC allele, although delaying CWD progression, does not completely limit the peripheral accumulation of the infectious agent.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Chad Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Judd Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada. .,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada.
| |
Collapse
|
155
|
Matubayasi N, Masutani K. Energetics of cosolvent effect on peptide aggregation. Biophys Physicobiol 2019; 16:185-195. [PMID: 31984171 PMCID: PMC6975910 DOI: 10.2142/biophysico.16.0_185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/16/2019] [Indexed: 12/01/2022] Open
Abstract
The cosolvent effect on the equilibrium of peptide aggregation is reviewed from the energetic perspective. It is shown that the excess chemical potential is stationary against the variation of the distribution function for the configuration of a flexible solute species and that the derivative of the excess chemical potential with respect to the cosolvent concentration is determined by the corresponding derivative of the solvation free energy averaged over the solute configurations. The effect of a cosolvent at low concentrations on a chemical equilibrium can then be addressed in terms of the difference in the solvation free energy between pure-water solvent and the mixed solvent with the cosolvent, and illustrative analyses with all-atom model are presented for the aggregation of an 11-residue peptide by employing the energy-representation method to compute the solvation free energy. The solvation becomes more favorable with addition of the urea or DMSO cosolvent, and the extent of stabilization is smaller for larger aggregate. This implies that these cosolvents inhibit the formation of an aggregate, and the roles of such interaction components as the electrostatic, van der Waals, and excluded-volume are discussed.
Collapse
Affiliation(s)
- Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Keiichi Masutani
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
156
|
Gao Z, Shi J, Cai L, Luo M, Wong BS, Dong X, Sy MS, Li C. Prion dimer is heterogenous and is modulated by multiple negative and positive motifs. Biochem Biophys Res Commun 2018; 509:570-576. [PMID: 30600179 DOI: 10.1016/j.bbrc.2018.12.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 01/16/2023]
Abstract
The conversion of the normal prion protein (PrP) into a scrapie prion (PrPSc) is incompletely understood. Theoretically, the smallest PrP aggregate is a dimer. Human PrP contains two cysteines at positions 179 (C179) and 214 (C214) enabling disulfide bonding. Here, we report that our recombinant human PrP (r-hPrP) preparations contain 0.2-0.8% dimer, which is linked by either one or two disulfide bonds, connected by C179-C179, C214-C214, or C179-C214. Furthermore, dimerization is regulated by multiple motifs. While residues 36-42 inhibit, residues 90-125, and 195-212 promote dimerization. Mutating individual residue between 36 and 42 enhances dimerization whereas mutating the positively charged residues within 95-115, or the negatively charged residues within 195-212 prevent dimerization. Although deletion of the entire octapeptide-repeat (5OR) region prevents dimerization, mutating the histidines within the 5OR enhances dimerization. In addition, we found that two out of three brain lysates from patients with inherited prion disease had more PrP dimers than controls. Thus, PrP dimerization may contribute to prion diseases.
Collapse
Affiliation(s)
- Zhenxing Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Heng Zhi Gang Road, Guangzhou, 510095, China
| | - Jing Shi
- Xiangyang Center for Disease Control and Prevention, 172 Tan Xi Road, Xiangyang, Hubei, China
| | - Lili Cai
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Minhua Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Boon-Seng Wong
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore
| | - Xiaoping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, USA
| | - Chaoyang Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Heng Zhi Gang Road, Guangzhou, 510095, China.
| |
Collapse
|
157
|
Zhou S, Zhu Y, Yao X, Liu H. Carbon Nanoparticles Inhibit the Aggregation of Prion Protein as Revealed by Experiments and Atomistic Simulations. J Chem Inf Model 2018; 59:1909-1918. [DOI: 10.1021/acs.jcim.8b00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shuangyan Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yongchang Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
158
|
Hwang S, Greenlee JJ, Vance NM, Nicholson EM. Source genotype influence on cross species transmission of transmissible spongiform encephalopathies evaluated by RT-QuIC. PLoS One 2018; 13:e0209106. [PMID: 30571737 PMCID: PMC6301698 DOI: 10.1371/journal.pone.0209106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/29/2018] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy of sheep and goats. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein to pathogenic β-rich conformers (PrPSc) that accumulate in higher order structures of the brain and other tissues. This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions and for strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how PrPSc isolated from sheep of different genotypes after inoculation with the scrapie agent influence the fibril formation in vitro using RT-QuIC. We found that reaction mixtures seeded with PrPSc from genotype VRQ/VRQ sheep brains have better conversion efficiency with 132M elk substrate compared to reactions seeded with PrPSc from the brains of sheep with the ARQ/ARQ genotype no matter which strain of scrapie was used to seed the reactions. We also inoculated transgenic mice expressing 132M elk PRNP (Tg12) with the scrapie agent from different genotypes of sheep to compare with our RT-QuIC results. The bioassays support the data showing a significantly shorter incubation period for inoculum from VRQ/VRQ sheep when compared to inoculum from ARQ/ARQ sheep. Thus, we conclude that the genotype of both source and recipient can strongly influence transmission.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Natalie M. Vance
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
159
|
Miyazawa K, Masujin K, Matsuura Y, Iwamaru Y, Yokoyama T, Okada H. Interspecies transmission to bovinized transgenic mice uncovers new features of a CH1641-like scrapie isolate. Vet Res 2018; 49:116. [PMID: 30486902 PMCID: PMC6262972 DOI: 10.1186/s13567-018-0611-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
In animal prion diseases, including bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease in cervids, and scrapie in sheep and goats, a disease-associated isoform of prion protein (PrPd) accumulates in the brains of affected animals. Although the CH1641 scrapie isolate was experimentally established in the UK, a few natural CH1641-like scrapie cases have been reported in France and the UK. The molecular mass of the unglycosylated protease-resistant core of PrPd (PrPres) is known to be similar between CH1641-like scrapie and experimental BSE in sheep. We previously established an experimental CH1641-like scrapie isolate (Sh294) from a natural classical scrapie case. Here, we demonstrated that the Sh294 isolate was independent of both classical and atypical BSEs by cross-species transmission to bovine PrP overexpressing (TgBoPrP) mice and wild-type mice. Interestingly, we found that the Sh294 isolate altered its host range by the transmission to TgBoPrP mice, and we succeeded in the first stable reproduction of CH1641-like scrapie specific PrPres banding patterns with the ~12-kDa small C-terminal fragment in wild-type mice. This study provides new insight into the relationship between CH1641-like scrapie isolates and BSEs. In addition, interspecies transmission models such as we have demonstrated here could be a great help to investigate the origin and host range of animal prions.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kentaro Masujin
- Exotic Disease Research Unit, Division of Transboundary Animal Diseases, NIAH, NARO, Kodaira, Tokyo, Japan
| | - Yuichi Matsuura
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yoshifumi Iwamaru
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Department of Planning and General Administration, NIAH, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
160
|
Abstract
Prions diseases are uniformly fatal neurodegenerative diseases that occur in sporadic, genetic, and acquired forms. Acquired prion diseases, caused by infectious transmission, are least common. Most prion diseases are not infectious, but occur spontaneously through misfolding of normal prion proteins or genetic mutations in the prion protein gene. Although most prion diseases are not caused by infection, they can be transmitted accidentally. Certain infection control protocols should be applied when handling central nervous system and other high-risk tissues. New diagnostic methods are improving premortem and earlier diagnosis. Treatment trials have not shown improved survival, but therapies may be available soon.
