151
|
Zhang C, Cao P, Yang A, Xia X, Li Y, Shi M, Yang Y, Wei X, Yang C, Zhou G. Downregulation of ZC3H14 driven by chromosome 14q31 deletion promotes hepatocellular carcinoma progression by activating integrin signaling. Carcinogenesis 2020; 40:474-486. [PMID: 30371740 DOI: 10.1093/carcin/bgy146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Genomic copy number deletion at chromosome 14q31.1-32.13 was frequently observed in HCC; however, the relevant functional target(s) at that locus is not well determined. Here, we performed integrative genomic analyses and identified zinc finger CCCH-type containing 14 (ZC3H14) as a promising candidate at 14q31.1-32.13. We observed frequent copy number deletion (17.1%) and downregulation of ZC3H14 in primary HCC tissues. Downregulation of ZC3H14 was significantly associated with poor outcomes of patients with HCC. Overexpression of ZC3H14 in HCC cell lines significantly suppressed HCC cells growth in vitro and metastasis in vivo. In contrast, RNA interference silencing of ZC3H14 inhibited its tumor-suppressive function. Mechanismly, through combing bioinformatics analyses and experimental investigation, we demonstrated that loss of ZC3H14 promotes HCC progression through enhancing integrin pathway. This study suggests that ZC3H14 functions as a novel tumor suppressor and is a candidate prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Chuxiao Zhang
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Aiqing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Mengting Shi
- Guangxi Medical University, Nanning, P. R. China
| | - Ying Yang
- Department of Radiation and Oncology, Navy General Hospital, Beijing, P. R. China
| | - Xiaojun Wei
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, Beijing, P. R. China
| | - Chun Yang
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China.,Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
152
|
Smith PS, Whitworth J, West H, Cook J, Gardiner C, Lim DHK, Morrison PJ, Hislop RG, Murray E, Tischkowitz M, Warren AY, Woodward ER, Maher ER. Characterization of renal cell carcinoma-associated constitutional chromosome abnormalities by genome sequencing. Genes Chromosomes Cancer 2020; 59:333-347. [PMID: 31943436 PMCID: PMC7187337 DOI: 10.1002/gcc.22833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Constitutional translocations, typically involving chromosome 3, have been recognized as a rare cause of inherited predisposition to renal cell carcinoma (RCC) for four decades. However, knowledge of the molecular basis of this association is limited. We have characterized the breakpoints by genome sequencing (GS) of constitutional chromosome abnormalities in five individuals who presented with RCC. In one individual with constitutional t(10;17)(q11.21;p11.2), the translocation breakpoint disrupted two genes: the known renal tumor suppressor gene (TSG) FLCN (and clinical features of Birt‐Hogg‐Dubé syndrome were detected) and RASGEF1A. In four cases, the rearrangement breakpoints did not disrupt known inherited RCC genes. In the second case without chromosome 3 involvement, the translocation breakpoint in an individual with a constitutional t(2;17)(q21.1;q11.2) mapped 12 Kb upstream of NLK. Interestingly, NLK has been reported to interact indirectly with FBXW7 and a previously reported RCC‐associated translocation breakpoint disrupted FBXW7. In two cases of constitutional chromosome 3 translocations, no candidate TSGs were identified in the vicinity of the breakpoints. However, in an individual with a constitutional chromosome 3 inversion, the 3p breakpoint disrupted the FHIT TSG (which has been reported previously to be disrupted in two apparently unrelated families with an RCC‐associated t(3;8)(p14.2;q24.1). These findings (a) expand the range of constitutional chromosome rearrangements that may be associated with predisposition to RCC, (b) confirm that chromosome rearrangements not involving chromosome 3 can predispose to RCC, (c) suggest that a variety of molecular mechanisms are involved the pathogenesis of translocation‐associated RCC, and (d) demonstrate the utility of GS for investigating such cases.
Collapse
Affiliation(s)
- Philip S Smith
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - James Whitworth
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Hannah West
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Jacqueline Cook
- Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield, UK
| | - Carol Gardiner
- West of Scotland Genetics Services, Queen Elizabeth University Hospital, Glasgow, UK
| | - Derek H K Lim
- West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Patrick J Morrison
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - R Gordon Hislop
- East of Scotland Regional Genetics Service, Ninewells Hospital, Dundee, UK
| | - Emily Murray
- East of Scotland Regional Genetics Service, Ninewells Hospital, Dundee, UK
| | -
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University NHS Foundation Trust and Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine and NW Laboratory Genetics Hub, Manchester University Hospitals NHS Foundation Trust, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Health Innovation Manchester, Manchester, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
153
|
Abstract
The discovery of the von Hippel-Lindau (VHL) gene marked a milestone in our understanding of clear cell renal cell carcinoma (ccRCC) pathogenesis. VHL inactivation is not only a defining feature of ccRCC, but also the initiating event. Herein, we discuss canonical and noncanonical pVHL functions, as well as breakthroughs shaping our understanding of ccRCC evolution and evolutionary subtypes. We conclude by presenting evolving strategies to therapeutically exploit effector mechanisms downstream of pVHL.
Collapse
|
154
|
Schmid V, Lafleur VN, Lombardi O, Li R, Salama R, Colli L, Choudhry H, Chanock S, Ratcliffe PJ, Mole DR. Co-incidence of RCC-susceptibility polymorphisms with HIF cis-acting sequences supports a pathway tuning model of cancer. Sci Rep 2019; 9:18768. [PMID: 31822727 PMCID: PMC6904466 DOI: 10.1038/s41598-019-55098-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence suggests that dysregulation of oncogenic pathways requires precise tuning in order for cancer to develop. To test this, we examined the overlap between cis-acting elements of the hypoxia-inducible factor (HIF) pathway and cancer-susceptibility polymorphisms as defined in genome-wide association studies (GWAS). In renal cancer, where HIF is constitutively and un-physiologically activated by mutation of the von Hippel-Lindau tumour suppressor, we observed marked excess overlap, which extended to potential susceptibility polymorphisms that are below the conventional threshold applied in GWAS. In contrast, in other cancers where HIF is upregulated by different mechanisms, including micro-environmental hypoxia, we observed no excess in overlap. Our findings support a 'pathway tuning' model of cancer, whereby precise modulation of multiple outputs of specific, activated pathways is important in oncogenesis. This implies that selective pressures to modulate such pathways operate during cancer development and should focus attempts to identify their nature and consequences.
Collapse
Affiliation(s)
- Virginia Schmid
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Veronique N Lafleur
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Olivia Lombardi
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Ran Li
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Rafik Salama
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Leandro Colli
- Division of Cancer Epidemiology and Genetics, room 7E412, MSC 9776, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892-9776, USA
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Center of Innovation in Personalized Medicine, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, room 7E412, MSC 9776, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892-9776, USA
| | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, United Kingdom.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom.
| | - David R Mole
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, United Kingdom.
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom.
| |
Collapse
|
155
|
Abstract
Abstract
Purpose of Review
In this review, we discuss the key molecular and clinical developments in VHL disease that have the potential to impact on the natural history of the disease and improve patient outcomes.
Recent Findings
Identifiable mutations in VHL underlie most cases of VHL and define clear genotype-phenotype correlations. Detailed clinical and molecular characterisation has allowed the implementation of lifelong screening programmes that have improved clinical outcomes. Functional characterisation of the VHL protein complex has revealed its role in oxygen sensing and the mechanisms of tumourigenesis that are now being exploited to develop novel therapies for VHL and renal cancer.
Summary
The molecular and cellular landscape of VHL-associated tumours is revealing new opportunities to modify the natural history of the disease and develop therapies. Drugs are now entering clinical trials and combined with improved clinical and molecular diagnosis, and lifelong surveillance programmes, further progress towards reducing the morbidity and mortality associated with VHL disease is anticipated.
Collapse
|
156
|
Now a Nobel gas: oxygen. Pflugers Arch 2019; 471:1343-1358. [PMID: 31754831 DOI: 10.1007/s00424-019-02334-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The recent bestowal of the Nobel Prize 2019 in Physiology or Medicine to Gregg L. Semenza, Sir Peter J. Ratcliffe, and William G. Kaelin Jr. celebrates a series of remarkable discoveries that span from the physiological research question on how oxygen deficiency (hypoxia) induces the red blood cell forming hormone erythropoietin (Epo) to the first clinical application of a novel family of Epo-inducing drugs to treat patients suffering from renal anemia. This review looks back at the most important findings made by the three Nobel laureates, highlights current research trends, and sheds an eye on future perspectives of hypoxia research, including emerging and potential clinical applications.
Collapse
|
157
|
Ishihara M, Hu J, Wong A, Cano-Ruiz C, Wu L. Mouse- and patient-derived CAM xenografts for studying metastatic renal cell carcinoma. Enzymes 2019; 46:59-80. [PMID: 31727277 DOI: 10.1016/bs.enz.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Renal cell carcinoma is the seventh most common cancer in the United States, and its metastatic form has a very poor prognosis due to a lack of effective treatment and thorough understanding on metastatic mechanism. This chapter will demonstrate a novel concept that intratumoral heterogeneity is essential for metastasis in renal cell carcinoma. We will first introduce the in vitro system and the mouse model that led to the finding of the cooperative mechanism for metastasis. Then, the results from the CAM model illustrate the cooperative interactions that lead to metastasis also occur in this model. We believe that the CAM model, as a unique and sustainable system, can open up new opportunities to study the metastatic disease.
