151
|
Lee SE, Kim KA, Lee H, Park J. Risk of developing hypothyroidism with the use of tyrosine kinase inhibitors and immune checkpoint inhibitors. Cancer Epidemiol 2022; 81:102265. [PMID: 36183558 DOI: 10.1016/j.canep.2022.102265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The survival rate of patients with cancer has been increasing because of the sustained anticancer effect of new drugs, such as immune checkpoints inhibitors (ICI). Unlike the existing cytotoxic chemotherapies, immunotherapy causes immune system disturbance, such as hypothyroidism. Comparative studies on hypothyroidism following administration of ICI alone and in combination with other drugs are scarce. Therefore, we investigated the incidence of hypothyroidism after ICI in patients with cancer using a national population-based database. METHODS Using the claims data from the Health Insurance Review and Assessment service in Korea, we retrospectively investigated patients with cancer who received chemotherapy between January 1, 2014 and February 28, 2021. RESULTS Of all patients with cancer (n = 665,445) who received all kinds of chemotherapy, those who have received ICI accounted for 1.91 %. Compare with cytotoxic chemotherapy and angiogenesis inhibitors (AIs), ICI was associated with earlier (236.1 ± 248.4 vs. 811.1 ± 661.7, P < 0.01) and more frequent (7.7 % vs. 4.4 %, P < 0.01) occurrence of hypothyroidism, as well as an increased risk of developing hypothyroidism (odds ratio [OR] 1.69, 95 % confidence interval [CI] 1.58-1.80). However, the incidence of grade 2 or higher hypothyroidism was similar in both groups of patients who received ICI (3.3 %) and AI (3.1 %). The incidence of hypothyroidism was 4.4 times higher in patients who received both AI and ICI than in those who were treated with ICI alone (OR 4.41, 95 % CI 3.40-5.71). CONCLUSIONS This study showed a synergistic effect in patients who received multiple administrations of a drug that might be associated with thyroid dysfunction. Therefore, special attention should be paid to the treatment-related side effects when using drugs, such as AIs, concomitant with ICI treatment.
Collapse
Affiliation(s)
- Seung Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea.
| | - Kyoung-Ah Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea.
| | - Hyunjung Lee
- Department of Hematology and Medical Oncology, Kyung Hee University Hospital, School of Medicine, Kyun Hee University, Seoul, South Korea.
| | - Jinkyeong Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
152
|
Wang NH, Lei Z, Yang HN, Tang Z, Yang MQ, Wang Y, Sui JD, Wu YZ. Radiation-induced PD-L1 expression in tumor and its microenvironment facilitates cancer-immune escape: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1406. [PMID: 36660640 PMCID: PMC9843429 DOI: 10.21037/atm-22-6049] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Background and Objective Radiotherapy (RT) is one of the fundamental anti-cancer regimens by means of inducing in situ tumor vaccination and driving a systemic anti-tumor immune response. It can affect the tumor microenvironment (TME) components consisting of blood vessels, immunocytes, fibroblasts, and extracellular matrix (ECM), and might subsequently suppress anti-tumor immunity through expression of molecules such as programmed death ligand-1 (PD-L1). Immune checkpoint inhibitors (ICIs), especially anti-programmed cell death 1 (PD-1)/PD-L1 therapies, have been regarded as effective in the reinvigoration of the immune system and another major cancer treatment. Experimentally, combination of RT and ICIs therapy shows a greater synergistic effect than either therapy alone. Methods We performed a narrative review of the literature in the PubMed database. The research string comprised various combinations of "radiotherapy", "programmed death-ligand 1", "microenvironment", "exosome", "myeloid cell", "tumor cell", "tumor immunity". The database was searched independently by two authors. A third reviewer mediated any discordance of the results of the two screeners. Key Content and Findings RT upregulates PD-L1 expression in tumor cells, tumor-derived exosomes (TEXs), myeloid-derived suppressor cells (MDSCs), and macrophages. The signaling pathways correlated to PD-L1 expression in tumor cells include the DNA damage signaling pathway, epidermal growth factor receptor (EGFR) pathway, interferon gamma (IFN-γ) pathway, cGAS-STING pathway, and JAK/STATs pathway. Conclusions PD-L1 upregulation post-RT is found not only in tumor cells but also in the TME and is one of the mechanisms of tumor evasion. Therefore, further studies are necessary to fully comprehend this biological process. Meanwhile, combination of therapies has been shown to be effective, and novel approaches are to be developed as adjuvant to RT and ICIs therapy.
Collapse
Affiliation(s)
- Nuo-Han Wang
- College of Medicine, Chongqing University, Chongqing, China
| | - Zheng Lei
- College of Medicine, Chongqing University, Chongqing, China
| | - Hao-Nan Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Zheng Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Meng-Qi Yang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiang-Dong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
153
|
Chen S, Xu H, Guo C, Liu Z, Han X. Editorial: The role of multi-omics variants in tumor immunity and immunotherapy. Front Immunol 2022; 13:1098825. [PMID: 36524118 PMCID: PMC9745164 DOI: 10.3389/fimmu.2022.1098825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shuang Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China,*Correspondence: Xinwei Han, ; Zaoqu Liu,
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China,*Correspondence: Xinwei Han, ; Zaoqu Liu,
| |
Collapse
|
154
|
Ho J, Fiocco C, Spencer K. Treating Biliary Tract Cancers: New Targets and Therapies. Drugs 2022; 82:1629-1647. [DOI: 10.1007/s40265-022-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
|
155
|
Meraviglia-Crivelli D, Villanueva H, Zheleva A, Villalba-Esparza M, Moreno B, Menon AP, Calvo A, Cebollero J, Barainka M, de los Mozos IR, Huesa-Berral C, Pastor F. IL-6/STAT3 signaling in tumor cells restricts the expression of frameshift-derived neoantigens by SMG1 induction. Mol Cancer 2022; 21:211. [PMID: 36443756 PMCID: PMC9703761 DOI: 10.1186/s12943-022-01679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The quality and quantity of tumor neoantigens derived from tumor mutations determines the fate of the immune response in cancer. Frameshift mutations elicit better tumor neoantigens, especially when they are not targeted by nonsense-mediated mRNA decay (NMD). For tumor progression, malignant cells need to counteract the immune response including the silencing of immunodominant neoantigens (antigen immunoediting) and promoting an immunosuppressive tumor microenvironment. Although NMD inhibition has been reported to induce tumor immunity and increase the expression of cryptic neoantigens, the possibility that NMD activity could be modulated by immune forces operating in the tumor microenvironment as a new immunoediting mechanism has not been addressed. METHODS We study the effect of SMG1 expression (main kinase that initiates NMD) in the survival and the nature of the tumor immune infiltration using TCGA RNAseq and scRNAseq datasets of breast, lung and pancreatic cancer. Different murine tumor models were used to corroborate the antitumor immune dependencies of NMD. We evaluate whether changes of SMG1 expression in malignant cells impact the immune response elicited by cancer immunotherapy. To determine how NMD fluctuates in malignant cells we generated a luciferase reporter system to track NMD activity in vivo under different immune conditions. Cytokine screening, in silico studies and functional assays were conducted to determine the regulation of SMG1 via IL-6/STAT3 signaling. RESULTS IL-6/STAT3 signaling induces SMG1, which limits the expression of potent frameshift neoantigens that are under NMD control compromising the outcome of the immune response. CONCLUSION We revealed a new neoantigen immunoediting mechanism regulated by immune forces (IL-6/STAT3 signaling) responsible for silencing otherwise potent frameshift mutation-derived neoantigens.
Collapse
Affiliation(s)
- Daniel Meraviglia-Crivelli
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - María Villalba-Esparza
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain ,grid.47100.320000000419368710Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Beatriz Moreno
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Ashwathi Puravankara Menon
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Alfonso Calvo
- grid.5924.a0000000419370271IDISNA, CIBERONC, Program in Solid Tumors (CIMA), Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Avenida Pío XII, 55, 31008 Pamplona, Spain
| | - Javier Cebollero
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Igor Ruiz de los Mozos
- grid.5924.a0000000419370271Gene Therapy Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.424222.00000 0001 2242 5374Department of Personalized Medicine, NASERTIC, Government of Navarra, 31008 Pamplona, Spain
| | - Carlos Huesa-Berral
- grid.5924.a0000000419370271Department of Physics and Applied Mathematics, School of Science, University of Navarra, E-31008 Pamplona, Navarra Spain
| | - Fernando Pastor
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain ,grid.5924.a0000000419370271Department of Molecular Therapies, CIMA (Center for Applied Medical Research) University of Navarre, Av. de Pío XII, 55, 31008 Pamplona, Spain
| |
Collapse
|
156
|
Tan Q, Liu L, Huang Y, Dong X, Chen L. Case report: A rare case of neutropenia caused by pembrolizumab in squamous lung cancer and literature review. Front Oncol 2022; 12:973421. [PMID: 36505877 PMCID: PMC9732564 DOI: 10.3389/fonc.2022.973421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Background Immune checkpoint inhibitors, including anti-PD-1 therapies, have prolonged overall survival in patients with a variety of cancers, and immunotherapy is sometimes associated with immune-related adverse events (irAEs); however, hematological toxicity, especially neutropenia, is rare. Case presentation A 78-year-old man with squamous lung cancer, with brain metastasis, was treated with pembrolizumab and albumin-bound paclitaxel as first-line treatment for one cycle and changed to pembrolizumab plus anlotinib at the second cycle. After two therapy cycles, grade 4 neutropenia developed, which mainly contributed to irAEs. The patient was started on granulocyte colony-stimulating factor (G-CSF) but did not improve; he was then treated with corticosteroids, and neutrophil counts gradually returned to normal levels. However, the patient eventually died because of neurological problems. Conclusion Grade 4 neutropenia associated with ICI, although rare, is often severe and presents with infectious complications; it needs to be diagnosed early, and clinicians should ensure prompt and proper management to such patients.
