151
|
Topiramate treatment in Wistar rats during childhood induces sex-specific vascular dysfunction in adulthood. Life Sci 2022; 288:120189. [PMID: 34863798 DOI: 10.1016/j.lfs.2021.120189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
The present study determined whether treatment during childhood with topiramate (TPM), a new generation antiepileptic drug, results in altered aortic reactivity in adult male and female rats. We also sought to understand the role of endothelium-derived contractile factors in TPM-induced vascular dysfunction. Male and female Wistar rats were treated with TPM (41 mg/kg/day) or water (TPM vehicle) by gavage during childhood (postnatal day, 16-28). In adulthood, thoracic aorta reactivity to phenylephrine (phenyl), as well as aortic thickness and expression of cyclooxygenases (COX-1 and COX-2), NOX2, and p47phox were evaluated. The aortic response to phenyl was increased in male and female rats from the TPM group when compared with the control group. In TPM male rats, the hyperreactivity to phenyl was abrogated by the inhibition of NADPH oxidase and COX-2, while in female rats, responses were restored only by inhibition of COX-2. In addition, TPM male rats presented aortic hypertrophy and increased expression of NOX-2 and p47phox, while TPM female rats showed increased COX-2 aortic expression. Taken together, for the first-time, the present study provides evidence that treatment with TPM during childhood causes vascular dysfunction in adulthood, and that the mechanism underlying the vascular effects of TPM is sex-specific.
Collapse
|
152
|
Armeni E, Lambrinoudaki I. Menopause, androgens, and cardiovascular ageing: a narrative review. Ther Adv Endocrinol Metab 2022; 13:20420188221129946. [PMID: 36325501 PMCID: PMC9619256 DOI: 10.1177/20420188221129946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide; however, women tend to be less affected than men during their reproductive years. The female cardiovascular risk increases significantly around the time of the menopausal transition. The loss of the protective action of ovarian oestrogens and the circulating androgens has been implicated in possibly inducing subclinical and overt changes in the cardiovascular system after the menopausal transition. In vitro studies performed in human or animal cell lines demonstrate an adverse effect of testosterone on endothelial cell function and nitric oxide bioavailability. Cohort studies evaluating associations between testosterone and/or dehydroepiandrosterone and subclinical vascular disease and clinical cardiovascular events show an increased risk for women with more pronounced androgenicity. However, a mediating effect of insulin resistance is possible. Data on cardiovascular implications following low-dose testosterone treatment in middle-aged women or high-dose testosterone supplementation for gender affirmatory purposes remain primarily inconsistent. It is prudent to consider the possible adverse association between testosterone and endothelial function during the decision-making process of the most appropriate treatment for a postmenopausal woman.
Collapse
Affiliation(s)
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
153
|
Rainville JR, Lipuma T, Hodes GE. Translating the Transcriptome: Sex Differences in the Mechanisms of Depression and Stress, Revisited. Biol Psychiatry 2022; 91:25-35. [PMID: 33865609 PMCID: PMC10197090 DOI: 10.1016/j.biopsych.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
The past decade has produced a plethora of studies examining sex differences in the transcriptional profiles of stress and mood disorders. As we move forward from accepting the existence of extensive molecular sex differences in the brain to exploring the purpose of these sex differences, our approach must become more systemic and less reductionist. Earlier studies have examined specific brain regions and/or cell types. To use this knowledge to develop the next generation of personalized medicine, we need to comprehend how transcriptional changes across the brain and/or the body relate to each other. We provide an overview of the relationships between baseline and depression/stress-related transcriptional sex differences and explore contributions of preclinically identified mechanisms and their impacts on behavior.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Timothy Lipuma
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia.
| |
Collapse
|
154
|
Weiss E, Leopold-Posch B, Schrüfer A, Cvitic S, Hiden U. Fetal sex and maternal fasting glucose affect neonatal cord blood-derived endothelial progenitor cells. Pediatr Res 2022; 92:1590-1597. [PMID: 35184136 PMCID: PMC9771817 DOI: 10.1038/s41390-022-01966-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Maternal cardiovascular risk factors (CVRF) in pregnancy, i.e., obesity and hyperglycemia, transmit to the fetus and affect placental and fetal endothelial function. Moreover, a sex dimorphism in endothelial function and susceptibility towards CVRF exists already in utero. Endothelial colony-forming cells (ECFC) are circulating endothelial progenitors highly present in neonatal cord blood and sensitive to CVRF. This study investigated whether fetal sex or subtle maternal metabolic changes within healthy range alter fetal ECFC outgrowth. METHODS Outgrowth of ECFC from cord blood of male (n = 31) and female (n = 26) neonates was analyzed after healthy pregnancies and related to fetal sex and maternal metabolic parameters. RESULTS Male ECFC grew out earlier (-20.57% days; p = 0.031) than female. Although all women were non-diabetic, higher levels of fasting plasma glucose (FPG) at midpregnancy increased the time required for colony outgrowth (OR: 1.019; p = 0.030), which, after stratifying for fetal sex, was significant only in the males. Gestational weight gain and BMI did not affect outgrowth. Colony number was unchanged by all parameters. CONCLUSIONS Fetal sex and maternal FPG within normal range alter ECFC function in utero. A role of ECFC in postnatal angiogenesis and vasculogenesis has been suggested, which may be affected by altered outgrowth dynamics. IMPACT This study is the first to report that a sexual dimorphism exists in ECFC function, as cells of female progeny require a longer period of time until colony outgrowth than ECFC of male progeny. Our data show that ECFC function is highly sensitive and affected by maternal glucose levels even in a normal, non-diabetic range. Our data raise the question of whether maternal plasma glucose in pregnancy should be considered to play a critical role even in the non-diabetic setting.
Collapse
Affiliation(s)
- Elisa Weiss
- grid.11598.340000 0000 8988 2476Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Barbara Leopold-Posch
- grid.11598.340000 0000 8988 2476Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Anna Schrüfer
- grid.11598.340000 0000 8988 2476Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Silvija Cvitic
- grid.11598.340000 0000 8988 2476Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
155
|
Association between rs20456 and rs6930913 of Kinesin-Like Family 6 and Hypertension in a Chinese Cohort. Int J Hypertens 2021; 2021:1061800. [PMID: 34961832 PMCID: PMC8710155 DOI: 10.1155/2021/1061800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the relationship between kinesin-like family 6 (KIF6) polymorphisms and hypertension in a northeast Chinese cohort. In this study, two single nucleotide polymorphisms of KIF6 (rs20456 and rs6930913) and their haplotype were analyzed in 382 hypertension patients and 378 controls with SHEsis analysis platform, and the gene-environmental interactions were evaluated with logistic regression analysis. After adjusting for confounding factors, significantly lower risk of hypertension was observed in participants with genotype TC (0.416 (CI 0.299–0.578), p < 0.001) and CC (0.577 (0.389–0.857), p=0.007) of rs20456 compared with TT. For rs6930913, allele T (0.522 (0.386–0.704), p < 0.001), genotype TT (0.325 (0.205–0.515), p < 0.001), and genotype CT (0.513 (0.379–0.693), p < 0.001) were significantly associated with lower risk of hypertension than allele C and CC genotype, respectively. Gene-environment analyses confirmed the significant influence on hypertension by the interactions between genotypes distribution in rs20456 (CT: p=0.036, TT: p=0.022) and smoking status. No interactions were found between smoking and rs6930913, except those with dominant or recessive genetic models (both Ps=0.006). There were no interactions between KIF6 and overweight (all Ps > 0.05). Haplotype analyses showed that CC (p=0.005) and TC (p=0.001) of rs20456 and rs6930913 were significantly associated with a statistically increased risk of hypertension. The false-positive report probability (FPRP) analysis was used to verify significant findings. In conclusions, KIF6 might affect the susceptibility of hypertension. The allele C (rs20456) and allele T (rs690913) were inclined to protect individuals from hypertension both in genotype and haplotype analyses.
Collapse
|
156
|
d'Unienville NMA, Blake HT, Coates AM, Hill AM, Nelson MJ, Buckley JD. Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials. J Int Soc Sports Nutr 2021; 18:76. [PMID: 34965876 PMCID: PMC8715640 DOI: 10.1186/s12970-021-00472-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. METHODS Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). RESULTS One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. CONCLUSION Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. OTHER The review protocol was registered on the Open Science Framework ( https://osf.io/u7nsj ) and no funding was provided.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia. Noah.D'
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia. Noah.D'
| | - Henry T Blake
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Coates
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maximillian J Nelson
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Jonathan D Buckley
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| |
Collapse
|
157
|
Tatalović N, Vidonja Uzelac T, Mijović M, Koželj G, Nikolić-Kokić A, Oreščanin Dušić Z, Bresjanac M, Blagojević D. Ibogaine Has Sex-Specific Plasma Bioavailability, Histopathological and Redox/Antioxidant Effects in Rat Liver and Kidneys: A Study on Females. Life (Basel) 2021; 12:16. [PMID: 35054409 PMCID: PMC8780973 DOI: 10.3390/life12010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Ibogaine induces rapid changes in cellular energetics followed by the elevation of antioxidant activities. As shown earlier in male rats, ibogaine treatment with both 1 and 20 mg/kg b.w. per os led to significant glycogenolytic activity in the liver. In this work, female rats treated with the same doses of ibogaine per os displayed lower liver glycogenolytic activity relative to males, dilatation of the central vein and branches of the portal vein, and increased concentration of thiols 6 h after treatment. These changes were followed by increased catalase activity and lipid peroxidation, and decreased xanthine oxidase activity after 24 h. In kidneys, mild histopathological changes were found in all treated animals, accompanied by a decrease of glutathione reductase (after 6 and 24 h at both doses) and an increase of catalase (6 h) and xanthine oxidase activity (6 and 24 h). Ibogaine did not affect antioxidant enzymes activity in erythrocytes. Bioavailability of ibogaine was two to three times higher in females than males, with similar kinetic profiles. Compared to previous results in males, ibogaine showed sex specific effect at the level of antioxidant cellular system. Effects of ibogaine in rats are sex- and tissue-specific, and also dose- and time-dependent.
Collapse
Affiliation(s)
- Nikola Tatalović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (N.T.); (T.V.U.); (A.N.-K.); (Z.O.D.)
| | - Teodora Vidonja Uzelac
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (N.T.); (T.V.U.); (A.N.-K.); (Z.O.D.)
| | - Milica Mijović
- Institute of Pathology, Faculty of Medicine, University of Priština, Anri Dinana bb, 38220 Kosovska Mitrovica, Serbia;
| | - Gordana Koželj
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (N.T.); (T.V.U.); (A.N.-K.); (Z.O.D.)
| | - Zorana Oreščanin Dušić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (N.T.); (T.V.U.); (A.N.-K.); (Z.O.D.)
| | - Mara Bresjanac
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia;
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (N.T.); (T.V.U.); (A.N.-K.); (Z.O.D.)
| |
Collapse
|
158
|
Willems LH, Nagy M, Ten Cate H, Spronk HMH, Groh LA, Leentjens J, Janssen NAF, Netea MG, Thijssen DHJ, Hannink G, van Petersen AS, Warlé MC. Sustained inflammation, coagulation activation and elevated endothelin-1 levels without macrovascular dysfunction at 3 months after COVID-19. Thromb Res 2021; 209:106-114. [PMID: 34922160 PMCID: PMC8642246 DOI: 10.1016/j.thromres.2021.11.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Endothelial damage and thrombosis caused by COVID-19 may imperil cardiovascular health. More than a year since the WHO declared COVID-19 pandemic, information on its effects beyond the acute phase is lacking. We investigate endothelial dysfunction, coagulation and inflammation, 3 months post-COVID-19. MATERIALS AND METHODS A cohort study was conducted including 203 patients with prior COVID-19. Macrovascular dysfunction was assessed by measuring the carotid artery diameter in response to hand immersion in ice-water. A historic cohort of 312 subjects served as controls. Propensity score matching corrected for baseline differences. Plasma concentrations of endothelin-1 were measured in patients post-COVID-19, during the acute phase, and in matched controls. Coagulation enzyme:inhibitor complexes and inflammatory cytokines were studied. RESULTS AND CONCLUSIONS The prevalence of macrovascular dysfunction did not differ between the COVID-19 (18.6%) and the historic cohort (22.5%, RD -4%, 95%CI: -15-7, p = 0.49). Endothelin-1 levels were significantly higher in acute COVID-19 (1.67 ± 0.64 pg/mL) as compared to controls (1.24 ± 0.37, p < 0.001), and further elevated 3 months post-COVID-19 (2.74 ± 1.81, p < 0.001). Thrombin:antithrombin(AT) was high in 48.3%. Markers of contact activation were increased in 16-30%. FVIIa:AT (35%) and Von Willebrand Factor:antigen (80.8%) were elevated. Inflammatory cytokine levels were high in a majority: interleukin(IL)-18 (73.9%), IL-6 (47.7%), and IL-1ra (48.9%). At 3 months after acute COVID-19 there was no indication of macrovascular dysfunction; there was evidence, however, of sustained endothelial cell involvement, coagulation activity and inflammation. Our data highlight the importance of further studies on SARS-CoV-2 related vascular inflammation and thrombosis, as well as longer follow-up in recovered patients.