Collapse
Affiliation(s)
- Boon Lead Tee
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Department of Neurology, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Zhong Yang Road, Hualien City, Hualien County 97002, Taiwan
| | - Erika Mariana Longoria Ibarrola
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Dementia Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Av. Insurgentes Sur 3877, Col. La Fama, Del. Tlalpan, Ciudad de México. C.P. 14269, Mexico
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, USA.
| |
Collapse
|
161
|
A novel photoelectrochemical immunosensor for prion protein based on CdTe quantum dots and glucose oxidase. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
162
|
Mok TH, Koriath C, Jaunmuktane Z, Campbell T, Joiner S, Wadsworth JDF, Hosszu LLP, Brandner S, Parvez A, Truelsen TC, Lund EL, Saha R, Collinge J, Mead S. Evaluating the causality of novel sequence variants in the prion protein gene by example. Neurobiol Aging 2018; 71:265.e1-265.e7. [PMID: 29861043 PMCID: PMC6175539 DOI: 10.1016/j.neurobiolaging.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 11/13/2022]
Abstract
The estimation of pathogenicity and penetrance of novel prion protein gene (PRNP) variants presents significant challenges, particularly in the absence of family history, which precludes the application of Mendelian segregation. Moreover, the ambiguities of prion disease pathophysiology renders conventional in silico predictions inconclusive. Here, we describe 2 patients with rapid cognitive decline progressing to akinetic mutism and death within 10 weeks of symptom onset, both of whom possessed the novel T201S variant in PRNP. Clinically, both satisfied diagnostic criteria for probable sporadic Creutzfeldt-Jakob disease and in one, the diagnosis was confirmed by neuropathology. While computational analyses predicted that T201S was possibly deleterious, molecular strain typing, prion protein structural considerations, and calculations leveraging large-scale population data (gnomAD) indicate that T201S is at best either of low penetrance or nonpathogenic. Thus, we illustrate the utility of harnessing multiple lines of prion disease-specific evidence in the evaluation of the T201S variant, which may be similarly applied to assess other novel variants in PRNP.
Collapse
Affiliation(s)
- Tze How Mok
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Carolin Koriath
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Zane Jaunmuktane
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Tracy Campbell
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK
| | - Susan Joiner
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK
| | | | | | - Sebastian Brandner
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Ambereen Parvez
- Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | - Eva Løbner Lund
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Romi Saha
- Hurstwood Park Neurological Centre, Sussex, UK
| | - John Collinge
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Simon Mead
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK.
| |
Collapse
|
163
|
Hwang S, Nicholson EM. Thermodynamic characterization for the denatured state of bovine prion protein and the BSE Associated variant E211K. Prion 2018; 12:301-309. [PMID: 30354921 PMCID: PMC6277186 DOI: 10.1080/19336896.2018.1534485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Propagation of transmissible spongiform encephalopathies involves the conversion of cellular prion protein, PrPC, into a misfolded oligomeric form, PrPSc. The most common hereditary prion disease is a genetic form of Creutzfeldt-Jakob disease in humans, in which a mutation in the prion gene results in a glutamic acid to lysine substitution at position 200 (E200K) in PrP. In cattle, the analogous amino acid substitution is found at residue 211 (E211K) and has been associated with a case of bovine spongiform encephalopathy. Here, we have compared the secondary structure of E211K to that of wild type using circular dichroism and completed a thermodynamic analysis of the folding of recombinant wild type and E211K variants of the bovine prion protein. The secondary structure of the E211K variant was essentially indistinguishable from that of wild type. The thermodynamic stability of E211K substitution showed a slight destabilization relative to the wild type consistent with results reported for recombinant human prion protein and its mutant E200K. In addition, the E211K variant exhibits a similarly compact denatured state to that of wild type based upon similar m-value and change in heat capacity of unfolding for the proteins. Together these results indicate that residual structure in the denatured state of bPrP is present in both the wild type protein and BSE associated variant E211K. Given this observation, as well as folding similarities reported for other disease associated variants of PrP it is worth consideration that functional aspects of PrP conformation may play a role in the misfolding process.
Collapse
Affiliation(s)
- Soyoun Hwang
- a United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit , Ames , Iowa , USA
| | - Eric M Nicholson
- a United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit , Ames , Iowa , USA
| |
Collapse
|
164
|
Ladner-Keay CL, Ross L, Perez-Pineiro R, Zhang L, Bjorndahl TC, Cashman N, Wishart DS. A simple in vitro assay for assessing the efficacy, mechanisms and kinetics of anti-prion fibril compounds. Prion 2018; 12:280-300. [PMID: 30223704 PMCID: PMC6277192 DOI: 10.1080/19336896.2018.1525254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/01/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022] Open
Abstract
Prion diseases are caused by the conversion of normal cellular prion proteins (PrP) into lethal prion aggregates. These prion aggregates are composed of proteinase K (PK) resistant fibrils and comparatively PK-sensitive oligomers. Currently there are no anti-prion pharmaceuticals available to treat or prevent prion disease. Methods of discovering anti-prion molecules rely primarily on relatively complex cell-based, tissue slice or animal-model assays that measure the effects of small molecules on the formation of PK-resistant prion fibrils. These assays are difficult to perform and do not detect the compounds that directly inhibit oligomer formation or alter prion conversion kinetics. We have developed a simple cell-free method to characterize the impact of anti-prion fibril compounds on both the oligomer and fibril formation. In particular, this assay uses shaking-induced conversion (ShIC) of recombinant PrP in a 96-well format and resolution enhanced native acidic gel electrophoresis (RENAGE) to generate, assess and detect PrP fibrils in a high throughput fashion. The end-point PrP fibrils from this assay can be further characterized by PK analysis and negative stain transmission electron microscopy (TEM). This cell-free, gel-based assay generates metrics to assess anti-prion fibril efficacy and kinetics. To demonstrate its utility, we characterized the action of seven well-known anti-prion molecules: Congo red, curcumin, GN8, quinacrine, chloropromazine, tetracycline, and TUDCA (taurourspdeoxycholic acid), as well as four suspected anti-prion compounds: trans-resveratrol, rosmarinic acid, myricetin and ferulic acid. These findings suggest that this in vitro assay could be useful in identifying and comprehensively assessing novel anti-prion fibril compounds. Abbreviations: PrP, prion protein; PK, proteinase K; ShIC, shaking-induced conversion; RENAGE, resolution enhanced native acidic gel electrophoresis; TEM, transmission electron microscopy; TUDCA, taurourspdeoxycholic acid; BSE, bovine spongiform encephalopathy; CWD, chronic wasting disease; CJD, Creutzfeldt Jakob disease; GSS, Gerstmann-Sträussler-Scheinker syndrome; FFI, fatal familial insomnia; PrPc, cellular prion protein; recPrPC, recombinant monomeric prion protein; PrPSc, infectious particle of misfolded prion protein; RT-QuIC, real-time quaking-induced conversion; PMCA, Protein Misfolding Cyclic Amplification; LPS, lipopolysaccharide; EGCG, epigallocatechin gallate; GN8, 2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide; DMSO, dimethyl sulfoxide; ScN2A, scrapie infected neuroblastoma cells; IC50, inhibitory concentration for 50% reduction; recMoPrP 23-231, recombinant full-length mouse prion protein residues 23-231; EDTA; PICUP, photo-induced cross-linking of unmodified protein; BSA, bovine serum albumin;; PMSF, phenylmethanesulfonyl fluoride.
Collapse
Affiliation(s)
| | - Li Ross
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | | | - Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Trent C. Bjorndahl
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Neil Cashman
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Computing Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
165
|
Chen M, Schafer NP, Wolynes PG. Surveying the Energy Landscapes of Aβ Fibril Polymorphism. J Phys Chem B 2018; 122:11414-11430. [PMID: 30215519 DOI: 10.1021/acs.jpcb.8b07364] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many unrelated proteins and peptides have been found spontaneously to form amyloid fibers above a critical concentration. Even for a single sequence, however, the amyloid fold is not a single well-defined structure. Although the cross-β hydrogen bonding pattern is common to all amyloids, all other aspects of amyloid fiber structures are sensitive to both the sequence of the aggregating peptides and the solvent conditions under which the aggregation occurs. Amyloid fibers are easy to identify and grossly characterize using microscopy, but their insolubility and aperiodicity along the dimensions transverse to the fiber axis have complicated detailed experimental structural characterization. In this paper, we explore the landscape of possibilities for amyloid protofilament structures that are made up of a single stack of peptides associated in a parallel in-register manner. We view this landscape as a two-dimensional version of the usual three-dimensional protein folding problem: the survey of the two-dimensional folds of protein ribbons. Adopting this view leads to a practical method of predicting stable protofilament structures of arbitrary sequences. We apply this scheme to variants of Aβ, the amyloid forming peptide that is characteristically associated with Alzheimer's disease. Consistent with what is known from experiment, we find that Aβ protofibrils are polymorphic. To our surprise, however, the ribbon-folding landscape of Aβ turned out to be strikingly simple. We confirm that, at the level of the monomeric protofilament, the landscape for the Aβ sequence is reasonably well funneled toward structures that are similar to those that have been determined by experiment. The landscape has more distinct minima than does a typical globular protein landscape but fewer and deeper minima than the landscape of a randomly shuffled sequence having the same overall composition. It is tempting to consider the possibility that the significant degree of funneling of Aβ's ribbon-folding landscape has arisen as a result of natural selection. More likely, however, the intermediate complexity of Aβ's ribbon-folding landscape has come from the post facto selection of the Aβ sequence as an object of study by researchers because only by having a landscape with some degree of funneling can ordered aggregation of such a peptide occur at in vivo concentrations. In addition to predicting polymorph structures, we show that predicted solubilities of polymorphs correlate with experiment and with their elongation free energies computed by coarse-grained molecular dynamics.