Collapse
|
157
|
Zhang Y, Yang Y, Chen Y, Lin W, Chen X, Liu J, Huang Y, Wang H, Teng L. PD-L1: Biological mechanism, function, and immunotherapy in gastric cancer. Front Immunol 2022; 13:1060497. [PMID: 36505487 PMCID: PMC9729722 DOI: 10.3389/fimmu.2022.1060497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is one of the main causes of cancer incidence rate and mortality worldwide. As the main breakthrough direction, the application of immune checkpoint inhibitors makes patients with GC have better prognosis, where PD-L1/PD-1 inhibitors in immunotherapy have good anti-tumor immune efficacy. Further understanding of the regulatory mechanism of PD-L1 in GC may bring substantial progress to the immunotherapy. In this review, we provide information on the endogenous and exogenous regulatory mechanisms of PD-L1 and its biological functions combined with current clinical trials of PD-L1/PD-1 inhibitors in GC. The malignant biological phenotypes caused by PD-L1 and the corresponding clinical combined treatment scheme have been reported. Identifying the biomarkers of the potential efficacy of immunotherapy and specifying the clinical immunotherapy scheme in combination with molecular characteristics of patients may maximize clinical benefits and better prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
158
|
Kurose K, Sakaeda K, Fukuda M, Sakai Y, Yamaguchi H, Takemoto S, Shimizu K, Masuda T, Nakatomi K, Kawase S, Tanaka R, Suetsugu T, Mizuno K, Hasegawa T, Atarashi Y, Irino Y, Sato T, Inoue H, Hattori N, Kanda E, Nakata M, Mukae H, Oga T, Oka M. Immune checkpoint therapy and response biomarkers in non-small-cell lung cancer: Serum NY-ESO-1 and XAGE1 antibody as predictive and monitoring markers. Adv Clin Chem 2022; 112:155-204. [PMID: 36642483 DOI: 10.1016/bs.acc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune checkpoint inhibitors (ICI) are key drugs in systemic therapy for advanced non-small-cell lung cancer (NSCLC) and have recently been incorporated into neoadjuvant and adjuvant settings for surgical resection. Currently, ICI combinations with cytotoxic agents are frequently used in clinical practice, although several ICI clinical trials have failed to produce long-term clinical benefits. Unfortunately, clinical benefit is moderate and limited considering physical and financial burden. Therefore, selecting appropriate patients and regimens for ICI therapy is important, and biomarkers are necessary for their selection. Tumor PD-L1 expression is universally used as a biomarker; however, PD-L1 assays show low analytical validity and reproducibility due to the visual-scoring system by pathologists. Recent tumor immunology studies explore that neoantigens derived from somatic mutations and the collaboration between T and B cells efficiently elicit antitumor responses. This suggests that high tumor mutational burden and T-cell infiltration are predictive biomarkers. However, B cells producing antibody (Ab) remain poorly understood and analyzed as biomarkers. We found that NY-ESO-1 and XAGE1 of cancer-testis antigen frequently elicit spontaneous humoral and cellular immune responses in NSCLC. Serum Ab against these antigens were detected in approximately 25% of NSCLC patients and predicted ICI monotherapy responses. In addition, the Ab levels were decreased with tumor shrinkage after ICI therapy. Thus, NY-ESO-1 and XAGE1 Ab are potentially biomarkers predicting and monitoring response to ICI therapy. For clinical applications, a fully-automated assay system measuring the Ab was developed. Here, we review current ICI therapy, tumor immunology, and biomarkers in NSCLC, and discuss the applicability of the serum biomarkers NY-ESO-1 and XAGE1 Ab.
Collapse
Affiliation(s)
- Koji Kurose
- Department of Respiratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kanako Sakaeda
- Central Research Laboratories, Sysmex Corporation, Hyogo, Japan
| | - Minoru Fukuda
- Cancer Treatment Center, Nagasaki Prefecture Shimabara Hospital, Nagasaki, Japan
| | - Yumiko Sakai
- Central Research Laboratories, Sysmex Corporation, Hyogo, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Takeshi Masuda
- Department of Respiratory Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsumi Nakatomi
- Department of Respiratory Medicine, NHO Ureshino Medical Center, Saga, Japan
| | - Shigeo Kawase
- Department of Respiratory Medicine, Kure Kyosai Hospital, Hiroshima, Japan
| | - Ryo Tanaka
- Department of Dermatology, Kawasaki Medical School, Okayama, Japan
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Yusuke Atarashi
- Central Research Laboratories, Sysmex Corporation, Hyogo, Japan
| | - Yasuhiro Irino
- Central Research Laboratories, Sysmex Corporation, Hyogo, Japan
| | - Toshiyuki Sato
- Central Research Laboratories, Sysmex Corporation, Hyogo, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Eiichiro Kanda
- Department of Medical Science, Kawasaki Medical School, Okayama, Japan
| | - Masao Nakata
- General Thoracic Surgery, Kawasaki Medical School, Okayama, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toru Oga
- Department of Respiratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Mikio Oka
- Department of Immuno-Oncology, Kawasaki Medical School, Okayama, Japan.
| |
Collapse
|
159
|
Preclinical Study of Plasmodium Immunotherapy Combined with Radiotherapy for Solid Tumors. Cells 2022; 11:cells11223600. [PMID: 36429033 PMCID: PMC9688403 DOI: 10.3390/cells11223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade therapy (ICB) is ineffective against cold tumors and, although it is effective against some hot tumors, drug resistance can occur. We have developed a Plasmodium immunotherapy (PI) that can overcome these shortcomings. However, the specific killing effect of PI on tumor cells is relatively weak. Radiotherapy (RT) is known to have strong specific lethality to tumor cells. Therefore, we hypothesized that PI combined with RT could produce synergistic antitumor effects. We tested our hypothesis using orthotopic and subcutaneous models of mouse glioma (GL261, a cold tumor) and a subcutaneous model of mouse non-small cell lung cancer (NSCLC, LLC, a hot tumor). Our results showed that, compared with each monotherapy, the combination therapy more significantly inhibited tumor growth and extended the life span of tumor-bearing mice. More importantly, the combination therapy could cure approximately 70 percent of glioma. By analyzing the immune profile of the tumor tissues, we found that the combination therapy was more effective in upregulating the perforin-expressing effector CD8+ T cells and downregulating the myeloid-derived suppressor cells (MDSCs), and was thus more effective in the treatment of cancer. The clinical transformation of PI combined with RT in the treatment of solid tumors, especially glioma, is worthy of expectation.
Collapse
|
160
|
Yin XK, Wang C, Feng LL, Bai SM, Feng WX, Ouyang NT, Chu ZH, Fan XJ, Qin QY. Expression Pattern and Prognostic Value of CTLA-4, CD86, and Tumor-Infiltrating Lymphocytes in Rectal Cancer after Neoadjuvant Chemo(radio)therapy. Cancers (Basel) 2022; 14:cancers14225573. [PMID: 36428666 PMCID: PMC9688334 DOI: 10.3390/cancers14225573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The synergistic effect of combining immune checkpoint inhibitors (ICIs) with neoadjuvant chemo(radio)therapy (nCRT) in colorectal cancer is still limited. We aimed to understand the impact of nCRT on the tumor microenvironment and to explore favorable immune markers of this combination. Herein, we investigated the expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), CD86, CD4, and CD8 after nCRT and its association with clinicopathological characteristics. Immunostaining of immune-related molecules was performed in 255 surgically resected specimens from rectal cancer patients treated with nCRT. CD4 and CD8 expression on the tumor (tCD4/CD8), stroma (sCD4/CD8), and invasive front (iCD4/CD8) was evaluated. The expression levels of immune-related molecules were significantly lower in the nCRT-treated group, except for CTLA-4 and sCD8. However, patients with higher sCD8+ cell density and CTLA-4 expression had better progression-free survival (PFS) and distant metastasis-free survival (DMFS). In addition, higher CD86 expression was associated with poorer overall survival (OS). Higher CTLA-4 expression was associated with higher tCD8+ cell density, whereas CD86 expression was correlated with the cell density of t/sCD8. Prognostic analysis confirmed that the relationships between CTLA-4 and DMFS as well as CD86 and OS were significantly correlated in low rather than high CD8+ cell density. Further the combination of CD8+ cell density and CD86 expression was shown to be an independent prognostic factor of OS, whereas the combination of CTLA-4 was not for DMFS. Together, these results demonstrate significant correlations between CD86 expression and t/sCD8+ cell density in rectal cancer after nCRT and could potentially have clinical implications for combining ICIs and nCRT.
Collapse
Affiliation(s)
- Xin-Ke Yin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Li-Li Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Shao-Mei Bai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Wei-Xing Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Neng-Tai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhong-Hua Chu
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Correspondence: (Z.-H.C.); (Q.-Y.Q.)
| | - Xin-Juan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qi-Yuan Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Correspondence: (Z.-H.C.); (Q.-Y.Q.)
| |
Collapse
|
161
|
Liu C, Liu D, Wang F, Liu Y, Xie J, Xie J, Xie Y. Construction of a novel choline metabolism-related signature to predict prognosis, immune landscape, and chemotherapy response in colon adenocarcinoma. Front Immunol 2022; 13:1038927. [PMID: 36451813 PMCID: PMC9701742 DOI: 10.3389/fimmu.2022.1038927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a common digestive system malignancy with high mortality and poor prognosis. Accumulating evidence indicates that choline metabolism is closely related to tumorigenesis and development. However, the efficacy of choline metabolism-related signature in predicting patient prognosis, immune microenvironment and chemotherapy response has not been fully clarified. METHODS Choline metabolism-related differentially expressed genes (DEGs) between normal and COAD tissues were screened using datasets from The Cancer Genome Atlas (TCGA), Kyoto Encyclopedia of Genes and Genomes (KEGG), AmiGO2 and Reactome Pathway databases. Two choline metabolism-related genes (CHKB and PEMT) were identified by univariate and multivariate Cox regression analyses. TCGA-COAD was the training cohort, and GSE17536 was the validation cohort. Patients in the high- and low-risk groups were distinguished according to the optimal cutoff value of the risk score. A nomogram was used to assess the prognostic accuracy of the choline metabolism-related signature. Calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) were used to improve the clinical applicability of the prognostic signature. Gene Ontology (GO) and KEGG pathway enrichment analyses of DEGs in the high- and low-risk groups were performed. KEGG cluster analysis was conducted by the KOBAS-i database. The distribution and expression of CHKB and PEMT in various types of immune cells were analyzed based on single-cell RNA sequencing (scRNA-seq). The CIBERSORT and ESTIMATE algorithms evaluated tumor immune cell infiltration in the high- and low-risk groups. Evaluation of the half maximal inhibitory concentration (IC50) of common chemotherapeutic drugs based on the choline metabolism-related signature was performed. Small molecule compounds were predicted using the Connectivity Map (CMap) database. Molecular docking is used to simulate the binding conformation of small molecule compounds and key targets. By immunohistochemistry (IHC), Western blot, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) experiments, the expression levels of CHKB and PEMT in human, mouse, and cell lines were detected. RESULTS We constructed and validated a choline metabolism-related signature containing two genes (CHKB and PEMT). The overall survival (OS) of patients in the high-risk group was significantly worse than that of patients in the low-risk group. The nomogram could effectively and accurately predict the OS of COAD patients at 1, 3, and 5 years. The DCA curve and CIC demonstrate the clinical utility of the nomogram. scRNA-seq showed that CHKB was mainly distributed in endothelial cells, while PEMT was mainly distributed in CD4+ T cells and CD8+ T cells. In addition, multiple types of immune cells expressing CHKB and PEMT differed significantly. There were significant differences in the immune microenvironment, immune checkpoint expression and chemotherapy response between the two risk groups. In addition, we screened five potential small molecule drugs that targeted treatment for COAD. Finally, the results of IHC, Western blot, and qRT-PCR consistently showed that the expression of CHKB in human, mouse, and cell lines was elevated in normal samples, while PMET showed the opposite trend. CONCLUSION In conclusion, we constructed a choline metabolism-related signature in COAD and revealed its potential application value in predicting the prognosis, immune microenvironment, and chemotherapy response of patients, which may lay an important theoretical basis for future personalized precision therapy.
Collapse
Affiliation(s)
- Cong Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Fangfei Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yang Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jun Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| |
Collapse
|
162
|
Catalano M, Francesco Iannone L, Cosso F, Generali D, Mini E, Roviello G. Combining inhibition of immune checkpoints and PARP: rationale and perspectives in cancer treatment. Expert Opin Ther Targets 2022; 26:923-936. [PMID: 36519314 DOI: 10.1080/14728222.2022.2158813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Genomic instability resulting from the inability of cells to repair DNA damage is a breeding ground for immune checkpoint inhibitors (ICIs) and targeted treatments. Poly (ADP-ribose) polymerase inhibitors (PARPi) interfere with the efficient repair of DNA single-strand break damage inducing, mainly in tumors with existing defects in double strand DNA repair system, synthetic lethality. AREAS COVERED By amplifying the DNA damage and inducing immunogenic cell death PARPi leads tumor neoantigens to increase, upregulation of programmed death-ligand 1, and modulation of the tumor microenvironment facilitating a more intense antitumor immune response. In this review, we reported the immunological role of PARPi and the rational use of the combination with ICIs, evaluating data from combination clinical trials and discussing perspectives. EXPERT OPINION Several prospective combination studies to overcome existing limitations to PARPi and ICI single agents are currently ongoing. The identification of the different resistance mechanisms to PARPi and ICI as well as the development of accurate and predictive biomarkers of response should be a priority to identify the patients who may most benefit from this combination. Similarly, clarifying the role and interaction between the DNA damage repair pathways and the tumor immune microenvironment would increase success of the combination.