Collapse
Affiliation(s)
- L H Willems
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - M Nagy
- Departments of Internal medicine and Biochemistry, MUMC and CARIM School for Cardiovascular diseases, Maastricht, the Netherlands
| | - H Ten Cate
- Departments of Internal medicine and Biochemistry, MUMC and CARIM School for Cardiovascular diseases, Maastricht, the Netherlands; Center for Thrombosis and Haemostasis, Gutenberg University Medical Center, Mainz, Germany
| | - H M H Spronk
- Departments of Internal medicine and Biochemistry, MUMC and CARIM School for Cardiovascular diseases, Maastricht, the Netherlands
| | - L A Groh
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J Leentjens
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - N A F Janssen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - M G Netea
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - D H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands/Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - G Hannink
- Department of Operating Rooms, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - A S van Petersen
- Department of Surgery, Bernhoven Hospital, Uden, the Netherlands
| | - M C Warlé
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
159
|
Cote S, Butler R, Michaud V, Lavallee E, Croteau E, Mendrek A, Lepage J, Whittingstall K. The regional effect of serum hormone levels on cerebral blood flow in healthy nonpregnant women. Hum Brain Mapp 2021; 42:5677-5688. [PMID: 34480503 PMCID: PMC8559491 DOI: 10.1002/hbm.25646] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Sex hormones estrogen (EST) and progesterone (PROG) have received increased attention for their important physiological action outside of reproduction. While studies have shown that EST and PROG have significant impacts on brain function, their impact on the cerebrovascular system in humans remains largely unknown. To address this, we used a multi-modal magnetic resonance imaging (MRI) approach to investigate the link between serum hormones in the follicular phase and luteal phase of the menstrual cycle (MC) with measures of cerebrovascular function (cerebral blood flow [CBF]) and structure (intracranial artery diameter). Fourteen naturally cycling women were recruited and assessed at two-time points of their MC. CBF was derived from pseudo-continuous arterial spin labeling while diameters of the internal carotid and basilar artery was assessed using time of flight magnetic resonance angiography, blood samples were performed after the MRI. Results show that PROG and EST had opposing and spatially distinct effects on CBF: PROG correlated negatively with CBF in anterior brain regions (r = -.86, p < .01), while EST correlations were positive, yet weak and most prominent in posterior areas (r = .78, p < .01). No significant correlations between either hormone or intracranial artery diameter were observed. These results show that EST and PROG have opposing and regionally distinct effects on CBF and that this relationship is likely not due to interactions with large intracranial arteries. Considering that CBF in healthy women appears tightly linked to their current hormonal state, future studies should consider assessing MC-related hormone fluctuations in the design of functional MRI studies in this population.
Collapse
Affiliation(s)
- Samantha Cote
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
| | - Russell Butler
- Faculty of Arts and Sciences, Department of Computer ScienceBishop's UniversitySherbrookeQuebecCanada
| | - Vincent Michaud
- Department of Diagnostic RadiologyUniversity of SherbrookeSherbrookeQuebecCanada
| | - Eric Lavallee
- Sherbrooke Molecular Imaging Center (CIMS), Sherbrooke University Hospital Research Center (CR‐CHUS)SherbrookeQuebecCanada
| | - Etienne Croteau
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
- Sherbrooke Molecular Imaging Center (CIMS), Sherbrooke University Hospital Research Center (CR‐CHUS)SherbrookeQuebecCanada
| | - Adrianna Mendrek
- Faculty of Arts and Sciences, Department of PsychologyBishop's UniversitySherbrookeQuebecCanada
| | - Jean‐Francois Lepage
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
- Faculty of Medicine and Health Sciences, Department of PediatricsUniversity of SherbrookeSherbrookeQuebecCanada
| | - Kevin Whittingstall
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
- Department of Diagnostic RadiologyUniversity of SherbrookeSherbrookeQuebecCanada
| |
Collapse
|
160
|
Abstract
Menopause transition marks an important phase in life when cardiovascular risk in women gradually takes an adverse turn. Although menopausal hormone therapy has gained a negative appreciation over the last decades, its value in the treatment of disabling vasomotor symptoms is still undisputed. Cardiovascular risk assessment has become a matter of precision medicine, which is helpful for safe menopausal hormone therapy prescription. With a multidisciplinary approach the current available hormone regimens can be even given to women at intermediate cardiovascular risk, when risk factors such as hypertension and dyslipidemia are adequately monitored and treated.
Collapse
Affiliation(s)
- Angela H E M Maas
- Chair Women's Cardiovascular Health Program, Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
161
|
Song Y, Li J, Liu L, Xu R, Zhou Z, Xu B, Lin T, Chen P, Li H, Li Y, Liu C, Huang X, Wang B, Zhang Y, Li J, Huo Y, Ren F, Xu X, Zhang H, Qin X. Plasma Vitamin E and the Risk of First Stroke in Hypertensive Patients: A Nested Case-Control Study. Front Nutr 2021; 8:734580. [PMID: 34805240 PMCID: PMC8595403 DOI: 10.3389/fnut.2021.734580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The association between plasma vitamin E levels and first stroke risk in men and women remains unclear. Objective: We aimed to examine the prospective association between plasma vitamin E and first stroke, and evaluate the effect modifiers for the association, among hypertensive patients. Design: The study sample was drawn from the China Stroke Primary Prevention Trial (CSPPT), which randomized a total of 20,702 hypertensive patients to a double-blind, daily treatment with either 10 mg enalapril and 0.8 mg folic acid or 10 mg enalapril alone. This nested case-control study, including 618 first stroke cases and 618 controls matched for age, sex, treatment group, and study site, was conducted after the completion of the CSPPT. Results: The median follow-up duration was 4.5 years. Among men, a significantly higher risk of first stroke (adjusted OR, 1.67; 95%CI: 1.01, 2.77) was found for those with plasma vitamin E ≥7.1 μg/mL (≥quartile 1) compared with those with plasma vitamin E < 7.1 μg/mL. Subgroup analyses further showed that the association between vitamin E (≥7.1 vs. <7.1 μg/mL) and first stroke in men was significantly stronger in non-drinkers (adjusted OR, 2.64; 95%CI: 1.41, 4.96), compared to current drinkers (adjusted OR, 0.84; 95% CI: 0.43, 1.66, P-interaction = 0.008). However, there was no significant association between plasma vitamin E and first stroke in women (P-interaction between sex and plasma vitamin E = 0.048). Conclusions: Among Chinese hypertensive patients, there was a statistically significant positive association between baseline plasma vitamin E and the risk of first stroke in men, but not in women. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT00794885, Identifier: NCT00794885.
Collapse
Affiliation(s)
- Yun Song
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China.,Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Jingyi Li
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lishun Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Richard Xu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ziyi Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Benjamin Xu
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Tengfei Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Huan Li
- National Clinical Research Study Center for Kidney Disease, Southern Medical University, Guangzhou, China.,The State Key Laboratory for Organ Failure Research, Southern Medical University, Guangzhou, China.,Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youbao Li
- National Clinical Research Study Center for Kidney Disease, Southern Medical University, Guangzhou, China.,The State Key Laboratory for Organ Failure Research, Southern Medical University, Guangzhou, China.,Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengzhang Liu
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,Department of Scientific Research, Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Xiao Huang
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,Department of Scientific Research, Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiping Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China.,National Clinical Research Study Center for Kidney Disease, Southern Medical University, Guangzhou, China.,The State Key Laboratory for Organ Failure Research, Southern Medical University, Guangzhou, China.,Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xianhui Qin
- National Clinical Research Study Center for Kidney Disease, Southern Medical University, Guangzhou, China.,The State Key Laboratory for Organ Failure Research, Southern Medical University, Guangzhou, China.,Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
162
|
Ferreira C, Trindade F, Ferreira R, Neves JS, Leite-Moreira A, Amado F, Santos M, Nogueira-Ferreira R. Sexual dimorphism in cardiac remodeling: the molecular mechanisms ruled by sex hormones in the heart. J Mol Med (Berl) 2021; 100:245-267. [PMID: 34811581 DOI: 10.1007/s00109-021-02169-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is growing in prevalence, due to an increase in aging and comorbidities. Heart failure with reduced ejection fraction (HFrEF) is more common in men, whereas heart failure with preserved ejection fraction (HFpEF) has a higher prevalence in women. However, the reasons for these epidemiological trends are not clear yet. Since HFpEF affects mostly postmenopausal women, sex hormones should play a pivotal role in HFpEF development. Furthermore, for HFpEF, contrary to HFrEF, effective therapeutic approaches are missing. Interestingly, studies evidenced that some therapies can have better results in women than in HFpEF men, emphasizing the necessity of understanding these observations at a molecular level. Thus, herein, we review the molecular mechanisms of estrogen and androgen actions in the heart in physiological conditions and explain how its dysregulation can lead to disease development. This clarification is essential in the road for an effective personalized management of HF, particularly HFpEF, towards the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Cláudia Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Department of Cardiology, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal.
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
163
|
Mattioli AV, Coppi F, Manenti A, Farinetti A. Subclinical Vascular Damage: Current Insights and Future Potential. Vasc Health Risk Manag 2021; 17:729-738. [PMID: 34866906 PMCID: PMC8633547 DOI: 10.2147/vhrm.s242636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
The cardiovascular risk assessment must be carried out during all the different phases of life because the cardiovascular risk and the related prevention actions are dynamic and constantly evolving. As patients age, they change their exposure to various risk factors and accumulate comorbidities by changing their subjective cardiovascular risk, so it is necessary to undertake personalized early and preventive diagnostic actions. The main approach to asymptomatic vascular disease is based on primary prevention with the adoption of a healthy lifestyle. Indeed, lifestyle influences most of the traditional risk factors. In recent years, important differences between the sexes regarding cardiovascular risk factors have emerged and in particular, risk factors specific for female sex have been identified. Women are more likely to be categorized into lower risk categories for cardiovascular disease and, as a result, receive less lifestyle counseling than men, as well as less intensive prevention. This narrative review aims to analyze CVD risk prevention in asymptomatic atherosclerosis with a look at new emerging factors. In the end, we quickly analyzed the effects of the recent pandemic on lifestyle and cardiovascular risk and the potential negative effects in the long term.
Collapse
Affiliation(s)
- Anna Vittoria Mattioli
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Antonio Manenti
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Farinetti
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
164
|
Molbo L, Hansen RK, Østergaard LR, Frøkjær JB, Larsen RG. Sex differences in microvascular function across lower leg muscles in humans. Microvasc Res 2021; 139:104278. [PMID: 34774583 DOI: 10.1016/j.mvr.2021.104278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022]
Abstract
Studies have reported sex-based differences in conduit artery function, however little is known about possible sex-based differences in microvascular function, and possible influence of muscle group. Blood-oxygen-level-dependent (BOLD) MR images acquired during ischemia-reperfusion assess the reactive hyperemic response in the microvasculature of skeletal muscle. We tested the hypothesis that women have greater microvascular reactivity, reflected by faster time-to-peak (TTP) and time-to-half-peak (TTHP) of the BOLD response, across all lower leg muscles. In healthy, young men (n = 18) and women (n = 12), BOLD images of both lower legs were acquired continuously during 30 s of rest, 5 min of cuff occlusion and 2 min of reperfusion, in a 3 T MR scanner. Segmentation of tibialis anterior (TA), soleus (SO), gastrocnemius medial (GM), and the peroneal group (PG) were performed using image registration, and TTP and TTHP of the BOLD response were determined for each muscle. Overall, women had faster TTP (p = 0.001) and TTHP (p = 0.01) than men. Specifically, women had shorter TTP and TTHP in TA (27.5-28.4%), PG (33.9-41.6%), SO (14.7-19.7%) and GM (15.4-18.8%). Overall, TTP and TTHP were shorter in TA compared with PG (25.1-31.1%; p ≤ 0.007), SO (14.3-16%; p ≤ 0.03) and GM (15.6-26%; p ≤ 0.01). Intra class correlations analyses showed large variation in absolute agreement (range: 0.10-0.81) of BOLD parameters between legs (within distinct muscles). Faster TTP and TTHP across all lower leg muscles, in women, provide novel evidence of sex-based differences in microvascular function of young adults matched for age, body mass index, and physical activity level.