Collapse
Affiliation(s)
- Mingchen Chen
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Bioengineering , Rice University , Houston , Texas 77005 , United States
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Peter G Wolynes
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
166
|
Li Q, Wang F, Xiao X, Kim C, Bohon J, Kiselar J, Safar JG, Ma J, Surewicz WK. Structural attributes of mammalian prion infectivity: Insights from studies with synthetic prions. J Biol Chem 2018; 293:18494-18503. [PMID: 30275016 DOI: 10.1074/jbc.ra118.005622] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/25/2018] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are neurodegenerative disorders that affect many mammalian species. Mammalian prion proteins (PrPs) can misfold into many different aggregates. However, only a small subpopulation of these structures is infectious. One of the major unresolved questions in prion research is identifying which specific structural features of these misfolded protein aggregates are important for prion infectivity in vivo Previously, two types of proteinase K-resistant, self-propagating aggregates were generated from the recombinant mouse prion protein in the presence of identical cofactors. Although these two aggregates appear biochemically very similar, they have dramatically different biological properties, with one of them being highly infectious and the other one lacking any infectivity. Here, we used several MS-based structural methods, including hydrogen-deuterium exchange and hydroxyl radical footprinting, to gain insight into the nature of structural differences between these two PrP aggregate types. Our experiments revealed a number of specific differences in the structure of infectious and noninfectious aggregates, both at the level of the polypeptide backbone and quaternary packing arrangement. In particular, we observed that a high degree of order and stability of β-sheet structure within the entire region between residues ∼89 and 227 is a primary attribute of infectious PrP aggregates examined in this study. By contrast, noninfectious PrP aggregates are characterized by markedly less ordered structure up to residue ∼167. The structural constraints reported here should facilitate development of experimentally based high-resolution structural models of infectiosus mammalian prions.
Collapse
Affiliation(s)
- Qiuye Li
- From the Departments of Physiology and Biophysics and
| | - Fei Wang
- the Center for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Xiangzhu Xiao
- From the Departments of Physiology and Biophysics and
| | | | - Jen Bohon
- Centers for Synchrotron Biosciences and.,Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Janna Kiselar
- Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106 and
| | | | - Jiyan Ma
- the Center for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | | |
Collapse
|
167
|
Mechanism of aggregation and membrane interactions of mammalian prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
168
|
Seipold L, Altmeppen H, Koudelka T, Tholey A, Kasparek P, Sedlacek R, Schweizer M, Bär J, Mikhaylova M, Glatzel M, Saftig P. In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cell Mol Life Sci 2018; 75:3251-3267. [PMID: 29520422 PMCID: PMC11105247 DOI: 10.1007/s00018-018-2791-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022]
Abstract
A disintegrin and metalloproteinase 10 (ADAM10) plays a major role in the ectodomain shedding of important surface molecules with physiological and pathological relevance including the amyloid precursor protein (APP), the cellular prion protein, and different cadherins. Despite its therapeutic potential, there is still a considerable lack of knowledge how this protease is regulated. We have previously identified tetraspanin15 (Tspan15) as a member of the TspanC8 family to specifically associate with ADAM10. Cell-based overexpression experiments revealed that this binding affected the maturation process and surface expression of the protease. Our current study shows that Tspan15 is abundantly expressed in mouse brain, where it specifically interacts with endogenous ADAM10. Tspan15 knockout mice did not reveal an overt phenotype but showed a pronounced decrease of the active and mature form of ADAM10, an effect which augmented with aging. The decreased expression of active ADAM10 correlated with an age-dependent reduced shedding of neuronal (N)-cadherin and the cellular prion protein. APP α-secretase cleavage and the expression of Notch-dependent genes were not affected by the loss of Tspan15, which is consistent with the hypothesis that different TspanC8s cause ADAM10 to preferentially cleave particular substrates. Analyzing spine morphology revealed no obvious differences between Tspan15 knockout and wild-type mice. However, Tspan15 expression was elevated in brains of an Alzheimer's disease mouse model and of patients, suggesting that upregulation of Tspan15 expression reflects a cellular response in a disease state. In conclusion, our data show that Tspan15 and most likely also other members of the TspanC8 family are central modulators of ADAM10-mediated ectodomain shedding in vivo.
Collapse
Affiliation(s)
- Lisa Seipold
- Institute of Biochemistry, Christian Albrechts University Kiel, Olshausenstrasse 40, 24118, Kiel, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tomas Koudelka
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University Kiel, Niemannsweg 11, Kiel, 24105, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University Kiel, Niemannsweg 11, Kiel, 24105, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i, Vestec, Czech Republic
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Julia Bär
- Center for Molecular Neurobiology Hamburg (ZMNH), Emmy-Noether Group "Neuronal Protein Transport", University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Marina Mikhaylova
- Center for Molecular Neurobiology Hamburg (ZMNH), Emmy-Noether Group "Neuronal Protein Transport", University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University Kiel, Olshausenstrasse 40, 24118, Kiel, Germany.
| |
Collapse
|
169
|
Muskelin Coordinates PrP C Lysosome versus Exosome Targeting and Impacts Prion Disease Progression. Neuron 2018; 99:1155-1169.e9. [PMID: 30174115 DOI: 10.1016/j.neuron.2018.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
Cellular prion protein (PrPC) modulates cell adhesion and signaling in the brain. Conversion to its infectious isoform causes neurodegeneration, including Creutzfeldt-Jakob disease in humans. PrPC undergoes rapid plasma membrane turnover and extracellular release via exosomes. However, the intracellular transport of PrPC and its potential impact on prion disease progression is barely understood. Here we identify critical components of PrPC trafficking that also link intracellular and extracellular PrPC turnover. PrPC associates with muskelin, dynein, and KIF5C at transport vesicles. Notably, muskelin coordinates bidirectional PrPC transport and facilitates lysosomal degradation over exosomal PrPC release. Muskelin gene knockout consequently causes PrPC accumulation at the neuronal surface and on secreted exosomes. Moreover, prion disease onset is accelerated following injection of pathogenic prions into muskelin knockout mice. Our data identify an essential checkpoint in PrPC turnover. They propose a novel connection between neuronal intracellular lysosome targeting and extracellular exosome trafficking, relevant to the pathogenesis of neurodegenerative conditions.
Collapse
|
170
|
Gushue D, Herbst A, Sim V, McKenzie D, Aiken JM. 14-3-3 and enolase abundances in the CSF of Prion diseased rats. Prion 2018; 12:253-260. [PMID: 30149773 PMCID: PMC6277185 DOI: 10.1080/19336896.2018.1513317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is characterized by an extended asymptomatic preclinical phase followed by rapid neurodegeneration. There are no effective treatments. CJD diagnosis is initially suspected based upon the clinical presentation of the disease and the exclusion of other etiologies. Neurologic symptoms are assessed in combination with results from cerebrospinal fluid (CSF) biomarker abundances, electroencephalography (EEG), magnetic resonance imaging (MRI), and in some countries, real-time quaking-induced conversion (RT-QuIC). Inconsistencies in sensitivities and specificities of prion disease biomarker abundance in CSF have been described, which can affect diagnostic certainty, but the utility of biomarkers for prognosis has not been fully explored. The clinical presentation of CJD is variable, and factors such as prion protein polymorphic variants, prion strain, and other genetic or environmental contributions may affect the disease progression, confounding the appearance or abundance of biomarkers in the CSF. These same factors may also affect the appearance or abundance of biomarkers, further confounding diagnosis. In this study, we controlled for many of these variables through the analysis of serial samples of CSF from prion-infected and control rats. Prion disease in laboratory rodents follows a defined disease course as the infection route and time, prion strain, genotype, and environmental conditions are all controlled. We measured the relative abundance of 14-3-3 and neuron-specific enolase (NSE) in CSF during the course of prion infection in rats. Even when disease-related, environmental and genetic variables were controlled, CSF 14-3-3 and NSE abundances were variable. Our study emphasizes the considerable diagnostic and prognostic limitations of these prion biomarkers.