Collapse
Affiliation(s)
- Martina Catalano
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Luigi Francesco Iannone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Federica Cosso
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
163
|
Sun J, Cheng M, Ye T, Li B, Wei Y, Zheng H, Zheng H, Zhou M, Piao JG, Li F. Nanocarrier-based delivery of arsenic trioxide for hepatocellular carcinoma therapy. Nanomedicine (Lond) 2022; 17:2037-2054. [PMID: 36789952 DOI: 10.2217/nnm-2022-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a severe threat to human health and economic development. Despite many attempts at HCC treatment, most are inevitably affected by the genetic instability and variability of tumor cells. Arsenic trioxide (ATO) has shown to be effective in HCC. However, time-consuming challenges, especially the optimal concentration in tumor tissue and bioavailability of ATO, remain to be overcome for its transition from the bench to the bedside. To bypass these issues, nanotechnology-based delivery systems have been developed for prevention, diagnosis, monitoring and treatment in recent years. This article is a systematic overview of the latest contributions and detailed insights into ATO-loaded nanocarriers, with particular attention paid to strategies for improving the efficacy of nanocarriers of ATO.
Collapse
Affiliation(s)
- Jiang Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tingxian Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meiqi Zhou
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
164
|
Cordell EC, Alghamri MS, Castro MG, Gutmann DH. T lymphocytes as dynamic regulators of glioma pathobiology. Neuro Oncol 2022; 24:1647-1657. [PMID: 35325210 PMCID: PMC9527522 DOI: 10.1093/neuonc/noac055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The brain tumor microenvironment contains numerous distinct types of nonneoplastic cells, which each serve a diverse set of roles relevant to the formation, maintenance, and progression of these central nervous system cancers. While varying in frequencies, monocytes (macrophages, microglia, and myeloid-derived suppressor cells), dendritic cells, natural killer cells, and T lymphocytes represent the most common nonneoplastic cellular constituents in low- and high-grade gliomas (astrocytomas). Although T cells are conventionally thought to target and eliminate neoplastic cells, T cells also exist in other states, characterized by tolerance, ignorance, anergy, and exhaustion. In addition, T cells can function as drivers of brain cancer growth, especially in low-grade gliomas. Since T cells originate in the blood and bone marrow sinuses, their capacity to function as both positive and negative regulators of glioma growth has ignited renewed interest in their deployment as immunotherapeutic agents. In this review, we discuss the roles of T cells in low- and high-grade glioma formation and progression, as well as the potential uses of modified T lymphocytes for brain cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - David H Gutmann
- Corresponding Author: David H. Gutmann, MD, PhD, Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA ()
| |
Collapse
|
165
|
Liu Z, Liu X, Shen H, Xu X, Zhao X, Fu R. Adenosinergic axis and immune checkpoint combination therapy in tumor: A new perspective for immunotherapy strategy. Front Immunol 2022; 13:978377. [PMID: 36159861 PMCID: PMC9493240 DOI: 10.3389/fimmu.2022.978377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
There are two figures and one table in this review, the review consists of 5823 words, without the description of figures and table, but including references. Tumor cells escape anti-tumor immune responses in various ways, including functionally shaping the microenvironment through the secretion of various chemokines and, cytokines. Adenosine is a powerful immunosuppressive metabolite, that is frequently elevated in the extracellular tumor microenvironment (TME). Thus, it has recently been proposed as a novel antitumor immunoassay for targeting adenosine- generating enzymes, such as CD39, CD73, and adenosine receptors. In recent years, the discovery of the immune checkpoints, such as programmed cell death 1(PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), has also greatly changed treatment methods and ideas for malignant tumors. Malignant tumor immunotherapy has been developed from point-to-point therapy targeting immune checkpoints, combining different points of different pathways to create a therapy based on the macroscopic immune regulatory system network. This article reviews the theoretical basis of the adenosine energy axis and immune checkpoint combined therapy for malignant tumors and the latest advances in malignant tumors.
Collapse
|
166
|
Xu C, Li Y, Su W, Wang Z, Ma Z, Zhou L, Zhou Y, Chen J, Jiang M, Liu M. Identification of immune subtypes to guide immunotherapy and targeted therapy in clear cell renal cell carcinoma. Aging (Albany NY) 2022; 14:6917-6935. [PMID: 36057262 PMCID: PMC9512512 DOI: 10.18632/aging.204252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
Accumulating pieces of evidence suggested that immunotypes may indicate the overall immune landscape in the tumor microenvironment, which were closely related to therapeutic response. The purpose of this study was to classify and define the immune subtypes of clear cell renal cell carcinoma (ccRCC), so as to authenticate the potential immune subtypes that respond to immunotherapy. Transcriptome expression profile and mutation profile data of ccRCC, as well as clinical characteristics used in this study were obtained from TCGA database. There were significant differences in the infiltration of immune cells, immune checkpoints, and antigens between ccRCC and para-cancerous tissues. According to immune components, patients with ccRCC were divided into three immune subtypes, with different clinical and molecular characteristics. Compared with other subtypes, IS2 showed cold immune phenotype, and was associated with better survival. IS1 represented complex immune populations and was associated with poor overall survival (OS) and progression free survival (PFS). Further analysis indicated that expression of immune checkpoints also differed among the three subtypes, and was abnormally up-regulated in IS3. Pathway enrichment analysis indicated that the mTOR signaling pathway was abnormally enriched in IS3, while the TGF_BETA, ANGIOGENESIS and receptor tyrosine kinase signaling pathways were abnormally enriched in IS2. Furthermore, there was an abnormal enrichment of the epithelial-to-mesenchymal transition (EMT) signaling pathway in IS1, which may be associated with a higher rate of metastasis. Finally, SCG2 was screened as a specific antigen of ccRCC, which was not only related to poor prognosis, but also significantly associated with immune cells and immune checkpoints. In conclusion, the immune subtypes of ccRCC may provide new insights into the tumor biology and the precise clinical management of this disease.
Collapse
Affiliation(s)
- Chen Xu
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou 215000, China
| | - Yang Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Huinan Town, Pudong, Shanghai 201399, China
| | - Wei Su
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhenfan Wang
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou 215000, China
| | - Zheng Ma
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou 215000, China
| | - Lei Zhou
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou 215000, China
| | - Yongqiang Zhou
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou 215000, China
| | - Jianchun Chen
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou 215000, China
| | - Mingjun Jiang
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou 215000, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
167
|
Yap TA, Gainor JF, Callahan MK, Falchook GS, Pachynski RK, LoRusso P, Kummar S, Gibney GT, Burris HA, Tykodi SS, Rahma OE, Seiwert TY, Papadopoulos KP, Blum Murphy M, Park H, Hanson A, Hashambhoy-Ramsay Y, McGrath L, Hooper E, Xiao X, Cohen H, Fan M, Felitsky D, Hart C, McComb R, Brown K, Sepahi A, Jimenez J, Zhang W, Baeck J, Laken H, Murray R, Trehu E, Harvey CJ. First-in-Human Phase I/II ICONIC Trial of the ICOS Agonist Vopratelimab Alone and with Nivolumab: ICOS-High CD4 T-Cell Populations and Predictors of Response. Clin Cancer Res 2022; 28:3695-3708. [PMID: 35511938 PMCID: PMC9433959 DOI: 10.1158/1078-0432.ccr-21-4256] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The first-in-human phase I/II ICONIC trial evaluated an investigational inducible costimulator (ICOS) agonist, vopratelimab, alone and in combination with nivolumab in patients with advanced solid tumors. PATIENTS AND METHODS In phase I, patients were treated with escalating doses of intravenous vopratelimab alone or with nivolumab. Primary objectives were safety, tolerability, MTD, and recommended phase II dose (RP2D). Phase II enriched for ICOS-positive (ICOS+) tumors; patients were treated with vopratelimab at the monotherapy RP2D alone or with nivolumab. Pharmacokinetics, pharmacodynamics, and predictive biomarkers of response to vopratelimab were assessed. RESULTS ICONIC enrolled 201 patients. Vopratelimab alone and with nivolumab was well tolerated; phase I established 0.3 mg/kg every 3 weeks as the vopratelimab RP2D. Vopratelimab resulted in modest objective response rates of 1.4% and with nivolumab of 2.3%. The prospective selection for ICOS+ tumors did not enrich for responses. A vopratelimab-specific peripheral blood pharmacodynamic biomarker, ICOS-high (ICOS-hi) CD4 T cells, was identified in a subset of patients who demonstrated greater clinical benefit versus those with no emergence of these cells [overall survival (OS), P = 0.0025]. A potential genomic predictive biomarker of ICOS-hi CD4 T-cell emergence was identified that demonstrated improvement in clinical outcomes, including OS (P = 0.0062). CONCLUSIONS Vopratelimab demonstrated a favorable safety profile alone and in combination with nivolumab. Efficacy was observed only in a subset of patients with a vopratelimab-specific pharmacodynamic biomarker. A potential predictive biomarker of response was identified, which is being prospectively evaluated in a randomized phase II non-small cell lung cancer trial. See related commentary by Lee and Fong, p. 3633.