Collapse
Affiliation(s)
- Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Anthony Wong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
| | - Celine Cano-Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
158
|
Courtney KD, Ma Y, Diaz de Leon A, Christie A, Xie Z, Woolford L, Singla N, Joyce A, Hill H, Madhuranthakam AJ, Yuan Q, Xi Y, Zhang Y, Chang J, Fatunde O, Arriaga Y, Frankel AE, Kalva S, Zhang S, McKenzie T, Reig Torras O, Figlin RA, Rini BI, McKay RM, Kapur P, Wang T, Pedrosa I, Brugarolas J. HIF-2 Complex Dissociation, Target Inhibition, and Acquired Resistance with PT2385, a First-in-Class HIF-2 Inhibitor, in Patients with Clear Cell Renal Cell Carcinoma. Clin Cancer Res 2019; 26:793-803. [PMID: 31727677 DOI: 10.1158/1078-0432.ccr-19-1459] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/16/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE The heterodimeric transcription factor HIF-2 is arguably the most important driver of clear cell renal cell carcinoma (ccRCC). Although considered undruggable, structural analyses at the University of Texas Southwestern Medical Center (UTSW, Dallas, TX) identified a vulnerability in the α subunit, which heterodimerizes with HIF1β, ultimately leading to the development of PT2385, a first-in-class inhibitor. PT2385 was safe and active in a first-in-human phase I clinical trial of patients with extensively pretreated ccRCC at UTSW and elsewhere. There were no dose-limiting toxicities, and disease control ≥4 months was achieved in 42% of patients. PATIENTS AND METHODS We conducted a prospective companion substudy involving a subset of patients enrolled in the phase I clinical trial at UTSW (n = 10), who were treated at the phase II dose or above, involving multiparametric MRI, blood draws, and serial biopsies for biochemical, whole exome, and RNA-sequencing studies. RESULTS PT2385 inhibited HIF-2 in nontumor tissues, as determined by a reduction in erythropoietin levels (a pharmacodynamic marker), in all but one patient, who had the lowest drug concentrations. PT2385 dissociated HIF-2 complexes in ccRCC metastases, and inhibited HIF-2 target gene expression. In contrast, HIF-1 complexes were unaffected. Prolonged PT2385 treatment resulted in the acquisition of resistance, and we identified a gatekeeper mutation (G323E) in HIF2α, which interferes with drug binding and precluded HIF-2 complex dissociation. In addition, we identified an acquired TP53 mutation elsewhere, suggesting a possible alternate mechanism of resistance. CONCLUSIONS These findings demonstrate a core dependency on HIF-2 in metastatic ccRCC and establish PT2385 as a highly specific HIF-2 inhibitor in humans. New approaches will be required to target mutant HIF-2 beyond PT2385 or the closely related PT2977 (MK-6482).
Collapse
Affiliation(s)
- Kevin D Courtney
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuanqing Ma
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alberto Diaz de Leon
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiqun Xie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Layton Woolford
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nirmish Singla
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Allison Joyce
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haley Hill
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ananth J Madhuranthakam
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qing Yuan
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yue Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenny Chang
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Oluwatomilade Fatunde
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yull Arriaga
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Arthur E Frankel
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sanjeeva Kalva
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Song Zhang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tiffani McKenzie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Oscar Reig Torras
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert A Figlin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian I Rini
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Renée M McKay
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas. .,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
159
|
Ooi A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin Cancer Biol 2019; 61:158-166. [PMID: 31689495 DOI: 10.1016/j.semcancer.2019.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/26/2019] [Indexed: 12/30/2022]
Abstract
Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is an autosomal dominant hereditary cancer syndrome with incomplete penetrance. It is caused by a germline amorphic allele of the FH gene, which encodes the TCA cycle enzyme, fumarate hydratase (FH). HLRCC patients are genetically predisposed to develop skin leiomyomas, uterine fibroids, and the aggressive kidney cancer of type 2 papillary morphology. Loss-of-heterozygocity at the FH locus that cause a complete loss of FH enzymatic function is always detected in these tumor tissues. Molecular pathway elucidation, genomic studies, and systematic genetics screens reported over the last two decades have identified several FH-inactivation driven pathways alterations, as well as rationally conceived treatment strategies that specifically target FH-/- tumor cells. These treatment strategies include ferroptosis induction, oxidative stress promotion, and metabolic alteration. As the fundamental biology of HLRCC continues to be uncovered, these treatment strategies continue to be refined and may one day lead to a strategy to prevent disease onset among HLRCC patients. With a more complete picture of HLRCC biology, the safe translation of experimental treatment strategies into clinical practice is achievable in the foreseeable future.
Collapse
Affiliation(s)
- Aikseng Ooi
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, 1703 East Mabel Street, 85721, Tucson, AZ, United States.
| |
Collapse
|
160
|
Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, da Veiga Leprevost F, Reva B, Lih TSM, Chang HY, Ma W, Huang C, Ricketts CJ, Chen L, Krek A, Li Y, Rykunov D, Li QK, Chen LS, Ozbek U, Vasaikar S, Wu Y, Yoo S, Chowdhury S, Wyczalkowski MA, Ji J, Schnaubelt M, Kong A, Sethuraman S, Avtonomov DM, Ao M, Colaprico A, Cao S, Cho KC, Kalayci S, Ma S, Liu W, Ruggles K, Calinawan A, Gümüş ZH, Geiszler D, Kawaler E, Teo GC, Wen B, Zhang Y, Keegan S, Li K, Chen F, Edwards N, Pierorazio PM, Chen XS, Pavlovich CP, Hakimi AA, Brominski G, Hsieh JJ, Antczak A, Omelchenko T, Lubinski J, Wiznerowicz M, Linehan WM, Kinsinger CR, Thiagarajan M, Boja ES, Mesri M, Hiltke T, Robles AI, Rodriguez H, Qian J, Fenyö D, Zhang B, Ding L, Schadt E, Chinnaiyan AM, Zhang Z, Omenn GS, Cieslik M, Chan DW, Nesvizhskii AI, Wang P, Zhang H. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell 2019; 179:964-983.e31. [PMID: 31675502 PMCID: PMC7331093 DOI: 10.1016/j.cell.2019.10.007] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/15/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.
Collapse
Affiliation(s)
- David J Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | - Francesca Petralia
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | - Boris Reva
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Umut Ozbek
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Suhas Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yige Wu
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jiayi Ji
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Andy Kong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Dmitry M Avtonomov
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Song Cao
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Selim Kalayci
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shiyong Ma
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Kelly Ruggles
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Chen
- Departments of Medicine and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Edwards
- Department of Biochemistry and Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | - Phillip M Pierorazio
- Brady Urological Institute and Department of Urology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Xi Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christian P Pavlovich
- Brady Urological Institute and Department of Urology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - A Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriel Brominski
- Department of Urology, Poznań University of Medical Sciences, Szwajcarska 3, Poznań 61-285, Poland
| | - James J Hsieh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrzej Antczak
- Department of Urology, Poznań University of Medical Sciences, Szwajcarska 3, Poznań 61-285, Poland
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin 71-252, Poland
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, Poznań 60-203, Poland; Poznań University of Medical Sciences, Poznan 60-701, Poland
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Sema4, Stamford, CT 06902, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | | | - Pei Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|
161
|
Nicholson HE, Tariq Z, Housden BE, Jennings RB, Stransky LA, Perrimon N, Signoretti S, Kaelin WG. HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci Signal 2019; 12:12/601/eaay0482. [PMID: 31575731 DOI: 10.1126/scisignal.aay0482] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inactivation of the VHL tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and VHL inactivation in two species (human and Drosophila) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of VHL-/- ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α-dependent VHL-/- ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α-independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.
Collapse
Affiliation(s)
- Hilary E Nicholson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Zeshan Tariq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Rebecca B Jennings
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura A Stransky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
162
|
Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 2019; 15:641-659. [PMID: 31488900 DOI: 10.1038/s41581-019-0182-z] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Studies of the regulation of erythropoietin (EPO) production by the liver and kidneys, one of the classical physiological responses to hypoxia, led to the discovery of human oxygen-sensing mechanisms, which are now being targeted therapeutically. The oxygen-sensitive signal is generated by 2-oxoglutarate-dependent dioxygenases that deploy molecular oxygen as a co-substrate to catalyse the post-translational hydroxylation of specific prolyl and asparaginyl residues in hypoxia-inducible factor (HIF), a key transcription factor that regulates transcriptional responses to hypoxia. Hydroxylation of HIF at different sites promotes both its degradation and inactivation. Under hypoxic conditions, these processes are suppressed, enabling HIF to escape destruction and form active transcriptional complexes at thousands of loci across the human genome. Accordingly, HIF prolyl hydroxylase inhibitors stabilize HIF and stimulate expression of HIF target genes, including the EPO gene. These molecules activate endogenous EPO gene expression in diseased kidneys and are being developed, or are already in clinical use, for the treatment of renal anaemia. In this Review, we summarize information on the molecular circuitry of hypoxia signalling pathways underlying these new treatments and highlight some of the outstanding questions relevant to their clinical use.
Collapse
|
163
|
Zeng J, Xiang W, Zhang Y, Huang C, Chen K, Chen Z. Ubiquitous expressed transcript promotes tumorigenesis by acting as a positive modulator of the polycomb repressive complex 2 in clear cell renal cell carcinoma. BMC Cancer 2019; 19:874. [PMID: 31481081 PMCID: PMC6724258 DOI: 10.1186/s12885-019-6069-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The ubiquitous expressed transcript (UXT) plays a key role in various tumors by regulating transcriptional activity of multiple transcription factors, including androgen receptor (AR). However, the role of UXT in clear cell renal cell carcinoma (ccRCC) is still unknown. METHODS Yeast two-hybrid screening, GST pull-down and co-immunoprecipitation assays were performed to detect the interacting protein of UXT. Chromatin immunoprecipitation (ChIP) was performed to investigate the levels of histone H3 lysine 27 trimethylation at the HOXA9 promoters. CCK-8 assays, colony formation assays and Transwell assays were performed to detect the proliferation, colony formation, migration and invasion of renal cancer cells. Quantitative PCR analysis was performed to detect the expressions of UXT in human ccRCC samples. RESULTS The enhancer of zeste homolog 2 (EZH2) is a novel UXT interacting protein and UXT interacts with EZH2 in the nucleus. In addition, UXT interacts with the polycomb repressive complex 2 (PRC2) through directly binding to EZH2 and suppressor of zeste 12 homolog (SUZ12), but not to embryonic ectoderm development (EED). Moreover, the UXT activates EZH2 histone methyltransferase activity by facilitating EZH2 binding with SUZ12. We further provided striking evidences that knockdown of UXT inhibits proliferation, colony formation, migration and invasion of renal cancer cells, in an EZH2-dependent manner. Importantly, the upregulation of UXT expression was observed in clinical ccRCC samples, and the high expression level of UXT was associated with advanced stage, distant metastasis and poor overall survival in patients with ccRCC. CONCLUSION The UXT is a novel regulator of the PRC2 and acts as a renal cancer oncogene that affects the progression and survival of ccRCC patients.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000 People’s Republic of China
| | - Wei Xiang
- College of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Yucong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
- Department of Geriatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Chunhua Huang
- College of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| |
Collapse
|
164
|
Fang X, Sun R, Hu Y, Wang H, Guo Y, Yang B, Pi J, Xu Y. miRNA-182-5p, via HIF2α, contributes to arsenic carcinogenesis: evidence from human renal epithelial cells. Metallomics 2019; 10:1607-1617. [PMID: 30334557 DOI: 10.1039/c8mt00251g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic exposure to high levels of arsenic has been associated with high risks for many cancers, including renal cell carcinoma (RCC). However the underlying mechanisms are not clear. In the present study, chronic arsenite exposure (2 μM or 5 μM, 30 weeks) induced malignant transformation of HK-2 human renal epithelial cells as indicated by elevated colony formation (6.2- and 5.4-fold increase, respectively), secreted MMP-9 activity (10.1- and 11.3-fold increase, respectively) and proliferation rate (1.2- and 1.3-fold increase in 72 h, respectively). Lipid accumulation, typical of clear cell RCC, was observed in arsenic-transformed (As-TM) cells. Overexpression of hypoxia-inducible factor 2α (HIF2α) and suppression of carnitine palmitoyltransferase 1A (CPT1A) were found at the level of mRNA (1.5- and 0.49-fold of control, respectively) and protein (4.0- and 0.28-fold of control, respectively) after exposure to 2 μM arsenite for 20 weeks. Silencing of HIF2α significantly attenuated arsenite-induced malignant phenotypes and lipid accumulation. Inactivation of Von Hippel-Lindau (VHL) and impaired protein degradation of HIF2α were not found in As-TM cells. Expression of miR-182-5p and miR-802 in As-TM cells was 42.4% and 54.0% of control, respectively (p < 0.05). The levels of mRNA and protein of HIF2α were increased 2.4 folds and 1.6 folds of negative control in response to the miR-182-5p inhibitor, respectively, but decreased to 58.1% and 50.1% of negative control in response to miR-182-5p mimics, respectively. No significant alteration was observed in HIF2α expression when miR-802 was silenced. Our data provide further evidence for the carcinogenic role of arsenic in the kidney. Moreover, the miR-182-5p/HIF2α pathway is indicated to be involved in malignant transformation of human renal epithelial cells under arsenite exposure.