Collapse
Affiliation(s)
- Danielle Gushue
- a Department of Agricultural, Food and Nutritional Sciences, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| | - Allen Herbst
- a Department of Agricultural, Food and Nutritional Sciences, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| | - Valerie Sim
- b Department of Medicine - Division of Neurology, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| | - Debbie McKenzie
- c Department of Biological Sciences, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| | - Judd M Aiken
- a Department of Agricultural, Food and Nutritional Sciences, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| |
Collapse
|
171
|
Lemarre P, Pujo-Menjouet L, Sindi SS. Generalizing a mathematical model of prion aggregation allows strain coexistence and co-stability by including a novel misfolded species. J Math Biol 2018; 78:465-495. [PMID: 30116882 PMCID: PMC6399074 DOI: 10.1007/s00285-018-1280-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/20/2018] [Indexed: 11/29/2022]
Abstract
Prions are proteins capable of adopting misfolded conformations and transmitting these conformations to other normally folded proteins. Prions are most commonly known for causing fatal neurodegenerative diseases in mammals but are also associated with several harmless phenotypes in yeast. A distinct feature of prion propagation is the existence of different phenotypical variants, called strains. It is widely accepted that these strains correspond to different conformational states of the protein, but the mechanisms driving their interactions remain poorly understood. This study uses mathematical modeling to provide insight into this problem. We show that the classical model of prion dynamics allows at most one conformational strain to stably propagate. In order to conform to biological observations of strain coexistence and co-stability, we develop an extension of the classical model by introducing a novel prion species consistent with biological studies. Qualitative analysis of this model reveals a new variety of behavior. Indeed, it allows for stable coexistence of different strains in a wide parameter range, and it also introduces intricate initial condition dependency. These new behaviors are consistent with experimental observations of prions in both mammals and yeast. As such, our model provides a valuable tool for investigating the underlying mechanisms of prion propagation and the link between prion strains and strain specific phenotypes. The consideration of a novel prion species brings a change in perspective on prion biology and we use our model to generate hypotheses about prion infectivity.
Collapse
Affiliation(s)
- Paul Lemarre
- School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA
| | - Laurent Pujo-Menjouet
- Institut Camille Jordan, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, 43 blvd. du 11 novembre 1918, 69622, Villeurbanne cedex, France.,Team Dracula, INRIA, 69603, Villeurbanne cedex, France
| | - Suzanne S Sindi
- Applied Mathematics School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
172
|
Zavadenko NN, Khondkaryan GS, Bembeeva RT, Kholin AA, Saverskaya EN. [Human prion diseases: current issues]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:88-95. [PMID: 30040808 DOI: 10.17116/jnevro20181186188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are a group of neurodegenerative diseases with progressive dementia and movement disorders. There are three variants of prion diseases pathogenesis: direct contamination, genetic and sporadic forms. The following clinical forms are known: Creutzfeldt-Jakob disease (common type), variant Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker disease, variably protease-sensitive prionopathy, fatal insomnia and fatal familial insomnia, kuru, prion disease associated with diarrhea and autonomic neuropathy. Clinical characteristic of prion diseases, molecular-genetic aspects of their pathogenesis and current diagnostic approaches are discussed. Because of the lack of effective treatment, prevention of both alimentary prion infections (consumption of contaminated meat products) and transmissible iatrogenic infections (the use of biopreparations from animal tissues) is important. The safety of such biopreparations should be ensured by modern manufacturing technologies and specially developed procedures that meet international requirements and standards.
Collapse
Affiliation(s)
- N N Zavadenko
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - G Sh Khondkaryan
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - R Ts Bembeeva
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - A A Kholin
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - E N Saverskaya
- Institute of Medical and Social Technologies, Moscow State University of Food Production, Moscow, Russia
| |
Collapse
|
173
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
174
|
Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6241017. [PMID: 30050657 PMCID: PMC6040293 DOI: 10.1155/2018/6241017] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022]
Abstract
A wide range of neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and prion diseases, share common mechanisms such as neuronal loss, apoptosis, mitochondrial dysfunction, oxidative stress, and inflammation. Intervention strategies using plant-derived bioactive compounds have been offered as a form of treatment for these debilitating conditions, as there are currently no remedies to prevent, reverse, or halt the progression of neuronal loss. Rutin, a glycoside of the flavonoid quercetin, is found in many plants and fruits, especially buckwheat, apricots, cherries, grapes, grapefruit, plums, and oranges. Pharmacological studies have reported the beneficial effects of rutin in many disease conditions, and its therapeutic potential in several models of NDs has created considerable excitement. Here, we have summarized the current knowledge on the neuroprotective mechanisms of rutin in various experimental models of NDs. The mechanisms of action reviewed in this article include reduction of proinflammatory cytokines, improved antioxidant enzyme activities, activation of the mitogen-activated protein kinase cascade, downregulation of mRNA expression of PD-linked and proapoptotic genes, upregulation of the ion transport and antiapoptotic genes, and restoration of the activities of mitochondrial complex enzymes. Taken together, these findings suggest that rutin may be a promising neuroprotective compound for the treatment of NDs.
Collapse
|
175
|
Abstract
AbstractPrions are proteins that can self-propagate, leading to the misfolding of proteins. In addition to the previously demonstrated pathogenic roles of prions during the development of different mammalian diseases, including neurodegenerative diseases, they have recently been shown to represent an important functional component in many prokaryotic and eukaryotic organisms and bacteriophages, confirming the previously unexplored important regulatory and functional roles. However, an in-depth analysis of these domains in eukaryotic viruses has not been performed. Here, we examined the presence of prion-like proteins in eukaryotic viruses that play a primary role in different ecosystems and that are associated with emerging diseases in humans. We identified relevant functional associations in different viral processes and regularities in their presence at different taxonomic levels. Using the prion-like amino-acid composition computational algorithm, we detected 2679 unique putative prion-like domains within 2,742,160 publicly available viral protein sequences. Our findings indicate that viral prion-like proteins can be found in different viruses of insects, plants, mammals, and humans. The analysis performed here demonstrated common patterns in the distribution of prion-like domains across viral orders and families, and revealed probable functional associations with different steps of viral replication and interaction with host cells. These data allow the identification of the viral prion-like proteins as potential novel regulators of viral infections.
Collapse
|
176
|
Abstract
Prions are proteins that can self-propagate, leading to the misfolding of proteins. In addition to the previously demonstrated pathogenic roles of prions during the development of different mammalian diseases, including neurodegenerative diseases, they have recently been shown to represent an important functional component in many prokaryotic and eukaryotic organisms and bacteriophages, confirming the previously unexplored important regulatory and functional roles. However, an in-depth analysis of these domains in eukaryotic viruses has not been performed. Here, we examined the presence of prion-like proteins in eukaryotic viruses that play a primary role in different ecosystems and that are associated with emerging diseases in humans. We identified relevant functional associations in different viral processes and regularities in their presence at different taxonomic levels. Using the prion-like amino-acid composition computational algorithm, we detected 2679 unique putative prion-like domains within 2,742,160 publicly available viral protein sequences. Our findings indicate that viral prion-like proteins can be found in different viruses of insects, plants, mammals, and humans. The analysis performed here demonstrated common patterns in the distribution of prion-like domains across viral orders and families, and revealed probable functional associations with different steps of viral replication and interaction with host cells. These data allow the identification of the viral prion-like proteins as potential novel regulators of viral infections.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, New York, NY, 10027, USA.
| | - Victor Tetz
- Human Microbiology Institute, New York, NY, 10027, USA
| |
Collapse
|
177
|
Allison WT. The intrigue is infectious: Impacts of prion protein during neural development. Dev Biol 2018; 441:1-3. [PMID: 29803646 DOI: 10.1016/j.ydbio.2018.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
Abstract
Normally folded prion protein is abundant in the CNS and remarkably conserved, suggesting that it has important functions, yet these functions have remained elusive. Now the work of Parrie et al. has codified a requirement for prion protein in adult neurogenesis. Their insightful use of prion protein knockout and over-expressing mice, combined with the well-characterized olfactory system site of neurogenesis, demonstrated that prion protein promotes proliferation and survival of adult neurons. The work provides a unique independent confirmation of prion protein playing a role in neuroprotection, especially extending the conclusion beyond models using acute injury. Parrie et al. (2018) further show that prion protein is required for CNS axon guidance. A growing list of phenotypes associated with prion protein loss are coincident with symptoms of neurodegenerative disease and dementia, though it remains contentious whether any such disruption of prion protein function contributes to disease aetiology. Perhaps most intriguingly, identifying the developmental functions for prion protein opens new avenues to understand the evolution of prion protein: what history led to a CNS protein that is conserved and abundant paradoxically being both dispensable for life and the template for devastating disease?