Collapse
Affiliation(s)
- Timothy A. Yap
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | - Shivaani Kummar
- Stanford University School of Medicine, Stanford, California
| | | | | | - Scott S. Tykodi
- University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | - Haeseong Park
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Lara McGrath
- Jounce Therapeutics, Inc., Cambridge, Massachusetts
| | - Ellen Hooper
- Jounce Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | - Martin Fan
- Jounce Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | | - Karen Brown
- Jounce Therapeutics, Inc., Cambridge, Massachusetts
| | - Ali Sepahi
- Jounce Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | - Johan Baeck
- Jounce Therapeutics, Inc., Cambridge, Massachusetts
| | - Haley Laken
- Jounce Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | |
Collapse
|
168
|
Liu M, Xia S, Zhang X, Zhang B, Yan L, Yang M, Ren Y, Guo H, Zhao J. Development and validation of a blood-based genomic mutation signature to predict the clinical outcomes of atezolizumab therapy in NSCLC. Lung Cancer 2022; 170:148-155. [DOI: 10.1016/j.lungcan.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
|
169
|
Setia A, Sahu RK, Ray S, Widyowati R, Ekasari W, Saraf S. Advances in Hybrid Vesicular-based Drug Delivery Systems: Improved Biocompatibility, Targeting, Therapeutic Efficacy and Pharmacokinetics of Anticancer Drugs. Curr Drug Metab 2022; 23:757-780. [PMID: 35761494 DOI: 10.2174/1389200223666220627110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Anticancer drugs and diagnostics can be transported in nanoscale vesicles that provide a flexible platform. A hybrid nanoparticle, a nano assembly made up of many types of nanostructures, has the greatest potential to perform these two activities simultaneously. Nanomedicine has shown the promise of vesicular carriers based on lipopolymersomes, lipid peptides, and metallic hybrid nano-vesicle systems. However, there are significant limitations that hinder the clinical implementation of these systems at the commercial scale, such as low productivity, high energy consumption, expensive setup, long process durations, and the current cancer therapies described in this article. Combinatorial hybrid systems can be used to reduce the above limitations. A greater therapeutic index and improved clinical results are possible with hybrid nanovesicular systems, which integrate the benefits of many carriers into a single structure. Due to their unique properties, cell-based drug delivery systems have shown tremendous benefits in the treatment of cancer. Nanoparticles (NPs) can benefit significantly from the properties of erythrocytes and platelets, which are part of the circulatory cells and circulate for a long time. Due to their unique physicochemical properties, nanomaterials play an essential role in cell-based drug delivery. Combining the advantages of different nanomaterials and cell types gives the resulting delivery systems a wide range of desirable properties. NPs are nextgeneration core-shell nanostructures that combine a lipid shell with a polymer core. The fabrication of lipid-polymer hybrid NPs has recently undergone a fundamental shift, moving from a two-step to a one-step technique based on the joint self-assembly of polymers and lipids. Oncologists are particularly interested in this method as a combinatorial drug delivery platform because of its two-in-one structure. This article addresses various preparative methods for the preparation of hybrid nano-vesicular systems. It also discusses the cellular mechanism of hybrid nano-vesicular systems and describes the thorough knowledge of various hybrid vesicular systems.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmacy, Shri Rawatpura Sarkar University, Raipur, (C.G) - 492015, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar-788011, Assam, India
| | - Supratim Ray
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar-788011, Assam, India
| | - Retno Widyowati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Wiwied Ekasari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Swarnlata Saraf
- Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
170
|
Hassanian H, Asadzadeh Z, Baghbanzadeh A, Derakhshani A, Dufour A, Rostami Khosroshahi N, Najafi S, Brunetti O, Silvestris N, Baradaran B. The expression pattern of Immune checkpoints after chemo/radiotherapy in the tumor microenvironment. Front Immunol 2022; 13:938063. [PMID: 35967381 PMCID: PMC9367471 DOI: 10.3389/fimmu.2022.938063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
As a disease with the highest disease-associated burden worldwide, cancer has been the main subject of a considerable proportion of medical research in recent years, intending to find more effective therapeutic approaches with fewer side effects. Combining conventional methods with newer biologically based treatments such as immunotherapy can be a promising approach to treating different tumors. The concept of "cancer immunoediting" that occurs in the field of the tumor microenvironment (TME) is the aspect of cancer therapy that has not been at the center of attention. One group of the role players of the so-called immunoediting process are the immune checkpoint molecules that exert either co-stimulatory or co-inhibitory effects in the anti-tumor immunity of the host. It involves alterations in a wide variety of immunologic pathways. Recent studies have proven that conventional cancer therapies, such as chemotherapy, radiotherapy, or a combination of them, i.e., chemoradiotherapy, alter the "immune compartment" of the TME. The mentioned changes encompass a wide range of variations, including the changes in the density and immunologic type of the tumor-infiltrating lymphocytes (TILs) and the alterations in the expression patterns of the different immune checkpoints. These rearrangements can have either anti-tumor immunity empowering or immune attenuating sequels. Thus, recognizing the consequences of various chemo(radio)therapeutic regimens in the TME seems to be of great significance in the evolution of therapeutic approaches. Therefore, the present review intends to summarize how chemo(radio)therapy affects the TME and specifically some of the most important, well-known immune checkpoints' expressions according to the recent studies in this field.
Collapse
Affiliation(s)
- Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- McCaig Insitute, Hotchkiss Brain Institute, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- McCaig Insitute, Hotchkiss Brain Institute, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi” University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
171
|
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H, Wang C. Immunotherapy: Reshape the Tumor Immune Microenvironment. Front Immunol 2022; 13:844142. [PMID: 35874717 PMCID: PMC9299092 DOI: 10.3389/fimmu.2022.844142] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immune microenvironment (TIME) include tumor cells, immune cells, cytokines, etc. The interactions between these components, which are divided into anti-tumor and pro-tumor, determine the trend of anti-tumor immunity. Although the immune system can eliminate tumor through the cancer-immune cycle, tumors appear to eventually evade from immune surveillance by shaping an immunosuppressive microenvironment. Immunotherapy reshapes the TIME and restores the tumor killing ability of anti-tumor immune cells. Herein, we review the function of immune cells within the TIME and discuss the contribution of current mainstream immunotherapeutic approaches to remolding the TIME. Changes in the immune microenvironment in different forms under the intervention of immunotherapy can shed light on better combination treatment strategies.
Collapse
Affiliation(s)
- Bingzhe Lv
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongjiang Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wei Cheng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jie Liu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tao Yong
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chen Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
172
|
Qin H, Wang T, Zhang H. Identification of Immune-Related Subtypes and Characterization of Tumor Microenvironment Infiltration in Kidney Renal Clear Cell Carcinoma. Front Genet 2022; 13:906113. [PMID: 35846133 PMCID: PMC9277187 DOI: 10.3389/fgene.2022.906113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Tumor microenvironment (TME) plays indisputable role in the progression of cancers. Immune cell infiltration (ICI) in TME was related to the prognosis of tumor patients. In this paper, we identified the pattern of immune-related ICI subtypes based on the TME immune infiltration pattern. Methods: The data from kidney renal clear cell carcinoma data (KIRC) was downloaded from the TCGA database. The distinct ICI subtypes were identified using CIBERSORT and ESTIMATE algorithms. The gene subgroups were identified based on DEGs in ICI subtypes. The single sample gene set enrichment analysis (ssGSEA) was used to ascertain the ICI score. Kaplan-Meier curve with log-rank test was conducted to analyze the survival probability of patients with KIRC in different subtypes. Results: The patients with high ICI scores exhibited a longer survival time and lower expression of checkpoint-related and immune activity-related genes. The high ICI score clusters were positively related to TMB. The patients in the low TMB subgroups have a favorable prognosis. The prediction ICI score did not affect the TMB status, and the low TMB subgroups + low/high ICI score subgroups exhibited better survival. Conclusion: In all, the tumor immune microenvironment, ICI score, and TMB were important determinants of KIRC patients’ survival outcomes. The TMB + ICI score may be a potential biomarker for predicting the prognosis of patients and for targeted immunotherapies to treating KIRC.
Collapse
Affiliation(s)
- Huisheng Qin
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Tiancheng Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Hui Zhang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
173
|
Identification of APC Mutation as a Potential Predictor for Immunotherapy in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6567998. [PMID: 35874638 PMCID: PMC9300385 DOI: 10.1155/2022/6567998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022]
Abstract
To date, anticancer immunotherapy has presented some clinical benefits to most of advanced mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC) patients. In addition to MSI status, we aimed to reveal the potential predictive value of adenomatous polyposis coli (APC) gene mutations in CRC patients. A total of 238 Chinese CRC patients was retrospectively identified and analyzed for clinical features and gene alternations in APC-mutant type (MT) and APC-wild-type (WT) groups. Clinical responses were then evaluated from the public TCGA database and MSKCC immunotherapy database. Although programmed cell death ligand 1 (PD-L1) level, MSI status, loss of heterogeneity at the human leukocyte antigen (HLA LOH), and tumor neoantigen burden (TNB) level were not statistically different between the APC-MT group and APC-WT group, tumor mutation burden (TMB) level was significantly higher in APC-MT patients (P < 0.05). Furthermore, comutation analysis for APC mutations revealed co-occurring genomic alterations of PCDHB7 and exclusive mutations of CTNNB1, BRAF, AFF3, and SNX25 (P < 0.05). Besides, overall survival from MSKCC-CRC cohort was longer in the APC-WT group than in the APC-MT group (HR 2.26 (95% CI 1.05–4.88), P < 0.05). Furthermore, most of patients in the APC-WT group were detected as high-grade immune subtypes (C2–C4) comparing with those in the APC-MT group. In addition, the percentages of NK T cells, Treg cells, and fibroblasts cells were higher in APC-WT patients than in APC-MT patients (P < 0.05). In summary, APC mutations might be associated with poor outcomes for immunotherapy in CRC patients regardless of MSI status. This study suggested APC gene mutations might be a potential predictor for immunotherapy in CRC.
Collapse
|
174
|
Zeng W, Pan J, Fang Z, Jia J, Zhang R, He M, Zhong H, He J, Yang X, Shi Y, Zhong B, Zeng J, Fu B, Huang M, Liu H. A Novel PD-L1-Containing MSLN Targeting Vaccine for Lung Cancer Immunotherapy. Front Immunol 2022; 13:925217. [PMID: 35795680 PMCID: PMC9251065 DOI: 10.3389/fimmu.2022.925217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Therapeutic tumor vaccines have become an important breakthrough in the treatment of various solid tumors including lung cancer. Dendritic cells (DCs)-based tumor vaccines targeting tumor-associated antigens (TAAs) play a key role in immunotherapy and immunoprevention. However, the weak immunogenicity of TAAs and low immune response rates are a major challenge faced in the application of therapeutic tumor vaccines. Here, we tested whether targeting an attractive target Mesothelin (MSLN) and PD-L1 immune checkpoint molecule to DCs in vivo would elicit therapeutic antitumor cytotoxic T lymphocyte (CTL) response. We generated specific MSLN fragment combined with PD-L1 and GM-CSF peptide immunogen (MSLN-PDL1-GMCSF) based on the novel anti-PD-L1 vaccination strategy we recently developed for the cancer treatment and prevention. We found that DCs loaded with MSLN-PDL1-GMCSF vaccine elicited much stronger endogenous anti-PD-L1 antibody and T cell responses in immunized mice and that antigen specific CTLs had cytolytic activities against tumor cells expressing both MSLN and PD-L1. We demonstrated that vaccination with MSLN-PDL1-GMCSF potently inhibited the tumor growth of MSLN+ and PD-L1+ lung cancer cells, exhibiting a significant therapeutic anti-tumor potential. Furthermore, PD-1 blockade further improved the synergistic antitumor therapeutic efficacy of MSLN-PDL1-GMCSF vaccine in immunized mice. In summary, our data demonstrated for the first time that this PD-L1-containing MSLN therapeutic vaccine can induce persistent anti-PD-L1 antibody and CTL responses, providing an effective immunotherapeutic strategy for lung cancer immunotherapy by combining MSLN-PDL1-GMCSF vaccine and PD-1 blockade.