Collapse
Affiliation(s)
- Xin Fang
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, Liaoning, P. R. China110122.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Wierzbicki PM, Klacz J, Kotulak-Chrzaszcz A, Wronska A, Stanislawowski M, Rybarczyk A, Ludziejewska A, Kmiec Z, Matuszewski M. Prognostic significance of VHL, HIF1A, HIF2A, VEGFA and p53 expression in patients with clear‑cell renal cell carcinoma treated with sunitinib as first‑line treatment. Int J Oncol 2019; 55:371-390. [PMID: 31268155 PMCID: PMC6615924 DOI: 10.3892/ijo.2019.4830] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell cancer, characterized by the highest mortality rate among other RCC subtypes due to the occurrence of metastasis and drug resistance following surgery. The Von Hippel-Lindau tumor suppressor (VHL)-hypoxia-inducible factor 1 subunit α (HIF1A)/hypoxia-inducible factor 2α (HIF2A)-vascular endothelial growth factor A (VEGFA) protein axis is involved in the development and progression of ccRCC, whereas sunitinib, a tyrosine kinase inhibitor, blocks the binding of VEGFA to its receptor. The aim of the present study was to examine the possible association of the gene expression of VHL, HIF1A, HIF2A, VEGFA and tumor protein P53 (P53) in cancer tissue with the outcome of ccRCC patients who were treated with sunitinib as first-line therapy following nephrec-tomy. A total of 36 ccRCC patients were enrolled, 11 of whom were administered sunitinib post-operatively. Tumor and control samples were collected, and mRNA and protein levels were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. High mRNA and protein expression levels of HIF2A and VEGFA were found to be associated with shorter overall survival (OS) and progression-free survival (PFS) rates, as well as with unfavorable risk factors of cancer recurrence and mortality. Resistance to sunitinib was also observed; the OS and PFS rates were shorter (median OS and PFS: 12 and 6 months, respectively, vs. undetermined). Sunitinib resistance was associated with high HIF2A and VEGFA protein levels (b=0.57 and b=0.69 for OS and PFS, respectively; P<0.001). Taken together, the findings of this study suggest that the protein levels of HIF2A and VEGFA in tumor tissue may serve as independent prognostic factors in ccRCC. ccRCC patients with increased intratumoral HIF2A and VEGFA protein levels, and unaltered VHL protein levels, are not likely to benefit from sunitinib treatment following nephrectomy; however, this hypothesis requires verification by large-scale replication studies.
Collapse
Affiliation(s)
- Piotr M Wierzbicki
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Jakub Klacz
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, 80402 Gdansk, Poland
| | - Anna Kotulak-Chrzaszcz
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Agata Wronska
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Marcin Stanislawowski
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Agnieszka Rybarczyk
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | | | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Marcin Matuszewski
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, 80402 Gdansk, Poland
| |
Collapse
|
166
|
Linehan WM, Schmidt LS, Crooks DR, Wei D, Srinivasan R, Lang M, Ricketts CJ. The Metabolic Basis of Kidney Cancer. Cancer Discov 2019; 9:1006-1021. [PMID: 31088840 DOI: 10.1158/2159-8290.cd-18-1354] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/19/2019] [Accepted: 03/22/2019] [Indexed: 01/27/2023]
Abstract
Kidney cancer is not a single disease but represents several distinct types of cancer that have defining histologies and genetic alterations and that follow different clinical courses and have different responses to therapy. Mutation of genes associated with kidney cancer, such as VHL, FLCN, TFE3, FH, or SDHB, dysregulates the tumor's responses to changes in oxygen, iron, nutrient, or energy levels. The identification of these varying genetic bases of kidney cancer has increased our understanding of the biology of this cancer, allowing the development of targeted therapies and the appreciation that it is a cancer driven by metabolic alterations. SIGNIFICANCE: Kidney cancer is a complex disease composed of different types of cancer that present with different histologies, clinical courses, genetic changes, and responses to therapy. This review describes the known genetic changes within kidney cancer, how they alter tumor metabolism, and how these metabolic changes can be therapeutically targeted.
Collapse
Affiliation(s)
- W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Basic Science Program, Frederick Laboratory for Cancer Research, Frederick, Maryland
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
167
|
Porter EG, Dhiman A, Chowdhury B, Carter BC, Lin H, Stewart JC, Kazemian M, Wendt MK, Dykhuizen EC. PBRM1 Regulates Stress Response in Epithelial Cells. iScience 2019; 15:196-210. [PMID: 31077944 PMCID: PMC6514269 DOI: 10.1016/j.isci.2019.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/10/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022] Open
Abstract
Polybromo1 (PBRM1) is a chromatin remodeler subunit highly mutated in cancer, particularly clear cell renal carcinoma. PBRM1 is a member of the SWI/SNF subcomplex, PBAF (PBRM1-Brg1/Brm-associated factors), and is characterized by six tandem bromodomains. Here we establish a role for PBRM1 in epithelial cell maintenance through the expression of genes involved in cell adhesion, metabolism, stress response, and apoptosis. In support of a general role for PBRM1 in stress response and apoptosis, we observe that loss of PBRM1 results in an increase in reactive oxygen species generation and a decrease in cellular viability under stress conditions. We find that loss of PBRM1 promotes cell growth under favorable conditions but is required for cell survival under conditions of cellular stress. PBRM1 facilitates the expression of stress response genes in epithelial cells Deletion of PBRM1 promotes growth under low-stress conditions PBRM1 restrains ROS generation and induces apoptosis under high-stress conditions Under H2O2 stress, PBRM1 cooperates with cJun and NRF2 to induce gene expression
Collapse
Affiliation(s)
- Elizabeth G Porter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Basudev Chowdhury
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Benjamin C Carter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Hang Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Jane C Stewart
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
168
|
Wang X, Ahn JE, Fiejtek DK, Lin L, Dinkelborg K, Sundaram R, Zheng SL, Iliopoulos O, Hodgetts KJ. Synthesis of the HIF-2α translation inhibitor compound 76 via a Japp-Klingemann coupling. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
169
|
Price C, Gill S, Ho ZV, Davidson SM, Merkel E, McFarland JM, Leung L, Tang A, Kost-Alimova M, Tsherniak A, Jonas O, Vazquez F, Hahn WC. Genome-Wide Interrogation of Human Cancers Identifies EGLN1 Dependency in Clear Cell Ovarian Cancers. Cancer Res 2019; 79:2564-2579. [PMID: 30898838 DOI: 10.1158/0008-5472.can-18-2674] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/18/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
Abstract
We hypothesized that candidate dependencies for which there are small molecules that are either approved or in advanced development for a nononcology indication may represent potential therapeutic targets. To test this hypothesis, we performed genome-scale loss-of-function screens in hundreds of cancer cell lines. We found that knockout of EGLN1, which encodes prolyl hydroxylase domain-containing protein 2 (PHD2), reduced the proliferation of a subset of clear cell ovarian cancer cell lines in vitro. EGLN1-dependent cells exhibited sensitivity to the pan-EGLN inhibitor FG-4592. The response to FG-4592 was reversed by deletion of HIF1A, demonstrating that EGLN1 dependency was related to negative regulation of HIF1A. We also found that ovarian clear cell tumors susceptible to both genetic and pharmacologic inhibition of EGLN1 required intact HIF1A. Collectively, these observations identify EGLN1 as a cancer target with therapeutic potential. SIGNIFICANCE: These findings reveal a differential dependency of clear cell ovarian cancers on EGLN1, thus identifying EGLN1 as a potential therapeutic target in clear cell ovarian cancer patients.
Collapse
Affiliation(s)
- Colles Price
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Stanley Gill
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zandra V Ho
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Shawn M Davidson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Erin Merkel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Lisa Leung
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Andrew Tang
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Aviad Tsherniak
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Oliver Jonas
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Francisca Vazquez
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
170
|
Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, Warren AY, Stewart GD, Eisen T, Bihary D, Samarajiwa SA, Vanharanta S. A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma. Nat Commun 2019; 10:1152. [PMID: 30858363 PMCID: PMC6411998 DOI: 10.1038/s41467-019-09116-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/15/2019] [Indexed: 12/17/2022] Open
Abstract
Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.