Collapse
Affiliation(s)
- W Ted Allison
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada T6G 2M8; Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9; Department of Medical Genetics, University of Alberta, Edmonton, Canada T6G 2H7.
| |
Collapse
|
178
|
Ulbrich S, Janning P, Seidel R, Matschke J, Gonsberg A, Jung S, Glatzel M, Engelhard M, Winklhofer KF, Tatzelt J. Alterations in the brain interactome of the intrinsically disordered N-terminal domain of the cellular prion protein (PrPC) in Alzheimer's disease. PLoS One 2018; 13:e0197659. [PMID: 29791485 PMCID: PMC5965872 DOI: 10.1371/journal.pone.0197659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular prion protein (PrPC) is implicated in neuroprotective signaling and neurotoxic pathways in both prion diseases and Alzheimer's disease (AD). Specifically, the intrinsically disordered N-terminal domain (N-PrP) has been shown to interact with neurotoxic ligands, such as Aβ and Scrapie prion protein (PrPSc), and to be crucial for the neuroprotective activity of PrPC. To gain further insight into cellular pathways tied to PrP, we analyzed the brain interactome of N-PrP. As a novel approach employing recombinantly expressed PrP and intein-mediated protein ligation, we used N-PrP covalently coupled to beads as a bait for affinity purification. N-PrP beads were incubated with human AD or control brain lysates. N-PrP binding partners were then identified by electrospray ionization tandem mass spectrometry (nano ESI-MS/MS). In addition to newly identified proteins we found many previously described PrP interactors, indicating a crucial role of the intrinsically disordered part of PrP in mediating protein interactions. Moreover, some interactors were found only in either non-AD or AD brain, suggesting aberrant PrPC interactions in the pathogenesis of AD.
Collapse
Affiliation(s)
- Sarah Ulbrich
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ralf Seidel
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Gonsberg
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Sebastian Jung
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| |
Collapse
|
179
|
Sharma A, Behrens SH, Chernoff YO, Bommarius AS. Modulation of the Formation of Aβ- and Sup35NM-Based Amyloids by Complex Interplay of Specific and Nonspecific Ion Effects. J Phys Chem B 2018; 122:4972-4981. [PMID: 29668283 PMCID: PMC6932987 DOI: 10.1021/acs.jpcb.7b12836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In vitro formation of highly ordered protein aggregates, amyloids, is influenced by the presence of ions. Here, we have studied the effect of anions on amyloid fibril formation by two different amyloidogenic proteins, human amyloid beta-42 (Aβ42), associated with Alzheimer disease and produced recombinantly with an N-terminal methionine (Met-Aβ42), and histidine-tagged NM fragment of Sup35 protein (Sup35NM-His6), a yeast release factor controlling protein-based inheritance, at pH values above and below their isoelectric points. We demonstrate here that pH plays a critical role in determining the effect of ions on the aggregation of Met-Aβ42 and Sup35NM-His6. Further, the electrophoretic mobilities of Met-Aβ42 and Sup35NM-His6 were measured in the presence of different anions at pH above and below the isoelectric points to understand how anions interact with these proteins when they bear a net positive or negative charge. We find that although ion-protein interactions generally follow expectations based on the anion positions within the Hofmeister series, there are qualitative differences in the aggregation behavior of Met-Aβ42 and Sup35NM-His6. These differences arise from a competition between nonspecific charge neutralization and screening effects and specific ion adsorption and can be explained by the different biochemical and biophysical properties of Met-Aβ42 and Sup35NM-His6.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sven H. Behrens
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
180
|
Sangeetham SB, Huszár K, Bencsura P, Nyeste A, Hunyadi-Gulyás É, Fodor E, Welker E. Interrogating the Dimerization Interface of the Prion Protein Via Site-Specific Mutations to p-Benzoyl-L-Phenylalanine. J Mol Biol 2018; 430:2784-2801. [PMID: 29778603 DOI: 10.1016/j.jmb.2018.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023]
Abstract
Transmissible spongiform encephalopathies are centered on the conformational transition of the prion protein from a mainly helical, monomeric structure to a β-sheet rich ordered aggregate. Experiments indicate that the main infectious and toxic species in this process are however shorter oligomers, formation of which from the monomers is yet enigmatic. Here, we created 25 variants of the mouse prion protein site-specifically containing one genetically-incorporated para-benzoyl-phenylalanine (pBpa), a cross-linkable non-natural amino acid, in order to interrogate the interface of a prion protein-dimer, which might lie on the pathway of oligomerization. Our results reveal that the N-terminal part of the prion protein, especially regions around position 127 and 107, is integral part of the dimer interface. These together with additional pBpa-containing variants of mPrP might also facilitate to gain more structural insights into oligomeric and fibrillar prion protein species including the pathological variants.
Collapse
Affiliation(s)
- Sudheer Babu Sangeetham
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Krisztina Huszár
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petra Bencsura
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Antal Nyeste
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; ProteoScientia Ltd., Cserhátszentiván, Hungary
| | - Éva Hunyadi-Gulyás
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ervin Welker
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
181
|
Jaunmuktane Z, Quaegebeur A, Taipa R, Viana-Baptista M, Barbosa R, Koriath C, Sciot R, Mead S, Brandner S. Evidence of amyloid-β cerebral amyloid angiopathy transmission through neurosurgery. Acta Neuropathol 2018; 135:671-679. [PMID: 29450646 PMCID: PMC5904220 DOI: 10.1007/s00401-018-1822-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022]
Abstract
Amyloid-β (Aβ) is a peptide deposited in the brain parenchyma in Alzheimer's disease and in cerebral blood vessels, causing cerebral amyloid angiopathy (CAA). Aβ pathology is transmissible experimentally in animals and through medical procedures in humans, such as contaminated growth hormone or dura mater transplantation in the context of iatrogenic prion disease. Here, we present four patients who underwent neurosurgical procedures during childhood or teenage years and presented with intracerebral haemorrhage approximately three decades later, caused by severe CAA. None of these patients carried pathogenic mutations associated with early Aβ pathology development. In addition, we identified in the literature four patients with a history of neurosurgical intervention and subsequent development of CAA. These findings raise the possibility that Aβ pathology may be transmissible, as prion disease is, through neurosurgical procedures.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Annelies Quaegebeur
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Ricardo Taipa
- Portuguese Brain Bank, Neuropathology Unit, Department of Neuroscience, Centro Hospitalar Universitario do Porto, 4099-001, Porto, Portugal
| | - Miguel Viana-Baptista
- Department of Neurology, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, 1449-005, Lisbon, Portugal
| | - Raquel Barbosa
- Department of Neurology, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, 1449-005, Lisbon, Portugal
| | - Carolin Koriath
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Raf Sciot
- Department of Imaging and Pathology, University of Leuven, 3000, Louvain, Belgium
| | - Simon Mead
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Medical Research Council Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
182
|
Fernández-Borges N, Espinosa JC, Marín-Moreno A, Aguilar-Calvo P, Asante EA, Kitamoto T, Mohri S, Andréoletti O, Torres JM. Protective Effect of Val 129-PrP against Bovine Spongiform Encephalopathy but not Variant Creutzfeldt-Jakob Disease. Emerg Infect Dis 2018; 23:1522-1530. [PMID: 28820136 PMCID: PMC5572891 DOI: 10.3201/eid2309.161948] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is the only known zoonotic prion that causes variant Creutzfeldt-Jakob disease (vCJD) in humans. The major risk determinant for this disease is the polymorphic codon 129 of the human prion protein (Hu-PrP), where either methionine (Met129) or valine (Val129) can be encoded. To date, all clinical and neuropathologically confirmed vCJD cases have been Met129 homozygous, with the exception of 1 recently reported Met/Val heterozygous case. Here, we found that transgenic mice homozygous for Val129 Hu-PrP show severely restricted propagation of the BSE prion strain, but this constraint can be partially overcome by adaptation of the BSE agent to the Met129 Hu-PrP. In addition, the transmission of vCJD to transgenic mice homozygous for Val129 Hu-PrP resulted in a prion with distinct strain features. These observations may indicate increased risk for vCJD secondary transmission in Val129 Hu-PrP–positive humans with the emergence of new strain features.