Collapse
Affiliation(s)
- Lars Molbo
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
165
|
Abbott LS, Killian MO, Graven LJ, Williams KJ. Latent profile analysis of stress and resilience among rural women: A cross-sectional study. Public Health Nurs 2021; 39:536-544. [PMID: 34750856 DOI: 10.1111/phn.13005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023]
Abstract
Stress is a cardiovascular disease risk factor, and resilience may serve as a buffer for stress. Little is known about stress and resilience among rural women. OBJECTIVE The purposes of this study were to identify profiles of rural women based upon indicators of psychosocial and environmental stress and to examine the relationships between the identified profiles and resilience. DESIGN AND SAMPLE A cross-sectional, descriptive design was used to explore stress, social support, and resilience among a representative sample of women (n = 354). MEASURES Data were collected to measure perceived stress, social support, chronic stress, and resilience. RESULTS A latent profile analysis identified three profiles (59.9% Low Stress, 25.4% Moderate Stress, and 14.7% High Stress). Women in the High Stress profile were less likely to afford necessities and have attended college and more likely to be employed. Women in the Low Stress profile had the highest scores for all five resilience subscales. CONCLUSION The current study demonstrates the social and environmental impact of stress and how this stress can manifest differently for different women. Underserved women may benefit from strategies that reduce stress and improve social support and resilience. Future research is needed for advancing health equity in rural populations.
Collapse
Affiliation(s)
- Laurie S Abbott
- Florida State University College of Nursing, Tallahassee, Florida, USA
| | - Michael O Killian
- Florida State University College of Social Work, Tallahassee, Florida, USA
| | - Lucinda J Graven
- Florida State University College of Nursing, Tallahassee, Florida, USA
| | - Krystal J Williams
- Florida Agricultural & Mechanical University College of Pharmacy and Pharmaceutical Sciences, Tallahassee, Florida, USA
| |
Collapse
|
166
|
Kumar N, Zuo Y, Yalavarthi S, Hunker KL, Knight JS, Kanthi Y, Obi AT, Ganesh SK. SARS-CoV-2 Spike Protein S1-Mediated Endothelial Injury and Pro-Inflammatory State Is Amplified by Dihydrotestosterone and Prevented by Mineralocorticoid Antagonism. Viruses 2021; 13:2209. [PMID: 34835015 PMCID: PMC8617813 DOI: 10.3390/v13112209] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
Men are disproportionately affected by the coronavirus disease-2019 (COVID-19), and face higher odds of severe illness and death compared to women. The vascular effects of androgen signaling and inflammatory cytokines in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated endothelial injury are not defined. We determined the effects of SARS-CoV-2 spike protein-mediated endothelial injury under conditions of exposure to androgen dihydrotestosterone (DHT) and tumor necrosis factor-a (TNF-α) and tested potentially therapeutic effects of mineralocorticoid receptor antagonism by spironolactone. Circulating endothelial injury markers VCAM-1 and E-selectin were measured in men and women diagnosed with COVID-19. Exposure of endothelial cells (ECs) in vitro to DHT exacerbated spike protein S1-mediated endothelial injury transcripts for the cell adhesion molecules E-selectin, VCAM-1 and ICAM-1 and anti-fibrinolytic PAI-1 (p < 0.05), and increased THP-1 monocyte adhesion to ECs (p = 0.032). Spironolactone dramatically reduced DHT+S1-induced endothelial activation. TNF-α exacerbated S1-induced EC activation, which was abrogated by pretreatment with spironolactone. Analysis from patients hospitalized with COVID-19 showed concordant higher circulating VCAM-1 and E-Selectin levels in men, compared to women. A beneficial effect of the FDA-approved drug spironolactone was observed on endothelial cells in vitro, supporting a rationale for further evaluation of mineralocorticoid antagonism as an adjunct treatment in COVID-19.
Collapse
Affiliation(s)
- Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.K.); (K.L.H.); (Y.K.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu Zuo
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.Z.); (S.Y.); (J.S.K.)
| | - Srilakshmi Yalavarthi
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.Z.); (S.Y.); (J.S.K.)
| | - Kristina L. Hunker
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.K.); (K.L.H.); (Y.K.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason S. Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.Z.); (S.Y.); (J.S.K.)
| | - Yogendra Kanthi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.K.); (K.L.H.); (Y.K.)
- National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Andrea T. Obi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.K.); (K.L.H.); (Y.K.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
167
|
Jiménez-Sánchez L, Hamilton OKL, Clancy U, Backhouse EV, Stewart CR, Stringer MS, Doubal FN, Wardlaw JM. Sex Differences in Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:756887. [PMID: 34777227 PMCID: PMC8581736 DOI: 10.3389/fneur.2021.756887] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Cerebral small vessel disease (SVD) is a common cause of stroke, mild cognitive impairment, dementia and physical impairments. Differences in SVD incidence or severity between males and females are unknown. We assessed sex differences in SVD by assessing the male-to-female ratio (M:F) of recruited participants and incidence of SVD, risk factor presence, distribution, and severity of SVD features. Methods: We assessed four recent systematic reviews on SVD and performed a supplementary search of MEDLINE to identify studies reporting M:F ratio in covert, stroke, or cognitive SVD presentations (registered protocol: CRD42020193995). We meta-analyzed differences in sex ratios across time, countries, SVD severity and presentations, age and risk factors for SVD. Results: Amongst 123 relevant studies (n = 36,910 participants) including 53 community-based, 67 hospital-based and three mixed studies published between 1989 and 2020, more males were recruited in hospital-based than in community-based studies [M:F = 1.16 (0.70) vs. M:F = 0.79 (0.35), respectively; p < 0.001]. More males had moderate to severe SVD [M:F = 1.08 (0.81) vs. M:F = 0.82 (0.47) in healthy to mild SVD; p < 0.001], and stroke presentations where M:F was 1.67 (0.53). M:F did not differ for recent (2015-2020) vs. pre-2015 publications, by geographical region, or age. There were insufficient sex-stratified data to explore M:F and risk factors for SVD. Conclusions: Our results highlight differences in male-to-female ratios in SVD severity and amongst those presenting with stroke that have important clinical and translational implications. Future SVD research should report participant demographics, risk factors and outcomes separately for males and females. Systematic Review Registration: [PROSPERO], identifier [CRD42020193995].
Collapse
Affiliation(s)
- Lorena Jiménez-Sánchez
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivia K. L. Hamilton
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Una Clancy
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ellen V. Backhouse
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Catriona R. Stewart
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Fergus N. Doubal
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
168
|
Rathod KS, Jones DA, Jain AK, Lim P, MacCarthy PA, Rakhit R, Lockie T, Kalra S, Dalby MC, Malik IS, Whitbread M, Firoozi S, Bogle R, Redwood S, Cooper J, Gupta A, Lansky A, Wragg A, Mathur A, Ahluwalia A. The influence of biological age and sex on long-term outcome after percutaneous coronary intervention for ST-elevation myocardial infarction. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2021; 11:659-678. [PMID: 34849299 PMCID: PMC8611266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Outcome following ST-segment elevation myocardial infarction (STEMI) is thought to be worse in women than in age-matched men. We assessed whether such differences occur in the UK Pan-London dataset and if age, and particularly menopause, influences upon outcome. METHODS We undertook an observational cohort study of 26,799 STEMI patients (20,633 men, 6,166 women) between 2005-2015 at 8 centres across London, UK. Patient details were recorded at the time of the procedure into local databases using the British Cardiac Intervention Society (BCIS) PCI dataset. Primary outcome was all-cause mortality at a median follow-up of 4.1 years (IQR: 2.2-5.8 years). RESULTS Kaplan-Meier analysis demonstrated a higher mortality rate in women versus men (15.6% men vs. 25.3% women, P<0.0001). Univariate Cox analysis revealed that female sex was a predictor of all-cause mortality (HR: 1.69 95% CI: 1.59-1.82). However, after multivariate adjustment, this effect of female sex diminished (HR: 1.05 95% CI: 0.90-1.25). In a sub-group analysis, we compared the sexes separated by age into the ≤55 and the >55 year olds. Age-stratified Cox analysis revealed that female sex was a univariate predictor of all-cause mortality (HR: 1.60 95% CI: 1.25-2.05) in the ≤55 group and in the >55 group (HR: 1.38 95% CI: 1.28-1.47). However, after regression adjustment incorporating the propensity score into a proportional hazard model as a covariate, whilst female sex was not a significant predictor of all-cause mortality in the ≤55 group it was a predictor in the >55 group. Moreover, whilst age did not influence outcome in <55 group, this effect in the >55 group was correlated with age. CONCLUSIONS Overall women have a worse all-cause mortality following primary PCI for STEMI compared to men. However, this effect was driven predominantly by women >55 years of age since after adjusting for co-morbidities the risk in younger women did not differ significantly from that in men. These observations support the view that as women advance past the menopausal years their risk of further events following revascularization increases substantially and we suggest that routine assessment of hormonal status may improve clinical decision-making and ultimately outcome for women post-PCI.
Collapse
Affiliation(s)
- Krishnaraj S Rathod
- Barts Health NHS TrustLondon, United Kingdom
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of LondonLondon, United Kingdom
| | - Daniel A Jones
- Barts Health NHS TrustLondon, United Kingdom
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of LondonLondon, United Kingdom
| | - Ajay K Jain
- Barts Health NHS TrustLondon, United Kingdom
| | - Pitt Lim
- St. George’s Healthcare NHS Foundation Trust, St. George’s HospitalLondon, United Kingdom
| | - Philip A MacCarthy
- Kings College Hospital, King’s College Hospital NHS Foundation TrustDenmark Hill, London, United Kingdom
| | - Roby Rakhit
- Royal Free London NHS Foundation TrustPond Street, London, United Kingdom
| | - Tim Lockie
- Royal Free London NHS Foundation TrustPond Street, London, United Kingdom
| | - Sundeep Kalra
- Royal Free London NHS Foundation TrustPond Street, London, United Kingdom
| | - Miles C Dalby
- Royal Brompton & Harefield NHS Foundation Trust, Harefield HospitalHill End Road, Middlesex, United Kingdom
| | - Iqbal S Malik
- Imperial College Healthcare NHS Foundation Trust, Hammersmith HospitalDu Cane Road, London, United Kingdom
| | - Mark Whitbread
- London Ambulance Service NHS TrustLondon, United Kingdom
| | - Sam Firoozi
- St. George’s Healthcare NHS Foundation Trust, St. George’s HospitalLondon, United Kingdom
| | - Richard Bogle
- St. George’s Healthcare NHS Foundation Trust, St. George’s HospitalLondon, United Kingdom
| | - Simon Redwood
- St. Thomas’ NHS Foundation Trust, Guys & St. Thomas HospitalWestminster Bridge Rd, London, United Kingdom
| | - Jackie Cooper
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of LondonLondon, United Kingdom
| | - Ajay Gupta
- Barts Health NHS TrustLondon, United Kingdom
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of LondonLondon, United Kingdom
| | - Alexandra Lansky
- Barts Health NHS TrustLondon, United Kingdom
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of LondonLondon, United Kingdom
- Section of Cardiology, Yale University School of MedicineNew Haven CT, USA
| | | | - Anthony Mathur
- Barts Health NHS TrustLondon, United Kingdom
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of LondonLondon, United Kingdom
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of LondonLondon, United Kingdom
| |
Collapse
|
169
|
Liu W, Li Y, Wu Z, Hai K, Wang Y, Zhou X, Ye Q. Heparin alleviates LPS-induced endothelial injury by regulating the TLR4/MyD88 signaling pathway. Exp Ther Med 2021; 22:1397. [PMID: 34650645 PMCID: PMC8506914 DOI: 10.3892/etm.2021.10833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heparin is a commonly used in the clinic, however, Heparin's effect on endothelial injury remains unclear. The aim of the present study was to evaluate the effects and possible mechanisms of action underlying heparin treatment in lipopolysaccharide (LPS)-induced endothelial injury in vitro. TNF-α, IL-1β, IL-6 and IFN-γ levels were measured using ELISA. Cell proliferation was measured using a 5-ethynyl-2'-deoxyuridine (EdU) assay. The number of apoptotic cells and apoptotic rate were evaluated using TUNEL assays and flow cytometry, respectively. Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88) and NF-κB (p65) gene expression was evaluated using reverse transcription-quantitative PCR, whilst TLR4, MyD88 and p-NF-κB (p65) protein expression was evaluated using western blot analysis. The levels of phosphorylated NF-κB in the nucleus were evaluated using cellular immunofluorescence. Compared with those in the normal control group, TNF-α, IL-1β, IL-6 and IFN-γ levels were significantly increased in the LPS group (P<0.001). In addition, 5-ethynyl-2'-deoxyuridine (EdU)-positive cells were significantly increased and apoptosis was significantly decreased (P<0.001). TLR4, MyD88 and NF-κB (p65) expression was also significantly increased (P<0.001). Compared with those in the LPS group, following heparin treatment, TNF-α, IL-1β, IL-6 and IFN-γ levels were significantly decreased (P<0.05), whilst the number of EdU-positive cells was significantly increased and the level of apoptosis was significantly decreased (P<0.05). TLR4, MyD88 and NF-κB (p65) expression was also significantly decreased by heparin in a dose-dependent manner (P<0.001). Small interfering RNA-TLR4 transfection exerted similar effects to those mediated by heparin in alleviating endothelial injury. In conclusion, heparin suppressed LPS-induced endothelial injury through the regulation of TLR4/MyD88/NF-κB (p65) signaling in vitro.