Collapse
Affiliation(s)
- Saiful E Syafruddin
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Paulo Rodrigues
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Erika Vojtasova
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - M Nazhif Zaini
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Johanna Burge
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Grant D Stewart
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tim Eisen
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Health Partners, Cambridge, CB2 0QQ, UK
- Oncology Early Clinical Development, AstraZeneca, Cambridge, SG8 6EH, UK
| | - Dóra Bihary
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
171
|
Greene CJ, Sharma NJ, Fiorica PN, Forrester E, Smith GJ, Gross KW, Kauffman EC. Suppressive effects of iron chelation in clear cell renal cell carcinoma and their dependency on VHL inactivation. Free Radic Biol Med 2019; 133:295-309. [PMID: 30553971 PMCID: PMC10038186 DOI: 10.1016/j.freeradbiomed.2018.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Increasing data implicate iron accumulation in tumorigenesis of the kidney, particularly the clear cell renal cell carcinoma (ccRCC) subtype. The von Hippel Lindau (VHL)/hypoxia inducible factor-α (HIF-α) axis is uniquely dysregulated in ccRCC and is a major regulator and regulatory target of iron metabolism, yet the role of iron in ccRCC tumorigenesis and its potential interplay with VHL inactivation remains unclear. We investigated whether ccRCC iron accumulation occurs due to increased cell dependency on iron for growth and survival as a result of VHL inactivation. Free iron levels were compared between four VHL-mutant ccRCC cell lines (786-0, A704, 769-P, RCC4) and two benign renal tubule epithelial cell lines (RPTEC, HRCEp) using the Phen Green SK fluorescent iron stain. Intracellular iron deprivation was achieved using two clinical iron chelator drugs, deferasirox (DFX) and deferoxamine (DFO), and chelator effects were measured on cell line growth, cell cycle phase, apoptosis, HIF-1α and HIF-2α protein levels and HIF-α transcriptional activity based on expression of target genes CA9, OCT4/POU5F1 and PDGFβ/PDGFB. Similar assays were performed in VHL-mutant ccRCC cells with and without ectopic wild-type VHL expression. Baseline free iron levels were significantly higher in ccRCC cell lines than benign renal cell lines. DFX depleted cellular free iron more rapidly than DFO and led to greater growth suppression of ccRCC cell lines (>90% at ~30-150 µM) than benign renal cell lines (~10-50% at up to 250 µM). Similar growth responses were observed using DFO, with the exception that a prolonged treatment duration was necessary to deplete cellular iron adequately for differential growth suppression of the less susceptible A704 ccRCC cell line relative to benign renal cell lines. Apoptosis and G1-phase cell cycle arrest were identified as potential mechanisms of chelator growth suppression based on their induction in ccRCC cell lines but not benign renal cell lines. Iron chelation in ccRCC cells but not benign renal cells suppressed HIF-1α and HIF-2α protein levels and transcriptional activity, and the degree and timing of HIF-2α suppression correlated with the onset of apoptosis. Restoration of wild-type VHL function in ccRCC cells was sufficient to prevent chelator-induced apoptosis and G1 cell cycle arrest, indicating that ccRCC susceptibility to iron deprivation is VHL inactivation-dependent. In conclusion, ccRCC cells are characterized by high free iron levels and a cancer-specific dependency on iron for HIF-α overexpression, cell cycle progression and apoptotic escape. This iron dependency is introduced by VHL inactivation, revealing a novel interplay between VHL/HIF-α dysregulation and ccRCC iron metabolism. Future study is warranted to determine if iron deprivation using chelator drugs provides an effective therapeutic strategy for targeting HIF-2α and suppressing tumor progression in ccRCC patients.
Collapse
Affiliation(s)
- Christopher J Greene
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Nitika J Sharma
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Peter N Fiorica
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Emily Forrester
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Gary J Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States; Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States; Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
172
|
Qian J, Gelens L, Bollen M. Coordination of Timers and Sensors in Cell Signaling. Bioessays 2019; 41:e1800217. [PMID: 30730051 DOI: 10.1002/bies.201800217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Timers and sensors are common devices that make our daily life safer, more convenient, and more efficient. In a cellular context, they arguably play an even more crucial role as they ensure the survival of cells in the presence of various extrinsic and intrinsic stresses. Biological timers and sensors generate distinct signaling profiles, enabling them to produce different types of cellular responses. Recent data suggest that they can work together to guarantee correct timing and responsiveness. By exploring examples of cellular stress signaling from mitosis, DNA damage, and hypoxia, the authors discuss the common architecture of timer-sensor integration, and how its added features contribute to the generation of desired signaling profiles when dealing with stresses of variable duration and strength. The authors propose timer-sensor integration as a widespread mechanism with profound biological implications and therapeutic potential.
Collapse
Affiliation(s)
- Junbin Qian
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium.,VIB Center for Cancer Biology, 3000, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
173
|
Canino C, Perrone L, Bosco E, Saltalamacchia G, Mosca A, Rizzo M, Porta C. Targeting angiogenesis in metastatic renal cell carcinoma. Expert Rev Anticancer Ther 2019; 19:245-257. [PMID: 30678509 DOI: 10.1080/14737140.2019.1574574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC), and particularly its clear cell histological subtype, is commonly characterized by genetic alterations in the Von Hippel Lindau (VHL) tumor suppressor gene, leading to a typically exasperated angiogenesis. However, other biological and genetic peculiarities contribute to differentiate this malignancy from other solid tumors, including its immunogenicity. Areas covered: This review focuses on the present and future role of antiangiogenic drugs, administered either alone (as it has been in the past few years), or in combination with other agents (e.g. immune checkpoint inhibitors), in the treatment of metastatic RCC. Expert commentary: Due to its peculiar pathogenesis, it is unrealistic to expect to be able to get rid of antiangiogenic agents for the treatment of this disease; however, we do expect that combinations of VEGF/VEGFRs-targeting agents with immune checkpoint inhibitors will gradually replace antiangiogenic monotherapies as the standard of care, at least in the first line setting of metastatic RCC patients. Biomarkers discovery remains the highest priority in order to further improve the percentage of patients benefitting of our treatment.
Collapse
Affiliation(s)
- Costanza Canino
- a Division of Translational Oncology , I.R.C.C.S. Istituti Clinici Scientifici Maugeri , Pavia , Italy
| | - Lorenzo Perrone
- b Division of Oncology , I.R.C.C.S. Istituti Clinici Scientifici Maugeri , Pavia , Italy
| | - Eugenia Bosco
- a Division of Translational Oncology , I.R.C.C.S. Istituti Clinici Scientifici Maugeri , Pavia , Italy
| | - Giuseppe Saltalamacchia
- a Division of Translational Oncology , I.R.C.C.S. Istituti Clinici Scientifici Maugeri , Pavia , Italy
| | - Alessandra Mosca
- c Medical Oncology , Ospedale Maggiore della Carità , Novara , Italy
| | - Mimma Rizzo
- a Division of Translational Oncology , I.R.C.C.S. Istituti Clinici Scientifici Maugeri , Pavia , Italy
| | - Camillo Porta
- a Division of Translational Oncology , I.R.C.C.S. Istituti Clinici Scientifici Maugeri , Pavia , Italy.,d Department of Internal Medicine , University of Pavia , Pavia , Italy
| |
Collapse
|
174
|
Chappell JC, Payne LB, Rathmell WK. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest 2019; 129:442-451. [PMID: 30614813 DOI: 10.1172/jci120855] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The field of hereditary kidney cancer has begun to mature following the identification of several germline syndromes that define genetic and molecular features of this cancer. Molecular defects within these hereditary syndromes demonstrate consistent deficits in angiogenesis and metabolic signaling, largely driven by altered hypoxia signaling. The classical mutation, loss of function of the von Hippel-Lindau (VHL) tumor suppressor, provides a human pathogenesis model for critical aspects of pseudohypoxia. These features are mimicked in a less common hereditary renal tumor syndrome, known as hereditary leiomyomatosis and renal cell carcinoma. Here, we review renal tumor angiogenesis and metabolism from a HIF-centric perspective, considering alterations in the hypoxic landscape, and molecular deviations resulting from high levels of HIF family members. Mutations underlying HIF deregulation drive multifactorial aberrations in angiogenic signals and metabolism. The mechanisms by which these defects drive tumor growth are still emerging. However, the distinctive patterns of angiogenesis and glycolysis-/glutamine-dependent bioenergetics provide insight into the cellular environment of these cancers. The result is a scenario permissive for aggressive tumorigenesis especially within the proximal renal tubule. These features of tumorigenesis have been highly actionable in kidney cancer treatments, and will likely continue as central tenets of kidney cancer therapeutics.
Collapse
Affiliation(s)
- John C Chappell
- Center for Heart and Regenerative Medicine, Departments of Biomedical Sciences and Biomedical Engineering and Mechanics, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Laura Beth Payne
- Center for Heart and Regenerative Medicine, Departments of Biomedical Sciences and Biomedical Engineering and Mechanics, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Departments of Medicine and Biochemistry, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
175
|
Miikkulainen P, Högel H, Seyednasrollah F, Rantanen K, Elo LL, Jaakkola PM. Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) maintains high HIF2A mRNA levels in clear cell renal cell carcinoma. J Biol Chem 2019; 294:3760-3771. [PMID: 30617181 DOI: 10.1074/jbc.ra118.004902] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
Most clear cell renal cell carcinomas (ccRCCs) have inactivation of the von Hippel-Lindau tumor suppressor protein (pVHL), resulting in the accumulation of hypoxia-inducible factor α-subunits (HIF-α) and their downstream targets. HIF-2α expression is particularly high in ccRCC and is associated with increased ccRCC growth and aggressiveness. In the canonical HIF signaling pathway, HIF-prolyl hydroxylase 3 (PHD3) suppresses HIF-2α protein by post-translational hydroxylation under sufficient oxygen availability. Here, using immunoblotting and immunofluorescence staining, qRT-PCR, and siRNA-mediated gene silencing, we show that unlike in the canonical pathway, PHD3 silencing in ccRCC cells leads to down-regulation of HIF-2α protein and mRNA. Depletion of other PHD family members had no effect on HIF-2α expression, and PHD3 knockdown in non-RCC cells resulted in the expected increase in HIF-2α protein expression. Accordingly, PHD3 knockdown decreased HIF-2α target gene expression in ccRCC cells and expression was restored upon forced HIF-2α expression. The effect of PHD3 depletion was pinpointed to HIF2A mRNA stability. In line with these in vitro results, a strong positive correlation of PHD3 and HIF2A mRNA expression in ccRCC tumors was detected. Our results suggest that in contrast to the known negative regulation of HIF-2α in most cell types, high PHD3 expression in ccRCC cells maintains elevated HIF-2α expression and that of its target genes, which may enhance kidney cancer aggressiveness.
Collapse
Affiliation(s)
- Petra Miikkulainen
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.,the Department of Medical Biochemistry, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Heidi Högel
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.,the Department of Medical Biochemistry, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Fatemeh Seyednasrollah
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.,the Department of Mathematics and Statistics, University of Turku, Vesilinnantie 5, 20520 Turku, Finland, and
| | - Krista Rantanen
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Laura L Elo
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Panu M Jaakkola
- From the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland, .,the Department of Medical Biochemistry, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.,Helsinki University Hospital Cancer Center and Department of Oncology, University of Helsinki, Haartmaninkatu 4, 00290 Helsinki, Finland
| |
Collapse
|
176
|
Smythies JA, Sun M, Masson N, Salama R, Simpson PD, Murray E, Neumann V, Cockman ME, Choudhry H, Ratcliffe PJ, Mole DR. Inherent DNA-binding specificities of the HIF-1α and HIF-2α transcription factors in chromatin. EMBO Rep 2019; 20:e46401. [PMID: 30429208 PMCID: PMC6322389 DOI: 10.15252/embr.201846401] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is the major transcriptional regulator of cellular responses to hypoxia. The two principal HIF-α isoforms, HIF-1α and HIF-2α, are progressively stabilized in response to hypoxia and form heterodimers with HIF-1β to activate a broad range of transcriptional responses. Here, we report on the pan-genomic distribution of isoform-specific HIF binding in response to hypoxia of varying severity and duration, and in response to genetic ablation of each HIF-α isoform. Our findings reveal that, despite an identical consensus recognition sequence in DNA, each HIF heterodimer loads progressively at a distinct repertoire of cell-type-specific sites across the genome, with little evidence of redistribution under any of the conditions examined. Marked biases towards promoter-proximal binding of HIF-1 and promoter-distant binding of HIF-2 were observed under all conditions and were consistent in multiple cell type. The findings imply that each HIF isoform has an inherent property that determines its binding distribution across the genome, which might be exploited to therapeutically target the specific transcriptional output of each isoform independently.