Collapse
|
183
|
Hosseinpour-Moghaddam K, Caraglia M, Sahebkar A. Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. J Cell Physiol 2018; 233:6524-6543. [PMID: 29663416 DOI: 10.1002/jcp.26583] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
Abstract
The balance between synthesis and degradation is crucial to maintain cellular homeostasis and different mechanisms are known to keep this balance. In this review, we will provide a short overview on autophagy as an intracellular homeostatic degradative machinery. We will also describe the involvement of downregulation of autophagy in numerous diseases including neurodegenerative diseases, cancer, aging, metabolic disorders, and other infectious diseases. Therefore, modulation of autophagic processes can represent a promising way of intervention in different diseases including neurodegeneration and cancer. Trehalose, also known as mycose, is a natural disaccharide found extensively but not abundantly among several organisms. It is described that trehalose can work as an important autophagy modulator and can be proficiently used in the control several diseases in which autophagy plays an important role. On these bases, we describe here the role of trehalose as an innovative drug in the treatment of neurodegenerative diseases and other illnesses opening a new scenario of intervention in conditions difficult to be treated.
Collapse
Affiliation(s)
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Amirhossein Sahebkar
- Neurogenic inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
184
|
Baral PK, Swayampakula M, Aguzzi A, James MNG. Structural characterization of
POM
6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion. FEBS J 2018; 285:1701-1714. [DOI: 10.1111/febs.14438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/02/2018] [Accepted: 03/16/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Pravas Kumar Baral
- Department of Biochemistry Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Mridula Swayampakula
- Department of Biochemistry Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Adriano Aguzzi
- Institute of Neuropathology University of Zurich Switzerland
| | - Michael N. G. James
- Department of Biochemistry Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| |
Collapse
|
185
|
Abstract
Amyloid fibrils are protein homopolymers that adopt diverse cross-β conformations. Some amyloid fibrils are associated with the pathogenesis of devastating neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Conversely, functional amyloids play beneficial roles in melanosome biogenesis, long-term memory formation and release of peptide hormones. Here, we showcase advances in our understanding of amyloid assembly and structure, and how distinct amyloid strains formed by the same protein can cause distinct neurodegenerative diseases. We discuss how mutant steric zippers promote deleterious amyloidogenesis and aberrant liquid-to-gel phase transitions. We also highlight effective strategies to combat amyloidogenesis and related toxicity, including: (1) small-molecule drugs (e.g. tafamidis) to inhibit amyloid formation or (2) stimulate amyloid degradation by the proteasome and autophagy, and (3) protein disaggregases that disassemble toxic amyloid and soluble oligomers. We anticipate that these advances will inspire therapeutics for several fatal neurodegenerative diseases. Summary: This Review showcases important advances in our understanding of amyloid structure, assembly and disassembly, which are inspiring novel therapeutic strategies for amyloid disorders.
Collapse
Affiliation(s)
- Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Acacia M Hori
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina D Hesketh
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA .,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
186
|
Engelke AD, Gonsberg A, Thapa S, Jung S, Ulbrich S, Seidel R, Basu S, Multhaup G, Baier M, Engelhard M, Schätzl HM, Winklhofer KF, Tatzelt J. Dimerization of the cellular prion protein inhibits propagation of scrapie prions. J Biol Chem 2018; 293:8020-8031. [PMID: 29636413 DOI: 10.1074/jbc.ra117.000990] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/06/2018] [Indexed: 11/06/2022] Open
Abstract
A central step in the pathogenesis of prion diseases is the conformational transition of the cellular prion protein (PrPC) into the scrapie isoform, denoted PrPSc Studies in transgenic mice have indicated that this conversion requires a direct interaction between PrPC and PrPSc; however, insights into the underlying mechanisms are still missing. Interestingly, only a subfraction of PrPC is converted in scrapie-infected cells, suggesting that not all PrPC species are suitable substrates for the conversion. On the basis of the observation that PrPC can form homodimers under physiological conditions with the internal hydrophobic domain (HD) serving as a putative dimerization domain, we wondered whether PrP dimerization is involved in the formation of neurotoxic and/or infectious PrP conformers. Here, we analyzed the possible impact on dimerization of pathogenic mutations in the HD that induce a spontaneous neurodegenerative disease in transgenic mice. Similarly to wildtype (WT) PrPC, the neurotoxic variant PrP(AV3) formed homodimers as well as heterodimers with WTPrPC Notably, forced PrP dimerization via an intermolecular disulfide bond did not interfere with its maturation and intracellular trafficking. Covalently linked PrP dimers were complex glycosylated, GPI-anchored, and sorted to the outer leaflet of the plasma membrane. However, forced PrPC dimerization completely blocked its conversion into PrPSc in chronically scrapie-infected mouse neuroblastoma cells. Moreover, PrPC dimers had a dominant-negative inhibition effect on the conversion of monomeric PrPC Our findings suggest that PrPC monomers are the major substrates for PrPSc propagation and that it may be possible to halt prion formation by stabilizing PrPC dimers.
Collapse
Affiliation(s)
- Anna D Engelke
- Department of Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Anika Gonsberg
- Department of Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Simrika Thapa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Sebastian Jung
- Department of Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Sarah Ulbrich
- Department of Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Ralf Seidel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Shaon Basu
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Gerd Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Michael Baier
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, D-13353 Berlin, Germany
| | - Martin Engelhard
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Hermann M Schätzl
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, D-44801 Bochum, Germany.
| |
Collapse
|
187
|
Seed CR, Hewitt PE, Dodd RY, Houston F, Cervenakova L. Creutzfeldt-Jakob disease and blood transfusion safety. Vox Sang 2018; 113:220-231. [PMID: 29359329 DOI: 10.1111/vox.12631] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) are untreatable, fatal neurologic diseases affecting mammals. Human disease forms include sporadic, familial and acquired Creutzfeldt-Jakob disease (CJD). While sporadic CJD (sCJD) has been recognized for near on 100 years, variant CJD (vCJD) was first reported in 1996 and is the result of food-borne transmission of the prion of bovine spongiform encephalopathy (BSE, 'mad cow disease'). Currently, 230 vCJD cases have been reported in 12 countries, the majority in the UK (178) and France (27). Animal studies demonstrated highly efficient transmission of natural scrapie and experimental BSE by blood transfusion and fuelled concern that sCJD was potentially transfusion transmissible. No such case has been recorded and case-control evaluations and lookback studies indicate that, if transfusion transmission occurs at all, it is very rare. In contrast, four cases of apparent transfusion transmission of vCJD infectivity have been identified in the UK. Risk minimization strategies in response to the threat of vCJD include leucodepletion, geographically based donor deferrals and deferral of transfusion recipients. A sensitive and specific, high-throughput screening test would provide a potential path to mitigation but despite substantial effort no such test has yet appeared. The initial outbreak of vCJD appears to be over, but concern remains about subsequent waves of disease among those already infected. There is considerable uncertainty about the size of the infected population, and there will be at least a perception of some continuing risk to blood safety. Accordingly, at least some precautionary measures will remain in place and continued surveillance is necessary.