Collapse
Affiliation(s)
- Wenxun Liu
- Anesthesia Specialty, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750002, P.R. China
| | - Yan Li
- Anesthesia Specialty, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750002, P.R. China
| | - Zhaozhao Wu
- Department of Anesthesiology, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Kerong Hai
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750002, P.R. China.,Ningxia Anesthesia Clinical Medical Research Center, Yinchuan, Ningxia 750002, P.R. China
| | - Yun Wang
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750002, P.R. China.,Ningxia Anesthesia Clinical Medical Research Center, Yinchuan, Ningxia 750002, P.R. China
| | - Xiaohong Zhou
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750002, P.R. China.,Ningxia Anesthesia Clinical Medical Research Center, Yinchuan, Ningxia 750002, P.R. China
| | - Qingshan Ye
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750002, P.R. China.,Ningxia Anesthesia Clinical Medical Research Center, Yinchuan, Ningxia 750002, P.R. China
| |
Collapse
|
170
|
Mascone SE, Chesney CA, Eagan LE, Ranadive SM. Similar inflammatory response and conduit artery vascular function between sexes following induced inflammation. Exp Physiol 2021; 106:2276-2285. [PMID: 34605100 DOI: 10.1113/ep089913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are there sex differences in vascular function following induced inflammation when oestrogen is typically similar between sexes? What is the main finding and its importance? The present study suggests no sex differences in conduit artery vascular responses to acutely induced inflammation during the low-oestrogen phase of the menstrual cycle in premenopausal women. However, women exhibit lower microvascular function than men. Overall, the results underpin the role of oestrogen in previously observed sex differences and the importance of reporting the phase in the hormonal cycle when women are studied. ABSTRACT Sex differences in cardiovascular disease incidence in premenopausal women and age-matched men have been attributed to the cardioprotective influence of oestrogen. However, limited knowledge exists regarding sex differences following acute inflammation when oestrogen concentrations are lower in women. We evaluated sex differences in vascular responses to induced inflammation when oestrogen concentrations are typically lower in women (early follicular phase or placebo phase of hormonal contraception). In 15 women and 14 men, interleukin-6 (IL-6) concentrations and vascular function [via brachial artery flow-mediated dilatation (FMD)] were assessed at baseline (BL) and 24 (24H) and 48 hours (48H) after administration of influenza vaccine. After induction of inflammation, both sexes exhibited an increase in IL-6 concentrations at 24H [mean (SD) BL vs. 24H: women, 0.563 (0.50) vs. 1.141 (0.65) pg/ml; men, 0.385 (0.17) vs. 1.113 (0.69) pg/ml; P < 0.05] that returned to near-baseline concentrations by 48H (BL vs. 48H, P > 0.05). There were no sex differences in FMD, allometrically scaled FMD or IL-6 concentrations at any time point (P > 0.05). Notably, women exhibited significantly lower microvascular function than men at every time point [P < 0.05; reactive hyperaemic area under the curve (in arbitrary units): women, BL 35,512 (14,916), 24H 34,428 (14,292) and 48H 39,467 (13,936); men, BL 61,748 (27,324), 24H 75,028 (29,051) and 48H 59,532 (13,960)]. When oestrogen concentrations are typically lower in women, women exhibit a similar inflammatory response and conduit artery function, but lower microvascular response to reactive hyperaemia, in comparison to age-matched men.
Collapse
Affiliation(s)
- Sara E Mascone
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
171
|
Hellgren MI, Jansson PA, Alayar H, Lindblad U, Daka B. Circulating endothelin-1 levels are positively associated with chronic kidney disease in women but not in men: a longitudinal study in the Vara-Skövde cohort. BMC Nephrol 2021; 22:327. [PMID: 34600499 PMCID: PMC8487112 DOI: 10.1186/s12882-021-02525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/09/2021] [Indexed: 11/14/2022] Open
Abstract
Background The vasoconstricting peptide endothelin-1 (ET-1) is associated with endothelial dysfunction. The aim of this paper was to investigate whether circulating ET-1 levels predicts chronic kidney disease (CKD) in a prospective population study. Methods In 2002–2005, 2816 participants (30–74 years) were randomly selected from two municipalities in South-Western Sweden and followed up in a representative sample of 1327 individuals after 10 years. Endothelin-1 levels were assessed at baseline. Outcome was defined as CKD stage 3 or above based on eGFR < 60 mL/min/1.73m2. Those 1314 participants with successful analysis of ET-1 were further analyzed using binary logistic regression. Results At follow-up, 51 (8%) men and 47 (7,8%) women had CKD stage 3 and above. Based on levels of ET-1 the population was divided into quintiles showing that women in the highest quintile (n = 132) had a significantly increased risk of developing CKD during the follow up period (OR = 2.54, 95% CI:1.19–5.45, p = 0.02) compared with the other quintiles (1–4). The association was borderline significant after adjusted for age, current smoking, alcohol consumption, hypertension, diabetes, BMI, high- sensitive CRP and LDL-cholesterol (OR = 2.25, 95% CI:0.97–5.24, p = 0.06). No significant differences were observed between quintiles of ET-1 and development of CKD in men (NS). Conclusions High levels of ET-1 are associated with development of CKD in women.
Collapse
Affiliation(s)
- Margareta I Hellgren
- Department of Public Health and Community Medicine/Primary Health Care, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Per-Anders Jansson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Hormoz Alayar
- Department of Public Health and Community Medicine/Primary Health Care, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ulf Lindblad
- Department of Public Health and Community Medicine/Primary Health Care, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bledar Daka
- Department of Public Health and Community Medicine/Primary Health Care, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
172
|
Barros MPD, Bachi ALL, Santos JDMBD, Lambertucci RH, Ishihara R, Polotow TG, Caldo-Silva A, Valente PA, Hogervorst E, Furtado GE. The poorly conducted orchestra of steroid hormones, oxidative stress and inflammation in frailty needs a maestro: Regular physical exercise. Exp Gerontol 2021; 155:111562. [PMID: 34560197 DOI: 10.1016/j.exger.2021.111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
This review outlines the various factors associated with unhealthy aging which includes becoming frail and dependent. With many people not engaging in recommended exercise, facilitators and barriers to engage with exercise must be investigated to promote exercise uptake and adherence over the lifespan for different demographics, including the old, less affluent, women, and those with different cultural-ethnic backgrounds. Governmental and locally funded public health messages and environmental facilitation (gyms, parks etc.) can play an important role. Studies have shown that exercise can act as a conductor to balance oxidative stress, immune and endocrine functions together to promote healthy aging and reduce the risk for age-related morbidities, such as cardiovascular disease and atherosclerosis, and promote cognition and mood over the lifespan. Like a classic symphony orchestra, consisting of four groups of related musical instruments - the woodwinds, brass, percussion, and strings - the aging process should also perform in harmony, with compassion, avoiding the aggrandizement of any of its individual parts during the presentation. This review discusses the wide variety of molecular, cellular and endocrine mechanisms (focusing on the steroid balance) underlying this process and their interrelationships.
Collapse
Affiliation(s)
- Marcelo Paes de Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil.
| | - André Luís Lacerda Bachi
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | | | | | - Rafael Ishihara
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Tatiana Geraldo Polotow
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil
| | - Adriana Caldo-Silva
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Pedro Afonso Valente
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Eef Hogervorst
- Applied Cognitive Research National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Guilherme Eustáquio Furtado
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal; Institute Polytechnic of Maia, Porto, Portugal; University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal.
| |
Collapse
|
173
|
Chandra PK, Cikic S, Baddoo MC, Rutkai I, Guidry JJ, Flemington EK, Katakam PV, Busija DW. Transcriptome analysis reveals sexual disparities in gene expression in rat brain microvessels. J Cereb Blood Flow Metab 2021; 41:2311-2328. [PMID: 33715494 PMCID: PMC8392780 DOI: 10.1177/0271678x21999553] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sex is an important determinant of brain microvessels (MVs) function and susceptibility to cerebrovascular and neurological diseases, but underlying mechanisms are unclear. Using high throughput RNA sequencing analysis, we examined differentially expressed (DE) genes in brain MVs from young, male, and female rats. Bioinformatics analysis of the 23,786 identified genes indicates that 298 (1.2%) genes were DE using False Discovery Rate criteria (FDR; p < 0.05), of which 119 (40%) and 179 (60%) genes were abundantly expressed in male and female MVs, respectively. Nucleic acid binding, enzyme modulator, and transcription factor were the top three DE genes, which were more highly expressed in male than female MVs. Synthesis of glycosylphosphatidylinositol (GPI), biosynthesis of GPI-anchored proteins, steroid and cholesterol synthesis, were the top three significantly enriched canonical pathways in male MVs. In contrast, respiratory chain, ribosome, and 3 ́-UTR-mediated translational regulation were the top three enriched canonical pathways in female MVs. Different gene functions of MVs were validated by proteomic analysis and western blotting. Our novel findings reveal major sex disparities in gene expression and canonical pathways of MVs and these differences provide a foundation to study the underlying mechanisms and consequences of sex-dependent differences in cerebrovascular and other neurological diseases.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessie J Guidry
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad Vg Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
174
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
175
|
James BD, Allen JB. Sex-Specific Response to Combinations of Shear Stress and Substrate Stiffness by Endothelial Cells In Vitro. Adv Healthc Mater 2021; 10:e2100735. [PMID: 34142471 PMCID: PMC8458248 DOI: 10.1002/adhm.202100735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/25/2022]
Abstract
By using a full factorial design of experiment, the combinatorial effects of biological sex, shear stress, and substrate stiffness on human umbilical vein endothelial cell (HUVEC) spreading and Yes-associated protein 1 (YAP1) activity are able to be efficiently evaluated. Within the range of shear stress (0.5-1.5 Pa) and substrate stiffness (10-100 kPa), male HUVECs are smaller than female HUVECs. Only with sufficient mechanical stimulation do they spread to a similar size. More importantly, YAP1 nuclear localization in female HUVECs is invariant to mechanical stimulation within the range of tested conditions whereas for male HUVECs it increases nonlinearly with increasing shear stress and substrate stiffness. The sex-specific response of HUVECs to combinations of shear stress and substrate stiffness reinforces the need to include sex as a biological variable and multiple mechanical stimuli in experiments, informs the design of precision biomaterials, and offers insight for understanding cardiovascular disease sexual dimorphisms. Moreover, here it is illustrated that different complex mechanical microenvironments can lead to sex-specific phenotypes and sex invariant phenotypes in cultured endothelial cells.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| |
Collapse
|
176
|
Nelson V, Patil V, Simon LR, Schmidt K, McCoy CM, Masters KS. Angiogenic Secretion Profile of Valvular Interstitial Cells Varies With Cellular Sex and Phenotype. Front Cardiovasc Med 2021; 8:736303. [PMID: 34527715 PMCID: PMC8435671 DOI: 10.3389/fcvm.2021.736303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 12/05/2022] Open
Abstract
Angiogenesis is a hallmark of fibrocalcific aortic valve disease (CAVD). An imbalance of pro- and anti-angiogenic factors is thought to play a role in driving this disease process, and valvular interstitial cells (VICs) may act as a significant source of these factors. CAVD is also known to exhibit sexual dimorphism in its presentation, and previous work suggested that VICs may exhibit cellular-scale sex differences in the context of angiogenesis. The current study sought to investigate the production of angiogenesis-related factors by male and female VICs possessing quiescent (qVIC) or activated (aVIC) phenotypes. Production of several pro-angiogenic growth factors was elevated in porcine aVICs relative to qVICs, with sex differences found in both the total amounts secreted and their distribution across media vs. lysate. Porcine valvular endothelial cells (VECs) were also sex-separated in culture and found to behave similarly with respect to metabolic activity, viability, and tubulogenesis, but male VECs exhibited higher proliferation rates than female VECs. VECs responded to sex-matched media conditioned by VICs with increased tubulogenesis, but decreased proliferation, particularly upon treatment with aVIC-derived media. It is likely that this attenuation of proliferation resulted from a combination of decreased basic fibroblast growth factor and increased thrombospondin-2 (TSP2) secreted by aVICs. Overall, this study indicates that VICs regulate angiogenic VEC behavior via an array of paracrine molecules, whose secretion and sequestration are affected by both VIC phenotype and sex. Moreover, strong sex differences in TSP2 secretion by VICs may have implications for understanding sexual dimorphism in valve fibrosis, as TSP2 is also a powerful regulator of fibrosis.