Collapse
Affiliation(s)
| | - Min Sun
- NDM Research Building, University of Oxford, Oxford, UK
| | - Norma Masson
- NDM Research Building, University of Oxford, Oxford, UK
| | - Rafik Salama
- NDM Research Building, University of Oxford, Oxford, UK
| | | | | | | | | | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Center of Innovation in Personalized Medicine, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter J Ratcliffe
- NDM Research Building, University of Oxford, Oxford, UK
- The Francis Crick Institute, London, UK
| | - David R Mole
- NDM Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
177
|
Wohlrab C, Vissers MCM, Phillips E, Morrin H, Robinson BA, Dachs GU. The Association Between Ascorbate and the Hypoxia-Inducible Factors in Human Renal Cell Carcinoma Requires a Functional Von Hippel-Lindau Protein. Front Oncol 2018; 8:574. [PMID: 30555801 PMCID: PMC6284050 DOI: 10.3389/fonc.2018.00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible transcription factors (HIFs) drive angiogenesis and cancer cell growth, contributing to an aggressive tumor phenotype. HIF-α protein levels and activity are controlled at the post-translational level by HIF hydroxylases. Hydroxylated HIF-α is recognized by the von Hippel Lindau (VHL) tumor suppressor and targeted for degradation. The HIF hydroxylases are members of the iron and 2-oxoglutarate-dependent dioxygenases, which require ascorbate as cofactor for activity. Clear cell renal cell carcinomas (ccRCC) harbor mutations in the VHL gene, whereas papillary RCC (pRCC) have a functional VHL. These natural occurring VHL variants in RCC enable the testing, in clinical samples, of the hypothesis that ascorbate modulates HIF-α levels through its role as a cofactor for the HIF hydroxylases. We measured ascorbate, HIF-1α, and HIF-2α protein and HIF downstream targets BNIP3, CA9, cyclin D1, GLUT1, and VEGF (combined to generate the HIF pathway score) in VHL-defective ccRCC (n = 73) and VHL-proficient pRCC human tumor tissue (n = 41). HIF and ascorbate levels were increased in ccRCC and pRCC tumors compared to matched renal cortex. HIF-1 and total HIF pathway activation scores were decreased with higher ascorbate in pRCC tumors (Spearman r = −0.38, p < 0.05 and r = −0.35, p < 0.05). This was not evident for ccRCC tumors. In mechanistic studies in vitro, ascorbate influenced HIF-1 activity in VHL-proficient, but not VHL-defective ccRCC cells. Our results indicate that ccRCC, which lacks a functional VHL, does not respond to ascorbate-mediated modulation of the HIF response. This contrasts with the demonstrated association between ascorbate content and the HIF pathway observed in pRCC and other tumors with a functional VHL. The results support a role for ascorbate as a modulator of HIF activity and tumor aggression in cancer types with a functional hypoxic response.
Collapse
Affiliation(s)
- Christina Wohlrab
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Helen Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Cancer Society Tissue Bank, University of Otago, Christchurch, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch Hospital, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
178
|
Liu F, Li N, Yang W, Wang R, Yu J, Wang X. The expression analysis of NGAL and NGALR in clear cell renal cell carcinoma. Gene 2018; 676:269-278. [DOI: 10.1016/j.gene.2018.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023]
|
179
|
Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho TH, Cheng EH. Chromosome 3p Loss-Orchestrated VHL, HIF, and Epigenetic Deregulation in Clear Cell Renal Cell Carcinoma. J Clin Oncol 2018; 36:JCO2018792549. [PMID: 30372397 PMCID: PMC6299341 DOI: 10.1200/jco.2018.79.2549] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype, and metastatic ccRCC is associated with 5-year survival rates of 10% to 20%. Genetically, ccRCC originates from sequential losses of multiple tumor suppressor genes. Remarkably, chromosome 3p loss occurs in more than 90% of sporadic ccRCCs. This results in concurrent one-copy loss of four tumor suppressor genes that are also mutated individually at high frequency in ccRCC (ie, VHL, 80%; PBRM1, 29% to 46%; BAP1, 6% to 19%; and SETD2, 8% to 30%). Pathogenically, 3p loss probably represents the first genetic event that occurs in sporadic ccRCC and the second genetic event in VHL-mutated hereditary ccRCC. VHL constitutes the substrate recognition module of the VCB-Cul2 E3 ligase that degrades HIF1/2α, whereas PBRM1, BAP1, and SETD2 are epigenetic modulators that regulate gene transcription. Because 3p loss and VHL inactivation are nearly universal truncal events in ccRCC, the resulting HIF1/2 signaling overdrive and accompanied tumor hypervascularization probably underlie the therapeutic benefits observed with vascular endothelial growth factor receptor inhibitors, including sorafenib, sunitinib, pazopanib, axitinib, bevacizumab, cabozantinib, and lenvatinib. Furthermore, recent marked advances in ccRCC genomics, transcriptomics, proteomics, metabolomics, molecular mechanisms, mouse models, prognostic and predictive biomarkers, and clinical trials have rendered invaluable translational insights concerning precision kidney cancer therapeutics. With an armamentarium encompassing 13 drugs that exploit seven unique therapeutic mechanisms (ie, cytokines, vascular endothelial growth factor receptor, mTORC1, cMET/AXL, fibroblast growth factor receptor, programmed cell death-1 and programmed death-ligand 1, and cytotoxic T-cell lymphocyte associated-4) to treat metastatic renal cell carcinoma, one of the imminent clinical questions concerning care of patients with metastatic ccRCC is how a personalized treatment strategy, through rationally combining and sequencing different therapeutic modalities, can be formulated to offer the best clinical outcome for individual patients. Here, we attempt to integrate recent discoveries of immediate translational impacts and discuss future translational challenges and opportunities.
Collapse
Affiliation(s)
- James J. Hsieh
- James J. Hsieh, Valerie H. Le, and Toshinao Oyama, Washington University, St Louis, MO; Christopher J. Ricketts, National Institutes of Health, Bethesda, MA; Thai Huu Ho, Mayo Clinic, Phoenix, AZ; and Emily H. Cheng, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Valerie H. Le
- James J. Hsieh, Valerie H. Le, and Toshinao Oyama, Washington University, St Louis, MO; Christopher J. Ricketts, National Institutes of Health, Bethesda, MA; Thai Huu Ho, Mayo Clinic, Phoenix, AZ; and Emily H. Cheng, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Toshinao Oyama
- James J. Hsieh, Valerie H. Le, and Toshinao Oyama, Washington University, St Louis, MO; Christopher J. Ricketts, National Institutes of Health, Bethesda, MA; Thai Huu Ho, Mayo Clinic, Phoenix, AZ; and Emily H. Cheng, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christopher J. Ricketts
- James J. Hsieh, Valerie H. Le, and Toshinao Oyama, Washington University, St Louis, MO; Christopher J. Ricketts, National Institutes of Health, Bethesda, MA; Thai Huu Ho, Mayo Clinic, Phoenix, AZ; and Emily H. Cheng, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Thai Huu Ho
- James J. Hsieh, Valerie H. Le, and Toshinao Oyama, Washington University, St Louis, MO; Christopher J. Ricketts, National Institutes of Health, Bethesda, MA; Thai Huu Ho, Mayo Clinic, Phoenix, AZ; and Emily H. Cheng, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emily H. Cheng
- James J. Hsieh, Valerie H. Le, and Toshinao Oyama, Washington University, St Louis, MO; Christopher J. Ricketts, National Institutes of Health, Bethesda, MA; Thai Huu Ho, Mayo Clinic, Phoenix, AZ; and Emily H. Cheng, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
180
|
McDermott DF, Carducci M. Progress in Kidney Cancer Outcomes Through Collaboration, Innovation, and Discovery. J Clin Oncol 2018; 36:JCO1801198. [PMID: 30372393 PMCID: PMC6299339 DOI: 10.1200/jco.18.01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Affiliation(s)
- David F. McDermott
- David F. McDermott, Dana-Farber/Harvard Cancer Center, Boston, MA; and Michael Carducci, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD
| | - Michael Carducci
- David F. McDermott, Dana-Farber/Harvard Cancer Center, Boston, MA; and Michael Carducci, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD
| |
Collapse
|
181
|
Wehn PM, Rizzi JP, Dixon DD, Grina JA, Schlachter ST, Wang B, Xu R, Yang H, Du X, Han G, Wang K, Cao Z, Cheng T, Czerwinski RM, Goggin BS, Huang H, Halfmann MM, Maddie MA, Morton EL, Olive SR, Tan H, Xie S, Wong T, Josey JA, Wallace EM. Design and Activity of Specific Hypoxia-Inducible Factor-2α (HIF-2α) Inhibitors for the Treatment of Clear Cell Renal Cell Carcinoma: Discovery of Clinical Candidate (S)-3-((2,2-Difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (PT2385). J Med Chem 2018; 61:9691-9721. [DOI: 10.1021/acs.jmedchem.8b01196] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul M. Wehn
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - James P. Rizzi
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Darryl D. Dixon
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Jonas A. Grina
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Stephen T. Schlachter
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Bin Wang
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Rui Xu
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Hanbiao Yang
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Xinlin Du
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Guangzhou Han
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Keshi Wang
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Zhaodan Cao
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Tzuling Cheng
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Robert M. Czerwinski
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Barry S. Goggin
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Heli Huang
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Megan M. Halfmann
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Melissa A. Maddie
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Emily L. Morton
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Sarah R. Olive
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Huiling Tan
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Shanhai Xie
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Tai Wong
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - John A. Josey
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Eli M. Wallace
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| |
Collapse
|
182
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
183
|
CEA: Combination-based gene set functional enrichment analysis. Sci Rep 2018; 8:13085. [PMID: 30166636 PMCID: PMC6117355 DOI: 10.1038/s41598-018-31396-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023] Open
Abstract
Functional enrichment analysis is a fundamental and challenging task in bioinformatics. Most of the current enrichment analysis approaches individually evaluate functional terms and often output a list of enriched terms with high similarity and redundancy, which makes it difficult for downstream studies to extract the underlying biological interpretation. In this paper, we proposed a novel framework to assess the performance of combination-based enrichment analysis. Using this framework, we formulated the enrichment analysis as a multi-objective combinatorial optimization problem and developed the CEA (Combination-based Enrichment Analysis) method. CEA provides the whole landscape of term combinations; therefore, it is a good benchmark for evaluating the current state-of-the-art combination-based functional enrichment methods in a comprehensive manner. We tested the effectiveness of CEA on four published microarray datasets. Enriched functional terms identified by CEA not only involve crucial biological processes of related diseases, but also have much less redundancy and can serve as a preferable representation for the enriched terms found by traditional single-term-based methods. CEA has been implemented in the R package CopTea and is available at http://github.com/wulingyun/CopTea/.