Collapse
Affiliation(s)
- Wuyi Zeng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayi Pan
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zixuan Fang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiangtao Jia
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Menghua He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hanyu Zhong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiashan He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinyu Yang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Shi
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bei Zhong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Zeng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bishi Fu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
| | - Maoping Huang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hui Liu, ; Maoping Huang,
| | - Hui Liu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
- *Correspondence: Hui Liu, ; Maoping Huang,
| |
Collapse
|
175
|
Xu S, Ye C, Chen R, Li Q, Ruan J. The Landscape and Clinical Application of the Tumor Microenvironment in Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2022; 14:cancers14122911. [PMID: 35740577 PMCID: PMC9221445 DOI: 10.3390/cancers14122911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The tumor microenvironment (TME) plays a role in promoting tumor progression. Elucidating the relationship between the TME and tumor cells will benefit current therapies. Therefore, this review summarizes the most recent relationship between the TME and tumor characteristics, discusses the differences in the TME at various sites along the digestive tract, and compares the TMEs of neuroendocrine tumors and neuroendocrine carcinomas. Microbial ecological changes in the TME were reviewed. The clinical application of the TME was summarized from bench to bedside. The TME can be used as a tumor drug target for diagnostic value, prognosis prediction, and efficacy evaluation, further revealing the potential of immune checkpoints combined with antiangiogenic drugs. The clinical application prospects of adoptive cell therapy and oncolytic viruses were described. The potential therapeutic approaches and strategies for gastrointestinal neuroendocrine neoplasms are considered. Abstract Gastroenteropancreatic neuroendocrine neoplasms feature high heterogeneity. Neuroendocrine tumor cells are closely associated with the tumor microenvironment. Tumor-infiltrating immune cells are mutually educated by each other and by tumor cells. Immune cells have dual protumorigenic and antitumorigenic effects. The immune environment is conducive to the invasion and metastasis of the tumor; in turn, tumor cells can change the immune environment. These cells also form cytokines, immune checkpoint systems, and tertiary lymphoid structures to participate in the process of mutual adaptation. Additionally, the fibroblasts, vascular structure, and microbiota exhibit interactions with tumor cells. From bench to bedside, clinical practice related to the tumor microenvironment is also regarded as promising. Targeting immune components and angiogenic regulatory molecules has been shown to be effective. The clinical efficacy of immune checkpoint inhibitors, adoptive cell therapy, and oncolytic viruses remains to be further discussed in clinical trials. Moreover, combination therapy is feasible for advanced high-grade tumors. The regulation of the tumor microenvironment based on multiple omics results can suggest innovative therapeutic strategies to prevent tumors from succeeding in immune escape and to support antitumoral effects.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
- Correspondence:
| |
Collapse
|
176
|
Xu Y, Cao C, Zhu Z, Wang Y, Tan Y, Xu X. Novel Hypoxia-Associated Gene Signature Depicts Tumor Immune Microenvironment and Predicts Prognosis of Colon Cancer Patients. Front Genet 2022; 13:901734. [PMID: 35734431 PMCID: PMC9208084 DOI: 10.3389/fgene.2022.901734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia, a typical hallmark of numerous tumors, indicates poor infiltration of antitumor lymphocytes, as well as facilitates the development, progression, and drug resistance of malignant cells. Here, the present research was performed to identify novel hypoxia-related molecular markers and their correlation to the tumor immune microenvironment (TIME) in colon cancer. The expression of hypoxia-related gene signature was extracted from The Cancer Genome Atlas (TCGA) COAD cohort. Based on this signature, a risk score model was constructed using the Lasso regression model. Its discrimination ability and stability were validated in another independent cohort (GSE17536) from Gene Expression Omnibus (GEO) database. Moreover, molecular biology experiments (quantitative real-time PCR and multiple immunohistochemistry) were performed to validate the results of bioinformatics analyses. Three hub genes, including PPFIA4, SERPINE1, and STC2, were chosen to build the risk score model. All of these genes were increasingly expressed in the hypoxia subgroup (HS). Compared with the normoxia subgroup (NS), HS had worse pathological features (T, N, M, and stage) and overall survival (OS), more expression of immune checkpoint molecules, poorer infiltration of some pro-inflammation immune cells (CD4+ T cells and CD8+ T cells), and enriched infiltration of M0/M2 macrophages. After the risk model was proven to be valuable and stable, a nomogram was built based on this model and some clinicopathological factors. Moreover, it had been identified that three hub genes were all increasingly expressed in hypoxic conditions by quantitative real-time PCR (qPCR). The results of multiple immunohistochemistry (mIHC) also showed that higher expression of hub genes was associated with poorer infiltration of pro-inflammation immune cells (CD8+ T cells and M1 macrophages) and richer infiltration of anti-inflammation immune cells (Treg cells and M2 macrophages). In conclusion, the present study uncovered the relations among hypoxia, TIME, and clinicopathological features of colon cancer. It might provide new insight and a potential therapeutic target for immunotherapy.
Collapse
Affiliation(s)
- Yixin Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- Department of General Surgery, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Can Cao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyan Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibo Wang
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- *Correspondence: Xuezhong Xu, ; Yulin Tan,
| | - Xuezhong Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- *Correspondence: Xuezhong Xu, ; Yulin Tan,
| |
Collapse
|
177
|
Lu L, Zhan M, Li XY, Zhang H, Dauphars DJ, Jiang J, Yin H, Li SY, Luo S, Li Y, He YW. Clinically approved combination immunotherapy: Current status, limitations, and future perspective. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:118-127. [PMID: 35676925 PMCID: PMC9167882 DOI: 10.1016/j.crimmu.2022.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Immune-checkpoint inhibitor-based combination immunotherapy has become a first-line treatment for several major types of cancer including hepatocellular carcinoma (HCC), renal cell carcinoma, lung cancer, cervical cancer, and gastric cancer. Combination immunotherapy counters several immunosuppressive elements in the tumor microenvironment and activates multiple steps of the cancer-immunity cycle. The anti-PD-L1 antibody, atezolizumab, plus the anti-vascular endothelial growth factor antibody, bevacizumab, represents a promising class of combination immunotherapy. This combination has produced unprecedented clinical efficacy in unresectable HCC and become a landmark in HCC therapy. Advanced HCC patients treated with atezolizumab plus bevacizumab demonstrated impressive improvements in multiple clinical endpoints including overall survival, progress-free survival, objective response rate, and patient-reported quality of life when compared to current first-line treatment with sorafenib. However, atezolizumab plus bevacizumab first-line therapy has limitations. First, cancer patients falling into the criteria for the combination therapy may need to be further selected to reap benefits while avoiding some potential pitfalls. Second, the treatment regimen of atezolizumab plus bevacizumab at a fixed dose may require adjustment for optimal normalization of the tumor microenvironment to obtain maximum efficacy and reduce adverse events. Third, utilization of predictive biomarkers is urgently needed to guide the entire treatment process. Here we review the current status of clinically approved combination immunotherapies and the underlying immune mechanisms. We further provide a perspective analysis of the limitations for combination immunotherapies and potential approaches to overcome the limitations.
Collapse
Affiliation(s)
- Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - Xian-Yang Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - Hui Zhang
- First Affiliated Hospital, China Medical University, Shenyang, China
| | - Danielle J. Dauphars
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jun Jiang
- Tricision Biotherapeutic Inc, Jinwan District, Zhuhai, China
| | - Hua Yin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - Shi-You Li
- Tricision Biotherapeutic Inc, Jinwan District, Zhuhai, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
178
|
Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 2022; 22:323-339. [PMID: 35264777 PMCID: PMC9149051 DOI: 10.1038/s41568-022-00454-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 02/08/2023]
Abstract
Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.
Collapse
Affiliation(s)
- Marilyne Labrie
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ioannis K Zervantonakis
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
179
|
Kumar P, Brazel D, DeRogatis J, Valerin JBG, Whiteson K, Chow WA, Tinoco R, Moyers JT. The cure from within? a review of the microbiome and diet in melanoma. Cancer Metastasis Rev 2022; 41:261-280. [PMID: 35474500 PMCID: PMC9042647 DOI: 10.1007/s10555-022-10029-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Therapy for cutaneous melanoma, the deadliest of the skin cancers, is inextricably linked to the immune system. Once thought impossible, cures for metastatic melanoma with immune checkpoint inhibitors have been developed within the last decade and now occur regularly in the clinic. Unfortunately, half of tumors do not respond to checkpoint inhibitors and efforts to further exploit the immune system are needed. Tantalizing associations with immune health and gut microbiome composition suggest we can improve the success rate of immunotherapy. The gut contains over half of the immune cells in our bodies and increasingly, evidence is linking the immune system within our gut to melanoma development and treatment. In this review, we discuss the importance the skin and gut microbiome may play in the development of melanoma. We examine the differences in the microbial populations which inhabit the gut of those who develop melanoma and subsequently respond to immunotherapeutics. We discuss the role of dietary intake on the development and treatment of melanoma. And finally, we review the landscape of published and registered clinical trials therapeutically targeting the microbiome in melanoma through dietary supplements, fecal microbiota transplant, and microbial supplementation.
Collapse
Affiliation(s)
- Priyanka Kumar
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Danielle Brazel
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Julia DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, USA
| | - Jennifer B Goldstein Valerin
- Division of Hematology and Oncology, Department of Medicine, University of California Irvine, 101 The City Drive South, Building 200, Orange, CA, 92868, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, USA
| | - Warren A Chow
- Division of Hematology and Oncology, Department of Medicine, University of California Irvine, 101 The City Drive South, Building 200, Orange, CA, 92868, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, USA
| | - Justin T Moyers
- Division of Hematology and Oncology, Department of Medicine, University of California Irvine, 101 The City Drive South, Building 200, Orange, CA, 92868, USA.
| |
Collapse
|
180
|
Targeting nucleotide metabolism: a promising approach to enhance cancer immunotherapy. J Hematol Oncol 2022; 15:45. [PMID: 35477416 PMCID: PMC9044757 DOI: 10.1186/s13045-022-01263-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Targeting nucleotide metabolism can not only inhibit tumor initiation and progression but also exert serious side effects. With in-depth studies of nucleotide metabolism, our understanding of nucleotide metabolism in tumors has revealed their non-proliferative effects on immune escape, indicating the potential effectiveness of nucleotide antimetabolites for enhancing immunotherapy. A growing body of evidence now supports the concept that targeting nucleotide metabolism can increase the antitumor immune response by (1) activating host immune systems via maintaining the concentrations of several important metabolites, such as adenosine and ATP, (2) promoting immunogenicity caused by increased mutability and genomic instability by disrupting the purine and pyrimidine pool, and (3) releasing nucleoside analogs via microbes to regulate immunity. Therapeutic approaches targeting nucleotide metabolism combined with immunotherapy have achieved exciting success in preclinical animal models. Here, we review how dysregulated nucleotide metabolism can promote tumor growth and interact with the host immune system, and we provide future insights into targeting nucleotide metabolism for immunotherapeutic treatment of various malignancies.
Collapse
|
181
|
Li X, Dowling EK, Yan G, Dereli Z, Bozorgui B, Imanirad P, Elnaggar JH, Luna A, Menter DG, Pilié PG, Yap TA, Kopetz S, Sander C, Korkut A. Precision combination therapies based on recurrent oncogenic co-alterations. Cancer Discov 2022; 12:1542-1559. [PMID: 35412613 PMCID: PMC9524464 DOI: 10.1158/2159-8290.cd-21-0832] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/28/2021] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Cancer cells depend on multiple driver alterations whose oncogenic effects can be suppressed by drug combinations. Here, we provide a comprehensive resource of precision combination therapies tailored to oncogenic co-alterations that are recurrent across patient cohorts. To generate the resource, we developed Recurrent Features Leveraged for Combination Therapy (REFLECT), which integrates machine learning and cancer informatics algorithms. Using multi-omic data, the method maps recurrent co-alteration signatures in patient cohorts to combination therapies. We validated the REFLECT pipeline using data from patient-derived xenografts, in vitro drug screens, and a combination therapy clinical trial. These validations demonstrate that REFLECT-selected combination therapies have significantly improved efficacy, synergy, and survival outcomes. In patient cohorts with immunotherapy response markers, DNA repair aberrations, and HER2 activation, we have identified therapeutically actionable and recurrent co-alteration signatures. REFLECT provides a resource and framework to design combination therapies tailored to tumor cohorts in data-driven clinical trials and pre-clinical studies.