Collapse
Affiliation(s)
- Victoria Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Vaidehi Patil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - LaTonya R. Simon
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Kelsey Schmidt
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Chloe M. McCoy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
177
|
Dawson A, Wang Y, Li Y, LeMaire SA, Shen YH. New Technologies With Increased Precision Improve Understanding of Endothelial Cell Heterogeneity in Cardiovascular Health and Disease. Front Cell Dev Biol 2021; 9:679995. [PMID: 34513826 PMCID: PMC8430032 DOI: 10.3389/fcell.2021.679995] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Endothelial cells (ECs) are vital for blood vessel integrity and have roles in maintaining normal vascular function, healing after injury, and vascular dysfunction. Extensive phenotypic heterogeneity has been observed among ECs of different types of blood vessels in the normal and diseased vascular wall. Although ECs with different phenotypes can share common functions, each has unique features that may dictate a fine-tuned role in vascular health and disease. Recent studies performed with single-cell technology have generated powerful information that has significantly improved our understanding of EC biology. Here, we summarize a variety of EC types, states, and phenotypes recently identified by using new, increasingly precise techniques in transcriptome analysis.
Collapse
Affiliation(s)
- Ashley Dawson
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Yidan Wang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Scott A. LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, United States
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
178
|
Velosa-Porras J, E. Arregoces FM, L. Uriza C, Ruiz AJ. Endothelial Dysfunction, its Relationship with Chronic Periodontal Disease, and other Associated Risk Factors. Open Dent J 2021. [DOI: 10.2174/1874210602115010377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Chronic periodontitis is related to individual characteristics. However, it is precisely infectious in nature with the possibility of generating a chronic systemic inflammatory response that could favour its association with diseases, such as endothelial dysfunction, hypertension, CVD, and diabetes.
Purpose:
The aim of the study was to analyze the relationship of endothelial dysfunction measured by flow-mediated vasodilation in the brachial artery with periodontal disease and other possible factors.
Methods:
A case-control study was carried out in which those who had periodontitis were defined as cases, and those who were periodontally healthy or had gingivitis were defined as controls. A clinical history was obtained from all patients, and all patients underwent biofilm control and periodontal examinations. Blood tests were performed to determine CBC, glycaemia, total cholesterol, HDL-C, and LDL-C levels, and standardized procedures were used to measure flow-mediated dilation.
Results:
A total of 202 patients were included in this study: 101 controls [healthy/gingivitis] and 101 cases [periodontitis]. Regarding sex, glycaemia [p = 0.019] and triglycerides [p = 0.001] levels and initial flow-mediated vasodilation [p = 0.001] and final flow-mediated vasodilation [p = 0.001] values were higher in men, while HDL values were lower [p = 0.001. The average age was higher for those in the group that presented dysfunction than for those in the group without dysfunction [p = 0.014]. When analyzing the percentage of patients with endothelial dysfunction in each of the groups, there were very few positive results obtained [5 per group].
Conclusion:
Initial and final arterial vasodilation was lower in women than in men. Likewise, there were more cases of endothelial dysfunction in women. In this study, patients with endothelial dysfunction were older. Periodontitis was not associated with endothelial dysfunction.
Collapse
|
179
|
Chaudhary KR, Deng Y, Yang A, Cober ND, Stewart DJ. Penetrance of Severe Pulmonary Arterial Hypertension in Response to Vascular Endothelial Growth Factor Receptor 2 Blockade in a Genetically Prone Rat Model Is Reduced by Female Sex. J Am Heart Assoc 2021; 10:e019488. [PMID: 34315227 PMCID: PMC8475703 DOI: 10.1161/jaha.120.019488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/03/2021] [Indexed: 01/29/2023]
Abstract
Background We have previously reported important strain differences in response to SU5416 (SU, a vascular endothelial growth factor receptor 2 inhibitor) in rats and have identified a specific colony of Sprague-Dawley rats that are hyperresponsive (SDHR) to SU alone and develop severe pulmonary arterial hypertension (PAH) with a single injection of SU, even in the absence of hypoxia. Interestingly, SDHR rats exhibit incomplete penetrance of the severe PAH phenotype with an "all-or-none" response to SU alone, which provides a unique opportunity to assess the influence of female sex and sex hormones on susceptibility to PAH after endothelial injury in a genetically prone model. Methods and Results SDHR rats were injected with SU (20 mg/kg SC) and, in the absence of hypoxia, 72% of male but only 27% of female rats developed severe PAH at 7 weeks, which was associated with persistent endothelial cell apoptosis. This sex difference in susceptibility for severe PAH was abolished by ovariectomy. Estradiol replacement, beginning 2 days before SU (prevention), inhibited lung endothelial cell apoptosis and completely abrogated severe PAH phenotype in both male and ovariectomized female rats, while progesterone was only protective in ovariectomized female rats. In contrast, delayed treatment of SDHR rats with established PAH with estradiol or progesterone (initiated at 4 weeks post-SU) failed to reduce lung endothelial cell apoptosis or improve PAH phenotype. Conclusions Female sex hormones markedly reduced susceptibility for the severe PAH phenotype in response to SU alone in a hyperresponsive rat strain by abolishing SU-induced endothelial cell apoptosis, but did not reverse severe PAH in established disease.
Collapse
Affiliation(s)
- Ketul R. Chaudhary
- Department of Physiology and BiophysicsFaculty of MedicineDalhousie UniversityHalifaxNSCanada
| | - Yupu Deng
- Sinclair Centre for Regenerative MedicineOttawa Hospital Research InstituteONCanada
| | - Anli Yang
- Sinclair Centre for Regenerative MedicineOttawa Hospital Research InstituteONCanada
| | - Nicholas D. Cober
- Sinclair Centre for Regenerative MedicineOttawa Hospital Research InstituteONCanada
- Department of Cellular and Molecular MedicineFaculty of MedicineUniversity of OttawaONCanada
| | - Duncan J. Stewart
- Sinclair Centre for Regenerative MedicineOttawa Hospital Research InstituteONCanada
- Department of Cellular and Molecular MedicineFaculty of MedicineUniversity of OttawaONCanada
| |
Collapse
|
180
|
Klassen SA, Joyner MJ, Baker SE. The impact of ageing and sex on sympathetic neurocirculatory regulation. Semin Cell Dev Biol 2021; 116:72-81. [PMID: 33468420 PMCID: PMC8282778 DOI: 10.1016/j.semcdb.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The sympathetic nervous system represents a critical mechanism for homoeostatic blood pressure regulation in humans. This review focuses on age-related alterations in neurocirculatory regulation in men and women by highlighting human studies that examined the relationship between muscle sympathetic nerve activity (MSNA) acquired by microneurography and circulatory variables (e.g., blood pressure, vascular resistance). We frame this review with epidemiological evidence highlighting sex-specific patterns in age-related blood pressure increases in developed nations. Indeed, young women exhibit lower blood pressure than men, but women demonstrate larger blood pressure increases with age, such that by about age 60 years, blood pressure is greater in women. Sympathetic neurocirculatory mechanisms contribute to sex differences in blood pressure rises with age. Muscle sympathetic nerve activity increases with age in both sexes, but women demonstrate greater age-related increases. The circulatory adjustments imposed by MSNA - referred to as neurovascular transduction or autonomic (sympathetic) support of blood pressure - differ in men and women. For example, whereas young men demonstrate a positive relationship between resting MSNA and vascular resistance, this relationship is absent in young women due to beta-2 adrenergic vasodilation, which offsets alpha-adrenergic vasoconstriction. However, post-menopausal women demonstrate a positive relationship between MSNA and vascular resistance due to a decline in beta-2 adrenergic vasodilatory mechanisms. Emerging data suggest that greater aerobic fitness appears to modulate neurocirculatory regulation, at least in young, healthy men and women. This review also highlights recent advances in microneurographic recordings of sympathetic action potential discharge, which may nuance our understanding of age-related alterations in sympathetic neurocirculatory regulation in humans.
Collapse
Affiliation(s)
- Stephen A Klassen
- Human and Integrative Physiology and Clinical Pharmacology Laboratory, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Human and Integrative Physiology and Clinical Pharmacology Laboratory, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah E Baker
- Human and Integrative Physiology and Clinical Pharmacology Laboratory, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
181
|
Foret JT, Dekhtyar M, Cole JH, Gourley DD, Caillaud M, Tanaka H, Haley AP. Network Modeling Sex Differences in Brain Integrity and Metabolic Health. Front Aging Neurosci 2021; 13:691691. [PMID: 34267647 PMCID: PMC8275835 DOI: 10.3389/fnagi.2021.691691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 01/14/2023] Open
Abstract
Hypothesis-driven studies have demonstrated that sex moderates many of the relationships between brain health and cardiometabolic disease, which impacts risk for later-life cognitive decline. In the present study, we sought to further our understanding of the associations between multiple markers of brain integrity and cardiovascular risk in a midlife sample of 266 individuals by using network analysis, a technique specifically designed to examine complex associations among multiple systems at once. Separate network models were constructed for male and female participants to investigate sex differences in the biomarkers of interest, selected based on evidence linking them with risk for late-life cognitive decline: all components of metabolic syndrome (obesity, hypertension, dyslipidemia, and hyperglycemia); neuroimaging-derived brain-predicted age minus chronological age; ratio of white matter hyperintensities to whole brain volume; seed-based resting state functional connectivity in the Default Mode Network, and ratios of N-acetyl aspartate, glutamate and myo-inositol to creatine, measured through proton magnetic resonance spectroscopy. Males had a sparse network (87.2% edges = 0) relative to females (69.2% edges = 0), indicating fewer relationships between measures of cardiometabolic risk and brain integrity. The edges in the female network provide meaningful information about potential mechanisms between brain integrity and cardiometabolic health. Additionally, Apolipoprotein ϵ4 (ApoE ϵ4) status and waist circumference emerged as central nodes in the female model. Our study demonstrates that network analysis is a promising technique for examining relationships between risk factors for cognitive decline in a midlife population and that investigating sex differences may help optimize risk prediction and tailor individualized treatments in the future.
Collapse
Affiliation(s)
- Janelle T. Foret
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Maria Dekhtyar
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - James H. Cole
- Department of Computer Science, Centre for Medical Image Computing, University College London, London, United Kingdom
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Drew D. Gourley
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Marie Caillaud
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Andreana P. Haley
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Biomedical Imaging Center, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
182
|
Abbott LS, Graven LJ, Schluck G, Williams KJ. Stress, Social Support, and Resilience in Younger Rural Women: A Structural Equation Model. Healthcare (Basel) 2021; 9:812. [PMID: 34203165 PMCID: PMC8306437 DOI: 10.3390/healthcare9070812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease is a global public health problem and leading cause of death. Stress is a modifiable cardiovascular disease risk factor. The objectives of this study were to examine whether stress was a predictor of resilience among rural younger women and to explore whether social support mediated the relationship between acute stress and resilience and between chronic stress and resilience. The study had a cross-sectional, descriptive design. A total of 354 women were randomly recruited in the rural, southeastern United States. Survey instruments were used to collect data about acute stress, chronic stress, social support, and resilience. A structural equation model was fit to test whether social support mediated the relationship between perceived stress and resilience and between chronic stress and resilience. Chronic stress predicted family and belongingness support and all the resilience subscales: adaptability, emotion regulation, optimism, self-efficacy, and social support. Acute stress predicted the self-efficacy subscale of resilience. Family support partially mediated the relationship between chronic stress and self-efficacy. Belongingness support partially mediated the relationships between chronic stress and the social support subscale of resilience.