Collapse
|
184
|
Nam HY, Chandrashekar DS, Kundu A, Shelar S, Kho EY, Sonpavde G, Naik G, Ghatalia P, Livi CB, Varambally S, Sudarshan S. Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis. Mol Cancer Res 2018; 17:84-96. [PMID: 30131446 DOI: 10.1158/1541-7786.mcr-17-0636] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/20/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022]
Abstract
The Cancer Genome Atlas (TCGA) and other large-scale genomic data pipelines have been integral to the current understanding of the molecular events underlying renal cell carcinoma (RCC). These data networks have focused mostly on primary RCC, which often demonstrates indolent behavior. However, metastatic disease is the major cause of mortality associated with RCC and data sets examining metastatic tumors are sparse. Therefore, a more comprehensive analysis of gene expression and DNA methylome profiling of metastatic RCC in addition to primary RCC and normal kidney was performed. Integrative analysis of the methylome and transcriptome identified over 30 RCC-specific genes whose mRNA expression inversely correlated with promoter methylation, including several known targets of hypoxia inducible factors. Notably, genes encoding several metabolism-related proteins were identified as differentially regulated via methylation including hexokinase 2, aldolase C, stearoyl-CoA desaturase, and estrogen-related receptor-γ (ESRRG), which has a known role in the regulation of nuclear-encoded mitochondrial metabolism genes. Several gene expression changes could portend prognosis in the TCGA cohort. Mechanistically, ESRRG loss occurs via DNA methylation and histone repressive silencing mediated by the polycomb repressor complex 2. Restoration of ESRRG in RCC lines suppresses migratory and invasive phenotypes independently of its canonical role in mitochondrial metabolism. IMPLICATIONS: Collectively, these data provide significant insight into the biology of aggressive RCC and demonstrate a novel role for DNA methylation in the promotion of HIF signaling and invasive phenotypes in renal cancer.
Collapse
Affiliation(s)
- Hye-Young Nam
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Anirban Kundu
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sandeep Shelar
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eun-Young Kho
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Guru Sonpavde
- Department of Medical Oncology, Dana Farber Cancer Institute, Massachusetts
| | - Gurudatta Naik
- Department of Medicine, Section of Hematology-Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pooja Ghatalia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia Pennsylvania
| | - Carolina B Livi
- Department of Molecular Medicine, University of Texas Health Sciences Center at San Antonio, Texas
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Sunil Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
185
|
Mitchell TJ, Rossi SH, Klatte T, Stewart GD. Genomics and clinical correlates of renal cell carcinoma. World J Urol 2018; 36:1899-1911. [PMID: 30099580 PMCID: PMC6280817 DOI: 10.1007/s00345-018-2429-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Clear cell, papillary cell, and chromophobe renal cell carcinomas (RCCs) have now been well characterised thanks to large collaborative projects such as The Cancer Genome Atlas (TCGA). Not only has knowledge of the genomic landscape helped inform the development of new drugs, it also promises to fine tune prognostication. METHODS A literature review was performed summarising the current knowledge on the genetic basis of RCC. RESULTS The Von Hippel-Lindau (VHL) tumour suppressor gene undergoes bi-allelic knockout in the vast majority of clear cell RCCs. The next most prevalent aberrations include a cohort of chromatin-modifying genes with diverse roles including PBRM1, SETD2, BAP1, and KMD5C. The most common non-clear cell renal cancers have also undergone genomic profiling and are characterised by distinct genomic landscapes. Many recurrent mutations have prognostic value and show promise in aiding decisions regarding treatment stratification. Intra-tumour heterogeneity appears to hamper the clinical applicability of sparsely sampled tumours. Ways to abrogate heterogeneity will be required to optimise the genomic classification of tumours. CONCLUSION The somatic mutational landscape of the more common renal cancers is well known. Correlation with outcome needs to be more comprehensively furnished, particularly for small renal masses, rarer non-clear cell renal cancers, and for all tumours undergoing targeted therapy.
Collapse
Affiliation(s)
- Thomas J Mitchell
- Cancer Genome Project, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK. .,Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK. .,Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Sabrina H Rossi
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK.,Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Tobias Klatte
- Department of Urology, Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Bournemouth, BH7 7DW, UK
| | - Grant D Stewart
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK.,Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
186
|
Hu CJ, Zhang H, Laux A, Pullamsetti SS, Stenmark KR. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. J Physiol 2018; 597:1103-1119. [PMID: 29920674 PMCID: PMC6375873 DOI: 10.1113/jp275857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic pulmonary hypertension (PH) is characterized by the accumulation of persistently activated cell types in the pulmonary vessel exhibiting aberrant expression of genes involved in apoptosis resistance, proliferation, inflammation and extracellular matrix (ECM) remodelling. Current therapies for PH, focusing on vasodilatation, do not normalize these activated phenotypes. Furthermore, current approaches to define additional therapeutic targets have focused on determining the initiating signals and their downstream effectors that are important in PH onset and development. Although these approaches have produced a large number of compelling PH treatment targets, many promising human drugs have failed in PH clinical trials. Herein, we propose that one contributing factor to these failures is that processes important in PH development may not be good treatment targets in the established phase of chronic PH. We hypothesize that this is due to alterations of chromatin structure in PH cells, resulting in functional differences between the same factor or pathway in normal or early PH cells versus cells in chronic PH. We propose that the high expression of genes involved in the persistently activated phenotype of PH vascular cells is perpetuated by an open chromatin structure and multiple transcription factors (TFs) via the recruitment of high levels of epigenetic regulators including the histone acetylases P300/CBP, histone acetylation readers including BRDs, the Mediator complex and the positive transcription elongation factor (Abstract figure). Thus, determining how gene expression is controlled by examining chromatin structure, TFs and epigenetic regulators associated with aberrantly expressed genes in pulmonary vascular cells in chronic PH, may uncover new PH therapeutic targets.
![]()
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aya Laux
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus-Liebig University, Giessen, Germany
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
187
|
Rodrigues P, Patel SA, Harewood L, Olan I, Vojtasova E, Syafruddin SE, Zaini MN, Richardson EK, Burge J, Warren AY, Stewart GD, Saeb-Parsy K, Samarajiwa SA, Vanharanta S. NF-κB-Dependent Lymphoid Enhancer Co-option Promotes Renal Carcinoma Metastasis. Cancer Discov 2018; 8:850-865. [PMID: 29875134 PMCID: PMC6031301 DOI: 10.1158/2159-8290.cd-17-1211] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/26/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states.Significance: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 850-65. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.
Collapse
Affiliation(s)
- Paulo Rodrigues
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Louise Harewood
- Cancer Research UK/Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Ioana Olan
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Erika Vojtasova
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Saiful E Syafruddin
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaa'cob Latiff, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - M Nazhif Zaini
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Emma K Richardson
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Johanna Burge
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Grant D Stewart
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom.
| |
Collapse
|
188
|
Lindgren D, Sjölund J, Axelson H. Tracing Renal Cell Carcinomas back to the Nephron. Trends Cancer 2018; 4:472-484. [DOI: 10.1016/j.trecan.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/25/2022]
|
189
|
Biddlestone J, Batie M, Bandarra D, Munoz I, Rocha S. SINHCAF/FAM60A and SIN3A specifically repress HIF-2α expression. Biochem J 2018; 475:2073-2090. [PMID: 29784889 PMCID: PMC6024822 DOI: 10.1042/bcj20170945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023]
Abstract
The SIN3A-HDAC (histone deacetylase) complex is a master transcriptional repressor, required for development but often deregulated in disease. Here, we report that the recently identified new component of this complex, SINHCAF (SIN3A and HDAC-associated factor)/FAM60A (family of homology 60A), links the SIN3A-HDAC co-repressor complex function to the hypoxia response. We show that SINHCAF specifically represses HIF-2α mRNA and protein expression, via its interaction with the transcription factor SP1 (specificity protein 1) and recruitment of HDAC1 to the HIF-2α promoter. SINHCAF control over HIF-2α results in functional cellular changes in in vitro angiogenesis and viability. Our analysis reveals an unexpected link between SINHCAF and the regulation of the hypoxia response.
Collapse
Affiliation(s)
- John Biddlestone
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- SCREDS Clinical Lecturer in Plastic and Reconstructive Surgery, Centre for Cell Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Michael Batie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- Department of Biochemistry, Institute for Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Daniel Bandarra
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ivan Munoz
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
- Department of Biochemistry, Institute for Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
190
|
Sanchez DJ, Simon MC. Genetic and metabolic hallmarks of clear cell renal cell carcinoma. Biochim Biophys Acta Rev Cancer 2018; 1870:23-31. [PMID: 29959988 DOI: 10.1016/j.bbcan.2018.06.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignancy characterized by deregulated hypoxia-inducible factor signaling, mutation of several key chromatin modifying enzymes, and numerous alterations in cellular metabolism. Pre-clinical studies have historically been limited to cell culture models, however, the identification of critical tumor suppressors and oncogenes from large-scale patient sequencing data has led to several new genetically engineered mouse models with phenotypes reminiscent of ccRCC. In this review, we summarize recent literature on these topics and discuss how they inform targeted therapeutic approaches for the treatment of ccRCC.