Collapse
Affiliation(s)
- C R Seed
- Australian Red Cross Blood Service, Perth, WA, Australia
| | | | - R Y Dodd
- American Red Cross Scientific Affairs, Gaithersburg, MD, USA
| | - F Houston
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland
| | - L Cervenakova
- The Plasma Protein Therapeutics Association (PPTA), Annapolis, MD, USA
| |
Collapse
|
188
|
Jakobson CM, Jarosz DF. Organizing biochemistry in space and time using prion-like self-assembly. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 8:16-24. [PMID: 29725624 PMCID: PMC5926789 DOI: 10.1016/j.coisb.2017.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prion-like proteins have the capacity to adopt multiple stable conformations, at least one of which can recruit proteins from the native conformation into the alternative fold. Although classically associated with disease, prion-like assembly has recently been proposed to organize a range of normal biochemical processes in space and time. Organisms from bacteria to mammals use prion-like mechanisms to (re)organize their proteome in response to intracellular and extracellular stimuli. Prion-like behavior is an economical means to control biochemistry and gene regulation at the systems level, and prions can act as protein-based genes to facilitate quasi-Lamarckian inheritance of induced traits. These mechanisms allow individual cells to express distinct heritable traits using the same complement of polypeptides. Understanding and controlling prion-like behavior is therefore a promising strategy to combat diverse pathologies and organize engineered biological systems.
Collapse
Affiliation(s)
- Christopher M. Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
189
|
Magrì A, Di Natale G, Rizzarelli E. Copper-assisted interaction between amyloid-β and prion: Ternary metal complexes with Aβ N-terminus and octarepeat. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
190
|
Race B, Williams K, Hughson AG, Jansen C, Parchi P, Rozemuller AJM, Chesebro B. Familial human prion diseases associated with prion protein mutations Y226X and G131V are transmissible to transgenic mice expressing human prion protein. Acta Neuropathol Commun 2018; 6:13. [PMID: 29458424 PMCID: PMC5819089 DOI: 10.1186/s40478-018-0516-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/11/2018] [Indexed: 11/21/2022] Open
Abstract
Human familial prion diseases are associated with mutations at 34 different prion protein (PrP) amino acid residues. However, it is unclear whether infectious prions are found in all cases. Mutant PrP itself may be neurotoxic, or alternatively, PrP mutation might predispose to spontaneous formation of infectious PrP isoforms. Previous reports demonstrated transmission to animal models by human brain tissue expressing 7 different PrP mutations, but 3 other mutations were not transmissible. In the present work, we tested transmission using brain homogenates from patients expressing 3 untested PrP mutants: G131V, Y226X, and Q227X. Human brain homogenates were injected intracerebrally into tg66 transgenic mice overexpressing human PrP. Mice were followed for nearly 800 days. From 593 to 762 dpi, 4 of 8 mice injected with Y226X brain had PrPSc detectable in brain by immunostaining, immunoblot, and PrP amyloid seeding activity assayed by RT-QuIC. From 531 to 784 dpi, 11 of 11 G131V-injected mice had PrPSc deposition in brain, but none were positive by immunoblot or RT-QuIC assay. In contrast, from 529 to 798 dpi, no tg66 mice injected with Q227X brain had PrPSc or PrP amyloid seeding activity detectable by these methods. Y226X is the only one of 4 known PrP truncations associated with familial disease which has been shown to be transmissible. This transmission of prion infectivity from a patient expressing truncated human PrP may have implications for the spread and possible transmission of other aggregated truncated proteins in prion-like diseases such as Alzheimer’s disease, Parkinson’s disease and tauopathies.
Collapse
|
191
|
Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste. Acta Vet Scand 2018; 60:9. [PMID: 29422098 PMCID: PMC5806280 DOI: 10.1186/s13028-018-0363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates—thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.
Collapse
|
192
|
Hwang S, West Greenlee MH, Balkema-Buschmann A, Groschup MH, Nicholson EM, Greenlee JJ. Real-Time Quaking-Induced Conversion Detection of Bovine Spongiform Encephalopathy Prions in a Subclinical Steer. Front Vet Sci 2018; 4:242. [PMID: 29404344 PMCID: PMC5780402 DOI: 10.3389/fvets.2017.00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) belongs to a group of fatal prion diseases that result from the misfolding of the cellular prion protein (PrPC) into a pathogenic form (PrPSc) that accumulates in the brain. In vitro assays such as serial protein misfolding amplification and real-time quaking-induced conversion (RT-QuIC) allow assessment of the conversion of PrPC to PrPSc. RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. However, there is no such comparison of RT-QuIC data between BSE positive and presymptomatic cattle. Further, the current study assesses prion distribution in multiple brain regions of clinically ill or subclinical animals. Here, we compare RT-QuIC reactions seeded with brain samples collected from experimentally inoculated cattle that were clinically ill or subclinically affected with BSE. The results demonstrate RT-QuIC seeding in various brain regions of an animal with subclinical BSE despite being determined negative by immunohistochemistry. Bioassay of the subclinical animal and RT-QuIC of brainstem from inoculated knockout (PRNP-/-) cattle were used to confirm infectivity in the subclinical animal and determine that RT-QuIC reactions were not the result of residual inoculum, respectively. These results confirm that RT-QuIC is a highly sensitive prion detection assay that can detect prions in a steer prior to the onset of clinical signs of BSE.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Eric M Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - Justin J Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| |
Collapse
|
193
|
Pritzkow S, Morales R, Lyon A, Concha-Marambio L, Urayama A, Soto C. Efficient prion disease transmission through common environmental materials. J Biol Chem 2018; 293:3363-3373. [PMID: 29330304 DOI: 10.1074/jbc.m117.810747] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/05/2018] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative diseases associated with a protein-based infectious agent, termed prion. Compelling evidence suggests that natural transmission of prion diseases is mediated by environmental contamination with infectious prions. We hypothesized that several natural and man-made materials, commonly found in the environments of wild and captive animals, can bind prions and may act as vectors for disease transmission. To test our hypothesis, we exposed surfaces composed of various common environmental materials (i.e. wood, rocks, plastic, glass, cement, stainless steel, aluminum, and brass) to hamster-adapted 263K scrapie prions and studied their attachment and retention of infectivity in vitro and in vivo Our results indicated that these surfaces, with the sole exception of brass, efficiently bind, retain, and release prions. Prion replication was studied in vitro using the protein misfolding cyclic amplification technology, and infectivity of surface-bound prions was analyzed by intracerebrally challenging hamsters with contaminated implants. Our results revealed that virtually all prion-contaminated materials transmitted the disease at high rates. To investigate a more natural form of exposure to environmental contamination, we simply housed animals with large contaminated spheres made of the different materials under study. Strikingly, most of the hamsters developed classical clinical signs of prion disease and typical disease-associated brain changes. Our findings suggest that prion contamination of surfaces commonly present in the environment can be a source of disease transmission, thus expanding our understanding of the mechanisms for prion spreading in nature.
Collapse
Affiliation(s)
- Sandra Pritzkow
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Rodrigo Morales
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Adam Lyon
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Luis Concha-Marambio
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and.,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago 2, Chile
| | - Akihiko Urayama
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Claudio Soto
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030 and .,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago 2, Chile
| |
Collapse
|
194
|
Caine D, Nihat A, Crabb P, Rudge P, Cipolotti L, Collinge J, Mead S. The language disorder of prion disease is characteristic of a dynamic aphasia and is rarely an isolated clinical feature. PLoS One 2018; 13:e0190818. [PMID: 29304167 PMCID: PMC5755885 DOI: 10.1371/journal.pone.0190818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Akinetic mutism is a key diagnostic feature of prion diseases, however, their rapidly progressive nature makes detailed investigation of the language disorder in a large cohort extremely challenging. This study aims to position prion diseases in the nosology of language disorders and improve early clinical recognition. METHODS A systematic, prospective investigation of language disorders in a large cohort of patients diagnosed with prion diseases. 568 patients were included as a sub-study of the National Prion Monitoring Cohort. All patients had at least one assessment with the MRC Scale, a milestone-based functional scale with language and non-language components. Forty patients, with early symptoms and able to travel to the study site, were also administered a comprehensive battery of language tests (spontaneous speech, semantics, syntax, repetition, naming, comprehension and lexical retrieval under different conditions). RESULTS 5/568 (0.9%) patients presented with leading language symptoms. Those with repeated measurements deteriorated at a slower rate in language compared to non-language milestones. Amongst the subgroup of 40 patients who underwent detailed language testing, only three tasks-semantic and phonemic fluency and sentence comprehension-were particularly vulnerable early in the disease. These tasks were highly correlated with performance on non-verbal executive tests. Patients were also impaired on a test of dynamic aphasia. CONCLUSION These results provide evidence that the language disorder in prion disease is rarely an isolated clinical or cognitive feature. The language abnormality is indicative of a dynamic aphasia in the context of a prominent dysexecutive syndrome, similar to that seen in patients with the degenerative movement disorder progressive supranuclear palsy (PSP).