Collapse
Affiliation(s)
- Laurie S. Abbott
- College of Nursing, Florida State University, Tallahassee, FL 32306, USA; (L.J.G.); (G.S.)
| | - Lucinda J. Graven
- College of Nursing, Florida State University, Tallahassee, FL 32306, USA; (L.J.G.); (G.S.)
| | - Glenna Schluck
- College of Nursing, Florida State University, Tallahassee, FL 32306, USA; (L.J.G.); (G.S.)
| | - Krystal J. Williams
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural & Mechanical University, Tallahassee, FL 32307, USA;
| |
Collapse
|
183
|
Stevenson JC, Collins P, Hamoda H, Lambrinoudaki I, Maas AHEM, Maclaran K, Panay N. Cardiometabolic health in premature ovarian insufficiency. Climacteric 2021; 24:474-480. [PMID: 34169795 DOI: 10.1080/13697137.2021.1910232] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Premature ovarian insufficiency (POI) is an increasing public health problem with a prevalence now approaching 4%. POI results in adverse effects on the skeleton and central nervous system as well as disturbances of metabolic and cardiological factors that predispose to a major increased risk of cardiovascular disease (CVD). This article reviews the effects of the premature loss of ovarian function on lipids and lipoproteins, glucose and insulin metabolism, body composition, hemostasis and blood pressure, together with effects on the development of metabolic syndrome and diabetes mellitus. The article examines the effects of POI on vascular endothelial function and inflammation that result in arterial disease, and reviews the effects of hormone replacement therapy (HRT) on these various metabolic processes and on cardiovascular outcomes. It is essential that women with POI receive hormonal treatment to help prevent the development of CVD, and that this treatment is continued at least until the normal age of menopause. It appears that HRT has a more favorable effect than the combined oral contraceptive, but larger clinical trials are needed to establish the optimal treatment. Other therapeutic measures may need to be added to correct existing metabolic abnormalities and, in particular, attention to lifestyle factors such as diet and exercise must be encouraged.
Collapse
Affiliation(s)
- J C Stevenson
- National Heart & Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | - P Collins
- National Heart & Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | - H Hamoda
- Department of Gynaecology, King's College Hospital, London, UK
| | - I Lambrinoudaki
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A H E M Maas
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K Maclaran
- Department of Gynaecology, Chelsea & Westminster Hospital, London, UK
| | - N Panay
- Department of Gynaecology, Queen Charlotte's and Chelsea & Westminster Hospitals, Imperial College London, London, UK
| |
Collapse
|
184
|
Echem C, Akamine EH. Toll-Like Receptors Represent an Important Link for Sex Differences in Cardiovascular Aging and Diseases. FRONTIERS IN AGING 2021; 2:709914. [PMID: 35822020 PMCID: PMC9261298 DOI: 10.3389/fragi.2021.709914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/15/2021] [Indexed: 01/10/2023]
Abstract
Human life span expectancy has increased, and aging affects the organism in several ways, leading, for example, to an increased risk of cardiovascular diseases. Age-adjusted prevalence of the cardiovascular diseases is higher in males than females. Aging also affects the gonadal sex hormones and the sex differences observed in cardiovascular diseases may be therefore impacted. Hormonal changes associated with aging may also affect the immune system and the immune response is sexually different. The immune system plays a role in the pathogenesis of cardiovascular diseases. In this context, toll-like receptors (TLRs) are a family of pattern recognition receptors of the immune system whose activation induces the synthesis of pro-inflammatory molecules. They are expressed throughout the cardiovascular system and their activation has been widely described in cardiovascular diseases. Some recent evidence demonstrates that there are sex differences associated with TLR responses and that these receptors may be affected by sex hormones and their receptors, suggesting that TLRs may contribute to the sex differences observed in cardiovascular diseases. Recent evidence also shows that sex differences of TLRs in cardiovascular system persists with aging, which may represent a new paradigm about the mechanisms that contribute to the sex differences in cardiovascular aging. Therefore, in this mini review we describe the latest findings regarding the sex differences of TLRs and associated signaling in cardiovascular diseases during aging.
Collapse
|
185
|
Artegoitia VM, Krishnan S, Bonnel EL, Stephensen CB, Keim NL, Newman JW. Healthy eating index patterns in adults by sex and age predict cardiometabolic risk factors in a cross-sectional study. BMC Nutr 2021; 7:30. [PMID: 34154665 PMCID: PMC8218401 DOI: 10.1186/s40795-021-00432-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Associations between diet and cardiometabolic disease (CMD) risk may vary in men and women owing to sex differences in eating habits and physiology. The current secondary analysis sought to determine the ability of sex differences in dietary patterns to discriminate groups with or without CMD risk factors (CMDrf) in the adult population and if this was influenced by age. METHODS Diet patterns and quality were evaluated using 24 h recall-based Healthy Eating Index (HEI-2015) in free-living apparently healthy men (n = 184) and women (n = 209) 18-65 y of age with BMIs of 18-44 kg/m2. Participants were stratified into low- and high-CMDrf groups based on the presence/absence of at least one CMDrf: BMI > 25 kg/m2; fasting triglycerides > 150 mg/dL; HDL cholesterol < 50 mg/dL-women or < 40 mg/dL-men; HOMA > 2; HbA1c > 5.7. Sex by age dietary patterns were stratified by multivariate analyses, with metabolic variable associations established by stepwise discriminant analysis. RESULTS Diet quality increased with age in both sexes (P < 0.01), while women showed higher fruit, vegetable and saturated fat intake as a percentage of total energy (P < 0.05). The total-HEI score (i.e. diet quality) was lower in the high-CMDrf group (P = 0.01), however, diet quality parameters predicted CMDrf presence more accurately when separated by sex. Lower 'total vegetable' intake in the high-CMDrf group in both sexes, while high-CMDrf men also had lower 'total vegetables', 'greens and beans' intake, and high-CMDrf women had lower 'total fruits', 'whole-fruits', 'total vegetables', 'seafood and plant-proteins', 'fatty acids', and 'saturated fats' intakes (P < 0.05). Moreover, 'dairy' intake was higher in high-CMDrf women but not in men (sex by 'dairy' interaction P = 0.01). Sex by age diet pattern models predicted CMDrf with a 93 and 89% sensitivity and 84 and 92% specificity in women and men, respectively. CONCLUSIONS Sex and age differences in dietary patterns classified participants with and without accepted CMDrfs, supporting an association between specific diet components and CMD risk that differs by sex. Including sex specific dietary patterns into health assessments may provide targeted nutritional guidance to reduce the burden of cardiovascular disease. TRIAL REGISTRATION ClinicalTrials.gov : NCT02367287 . ClinicalTrials.gov : NCT02298725 .
Collapse
Affiliation(s)
- Virginia M Artegoitia
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Services-Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA
| | - Sridevi Krishnan
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Ellen L Bonnel
- Department of Nutrition, University of California Davis, Davis, CA, USA
- Human Studies Unit, United States Department of Agriculture-Agricultural Research Services-Western Human Nutrition Research Center, Davis, CA, USA
| | - Charles B Stephensen
- Department of Nutrition, University of California Davis, Davis, CA, USA
- Immunity and Disease Prevention Research Unit, United States Department of Agriculture-Agricultural Research Services-Western Human Nutrition Research Center, Davis, CA, USA
| | - Nancy L Keim
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Services-Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - John W Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Services-Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA.
- Department of Nutrition, University of California Davis, Davis, CA, USA.
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
186
|
Exercise Improves Endothelial Function via the lncRNA MALAT1/miR-320a Axis in Obese Children and Adolescents. Cardiol Res Pract 2021; 2021:8840698. [PMID: 34123418 PMCID: PMC8189819 DOI: 10.1155/2021/8840698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
Background Endothelial dysfunction commonly occurs in obese children and adolescents, leading to an increased risk of cardiovascular diseases. Exercise has significant protective effects against endothelial dysfunction through regulating some noncoding RNAs. This study aimed to investigate the relationship of long noncoding RNA MALAT1 and microRNA-320a (miR-320a) with the exercise-induced improvement of endothelial dysfunction in obese children and adolescents. Methods Sixty obese children and adolescents were included in this study, including 40 cases that received 12-week exercise training and 20 cases that received only diet control. The anthropometric and blood indices before and after exercise were recorded and compared, and the endothelial dysfunction was evaluated by examining the levels of markers, including VCAM-1, ICAM-1, and E-selectin, using an ELISA assay. The expression levels of noncoding RNAs were assessed using real-time quantitative PCR, and their correlation with patients' recorded indices and endothelial dysfunction markers was analyzed. Results The 12-week exercise training significantly decreased the levels of VCAM-1, ICAM-1, and E-selectin and could inhibit MALAT1 but promote miR-320a expression in obese children and adolescents. The expression of MALAT1 and miR-320a was correlated with the changes in the anthropometric and blood indices of obese children and adolescents, and their correlations with endothelial dysfunction markers were obtained. Conclusion All the data revealed that exercise has significantly protective effects against endothelial dysfunction and can regulate the expression of the MALAT1/miR-320a axis. MALAT1 and miR-320a were correlated with endothelial dysfunction markers, indicating that the MALAT1/miR-320a axis may be related with the alleviating effects of exercise on endothelial function in obese children and adolescents.
Collapse
|
187
|
Zhao W, Yin Y, Cao H, Wang Y. LncRNA MALAT1/miR-320a axis is associated with exercise-induced improvement of endothelial dysfunction in obese children. Microvasc Res 2021:104194. [PMID: 34062189 DOI: 10.1016/j.mvr.2021.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/15/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Endothelial dysfunction commonly occurs in obese children, leading to increased risk of cardiovascular diseases. Exercise has protective effects against endothelial dysfunction through regulating some noncoding RNAs. This study aimed to investigate the relationship of long noncoding RNA MALAT1 and microRNA-320a (miR-320a) with the exercise-induced improvement of endothelial dysfunction in obese children. METHODS Sixty obese children were included in this study, and 40 cases received a 12-week exercise training. The morphological and blood indices before and after exercise were recorded and compared, and the endothelial dysfunction was evaluated by examining the levels of VCAM-1, ICAM-1, E-selectin, IL-6 and TNF-α using ELISA kits. The expression of noncoding RNAs was assessed using Real-Time quantitative PCR. Endothelial cells were used to explore the effects of MALAT1 and miR-320a on endothelial function. RESULTS The 12-well exercise training decreased the levels of VCAM-1, ICAM-1 and E-selectin, and inhibited MALAT1 but promoted miR-320a expression in obese children. The expression of MALAT1 and miR-320a was correlated with the changes of morphological and blood indices in obese children, and their correlations with endothelial dysfunction markers were obtained. Additionally, MALAT1 overexpression or miR-320a reduction led to inhibited proliferation and increased inflammation in HUVECs. CONCLUSION All the data revealed that exercise has significantly protective effects against endothelial dysfunction, and can regulate the expression of the MALAT1/miR-320a axis. MALAT1 and miR-320a were correlated with endothelial dysfunction, indicating that the MALAT1/miR-320a axis may be related with the alleviating effects of exercise on endothelial function in obese children.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neonatology, Weifang People's Hospital, Weifang 261041, Shandong, China
| | - Yane Yin
- Department of Neonatology, Weifang People's Hospital, Weifang 261041, Shandong, China
| | - Huiling Cao
- Department of Neonatology, Weifang People's Hospital, Weifang 261041, Shandong, China
| | - Yandong Wang
- Department of Pediatrics, Weifang People's Hospital, Weifang 261041, Shandong, China.
| |
Collapse
|
188
|
Sex differences in the longitudinal relationship of low-grade inflammation and echocardiographic measures in the Hoorn and FLEMENGHO Study. PLoS One 2021; 16:e0251148. [PMID: 33945586 PMCID: PMC8096104 DOI: 10.1371/journal.pone.0251148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 01/09/2023] Open
Abstract
Background This study aimed to determine the within-person and between-persons associations of low-grade inflammation (LGI) and endothelial dysfunction (ED) with echocardiographic measures related to diastolic dysfunction (DD) in two general populations and whether these associations differed by sex. Methods Biomarkers and echocardiographic measures were measured at both baseline and follow-up in the Hoorn Study (n = 383) and FLEMENGHO (n = 491). Individual biomarker levels were combined into either a Z-score of LGI (CRP, SAA, IL-6, IL-8, TNF-α and sICAM-1) or ED (sICAM-1, sVCAM-1, sE-selectin and sTM). Mixed models were used to determine within-person and between-persons associations of biomarker Z-scores with left ventricular ejection fraction (LVEF), left ventricular mass index (LVMI) and left atrial volume index (LAVI). These associations were adjusted for a-priori selected confounders. Results Overall Z-scores for LGI or ED were not associated with echocardiographic measures. Effect modification by sex was apparent for ED with LVEF in both cohorts (P-for interaction = 0.08 and 0.06), but stratified results were not consistent. Effect modification by sex was apparent for TNF-α in the Hoorn Study and E-selectin in FLEMENGHO with LVEF (P-for interaction≤0.05). In the Hoorn Study, women whose TNF-α levels increased with 1-SD over time had a decrease in LVEF of 2.2 (-4.5;0.01) %. In FLEMENGHO, men whose E-selectin levels increased with 1-SD over time had a decrease in LVEF of 1.6 (-2.7;-0.5) %. Conclusion Our study did not show consistent associations of LGI and ED with echocardiographic measures. Some evidence of effect modification by sex was present for ED and specific biomarkers.