Collapse
Affiliation(s)
- Danielle J Sanchez
- Abramson Family Cancer Research Institute, 456 BRB II/III, 421 Curie Boulevard, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160, USA; Department of Cell and Developmental Biology, 456 BRB II/III, 421 Curie Boulevard, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, 456 BRB II/III, 421 Curie Boulevard, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160, USA; Department of Cell and Developmental Biology, 456 BRB II/III, 421 Curie Boulevard, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
191
|
Meléndez-Rodríguez F, Roche O, Sanchez-Prieto R, Aragones J. Hypoxia-Inducible Factor 2-Dependent Pathways Driving Von Hippel-Lindau-Deficient Renal Cancer. Front Oncol 2018; 8:214. [PMID: 29938199 PMCID: PMC6002531 DOI: 10.3389/fonc.2018.00214] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
The most common type of the renal cancers detected in humans is clear cell renal cell carcinomas (ccRCCs). These tumors are usually initiated by biallelic gene inactivation of the Von Hippel-Lindau (VHL) factor in the renal epithelium, which deregulates the hypoxia-inducible factors (HIFs) HIF1α and HIF2α, and provokes their constitutive activation irrespective of the cellular oxygen availability. While HIF1α can act as a ccRCC tumor suppressor, HIF2α has emerged as the key HIF isoform that is essential for ccRCC tumor progression. Indeed, preclinical and clinical data have shown that pharmacological inhibitors of HIF2α can efficiently combat ccRCC growth. In this review, we discuss the molecular basis underlying the oncogenic potential of HIF2α in ccRCC by focusing on those pathways primarily controlled by HIF2α that are thought to influence the progression of these tumors.
Collapse
Affiliation(s)
- Florinda Meléndez-Rodríguez
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Olga Roche
- Unidad Asociada de Biomedicina, Universidad de Castilla-La Mancha, Consejo Superior de Investigaciones Científicas (CSIC), Albacete, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ricardo Sanchez-Prieto
- Unidad Asociada de Biomedicina, Universidad de Castilla-La Mancha, Consejo Superior de Investigaciones Científicas (CSIC), Albacete, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de investigaciones Biomedicas Alberto Sols, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Julian Aragones
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
192
|
Ochocki JD, Khare S, Hess M, Ackerman D, Qiu B, Daisak JI, Worth AJ, Lin N, Lee P, Xie H, Li B, Wubbenhorst B, Maguire TG, Nathanson KL, Alwine JC, Blair IA, Nissim I, Keith B, Simon MC. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity. Cell Metab 2018; 27:1263-1280.e6. [PMID: 29754953 PMCID: PMC5990482 DOI: 10.1016/j.cmet.2018.04.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/14/2018] [Accepted: 04/11/2018] [Indexed: 01/02/2023]
Abstract
Kidney cancer, one of the ten most prevalent malignancies in the world, has exhibited increased incidence over the last decade. The most common subtype is "clear cell" renal cell carcinoma (ccRCC), which features consistent metabolic abnormalities, such as highly elevated glycogen and lipid deposition. By integrating metabolomics, genomic, and transcriptomic data, we determined that enzymes in multiple metabolic pathways are universally depleted in human ccRCC tumors, which are otherwise genetically heterogeneous. Notably, the expression of key urea cycle enzymes, including arginase 2 (ARG2) and argininosuccinate synthase 1 (ASS1), is strongly repressed in ccRCC. Reduced ARG2 activity promotes ccRCC tumor growth through at least two distinct mechanisms: conserving the critical biosynthetic cofactor pyridoxal phosphate and avoiding toxic polyamine accumulation. Pharmacological approaches to restore urea cycle enzyme expression would greatly expand treatment strategies for ccRCC patients, where current therapies only benefit a subset of those afflicted with renal cancer.
Collapse
Affiliation(s)
- Joshua D Ochocki
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanika Khare
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Markus Hess
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Ackerman
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Qiu
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennie I Daisak
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J Worth
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nan Lin
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pearl Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hong Xie
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Li
- Program in Cancer Biology, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tobi G Maguire
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James C Alwine
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Itzhak Nissim
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Keith
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
193
|
Abstract
Renal cell carcinoma (RCC) is a heterogenous group of tumors, >70% of which belong to the category of clear cell carcinoma. In recent years, crucial advances have been made in our understanding of the molecular and metabolic basis of clear cell carcinoma. This tumor manifests significant alterations in the cellular metabolism, so that the tumor cells preferentially induce the hypoxia response pathway using aerobic glycolysis, rather than the normal oxidative phosphorylation for energy. Most of the clear cell carcinomas (sporadic as well as familial) have mutations and deletions in the VHL gene located at 3p (p3.25). Normally, pVHL plays a crucial role in the proteasomal degradation of hypoxia-inducible factors (HIF)1 and HIF2. Lack of a functioning pVHL owing to genetic alterations results in stabilization and accumulation of these factors, which promotes cell growth, cell proliferation, and angiogenesis, contributing to a neoplastic phenotype. Several other genes normally located adjacent to VHL (BAP1, SETD2, PBRM1) may also be lost. These are tumor suppressor genes whose loss not only plays a role in carcinogenesis but may also influence the clinical course of these neoplasms. In addition, interaction among a variety of other genes located at several different chromosomes may also play a role in the genesis and progression of clear cell carcinoma.
Collapse
|
194
|
Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, Qian Y, Sharrow AC, Ye Z, Wu L, Xu H. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports 2018; 9:464-477. [PMID: 28793246 PMCID: PMC5550272 DOI: 10.1016/j.stemcr.2017.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Renal cell carcinoma (RCC) is a deadly malignancy due to its tendency to metastasize and resistance to chemotherapy. Stem-like tumor cells often confer these aggressive behaviors. We discovered an endoglin (CD105)-expressing subpopulation in human RCC xenografts and patient samples with a greater capability to form spheres in vitro and tumors in mice at low dilutions than parental cells. Knockdown of CD105 by short hairpin RNA and CRISPR/cas9 reduced stemness markers and sphere-formation ability while accelerating senescence in vitro. Importantly, downregulation of CD105 significantly decreased the tumorigenicity and gemcitabine resistance. This loss of stem-like properties can be rescued by CDA, MYC, or NANOG, and CDA might act as a demethylase maintaining MYC and NANOG. In this study, we showed that Endoglin (CD105) expression not only demarcates a cancer stem cell subpopulation but also confers self-renewal ability and contributes to chemoresistance in RCC.
Collapse
Affiliation(s)
- Junhui Hu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Guan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Peijun Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Jin Dai
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Kun Tang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Haibing Xiao
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Yuan Qian
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Allison C Sharrow
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Zhangqun Ye
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Hua Xu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China.
| |
Collapse
|
195
|
Lai XM, Liu SY, Tsai YT, Sun GH, Chang SY, Huang SM, Cha TL. HAF mediates the evasive resistance of anti-angiogenesis TKI through disrupting HIF-1α and HIF-2α balance in renal cell carcinoma. Oncotarget 2018; 8:49713-49724. [PMID: 28572533 PMCID: PMC5564801 DOI: 10.18632/oncotarget.17923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
Anti-angiogenesis has emerged as a standard of care for metastatic renal cell carcinoma. However, long-lasting efficacy is seldom reached, and evasive resistance eventually occurs under anti-angiogenic tyrosine kinase inhibitor (TKI) therapy. To establish new therapeutic strategies, investigating the molecular mechanism of resistance is critically important. In our study, human umbilical vascular endothelial cells (HUVECs) were incubated with TKI treatment in conditioned medium derived from renal cancer cells (RCCs) to demonstrate cell viability. Quantitative real time PCR or Western blotting analysis detected the fluctuation of transcriptional factors HIF-1α and HIF-2α in RCCs under TKI treatment. We demonstrated the alteration of a specific cytokine produced from RCCs under normoxia or hypoxia incubation by utilizing a cytokine RT-PCR primer array. We found that the anti-angiogenic TKI sunitinib disrupted the balance between HIF-1α and HIF-2α in RCCs and led to a protective effect on HUVECs against sunitinib treatment when cultured with conditioned medium. Mechanistically, RCCs treated with sunitinib resulted in down-regulation of HIF-1α, but not HIF-2α, through reduction of both mRNA and protein levels. The down-regulation of HIF-1α by sunitinib occurred via hypoxia associated factor (HAF), which also enhanced HIF-2α transactivation activity to increase the production of pro-angiogenic factors and cytokines and promote HUVEC proliferation. This phenomenon was observed in ACHN and A498 cells, which express both HIF-1α and HIF-2α, but was not observed in 786-O cells, which express only HIF-2α. Our results illustrated that targeting both angiogenesis and hypoxia pathways might provide a resolution to dealing with the devastating effects of anti-angiogenesis resistance.
Collapse
Affiliation(s)
- Xiang-Me Lai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shu-Yu Liu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yi-Ta Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Sun-Yran Chang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Buddhist Tzu Chi General Hospital, Taipei, Taiwan, R.O.C
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Tai-Lung Cha
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| |
Collapse
|
196
|
Turajlic S, Xu H, Litchfield K, Rowan A, Horswell S, Chambers T, O'Brien T, Lopez JI, Watkins TBK, Nicol D, Stares M, Challacombe B, Hazell S, Chandra A, Mitchell TJ, Au L, Eichler-Jonsson C, Jabbar F, Soultati A, Chowdhury S, Rudman S, Lynch J, Fernando A, Stamp G, Nye E, Stewart A, Xing W, Smith JC, Escudero M, Huffman A, Matthews N, Elgar G, Phillimore B, Costa M, Begum S, Ward S, Salm M, Boeing S, Fisher R, Spain L, Navas C, Grönroos E, Hobor S, Sharma S, Aurangzeb I, Lall S, Polson A, Varia M, Horsfield C, Fotiadis N, Pickering L, Schwarz RF, Silva B, Herrero J, Luscombe NM, Jamal-Hanjani M, Rosenthal R, Birkbak NJ, Wilson GA, Pipek O, Ribli D, Krzystanek M, Csabai I, Szallasi Z, Gore M, McGranahan N, Van Loo P, Campbell P, Larkin J, Swanton C. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal. Cell 2018; 173:595-610.e11. [PMID: 29656894 PMCID: PMC5938372 DOI: 10.1016/j.cell.2018.03.043] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/12/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance.