Collapse
Affiliation(s)
- Diana Caine
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Neuropsychology, NHNN, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Akin Nihat
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London Hospitals NHS Foundation Trust, London, United Kingdom
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Philippa Crabb
- Department of Neuropsychology, NHNN, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Peter Rudge
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London Hospitals NHS Foundation Trust, London, United Kingdom
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Lisa Cipolotti
- Department of Neuropsychology, NHNN, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - John Collinge
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London Hospitals NHS Foundation Trust, London, United Kingdom
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Simon Mead
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London Hospitals NHS Foundation Trust, London, United Kingdom
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
195
|
Ghetti B, Piccardo P, Zanusso G. Dominantly inherited prion protein cerebral amyloidoses - a modern view of Gerstmann-Sträussler-Scheinker. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:243-269. [PMID: 29887140 DOI: 10.1016/b978-0-444-63945-5.00014-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among genetically determined neurodegenerative diseases, the dominantly inherited prion protein cerebral amyloidoses are characterized by deposition of amyloid in cerebral parenchyma or blood vessels. Among them, Gerstmann-Sträussler-Scheinker disease has been the first to be described. Their clinical, neuropathologic, and molecular phenotypes are distinct from those observed in Creutzfeldt-Jakob disease (CJD) and related spongiform encephalopathies. It is not understood why specific mutations in the prion protein gene (PRNP) cause cerebral amyloidosis and others cause CJD. A significant neurobiologic event in these amyloidoses is the frequent coexistence of prion amyloid with tau neurofibrillary pathology, a phenomenon suggesting that similar pathogenetic mechanisms may be shared among different diseases in the sequence of events occurring in the cascade from amyloid formation to tau aggregation. This chapter describes the clinical, neuropathologic, and biochemical phenotypes associated with each of the PRNP mutations causing an inherited cerebral amyloidosis and emphasizes the variability of phenotypes.
Collapse
Affiliation(s)
- Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Pedro Piccardo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
196
|
Concha-Marambio L, Pritzkow S, Moda F, Tagliavini F, Ironside JW, Schulz PE, Soto C. Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease. Sci Transl Med 2017; 8:370ra183. [PMID: 28003548 DOI: 10.1126/scitranslmed.aaf6188] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/03/2016] [Accepted: 12/02/2016] [Indexed: 12/24/2022]
Abstract
Human prion diseases are infectious and invariably fatal neurodegenerative diseases. They include sporadic Creutzfeldt-Jakob disease (sCJD), the most common form, and variant CJD (vCJD), which is caused by interspecies transmission of prions from cattle infected by bovine spongiform encephalopathy. Development of a biochemical assay for the sensitive, specific, early, and noninvasive detection of prions (PrPSc) in the blood of patients affected by prion disease is a top medical priority to increase the safety of the blood supply. vCJD has already been transmitted from human to human by blood transfusion, and the number of asymptomatic carriers of vCJD in the U.K. alone is estimated to be 1 in 2000 people. We used the protein misfolding cyclic amplification (PMCA) technique to analyze blood samples from 14 cases of vCJD and 153 controls, including patients affected by sCJD and other neurodegenerative or neurological disorders as well as healthy subjects. Our results showed that PrPSc could be detected with 100% sensitivity and specificity in blood samples from vCJD patients. Detection was possible in any of the blood fractions analyzed and could be done with as little as a few microliters of sample volume. The PrPSc concentration in blood was estimated to be ~0.5 pg/ml. Our findings suggest that PMCA may be useful for premortem noninvasive diagnosis of vCJD and to identify prion contamination of the blood supply. Further studies are needed to fully validate the technology.
Collapse
Affiliation(s)
- Luis Concha-Marambio
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA.,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Fabio Moda
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA.,IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | | | - James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Paul E Schulz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA. .,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| |
Collapse
|
197
|
Joiner S, Asante EA, Linehan JM, Brock L, Brandner S, Bellworthy SJ, Simmons MM, Hope J, Collinge J, Wadsworth JDF. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein. J Neurol Sci 2017; 386:4-11. [PMID: 29406965 PMCID: PMC5946165 DOI: 10.1016/j.jns.2017.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/01/2017] [Accepted: 12/28/2017] [Indexed: 11/02/2022]
Abstract
The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe.
Collapse
Affiliation(s)
- Susan Joiner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | | | - Lara Brock
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | | | | | - James Hope
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | |
Collapse
|
198
|
Marchis D, Altomare A, Gili M, Ostorero F, Khadjavi A, Corona C, Ru G, Cappelletti B, Gianelli S, Amadeo F, Rumio C, Carini M, Aldini G, Casalone C. LC-MS/MS Identification of Species-Specific Muscle Peptides in Processed Animal Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10638-10650. [PMID: 29125749 DOI: 10.1021/acs.jafc.7b04639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An innovative analytical strategy has been applied to identify signature peptides able to distinguish among processed animal proteins (PAPs) derived from bovine, pig, fish, and milk products. Proteomics was first used to elucidate the proteome of each source. Starting from the identified proteins and using a funnel based approach, a set of abundant and well characterized peptides with suitable physical-chemical properties (signature peptides) and specific for each source was selected. An on-target LC-ESI-MS/MS method (MRM mode) was set up using standard peptides and was then applied to selectively identify the PAP source and also to distinguish proteins from bovine carcass and milk proteins. We believe that the method described meets the request of the European Commission which has developed a strategy for gradually lifting the "total ban" toward "species to species ban", therefore requiring official methods for species-specific discrimination in feed.
Collapse
Affiliation(s)
- Daniela Marchis
- Istituto Zooprofilattico Sperimentale del Piemonte , Liguria e Valle D'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Marilena Gili
- Istituto Zooprofilattico Sperimentale del Piemonte , Liguria e Valle D'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Federica Ostorero
- Istituto Zooprofilattico Sperimentale del Piemonte , Liguria e Valle D'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Amina Khadjavi
- Istituto Zooprofilattico Sperimentale del Piemonte , Liguria e Valle D'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte , Liguria e Valle D'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Giuseppe Ru
- Istituto Zooprofilattico Sperimentale del Piemonte , Liguria e Valle D'Aosta, via Bologna 148, 10154 Torino, Italy
| | | | - Silvia Gianelli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Francesca Amadeo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano , Via Trentacoste 2, 20134 Milano, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte , Liguria e Valle D'Aosta, via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
199
|
What Is Our Current Understanding of PrP Sc-Associated Neurotoxicity and Its Molecular Underpinnings? Pathogens 2017; 6:pathogens6040063. [PMID: 29194372 PMCID: PMC5750587 DOI: 10.3390/pathogens6040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
The prion diseases are a collection of fatal, transmissible neurodegenerative diseases that cause rapid onset dementia and ultimately death. Uniquely, the infectious agent is a misfolded form of the endogenous cellular prion protein, termed PrPSc. Despite the identity of the molecular agent remaining the same, PrPSc can cause a range of diseases with hereditary, spontaneous or iatrogenic aetiologies. However, the link between PrPSc and toxicity is complex, with subclinical cases of prion disease discovered, and prion neurodegeneration without obvious PrPSc deposition. The toxic mechanisms by which PrPSc causes the extensive neuropathology are still poorly understood, although recent advances are beginning to unravel the molecular underpinnings, including oxidative stress, disruption of proteostasis and induction of the unfolded protein response. This review will discuss the diseases caused by PrPSc toxicity, the nature of the toxicity of PrPSc, and our current understanding of the downstream toxic signaling events triggered by the presence of PrPSc.
Collapse
|
200
|
Discovery of small molecules binding to the normal conformation of prion by combining virtual screening and multiple biological activity evaluation methods. J Comput Aided Mol Des 2017; 31:1053-1062. [PMID: 29159521 DOI: 10.1007/s10822-017-0086-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/15/2017] [Indexed: 11/27/2022]
Abstract
Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.
Collapse
|