Collapse
Affiliation(s)
- Xubin Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gonghong Yan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zeynep Dereli
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behnaz Bozorgui
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Parisa Imanirad
- Department of Systems Biology, and The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Augustin Luna
- cBio Center, Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David G. Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick G. Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chris Sander
- cBio Center, Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Corresponding Author: Anil Korkut, Bioinformatics & Comp Biology, Phone: 718-300-0666, , 1515 Holcombe Blvd., Houston, Texas 77030-4009
| |
Collapse
|
182
|
Fan T, Liu Y, Liu H, Wang L, Tian H, Zheng Y, Zheng B, Xue L, Li C, He J. Transmembrane Protein-Based Risk Model and H3K4me3 Modification Characteristics in Lung Adenocarcinoma. Front Oncol 2022; 12:828814. [PMID: 35392225 PMCID: PMC8980838 DOI: 10.3389/fonc.2022.828814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/23/2022] [Indexed: 01/10/2023] Open
Abstract
The role and mechanism of transmembrane proteins (TMEMs) in tumorigenesis remain unclear. Based on 4 independent cohorts containing 1,208 cases, we identified 3 TMEMs (TMEM273, TMEM164, and TMEM125), which were used to construct a risk model to predict the prognosis of LUAD. The two patterns based on the risk score exhibited a high degree of consistency with the characteristics of immune cell infiltration and epigenetic distribution. Patients with a low-risk score, characterized by an increased activation of immunity, H3K4me3 modification, tumor cell apoptosis, chemokine secretion, and TMB, had better disease-free survival (DFS) and overall survival (OS). Obvious immunosuppression, increased epithelial–mesenchymal transition, a low H3K4me3 level, shortened cell cycle, and accelerated cell division manifested in high-risk patients, with poorer DFS and OS. The model showed a better prognostic value than the tumor immune dysfunction and exclusion score. Correlation analysis told us that patients with high scores were suitable for treatment with CD276 inhibitors for their higher levels of CD276 expression. The risk score had a strong negative correlation with HAVCR2 and ICOS among patients with EGFR-WT, KRAS-WT, STK11-WT, or TP53-MUT, and patients with these mutation types with low scores were suitable for treatment with HAVCR2 or ICOS inhibitors. This work comprehensively analyzed the role and mechanism of TMEMs in LUAD and revealed the characteristics of histone methylation modification. The TMEM-based signature gave us deep insight into immune cell infiltration profiles and provided an individualized immunotherapy strategy.
Collapse
Affiliation(s)
- Tao Fan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
183
|
Li H, Li G, Xu P, Li Z. B cells and tumor immune escape. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:358-363. [PMID: 35545329 PMCID: PMC10930053 DOI: 10.11817/j.issn.1672-7347.2022.210275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 06/15/2023]
Abstract
B lymphocyte is an important component of the human immune system and it has a role in the process of the body's specific immunity. In recent years, the research on B cells and tumor immune escape has rapidly progressed. Studies have shown that different types of B cells play different roles in tumor microenvironment through a variety of mechanisms. B cells in the tertiary lymphatic structure promote anti-tumor immunity, while regulatory B cells promote tumor immune escape. Antibody drugs targeting B cells are a promising direction for tumor immunotherapy.
Collapse
Affiliation(s)
- Huiting Li
- Cancer Research Institute, Central South University, Changsha 410078.
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Changsha 410078
| | - Ping Xu
- Departments of Respiratory and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen Guangdong 518036, China
| | - Zheng Li
- Cancer Research Institute, Central South University, Changsha 410078.
| |
Collapse
|
184
|
Ciraolo E, Althoff S, Ruß J, Rosnev S, Butze M, Pühl M, Frentsch M, Bullinger L, Na IK. Simultaneous Genetic Ablation of PD-1, LAG-3, and TIM-3 in CD8 T Cells Delays Tumor Growth and Improves Survival Outcome. Int J Mol Sci 2022; 23:ijms23063207. [PMID: 35328630 PMCID: PMC8955581 DOI: 10.3390/ijms23063207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) represented a step forward in improving the outcome of patients with various refractory solid tumors and several therapeutic regimens incorporating ICI have already been approved for a variety of tumor entities. However, besides remarkable long-term responses, checkpoint inhibition can trigger severe immune-related adverse events in some patients. In order to improve safety of ICI as well as T cell therapy, we tested the feasibility of combining T cell-based immunotherapy with genetic disruption of checkpoint molecule expression. Therefore, we generated H-Y and ovalbumin antigen-specific CD8+ T cells with abolished PD-1, LAG-3, and TIM-3 expression through CRISPR/Cas9 technology. CD8+ T cells, subjected to PD-1, LAG-3, and TIM-3 genetic editing, showed a strong reduction in immune checkpoint molecule expression after in vitro activation, while no relevant reduction in responsiveness to in vitro stimulation was observed. At the same time, in B16-OVA tumor model, transferred genetically edited OT-1 CD8+ T cells promoted longer survival compared to control T cells and showed enhanced expansion without associated toxicity. Our study supports the notion that antigen-specific adoptive T cell therapy with concomitant genetic disruption of multiple checkpoint inhibitory receptors could represent an effective antitumor immunotherapy approach with improved tolerability profile.
Collapse
Affiliation(s)
- Elisa Ciraolo
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, 13125 Berlin, Germany; (E.C.); (S.A.); (J.R.); (M.B.); (M.P.); (L.B.)
| | - Stefanie Althoff
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, 13125 Berlin, Germany; (E.C.); (S.A.); (J.R.); (M.B.); (M.P.); (L.B.)
| | - Josefine Ruß
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, 13125 Berlin, Germany; (E.C.); (S.A.); (J.R.); (M.B.); (M.P.); (L.B.)
| | - Stanislav Rosnev
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.R.); (M.F.)
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Monique Butze
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, 13125 Berlin, Germany; (E.C.); (S.A.); (J.R.); (M.B.); (M.P.); (L.B.)
| | - Miriam Pühl
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, 13125 Berlin, Germany; (E.C.); (S.A.); (J.R.); (M.B.); (M.P.); (L.B.)
| | - Marco Frentsch
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.R.); (M.F.)
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Lars Bullinger
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, 13125 Berlin, Germany; (E.C.); (S.A.); (J.R.); (M.B.); (M.P.); (L.B.)
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.R.); (M.F.)
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
| | - Il-Kang Na
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, 13125 Berlin, Germany; (E.C.); (S.A.); (J.R.); (M.B.); (M.P.); (L.B.)
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.R.); (M.F.)
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
185
|
Lee JH, Song J, Kim IG, You G, Kim H, Ahn JH, Mok H. Exosome-mediated delivery of transforming growth factor-β receptor 1 kinase inhibitors and toll-like receptor 7/8 agonists for combination therapy of tumors. Acta Biomater 2022; 141:354-363. [PMID: 35007784 DOI: 10.1016/j.actbio.2022.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
In this study, combination therapy with the transforming growth factor-β receptor I (TGFβRI) kinase inhibitor SD-208 and a toll-like receptor (TLR)-7/8 agonist resiquimod (R848) was examined along with serum-derived exosomes (EXOs) as versatile carriers. SD-208-encapsulated EXOs (SD-208/EXOs) and R848-encapsulated EXOs (R848/EXOs) were successfully prepared with a size of 87 ± 8 nm and 51 ± 4 nm, respectively, which were stable in aqueous solution at pH 7.4. SD-208/EXOs and R848/EXOs reduced the migration of cancer cells (B16F10 and PC-3) and triggered the release of proinflammatory cytokines from stimulated macrophages and dendritic cells, respectively. The fluorescent dye-labeled EXOs showed significantly improved penetration through the PC-3/fibroblast co-culture spheroids and enhanced accumulation in the B16F10 mouse tumor model compared with the free fluorescent dye. In addition, the combination therapy of R848/EXOs (R848 dose of 0.36 mg/kg) and SD-208/EXOs (SD-208 dose of 0.75 mg/kg) reduced tumor growth and improved survival rate at low doses in the B16F10 tumor xenograft model. Taken together, the combination therapy using the TGFβRI kinase inhibitor and TLR 7/8 agonist with EXOs may serve as a promising strategy to treat melanoma and prostate cancer. STATEMENT OF SIGNIFICANCE: Owing to the prevalence of several non-responding cancers that resist treatment, it is necessary to identify a novel combined treatment strategy with biomaterials to maximize therapeutic efficacy and minimize the undesirable side effects. In this study, we aimed to examine the use of the TGFβRI kinase inhibitor SD-208 and the TLR7/8 agonist resiquimod (R848) encapsulated within serum-derived EXOs for their synergistic antitumor effects. We first demonstrated that combined treatment with SD-208 and R848 can be a convincing strategy to circumvent tumor growth in vivo using serum-derived exosomes as promising carriers. Therefore, we believe this manuscript would be of great interest to the biomaterial communities especially who are studying immunotherapy.
Collapse
|
186
|
Hu J, Pei W, Jiang M, Huang Y, Dong F, Jiang Z, Xu Y, Li Z. DFNA5 regulates immune cells infiltration and exhaustion. Cancer Cell Int 2022; 22:107. [PMID: 35248047 PMCID: PMC8897971 DOI: 10.1186/s12935-022-02487-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background DFNA5 (GSDME) belongs to Gasdermin familily that is involved in a variety of cancers and triggers cell pyroptosis after chemical treatment. However, the relationship in DFNA5 between prognosis and immune cells in diverse cancers has been receiving little attention. Tumor immune cells infiltration and exhaustion may associate with patients prognosis. The roles of DFNA5 in tumor immune cells infiltration and exhaustion have not been clarified. Methods The expression level of DFNA5 was determined by the Tumour Immune Estimation Resource and the Oncomine database. Then the impacts of DFNA5 in prognosis were assessed by Kaplan–Meier plotter and ULACAN. The correlations between DFNA5 and tumour-infiltrating lymphocytes were explored by TIMER. In addition, the relationships in the expression levels of DFNA5 and typical genes combination of tumour-infiltrating lymphocytes were analysed by GEPIA and TIMER. In this study, we screened the chemokine and immune related proteins interacted with DFNA5 using TurboID system to explore the instantaneous or weak interactions. Results DFNA5 significantly influences the prognosis in different cancers according to The Cancer Genome Atlas (TCGA). The expression levels of DFNA5 showed positive correlations to the infiltration of macrophages, CD8 + T cells, CD4 + T cells in liver hepatocellular carcinoma (LIHC), colon adenocarcinoma (COAD), and lung adenocarcinoma (LUAD). DFNA5 expression displayed obvious correlations with multiple lymphocytes gene makers in COAD, LIHC and LUAD. DFNA5 expression has effects on the prognosis of liver hepatocellular carcinoma and LUAD. DFNA5 upregulated the expression levels of PDCD1 and CD274 in a dose-dependent manner. Chemokine and immune related proteins interact with DFNA5. Conclusions These results indicate that DFNA5 is related to patient prognosis and immune cells, consisting of macrophages, CD4 + T cells, and CD8 + T cells, in diverse cancers. In addition, DFNA5 expression might contribute to the regulation of T cell exhaustion, tumour-associated macrophages (TAMs), and Tregs in COAD, LIHC and LUAD. DFNA5 may regulate immune infiltration via EIF2AK2. IFNGR1 was related to the functions of PD-L1 expression and PD-1 checkpoint pathway. These results indicate that DFNA5 levels may be act as a prognostic factor and predict the degrees of immune cells infiltration in LIHC and LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02487-0.