Collapse
Affiliation(s)
- Samra Turajlic
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Hang Xu
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Kevin Litchfield
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Andrew Rowan
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Stuart Horswell
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Tim Chambers
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Tim O'Brien
- Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Jose I Lopez
- Department of Pathology, Cruces University Hospital, Biocruces Institute, University of the Basque Country, Barakaldo, Spain
| | - Thomas B K Watkins
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - David Nicol
- Department of Urology, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Mark Stares
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Ben Challacombe
- Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Steve Hazell
- Department of Pathology, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Ashish Chandra
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Thomas J Mitchell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Department of Surgery, Addenbrooke's Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Lewis Au
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Claudia Eichler-Jonsson
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Faiz Jabbar
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Aspasia Soultati
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Simon Chowdhury
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Sarah Rudman
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Joanna Lynch
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Archana Fernando
- Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Gordon Stamp
- Experimental Histopathology Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Aengus Stewart
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Wei Xing
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Jonathan C Smith
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Mickael Escudero
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Adam Huffman
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Nik Matthews
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Greg Elgar
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Ben Phillimore
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Marta Costa
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Sharmin Begum
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Sophia Ward
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Max Salm
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Stefan Boeing
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Rosalie Fisher
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Lavinia Spain
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Carolina Navas
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Eva Grönroos
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Sebastijan Hobor
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Sarkhara Sharma
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Ismaeel Aurangzeb
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Sharanpreet Lall
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Alexander Polson
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Mary Varia
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Catherine Horsfield
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Nicos Fotiadis
- Department of Radiology, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Lisa Pickering
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Bruno Silva
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Nick M Luscombe
- Bioinformatics and Computational Biology Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rachel Rosenthal
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Nicolai J Birkbak
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Gareth A Wilson
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dezso Ribli
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marcin Krzystanek
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltan Szallasi
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs Lyngby 2800, Denmark; Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Gore
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Department of Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Peter Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - James Larkin
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK.
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK; Department of Medical Oncology, University College London Hospitals, London NW1 2BU, UK.
| |
Collapse
|
197
|
Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O'Brien T, Martincorena I, Tarpey P, Angelopoulos N, Yates LR, Butler AP, Raine K, Stewart GD, Challacombe B, Fernando A, Lopez JI, Hazell S, Chandra A, Chowdhury S, Rudman S, Soultati A, Stamp G, Fotiadis N, Pickering L, Au L, Spain L, Lynch J, Stares M, Teague J, Maura F, Wedge DC, Horswell S, Chambers T, Litchfield K, Xu H, Stewart A, Elaidi R, Oudard S, McGranahan N, Csabai I, Gore M, Futreal PA, Larkin J, Lynch AG, Szallasi Z, Swanton C, Campbell PJ. Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal. Cell 2018; 173:611-623.e17. [PMID: 29656891 PMCID: PMC5927631 DOI: 10.1016/j.cell.2018.02.020] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/10/2017] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.
Collapse
Affiliation(s)
- Thomas J Mitchell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Academic Urology Group, Department of Surgery, Addenbrooke's Hospitals NHS Foundation Trust, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Samra Turajlic
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Andrew Rowan
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - David Nicol
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - James H R Farmery
- CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Tim O'Brien
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Inigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Patrick Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Nicos Angelopoulos
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Lucy R Yates
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Adam P Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Grant D Stewart
- Academic Urology Group, Department of Surgery, Addenbrooke's Hospitals NHS Foundation Trust, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Ben Challacombe
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Archana Fernando
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Jose I Lopez
- Department of Pathology, Cruces University Hospital, Biocruces Institute, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - Steve Hazell
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Ashish Chandra
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Simon Chowdhury
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Sarah Rudman
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Aspasia Soultati
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Gordon Stamp
- Experimental Histopathology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicos Fotiadis
- Interventional Radiology Department, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Lisa Pickering
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Lewis Au
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Lavinia Spain
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Joanna Lynch
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Mark Stares
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Jon Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Francesco Maura
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - David C Wedge
- Big Data Institute, University of Oxford, Old Road Campus, Oxford OX3 7FZ, UK
| | - Stuart Horswell
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tim Chambers
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Kevin Litchfield
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Hang Xu
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Aengus Stewart
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Reza Elaidi
- Hôpital Européen Georges Pompidou 20, rue Leblanc, 75908 Paris, France
| | - Stéphane Oudard
- Hôpital Européen Georges Pompidou 20, rue Leblanc, 75908 Paris, France
| | - Nicholas McGranahan
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | - Martin Gore
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - P Andrew Futreal
- The University of Texas MD Anderson Cancer Center, Department of Genomic Medicine, Houston, TX 77030, USA
| | - James Larkin
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Andy G Lynch
- CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK; School of Medicine, University of St. Andrews, North Haugh, St. Andrews KY16 9TF, UK
| | - Zoltan Szallasi
- Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark; Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, MA, USA
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London NW1 2BU, UK.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK.
| |
Collapse
|
198
|
Yeh YH, Hsiao HF, Yeh YC, Chen TW, Li TK. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res 2018; 37:70. [PMID: 29587825 PMCID: PMC5870508 DOI: 10.1186/s13046-018-0730-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/09/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tumor microenvironments (TMEs) activate various axes/pathways, predominantly inflammatory and hypoxic responses, impact tumorigenesis, metastasis and therapeutic resistance significantly. Although molecular pathways of individual TME are extensively studied, evidence showing interaction and crosstalk between hypoxia and inflammation remain unclear. Thus, we examined whether interferon (IFN) could modulate both inflammatory and hypoxic responses under normoxia and its relation with cancer development. METHODS IFN was used to induce inflammation response and HIF-1α expression in various cancer cell lines. Corresponding signaling pathways were then analyzed by a combination of pharmacological inhibitors, immunoblotting, GST-Raf pull-down assays, dominant-negative and short-hairpin RNA-mediated knockdown approaches. Specifically, roles of functional HIF-1α in the IFN-induced epithelial-mesenchymal transition (EMT) and other tumorigenic propensities were examined by knockdown, pharmacological inhibition, luciferase reporter, clonogenic, anchorage-independent growth, wound-healing, vasculogenic mimicry, invasion and sphere-formation assays as well as cellular morphology observation. RESULTS We showed for the first time that IFN induced functional HIF-1α expression in a time- and dose- dependent manner in various cancer cell lines under both hypoxic and normoxic conditions, and then leading to an activated HIF-1α pathway in an IFN-mediated pro-inflammatory TME. IFN regulates anti-apoptosis activity, cellular metastasis, EMT and vasculogenic mimicry by a novel mechanism through mainly the activation of PI3K/AKT/mTOR axis. Subsequently, pharmacological and genetic modulations of HIF-1α, JAK, PI3K/AKT/mTOR or p38 pathways efficiently abrogate above IFN-induced tumorigenic propensities. Moreover, HIF-1α is required for the IFN-induced invasiveness, tumorigenesis and vasculogenic mimicry. Further supports for the HIF-1α-dependent tumorigenesis were obtained from results of xenograft mouse model and sphere-formation assay. CONCLUSIONS Our mechanistic study showed an induction of HIF-1α and EMT ability in an IFN-mediated inflammatory TME and thus demonstrating a novel interaction between inflammatory and hypoxic TMEs. Moreover, targeting HIF-1α may be a potential target for inhibiting tumor tumorigenesis and EMT by decreasing cancer cells wound healing and anchorage-independent colony growth. Our results also lead to rationale guidance for developing new therapeutic strategies to prevent relapse via targeting TME-providing IFN signaling and HIF-1α programming.
Collapse
Affiliation(s)
- Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Ho-Fu Hsiao
- Department of Emergency Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan, Republic of China
| | - Yen-Cheng Yeh
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Tien-Wen Chen
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China.
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China.
- Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
199
|
Zhang J, Zhang Q. VHL and Hypoxia Signaling: Beyond HIF in Cancer. Biomedicines 2018; 6:biomedicines6010035. [PMID: 29562667 PMCID: PMC5874692 DOI: 10.3390/biomedicines6010035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Von Hippel-Lindau (VHL) is an important tumor suppressor that is lost in the majority of clear cell carcinoma of renal cancer (ccRCC). Its regulatory pathway involves the activity of E3 ligase, which targets hypoxia inducible factor α (including HIF1α and HIF2α) for proteasome degradation. In recent years, emerging literature suggests that VHL also possesses other HIF-independent functions. This review will focus on VHL-mediated signaling pathways involving the latest identified substrates/binding partners, including N-Myc downstream-regulated gene 3 (NDRG3), AKT, and G9a, etc., and their physiological roles in hypoxia signaling and cancer. We will also discuss the crosstalk between VHL and NF-κB signaling. Lastly, we will review the latest findings on targeting VHL signaling in cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Qing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
200
|
Wu P, Liu JL, Pei SM, Wu CP, Yang K, Wang SP, Wu S. Integrated genomic analysis identifies clinically relevant subtypes of renal clear cell carcinoma. BMC Cancer 2018. [PMID: 29534679 PMCID: PMC5851245 DOI: 10.1186/s12885-018-4176-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Renal cell carcinoma (RCC) account for over 80% of renal malignancies. The most common type of RCC can be classified into three subtypes including clear cell, papillary and chromophobe. ccRCC (the Clear Cell Renal Cell Carcinoma) is the most frequent form and shows variations in genetics and behavior. To improve accuracy and personalized care and increase the cure rate of cancer, molecular typing for individuals is necessary. Methods We adopted the genome, transcriptome and methylation HMK450 data of ccRCC in The Cancer Genome Atlas Network in this research. Consensus Clustering algorithm was used to cluster the expression data and three subtypes were found. To further validate our results, we analyzed an independent data set and arrived at a consistent conclusion. Next, we characterized the subtype by unifying genomic and clinical dimensions of ccRCC molecular stratification. We also implemented GSEA between the malignant subtype and the other subtypes to explore latent pathway varieties and WGCNA to discover intratumoral gene interaction network. Moreover, the epigenetic state changes between subgroups on methylation data are discovered and Kaplan-Meier survival analysis was performed to delve the relation between specific genes and prognosis. Results We found a subtype of poor prognosis in clear cell renal cell carcinoma, which is abnormally upregulated in focal adhesions and cytoskeleton related pathways, and the expression of core genes in the pathways are negatively correlated with patient outcomes. Conclusions Our work of classification schema could provide an applicable framework of molecular typing to ccRCC patients which has implications to influence treatment decisions, judge biological mechanisms involved in ccRCC tumor progression, and potential future drug discovery. Electronic supplementary material The online version of this article (10.1186/s12885-018-4176-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Wu
- The Affiliated Luohu Hospital of Shenzhen University, Department of Urological Surgery, Shenzhen University, Shenzhen, 518000, China.,Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China
| | - Jia-Li Liu
- Shenzhen Second People'Hospital, 1st affiliated hospital of ShenZhen University, Shenzhen, 518037, China
| | - Shi-Mei Pei
- Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China.,College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chang-Peng Wu
- Shenzhen Second People'Hospital, 1st affiliated hospital of ShenZhen University, Shenzhen, 518037, China
| | - Kai Yang
- The Affiliated Luohu Hospital of Shenzhen University, Department of Urological Surgery, Shenzhen University, Shenzhen, 518000, China.,Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China
| | - Shu-Peng Wang
- The Affiliated Luohu Hospital of Shenzhen University, Department of Urological Surgery, Shenzhen University, Shenzhen, 518000, China.,Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Department of Urological Surgery, Shenzhen University, Shenzhen, 518000, China. .,Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China.
| |
Collapse
|