Collapse
|
189
|
Jamka M, Bogdański P, Krzyżanowska-Jankowska P, Miśkiewicz-Chotnicka A, Karolkiewicz J, Duś-Żuchowska M, Mądry R, Lisowska A, Gotz-Więckowska A, Iskakova S, Walkowiak J, Mądry E. Endurance Training Depletes Antioxidant System but Does Not Affect Endothelial Functions in Women with Abdominal Obesity: A Randomized Trial with a Comparison to Endurance-Strength Training. J Clin Med 2021; 10:1639. [PMID: 33921520 PMCID: PMC8068807 DOI: 10.3390/jcm10081639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/02/2023] Open
Abstract
Limited data suggested that inclusion of a strength component into endurance exercises might intensify the beneficial effect of training. However, the available data is limited. Therefore, we aimed to compare the effect of endurance and endurance-strength training on anthropometric parameters, endothelial function, arterial stiffness, antioxidant status, and inflammatory markers in abdominally obese women without serious comorbidities. A total of 101 women were recruited and randomly divided into endurance (n = 52) and endurance-strength (n = 49) groups. During the three-month intervention, both groups performed supervised sixty-minute training three times a week. All studied parameters were measured pre- and post-intervention period. In total, 85 women completed the study. Both training significantly decreased anthropometric parameters. Besides, endurance training decreased endothelial nitric oxide synthase, central aortic systolic pressure, pulse wave velocity, glutathione (GSH), total antioxidant status (TAS), interleukin (IL) 8, matrix metalloproteinase (MMP) 9, and tumor necrosis factor alpha, while endurance-strength training decreased MMP-2 concentrations, and increased IL-6, monocyte chemoattractant protein-1, and MMP-9 levels. We observed significant differences between groups for GSH, TAS, and MMP-9 levels. In summary, endurance and endurance-strength training did not differ in the impact on endothelial function and arterial stiffness. However, endurance training significantly depleted the antioxidant defense, simultaneously reducing MMP-9 levels. The study was retrospectively registered with the German Clinical Trials Register within the number DRKS00019832.
Collapse
Affiliation(s)
- Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego Str. 82, 60-569 Poznań, Poland;
| | - Patrycja Krzyżanowska-Jankowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Anna Miśkiewicz-Chotnicka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, Królowej Jadwigi Str. 27/39, 61-871 Poznań, Poland;
| | - Monika Duś-Żuchowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Radosław Mądry
- Department of Oncology, Poznan University of Medical Sciences, Szamarzewskiego Str. 84, 60-569 Poznań, Poland;
| | - Aleksandra Lisowska
- Department of Clinical Auxology and Pediatric Nursing, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Szamarzewskiego Str. 84, 60-569 Poznań, Poland;
| | - Saule Iskakova
- Department of Pharmacology, Asfendiyarov Kazakh National Medical University, Tole Bi Str. 94, Almaty 050000, Kazakhstan;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, Święcickiego Str. 6, 60-781 Poznań, Poland;
| |
Collapse
|
190
|
Miki A, Kinno R, Ochiai H, Kubota S, Mori Y, Futamura A, Sugimoto A, Kuroda T, Kasai H, Yano S, Hieda S, Kokaze A, Ono K. Sex Differences in the Relationship of Serum Vitamin B1 and B12 to Dementia Among Memory Clinic Outpatients in Japan. Front Aging Neurosci 2021; 13:667215. [PMID: 33897411 PMCID: PMC8064118 DOI: 10.3389/fnagi.2021.667215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 11/27/2022] Open
Abstract
Dementia and cognitive impairment are considered to be one of the biggest social and medical problems. While there is a definite relationship between vitamin B and cognitive decline, this has yet to be fully assessed with regard to sex differences. Thus, the present study investigated the relationship of vitamin B1 or vitamin B12 with dementia in accordance with the sex in 188 patients who visited the Memory Clinic at Showa University Hospital in Japan from March 2016 to March 2019. Cognitive function was tested by the Japanese version of the Mini-Mental State Examination (MMSE) and Hasegawa Dementia Scale-Revised (HDS-R). Blood tests were performed to measure the vitamin levels. Logistic regression analysis was used to calculate the odds ratio (OR) for dementia and the 95% confidence interval (CI). Compared to the highest vitamin group (third tertile), the lowest vitamin group (first tertile) exhibited a significantly increased OR for dementia defined by MMSE for vitamin B1 (OR:3.73, 95% CI:1.52–9.16) and vitamin B12 (2.97, 1.22–7.28) among women. In contrast, vitamin levels were not significantly associated with dementia determined by MMSE in men. These findings were similar even when dementia was defined by HDS-R. The present study suggests that vitamin B1 plays a role in preventing development of dementia in women. Future longitudinal studies will need to be undertaken in order to examine whether decreasing vitamin levels occur before or after cognitive impairment, and whether maintaining a higher vitamin level can prevent a worsening of cognitive function and the development of dementia.
Collapse
Affiliation(s)
- Ayako Miki
- Department of Hygiene, Public Health and Preventive Medicine, Showa University School of Medicine, Tokyo, Japan.,Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Ryuta Kinno
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Hirotaka Ochiai
- Department of Hygiene, Public Health and Preventive Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Satomi Kubota
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Yukiko Mori
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Akinori Futamura
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Azusa Sugimoto
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Takeshi Kuroda
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Hideyo Kasai
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Satoshi Yano
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Sotaro Hieda
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Akatsuki Kokaze
- Department of Hygiene, Public Health and Preventive Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kenjiro Ono
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
191
|
Kauffman RP, Young C, Castracane VD. Perils of prolonged ovarian suppression and hypoestrogenism in the treatment of breast cancer: Is the risk of treatment worse than the risk of recurrence? Mol Cell Endocrinol 2021; 525:111181. [PMID: 33529690 DOI: 10.1016/j.mce.2021.111181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 01/18/2023]
Abstract
Premenopausal breast cancer is usually estrogen receptor positive, and hence, prolonged ovarian suppression by medical or surgical means to prevent recurrence has become standard of management to improve disease-free survival. Ten-year adjuvant tamoxifen therapy is associated with 3.5% fewer recurrences compared to five years. The SOFT trial demonstrated small but statistically significant incremental improvements in long-term disease-free survival by the addition of gonadotropin-releasing hormone analog treatment (triptorelin) to an aromatase inhibitor (exemestane). Profound hypoestrogenism in the premenopausal age group may not be well tolerated due to a host of bothersome side effects (primarily vasomotor symptoms, musculoskeletal complaints, genitourinary syndrome of menopause, and mood disorders). Prolonged hypoestrogenism in younger women is associated with premature development of cardiovascular disease, bone loss, cognitive decline, and all-cause mortality. This paper explores multi-system consequences of prolonged hypoestrogenism in premenopausal women derived from studies of women with and without breast cancer. Pretreatment counseling in estrogen receptor positive breast cancer should emphasize the benefit of prolonged estrogen suppression on breast cancer recurrence and established risks of lifelong hypoestrogenism on quality of life and all-cause mortality. Future genomic research may help identify the best candidates for extended ovarian suppression to avoid treating many women when only a minority benefit.
Collapse
Affiliation(s)
- Robert P Kauffman
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, School of Medicine, 1400 S. Coulter Rd, Amarillo, TX, 79106, USA.
| | - Christina Young
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, School of Medicine, 1400 S. Coulter Rd, Amarillo, TX, 79106, USA
| | - V Daniel Castracane
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, School of Medicine, 1400 S. Coulter Rd, Amarillo, TX, 79106, USA
| |
Collapse
|
192
|
Tejpal A, Gianos E, Cerise J, Hirsch JS, Rosen S, Kohn N, Lesser M, Weinberg C, Majure D, Satapathy SK, Bernstein D, Barish MA, Spyropoulos AC, Brown RM. Sex-Based Differences in COVID-19 Outcomes. J Womens Health (Larchmt) 2021; 30:492-501. [PMID: 33885345 PMCID: PMC8182657 DOI: 10.1089/jwh.2020.8974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Smaller studies suggest lower morbidity and mortality associated with coronavirus disease 2019 (COVID-19) in women. Our aim is to assess the impact of female sex on outcomes in a large cohort of patients hospitalized with COVID-19. Materials and Methods: This is a retrospective observational cohort study of 10,630 adult patients hospitalized with a confirmed COVID-19 polymerase chain reaction between March 1, 2020 and April 27, 2020, with follow-up conducted through June 4, 2020. Logistic regression was used to examine the relationship between sex and the primary outcomes, including length of stay, admission to intensive care unit (ICU), need for mechanical ventilation, pressor requirement, and all-cause mortality as well as major adverse events and in-hospital COVID-19 treatments. Results: In the multivariable analysis, women had 27% lower odds of in-hospital mortality (odds ratio [OR] = 0.73, 95% confidence interval [CI] 0.66-0.81; p < 0.001), 24% lower odds of ICU admission (OR = 0.76, 95% CI 0.69-0.84; p < 0.001), 26% lower odds of mechanical ventilation (OR = 0.74, 95% CI 0.66-0.82; p < 0.001), and 25% lower odds of vasopressor requirement (OR = 0.75, 95% CI 0.67-0.84; p < 0.001). Women had 34% less odds of having acute cardiac injury (OR = 0.66, 95% CI 0.59-0.74; p < 0.001; n = 7,289), 16% less odds of acute kidney injury (OR = 0.84, 95% CI 0.76-0.92; p < 0.001; n = 9,840), and 27% less odds of venous thromboembolism (OR = 0.73, 95% CI 0.56-0.96; p < 0.02; c-statistic 0.85, n = 9,407). Conclusions: Female sex is associated with lower odds of in-hospital outcomes, major adverse events, and all-cause mortality. There may be protective mechanisms inherent to female sex, which explain differences in COVID-19 outcomes.
Collapse
Affiliation(s)
- Astha Tejpal
- Division of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Eugenia Gianos
- Division of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
| | - Jane Cerise
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Jamie S. Hirsch
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Department of Nephrology and Hypertension, North Shore University Hospital, Manhasset, New York, USA
- Department of Information Services, Northwell Health, New Hyde Park, New York, USA
| | - Stacey Rosen
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
- Division of Cardiology, North Shore University Medical Center, Manhasset, New York, USA
| | - Nina Kohn
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Martin Lesser
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Catherine Weinberg
- Division of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
| | - David Majure
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
- Division of Cardiology, North Shore University Medical Center, Manhasset, New York, USA
| | - Sanjaya K. Satapathy
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
- Division of Hepatology, North Shore University Medical Center, Manhasset, New York, USA
| | - David Bernstein
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
- Division of Hepatology, North Shore University Medical Center, Manhasset, New York, USA
| | - Matthew A. Barish
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
- Department of Radiology, North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - Alex C. Spyropoulos
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Department of Internal Medicine, North Shore University Medical Center, Manhasset, New York, USA
| | - Rachel-Maria Brown
- Division of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
| |
Collapse
|
193
|
Interaction of serum calcium and folic acid treatment on first stroke in hypertensive males. Clin Nutr 2021; 40:2381-2388. [DOI: 10.1016/j.clnu.2020.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
|
194
|
Martínez-González K, Serrano-Cuevas L, Almeida-Gutiérrez E, Flores-Chavez S, Mejía-Aranguré JM, Garcia-delaTorre P. Citrulline supplementation improves spatial memory in a murine model for Alzheimer's disease. Nutrition 2021; 90:111248. [PMID: 33940559 DOI: 10.1016/j.nut.2021.111248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) correlates with the dysfunction of metabolic pathways that translates into neurological symptoms. An arginine deficiency, a precursor of nitric oxide (NO), has been reported for patients with AD. We aimed to evaluate the effect of citrulline oral supplementation on cognitive decline in an AD murine model. METHODS Three-month citrulline or water supplementation was blindly given to male and female wild-type and 3 × Tg mice with AD trained and tested in the Morris water maze. Cerebrospinal fluid and brain tissue were collected. Ultra-performance liquid chromatography was used for arginine determinations and the Griess method for NO. RESULTS Eight-month-old male 3 × Tg mice with AD supplemented with citrulline performed significantly better in the Morris water maze task. Arginine levels increased in the cerebrospinal fluid although no changes were seen in brain tissue and only a tendency of increase of NO was observed. CONCLUSIONS Citrulline oral administration is a viable treatment for memory improvement in the early stages of AD, pointing to NO as a viable, efficient target for memory dysfunction in AD.