Collapse
|
187
|
Horn LA, Chariou PL, Gameiro SR, Qin H, Iida M, Fousek K, Meyer TJ, Cam M, Flies D, Langermann S, Schlom J, Palena C. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1-mediated tumor eradication. J Clin Invest 2022; 132:155148. [PMID: 35230974 PMCID: PMC9012291 DOI: 10.1172/jci155148] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Collagens in the extracellular matrix (ECM) provide a physical barrier to tumor immune infiltration, while also acting as a ligand for immune inhibitory receptors. Transforming growth factor-β (TGF-β) is a key contributor to shaping the ECM by stimulating the production and remodeling of collagens. TGF-β activation signatures and collagen-rich environments have both been associated with T cell exclusion and lack of responses to immunotherapy. Here, we describe the effect of targeting collagens that signal through the inhibitory leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in combination with blockade of TGF-β and programmed cell death ligand 1 (PD-L1). This approach remodeled the tumor collagenous matrix, enhanced tumor infiltration and activation of CD8+ T cells, and repolarized suppressive macrophage populations, resulting in high cure rates and long-term tumor-specific protection across murine models of colon and mammary carcinoma. The results highlight the advantage of direct targeting of ECM components in combination with immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Lucas A Horn
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Paul L Chariou
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Haiyan Qin
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Masafumi Iida
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Kristen Fousek
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Margaret Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Dallas Flies
- Research, NextCure, Inc., Beltsville, United States of America
| | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| |
Collapse
|
188
|
Lin J, Xu A, Jin J, Zhang M, Lou J, Qian C, Zhu J, Wang Y, Yang Z, Li X, Yu W, Liu B, Tao H. MerTK-mediated efferocytosis promotes immune tolerance and tumor progression in osteosarcoma through enhancing M2 polarization and PD-L1 expression. Oncoimmunology 2022; 11:2024941. [PMID: 35036076 PMCID: PMC8757471 DOI: 10.1080/2162402x.2021.2024941] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 01/23/2023] Open
Abstract
The poor progress of immunotherapy on osteosarcoma patients requires deeper delineation of immune tolerance mechanisms in the osteosarcoma microenvironment and a new therapeutic strategy. Clearance of apoptotic cells by phagocytes, a process termed "efferocytosis," is ubiquitous in tumors and mediates the suppression of innate immune inflammatory response. Considering the massive infiltrated macrophages in osteosarcoma, efferocytosis probably serves as a potential target, but is rarely studied in osteosarcoma. Here, we verified M2 polarization and PD-L1 expression of macrophages following efferocytosis. Pharmacological inhibition and genetic knockdown were used to explore the underlying pathway. Moreover, tumor progression and immune landscape were evaluated following inhibition of efferocytosis in osteosarcoma model. Our study indicated that efferocytosis promoted PD-L1 expression and M2 polarization of macrophages. Ëfferocytosis was mediated by MerTK receptor in osteosarcoma and regulated the phenotypes of macrophages through the p38/STAT3 pathway. By establishing the murine osteosarcoma model, we emphasized that inhibition of MerTK suppressed tumor growth and enhanced the T cell cytotoxic function by increasing the infiltration of CD8+ T cells and decreasing their exhaustion. Our findings demonstrate that MerTK-mediated efferocytosis promotes osteosarcoma progression by enhancing M2 polarization of macrophages and PD-L1-induced immune tolerance, which were regulated through the p38/STAT3 pathway.
Collapse
Affiliation(s)
- Jinti Lin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Ankai Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jiakang Jin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Man Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jianan Lou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Chao Qian
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Zhengming Yang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
189
|
Yang F, Wu A, Yao J, Peng H, Qiu Y, Li S, Xu X. Nanoplatform-mediated calcium overload for cancer therapy. J Mater Chem B 2022; 10:1508-1519. [DOI: 10.1039/d1tb02721b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria, as the "the plant of power" of cells, have been extensively highlighted with biological functions of offering energy and participating in signaling pathways. In parallel, calcium (Ca2+) plays a...
Collapse
|
190
|
Lou H, Chu L, Zhou W, Dou J, Teng X, Tan W, Zhou B. Diselenium-bridged covalent organic framework with pH/GSH/photo-triple-responsiveness for highly controlled drug release toward joint chemo/photothermal/chemodynamic cancer therapy. J Mater Chem B 2022; 10:7955-7966. [PMID: 35792081 DOI: 10.1039/d2tb01015a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a novel joint chemo/photothermal/chemodynamic therapy was developed using a pH/GSH/photo triple-responsive 2D-covalent organic framework (COFs) drug carriers for passive target treatment of tumor with extraordinarily high efficiency. The well-designed...
Collapse
Affiliation(s)
- Han Lou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China.
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Shandong, P. R. China
| | - Lichao Chu
- Department of Anesthesiology, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261031, Shandong, P. R. China
| | - Wenbin Zhou
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Shandong, P. R. China
| | - Jinli Dou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China.
| | - Xiaotong Teng
- Department of Respiratory Medicine, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261031, Shandong, P. R. China
| | - Wei Tan
- Department of Respiratory Medicine, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261031, Shandong, P. R. China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China.
| |
Collapse
|
191
|
Corke L, Sacher A. New Strategies and Combinations to Improve Outcomes in Immunotherapy in Metastatic Non-Small-Cell Lung Cancer. Curr Oncol 2021; 29:38-55. [PMID: 35049678 PMCID: PMC8774728 DOI: 10.3390/curroncol29010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors have transformed the treatment of metastatic non-small-cell lung cancer, yielding marked improvements in survival and the potential for durable clinical responses. Primary and acquired resistance to current immune checkpoint inhibitors constitute a key challenge despite the remarkable responses observed in a subset of patients. Multiple novel combination immunotherapy and adoptive cell therapy strategies are presently being developed to address treatment resistance. The success of these strategies hinges upon rational clinical trial design as well as careful consideration of the immunologic mechanisms within the variable tumor immune microenvironment (TIME) which underpin resistance to immunotherapy. Further research is needed to facilitate a deeper understanding of these complex mechanisms within the TIME, which may ultimately provide the key to restoring and enhancing an effective anti-tumor immune response. This review aims to provide an introduction to some of the recent and notable combination immunotherapy and cell therapy strategies used in advanced non-small-cell lung cancer (NSCLC), and the rationale for their use based on current understanding of the anti-tumor immune response and mechanisms of resistance within the TIME.
Collapse
Affiliation(s)
- Lucy Corke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
192
|
Kumazawa T, Mori Y, Sato H, Permata TBM, Uchihara Y, Noda SE, Okada K, Kakoti S, Suzuki K, Ikota H, Yokoo H, Gondhowiardjo S, Nakano T, Ohno T, Shibata A. Expression of non-homologous end joining factor, Ku80, is negatively correlated with PD-L1 expression in cancer cells after X-ray irradiation. Oncol Lett 2021; 23:29. [PMID: 34868366 PMCID: PMC8630823 DOI: 10.3892/ol.2021.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/14/2021] [Indexed: 12/05/2022] Open
Abstract
The growing importance of antitumour immunity by cancer immunotherapy has prompted studies on radiotherapy-induced immune response. Previous studies have indicated that programmed cell death-1 ligand (PD-L1) expression is regulated by DNA damage signalling. However, PD-L1 up-regulation after radiotherapy has not been fully investigated at the clinical level, particularly in the context of expression of DNA repair factors. The present study examined the correlation of mRNA expression between PD-L1 and non-homologous end joining (NHEJ) factors using The Cancer Genome Atlas database analysis. Among NHEJ factors, Ku80 mRNA expression was negatively correlated with PD-L1 mRNA expression levels in several types of cancer (colon adenocarcinoma, breast invasive carcinoma, skin cutaneous melanoma, lung adenocarcinoma, head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma). To verify the negative correlation in clinical samples, the present study analysed whether Ku80 expression levels affected PD-L1 up-regulation after radiotherapy using cervical squamous cell carcinoma samples. Quantitative evaluation using software analysis of immunohistochemically stained slides revealed that patients with low Ku80 positivity in biopsy specimens demonstrated increased PD-L1 expression levels after 10 Gy irradiation (Spearman's rank correlation coefficient=−0.274; P=0.017). Furthermore, PD-L1 induction levels in tumour cells after 10 Gy of irradiation were significantly inversely correlated with Ku80 expression levels (Spearman's rank correlation coefficient=−0.379; P<0.001). The present study also confirmed that short interfering RNA-mediated Ku80 depletion was associated with greater X-ray-induced PD-L1 up-regulation in HeLa cells. These results indicated that radiotherapy could enhance PD-L1 induction in tumour cells with low Ku80 expression in a clinical setting. Furthermore, these data highlighted Ku80 as a potential predictive biomarker for immune checkpoint therapy combined with radiotherapy.
Collapse
Affiliation(s)
- Takuya Kumazawa
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 3718511, Japan.,Department of Radiation Oncology, Saku Central Hospital Advanced Care Center, Saku, Nagano 3850051, Japan
| | - Yasumasa Mori
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 3718511, Japan.,National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 2638555, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 3718511, Japan
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia, Dr Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - Yuki Uchihara
- Signal Transduction Program, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 3718511, Japan
| | - Shin-Ei Noda
- Department of Radiation Oncology, Comprehensive Cancer Centre, International Medical Centre, Saitama Medical University, Saitama 3501298, Japan
| | - Kohei Okada
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 3718511, Japan
| | - Sangeeta Kakoti
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 3718511, Japan.,Signal Transduction Program, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 3718511, Japan.,Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra 400012, India
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma University Hospital, Maebashi, Gunma 3718511, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma 3718511, Japan
| | - Soehartati Gondhowiardjo
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia, Dr Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - Takashi Nakano
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 2638555, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 3718511, Japan
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 3718511, Japan
| |
Collapse
|
193
|
Wang Y, Tan H, Yu T, Chen X, Jing F, Shi H. Potential Immune Biomarker Candidates and Immune Subtypes of Lung Adenocarcinoma for Developing mRNA Vaccines. Front Immunol 2021; 12:755401. [PMID: 34917077 PMCID: PMC8670181 DOI: 10.3389/fimmu.2021.755401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
mRNA vaccines against cancer have advantages in safety, improved therapeutic efficacy, and large-scale production. Therefore, our purpose is to identify immune biomarkers and to analyze immune status for developing mRNA vaccines and selecting appropriate patients for vaccination. We downloaded clinical information and RNA-seq data of 494 LUAD patients from TCGA. LUAD mutational information was hierarchically clustered by NMF package (Version 0.23.0). DeconstructSigs package (Version 1.8.0) and NMF consistency clustering were used to identify mutation signatures. Maftools package (Version 2.6.05) was used to select LUAD-related immune biomarkers. TIMER was used to discuss the correlation between genetic mutations and cellular components. Unsupervised clustering Pam method was used to identify LUAD immune subtypes. Log-rank test and univariate/multivariate cox regression were used to predict the prognosis of immune subtypes. Dimensionality reduction analysis was dedicated to the description of LUAD immune landscape. LUAD patients are classified into four signatures: T >C, APOBEC mutation, age, and tobacco. Then, GPRIN1, MYRF, PLXNB2, SLC9A4, TRIM29, UBA6, and XDH are potential LUAD-related immune biomarker candidates to activate the immune response. Next, we clustered five LUAD-related immune subtypes (IS1–IS5) by prognostic prediction. IS3 showed prolonged survival. The reliability of our five immune subtypes was validated by Thorsson’s results. IS2 and IS4 patients had high tumor mutation burden and large number of somatic mutations. Besides, we identified that immune subtypes of cold immunity (patients with IS2 and IS4) are ideal mRNA vaccination recipients. Finally, LUAD immune landscape revealed immune cells and prognostic conditions, which provides important information to select patients for vaccination. GPRIN1, MYRF, PLXNB2, SLC9A4, TRIM29, UBA6, and XDH are potential LUAD-related immune biomarker candidates to activate the immune response. Patients with IS2 and IS4 might potentially be immunization-sensitive patients for vaccination.
Collapse
Affiliation(s)
- Yang Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huaicheng Tan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Yu
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangqi Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huashan Shi,
| |
Collapse
|
194
|
Martinez-Balibrea E, Ciribilli Y. Editorial: Transcriptional Regulation as a Key Player in Cancer Cells Drug Resistance. Front Oncol 2021; 11:764506. [PMID: 34765559 PMCID: PMC8576526 DOI: 10.3389/fonc.2021.764506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eva Martinez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), ProCURE program, Catalan Institute of Oncology, Badalona, Spain
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Research, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
195
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
196
|
Goyal P, Moyers JT, Elgohary BG, Hammami MB. Case Report: Nivolumab-Induced Autoimmune Pancreatitis. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:208-211. [PMID: 35665025 PMCID: PMC9138477 DOI: 10.36401/jipo-21-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/09/2022]
Abstract
Nivolumab is an anti-programmed cell death protein 1 monoclonal antibody. While an effective treatment for a variety of tumors, immune checkpoint inhibitors (ICI) can cause immune-related adverse events such as ICI-pancreatic injury (ICI-PI). Here we present a case of a 60-year-old man with metastatic acral melanoma treated with nivolumab and ipilimumab who developed ICI-PI. Changes in positron emission tomography images preceded symptom onset. However, this case is unique in that the patient presented with cholestatic liver disease. Magnetic resonance cholangiopancreatography showed a dilated extrahepatic bile duct that resolved with steroid therapy, similar to the clinical course of autoimmune pancreatitis. ICI-PI has variable presentations including obstructive jaundice with a clinical course mimicking autoimmune pancreatitis and prompt awareness and treatment of ICI-PI is clinically significant given increasing use of ICIs.
Collapse
Affiliation(s)
- Preeya Goyal
- Department of Internal Medicine, Division of Gastroenterology, Loma Linda University Medical Center, Loma Linda, CA, USA
- Department of Internal Medicine, Division of Gastroenterology, Veterans Affairs Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Justin T. Moyers
- Department of Internal Medicine, Division of Gastroenterology, Veterans Affairs Loma Linda Healthcare System, Loma Linda, CA, USA
- Department of Internal Medicine, Division of Hematology and Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Bassem G. Elgohary
- Department of Internal Medicine, Division of Gastroenterology, Veterans Affairs Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Muhammad B. Hammami
- Department of Internal Medicine, Division of Gastroenterology, Loma Linda University Medical Center, Loma Linda, CA, USA
- Department of Internal Medicine, Division of Gastroenterology, Veterans Affairs Loma Linda Healthcare System, Loma Linda, CA, USA
- University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
197
|
Martorana F, Colombo I, Treglia G, Gillessen S, Stathis A. A systematic review of phase II trials exploring anti-PD-1/PD-L1 combinations in patients with solid tumors. Cancer Treat Rev 2021; 101:102300. [PMID: 34688105 DOI: 10.1016/j.ctrv.2021.102300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND A high number of combinations of PD-1/PD-L1 inhibitors with other anti-cancer therapies are in clinical development. The usefulness of phase II trials in evaluating their efficacy and safety is unclear. MATERIALS AND METHODS We performed a systematic search on PubMed and Cochrane Library for phase II trials of PD-1/PD-L1 inhibitors in combination with other anti-cancer therapies (systemic therapy and/or radiotherapy) published between January 1st 2018 and December 31st 2020. Study design, primary endpoint and main outcomes were registered for each paper. RESULTS 119 articles reporting on 65 regimens were included in our analysis. Backbone agents were more frequently PD-1 inhibitors (pembrolizumab = 47, nivolumab = 41, camrelizumab = 3) followed by anti-PD-L1 (durvalumab = 19, atezolizumab = 6, avelumab = 3). Therapeutic partners were other immunotherapeutic agents (n = 46), targeted therapies (n = 40), chemotherapy (n = 22) or radiotherapy (n = 11). The majority of articles reported on single-arm trials (n = 87, 73%) and response rate was the most frequent primary endpoint (n = 69, 58%). Objective responses, registered in 109 (92%) articles, ranged between 0% and 91%. The incidence of grade 3 or higher treatment-related adverse events, clearly reported in 97 (82%) articles, spanned from 0 to 100%. Five combinations received regulatory approval by Food and Drug Administration or European Medicine Agency for 9 different indications, based on the results of a phase II trial (n = 3) or on a confirmatory phase III trial (n = 6). CONCLUSIONS The landscape of phase II trials evaluating PD-1/PD-L1 inhibitors with other anticancer therapies is heterogeneous. Combinations of two immunotherapeutic agents have been the most investigated. Only a minority of indications (8%) granted regulatory approval.
Collapse
Affiliation(s)
- F Martorana
- Department of Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - I Colombo
- Department of Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - G Treglia
- Academic Education, Research and Innovation Area, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - S Gillessen
- Department of Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - A Stathis
- Department of Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland.
| |
Collapse
|
198
|
Feng C, Xu Y, Liu Y, Zhu L, Wang L, Cui X, Lu J, Zhang Y, Zhou L, Chen M, Zhang Z, Li P. Gene Expression Subtyping Reveals Immune alterations:TCGA Database for Prognosis in Ovarian Serous Cystadenocarcinoma. Front Mol Biosci 2021; 8:619027. [PMID: 34631788 PMCID: PMC8497788 DOI: 10.3389/fmolb.2021.619027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
Serous ovarian cancer is the most common and primary death type in ovarian cancer. In recent studies, tumor microenvironment and tumor immune infiltration significantly affect the prognosis of ovarian cancer. This study analyzed the four gene expression types of ovarian cancer in TCGA database to extract differentially expressed genes and verify the prognostic significance. Meanwhile, functional enrichment and protein interaction network analysis exposed that these genes were related to immune response and immune infiltration. Subsequently, we proved these prognostic genes in an independent data set from the GEO database. Finally, multivariate cox regression analysis revealed the prognostic significance of TAP1 and CXCL13. The genetic alteration and interaction network of these two genes were shown. Then, we established a nomogram model related to the two genes and clinical risk factors. This model performed well in Calibration plot and Decision Curve Analysis. In conclusion, we have obtained a list of genes related to the immune microenvironment with a better prognosis for serous ovarian cancer, and based on this, we have tried to establish a clinical prognosis model.
Collapse
Affiliation(s)
- Chunxia Feng
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yan Xu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Lixia Zhu
- Department of Gynecology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Le Wang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xixi Cui
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jingjing Lu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yan Zhang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Lina Zhou
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Zhiqin Zhang
- Department of Biobank, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ping Li
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
199
|
Yi M, Niu M, Zhang J, Li S, Zhu S, Yan Y, Li N, Zhou P, Chu Q, Wu K. Combine and conquer: manganese synergizing anti-TGF-β/PD-L1 bispecific antibody YM101 to overcome immunotherapy resistance in non-inflamed cancers. J Hematol Oncol 2021; 14:146. [PMID: 34526097 PMCID: PMC8442312 DOI: 10.1186/s13045-021-01155-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Our previous work showed that the anti-TGF-β/PD-L1 bispecific antibody YM101 effectively overcame anti-PD-L1 resistance in immune-excluded tumor models. However, in immune-desert models, the efficacy of YM101 was limited. Bivalent manganese (Mn2+) is identified as a natural stimulator of interferon genes (STING) agonist, which might enhance cancer antigen presentation and improve the therapeutic effect of YM101. METHODS The effect of Mn2+ on STING pathway was validated by western blotting and enzyme-linked immunosorbent assay. Dendritic cell (DC) maturation was measured by flow cytometry. The synergistic effect between Mn2+ and YM101 in vitro was determined by one-way mixed lymphocyte reaction, CFSE dilution assay, and cytokine detection. The in vivo antitumor effect of Mn2+ plus YM101 therapy was assessed in CT26, EMT-6, H22, and B16 tumor models. Flow cytometry, RNA-seq, and immunofluorescent staining were adopted to investigate the alterations in the tumor microenvironment. RESULTS Mn2+ could activate STING pathway and promote the maturation of human and murine DC. The results of one-way mixed lymphocyte reaction showed that Mn2+ synergized YM101 in T cell activation. Moreover, in multiple syngeneic murine tumor models, Mn2+ plus YM101 therapy exhibited a durable antitumor effect and prolonged the survival of tumor-bearing mice. Relative to YM101 monotherapy and Mn2+ plus anti-PD-L1 therapy, Mn2+ plus YM101 treatment had a more powerful antitumor effect and a broader antitumor spectrum. Mechanistically, Mn2+ plus YM101 strategy simultaneously regulated multiple components in the antitumor immunity and drove the shift from immune-excluded or immune-desert to immune-inflamed tumors. The investigation in the TME indicated Mn2+ plus YM101 strategy activated innate and adaptive immunity, enhanced cancer antigen presentation, and upregulated the density and function of tumor-infiltrating lymphocytes. This normalized TME and reinvigorated antitumor immunity contributed to the superior antitumor effect of the combination therapy. CONCLUSION Combining Mn2+ with YM101 has a synergistic antitumor effect, effectively controlling tumor growth and prolonging the survival of tumor-bearing mice. This novel cocktail strategy has the potential to be a universal regimen for inflamed and non-inflamed tumors.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Yongxiang Yan
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 People’s Republic of China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 People’s Republic of China
| |
Collapse
|
200
|
Wang H, Wang L, Li Y, Li G, Zhang X, Jiang D, Zhang Y, Liu L, Chu Y, Xu G. Nanobody-armed T cells endow CAR-T cells with cytotoxicity against lymphoma cells. Cancer Cell Int 2021; 21:450. [PMID: 34429118 PMCID: PMC8386010 DOI: 10.1186/s12935-021-02151-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/13/2021] [Indexed: 02/02/2023] Open
Abstract
Background Taking advantage of nanobodies (Nbs) in immunotherapy, we investigated the cytotoxicity of Nb-based chimeric antigen receptor T cells (Nb CAR-T) against lymphoma cells. Methods CD19 Nb CAR-T, CD20 Nb CAR-T, and Bispecific Nb CAR-T cells were generated by panning anti-human CD19- and CD20-specific nanobody sequences from a natural Nb-expressing phage display library, integrating Nb genes with a lentiviral cassette that included other CAR elements, and finally transducing T cells that were expanded under an optimization system with the above generated CAR lentivirus. Prepared Nb CAR-T cells were cocultured with tumour cell lines or primary tumour cells for 24 h or 5 days to evaluate their biological function. Results The nanobodies that we selected from the natural Nb-expressing phage display library had a high affinity and specificity for CD19 and CD20. CD19 Nb CAR-T, CD20 Nb CAR-T and Bispecific Nb CAR-T cells were successfully constructed, and these Nb CAR-T cells could strongly recognize Burkitt lymphoma cell lines (Raji and Daudi), thereby leading to activation, enhanced proliferation, and specific killing of target cells. Furthermore, similar results were obtained when using patient samples as target cells, with a cytotoxicity of approximately 60%. Conclusions Nanobody-based CAR-T cells can kill both tumour cell lines and patient-derived tumour cells in vitro, and Nb-based CAR-T cells may be a promising therapeutic strategy in future immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02151-z.
Collapse
Affiliation(s)
- Hongxia Wang
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China
| | - Liyan Wang
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yanning Li
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Guangqi Li
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaochun Zhang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dan Jiang
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yanting Zhang
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Liyuan Liu
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuankui Chu
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Guangxian Xu
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China. .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China.
| |
Collapse
|