Collapse
Affiliation(s)
- Katia Martínez-González
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México, Universidad Nacional Autónoma de México
| | - Leonor Serrano-Cuevas
- Coordinación de Unidades Médicas, División de Evaluación y Rendición de Cuentas de los Procesos de Atención Médica en Unidades Médicas de Alta Especialidad, Instituto Mexicano del Seguro Social, México
| | - Eduardo Almeida-Gutiérrez
- Head of Medical Education and Research, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México
| | - Salvador Flores-Chavez
- Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México
| | | | - Paola Garcia-delaTorre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México.
| |
Collapse
|
195
|
Giersch GEW, Charkoudian N, Pereira T, Edgell H, Freeberg KA, Craighead DH, Neill M, Allison EY, Zapcic AK, Smith KJ, Bock JM, Casey DP, Shenouda N, Ranadive SM, Tremblay JC, Williams AM, Simpson LL, Meah VL, Ruediger SL, Bailey TG, Pereira HM, Lei TH, Perry B, Mündel T, Freemas JA, Worley ML, Baranauskas MN, Carter SJ, Johnson BD, Schlader ZJ, Bates LC, Stoner L, Zieff G, Poles J, Adams N, Meyer ML, Hanson ED, Greenlund IM, Bigalke JA, Carter JR, Kerr ZY, Stanford K, Pomeroy A, Boggess K, de Souza HLR, Meireles A, Arriel RA, Leite LHR, Marocolo M, Chapman CL, Atencio JK, Kaiser BW, Comrada LN, Halliwill JR, Minson CT, Williams JS, Dunford EC, MacDonald MJ, Santisteban KJ, Larson EA, Reed E, Needham KW, Gibson BM, Gillen J, Barbosa TC, Cardoso LLY, Gliemann L, Tamariz-Ellemann A, Hellsten Y, DuBos LE, Babcock MC, Moreau KL, Wickham KA, Vagula M, Moir ME, Klassen SA, Rodrigues A. Commentaries on Point:Counterpoint: Investigators should/should not control for menstrual cycle phase when performing studies of vascular control. J Appl Physiol (1985) 2021; 129:1122-1135. [PMID: 33197376 DOI: 10.1152/japplphysiol.00809.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine, Natick, Massachusetts,Oak Ridge Institute for Science and Education, Oak Ridge, Tennnessee
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine, Natick, Massachusetts
| | - T Pereira
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - H Edgell
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - Kaitlin A Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Matthew Neill
- Department of Kinesiology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Elric Y Allison
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Andrea K Zapcic
- Department of Kinesiology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Kurt J Smith
- Integrative Physiology Lab, Department of Kinesiology and Nutrition, University of Chicago, Chicago, Illinois
| | - Joshua M Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa,Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ninette Shenouda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, University of British Columbia–Okanagan, Kelowna, British Columbia, Canada
| | - Alexandra M Williams
- Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Victoria L Meah
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stefanie L Ruediger
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre of Research on Exercise, Physical Activity and Health, The University of Queensland, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre of Research on Exercise, Physical Activity and Health, The University of Queensland, Australia,School of Nursing, Midwifery and Social Work, The University of Queensland, Australia
| | - Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China,Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Blake Perry
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Jessica A Freemas
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Morgan L Worley
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Marissa N Baranauskas
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Stephen J Carter
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Blair D Johnson
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Zachary J Schlader
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gabriel Zieff
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jillian Poles
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nathan Adams
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michelle L Meyer
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ian M Greenlund
- Department of Health and Human Development, Montana State University, Bozeman, Montana,Department of Psychology, Montana State University, Bozeman, Montana
| | - Jeremy A Bigalke
- Department of Health and Human Development, Montana State University, Bozeman, Montana,Department of Psychology, Montana State University, Bozeman, Montana
| | - Jason R Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana,Department of Psychology, Montana State University, Bozeman, Montana
| | - Zachary Y Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Stanford
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alex Pomeroy
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim Boggess
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hiago L R de Souza
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Anderson Meireles
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Rhai A Arriel
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Laura H R Leite
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Moacir Marocolo
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Jessica K Atencio
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Brendan W Kaiser
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Lindan N Comrada
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Emily C Dunford
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Emma Reed
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Karen W Needham
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Brandon M Gibson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Jenna Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Thales C Barbosa
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Licy L Yanes Cardoso
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | | | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Lyndsey E DuBos
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew C Babcock
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kerrie L Moreau
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, Colorado
| | - Kate A Wickham
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | | | - M Erin Moir
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | | | - Alex Rodrigues
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
196
|
Santi D, Spaggiari G, Greco C, Lazzaretti C, Paradiso E, Casarini L, Potì F, Brigante G, Simoni M. The "Hitchhiker's Guide to the Galaxy" of Endothelial Dysfunction Markers in Human Fertility. Int J Mol Sci 2021; 22:2584. [PMID: 33806677 PMCID: PMC7961823 DOI: 10.3390/ijms22052584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is an early event in the pathogenesis of atherosclerosis and represents the first step in the pathogenesis of cardiovascular diseases. The evaluation of endothelial health is fundamental in clinical practice and several direct and indirect markers have been suggested so far to identify any alterations in endothelial homeostasis. Alongside the known endothelial role on vascular health, several pieces of evidence have demonstrated that proper endothelial functioning plays a key role in human fertility and reproduction. Therefore, this state-of-the-art review updates the endothelial health markers discriminating between those available for clinical practice or for research purposes and their application in human fertility. Moreover, new molecules potentially helpful to clarify the link between endothelial and reproductive health are evaluated herein.
Collapse
Affiliation(s)
- Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Carla Greco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Clara Lazzaretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Elia Paradiso
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, 43121 Parma, Italy;
| | - Giulia Brigante
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| |
Collapse
|
197
|
Klostranec JM, Rohringer T, Gerber R, Murphy KJ. The Role of Biologic Sex in Anaphylactoid Contrast Reactions: An Important Consideration for Women of Reproductive Age and Undergoing Hormone Replacement Therapy. Radiology 2021; 299:272-275. [PMID: 33656392 DOI: 10.1148/radiol.2021203516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jesse M Klostranec
- From the Department of Medical Imaging, University of Toronto, Toronto, Canada; and Division of Neuroradiology, Toronto Western Hospital, University Health Network, 399 Bathurst St, Toronto, ON, Canada M5T 2S8
| | - Taryn Rohringer
- From the Department of Medical Imaging, University of Toronto, Toronto, Canada; and Division of Neuroradiology, Toronto Western Hospital, University Health Network, 399 Bathurst St, Toronto, ON, Canada M5T 2S8
| | - Rachel Gerber
- From the Department of Medical Imaging, University of Toronto, Toronto, Canada; and Division of Neuroradiology, Toronto Western Hospital, University Health Network, 399 Bathurst St, Toronto, ON, Canada M5T 2S8
| | - Kieran J Murphy
- From the Department of Medical Imaging, University of Toronto, Toronto, Canada; and Division of Neuroradiology, Toronto Western Hospital, University Health Network, 399 Bathurst St, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
198
|
Hebanowska A, Mierzejewska P, Braczko A. Effect of estradiol on enzymes of vascular extracellular nucleotide metabolism. Hormones (Athens) 2021; 20:111-117. [PMID: 32935303 PMCID: PMC7889668 DOI: 10.1007/s42000-020-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE Estrogens have beneficial effects on the cardiovascular system, promoting vasodilation, endothelial cells growth, relaxation, and regulation of blood pressure. Some of these effects could be associated with the purinergic system known for the control of vasodilation, inflammation, and platelet function. The aim of our study was the evaluation of ATP, AMP, and adenosine extracellular catabolism, catalyzed by ectonucleoside triphosphate diphosphohydrolase-1 (CD39), ecto-5'-nucleotidase (CD73), and ecto-adenosine deaminase (eADA) in mouse aortas. METHODS Extracellular hydrolysis of ATP, AMP, and adenosine was estimated on the aortic surface of 3-month-old female and male C57BL/6 J wild-type (WT) mice, in female WT mouse aortas incubated for 48 h in the presence or absence of 100 nM estradiol, and in WT female mouse and ApoE-/-LDL-R-/- aortas. The conversion of substrates to products was analyzed by high-pressure liquid chromatography (HPLC). RESULTS We demonstrated significantly higher adenosine deamination rate in WT male vs. female mice (p = 0.041). We also noted the lower adenosine hydrolysis in aortas exposed to estradiol, as compared with the samples incubated in estradiol-free medium (p = 0.043). Finally, we observed that adenosine conversion to inosine was significantly higher on the surface of ApoE-/-LDL-R-/- aortas compared with WT mice (p = 0.001). No such effects were noted in ATP and AMP extracellular hydrolysis. CONCLUSION We conclude that estradiol inhibits the extracellular degradation of adenosine to inosine, which may be an element of its vascular protective effect, as it will lead to an increase in extracellular adenosine concentration. We can also assume that during the development of the atherosclerotic process, the protective role of estradiol in the regulation of adenosine degradation may be obscured by other pathogenic factors.
Collapse
Affiliation(s)
- Areta Hebanowska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
| | | | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
199
|
Weber CM, Clyne AM. Sex differences in the blood-brain barrier and neurodegenerative diseases. APL Bioeng 2021; 5:011509. [PMID: 33758788 PMCID: PMC7968933 DOI: 10.1063/5.0035610] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
The number of people diagnosed with neurodegenerative diseases is on the rise. Many of these diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and motor neuron disease, demonstrate clear sexual dimorphisms. While sex as a biological variable must now be included in animal studies, sex is rarely included in in vitro models of human neurodegenerative disease. In this Review, we describe these sex-related differences in neurodegenerative diseases and the blood-brain barrier (BBB), whose dysfunction is linked to neurodegenerative disease development and progression. We explain potential mechanisms by which sex and sex hormones affect BBB integrity. Finally, we summarize current in vitro BBB bioengineered models and highlight their potential to study sex differences in BBB integrity and neurodegenerative disease.
Collapse
Affiliation(s)
- Callie M. Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
200
|
Jaworska K, Konop M, Hutsch T, Perlejewski K, Radkowski M, Grochowska M, Bielak-Zmijewska A, Mosieniak G, Sikora E, Ufnal M. Trimethylamine But Not Trimethylamine Oxide Increases With Age in Rat Plasma and Affects Smooth Muscle Cells Viability. J Gerontol A Biol Sci Med Sci 2021; 75:1276-1283. [PMID: 31411319 DOI: 10.1093/gerona/glz181] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
It has been suggested that trimethylamine oxide (TMAO), a liver oxygenation product of gut bacteria-produced trimethylamine (TMA), is a marker of cardiovascular risk. However, mechanisms of the increase and biological effects of TMAO are obscure. Furthermore, the potential role of TMAO precursor, that is TMA, has not been investigated. We evaluated the effect of age, a cardiovascular risk factor, on plasma levels of TMA and TMAO, gut bacteria composition, gut-to-blood penetration of TMA, histological and hemodynamic parameters in 3-month-old and 18-month-old, male, Sprague-Dawley and Wistar-Kyoto rats. Cytotoxicity of TMA and TMAO was studied in human vascular smooth muscle cells. Older rats showed significantly different gut bacteria composition, a significantly higher gut-to-blood TMA penetration, and morphological and hemodynamic alterations in intestines. In vitro, TMA at concentration of 500 µmol/L (2-fold higher than in portal blood) decreased human vascular smooth muscle cells viability. In contrast, TMAO at 1,000-fold higher concentration than physiological one had no effect on human vascular smooth muscle cells viability. In conclusion, older rats show higher plasma level of TMA due to a "leaky gut". TMA but not TMAO affects human vascular smooth muscle cells viability. We propose that TMA but not TMAO may be a marker and mediator of cardiovascular risk.
Collapse
Affiliation(s)
- Kinga Jaworska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marek Konop
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Hutsch
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Marta Grochowska
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grażyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|