151
|
Nakagawa-Toyama Y, Zhang S, Krieger M. Dietary manipulation and social isolation alter disease progression in a murine model of coronary heart disease. PLoS One 2012; 7:e47965. [PMID: 23112879 PMCID: PMC3480446 DOI: 10.1371/journal.pone.0047965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mice with a deficiency in the HDL receptor SR-BI and low expression of a modified apolipoprotein E gene (SR-BI KO/ApoeR61(h/h)) called 'HypoE' when fed an atherogenic, 'Paigen' diet develop occlusive, atherosclerotic coronary arterial disease (CHD), myocardial infarctions (MI), and heart dysfunction and die prematurely (50% mortality ~40 days after initiation of this diet). Because few murine models share with HypoE mice these cardinal, human-like, features of CHD, HypoE mice represent a novel, small animal, diet-inducible and genetically tractable model for CHD. To better describe the properties of this model, we have explored the effects of varying the composition and timing of administration of atherogenic diets, as well as social isolation vs. group housing, on these animals. METHODOLOGY/PRINCIPAL FINDINGS HypoE mice were maintained on a standard lab chow diet (control) until two months of age. Subsequently they received one of three atherogenic diets (Paigen, Paigen without cholate, Western) or control diet for varying times and were housed in groups or singly, and we determined the plasma cholesterol levels, extent of cardiomegaly and/or survival. The rate of disease progression could be reduced by lowering the severity of the atherogenic diet and accelerated by social isolation. Disease could be induced by Paigen diets either containing or free of cholate. We also established conditions under which CHD could be initiated by an atherogenic diet and then subsequently, by replacing this diet with standard lab chow, hypercholesterolemia could be reduced and progression to early death prevented. CONCLUSIONS/SIGNIFICANCE HypoE mice provide a powerful, surgery-free, diet-'titratable' small animal model that can be used to study the onset of recovery from occlusive, atherosclerotic CHD and heart failure due to MI. HypoE mice can be used for the analysis of the effects of environment (diet, social isolation) on a variety of features of cardiovascular disease.
Collapse
Affiliation(s)
- Yumiko Nakagawa-Toyama
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Songwen Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
152
|
Abstract
PURPOSE OF REVIEW Apolipoprotein (apo) E is a multifunctional protein that has long been recognized for its ability to safeguard against atherosclerosis. Among its pleiotropic roles known to suppress atherosclerosis, mechanisms by which apoE regulates cells of the immune system have remained elusive. Because atherosclerosis is a chronic inflammatory disease that remains on the rise, understanding in more detail how apoE controls immune cell activation and function is of much interest. RECENT FINDINGS Literature reported in the past year introduces apoE as a regulator of monocyte and macrophage plasticity. Through signals delivered by its interaction with cell surface receptors, apoE has been shown to influence the polarity and inflammatory phenotypes of the macrophage. By promoting cellular cholesterol efflux in a cell autonomous manner and through its ability to enhance HDL function in hyperlipidemic plasma, apoE is now known to suppress atherosclerosis by controlling myeloid cell proliferation, monocyte activation and their capacity to infiltrate the vascular wall. Lastly, the structural basis for apoE isoform-specific effects in macrophage dysfunction and atherosclerosis susceptibility is beginning to emerge. SUMMARY Collectively, these findings introduce a new dimension to our understanding of how apoE links lipoprotein biology to monocyte and macrophage function in atherosclerosis susceptibility.
Collapse
Affiliation(s)
- Robert L Raffai
- Department of Surgery, University of California San Francisco, and Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| |
Collapse
|
153
|
Hornemann T, Worgall TS. Sphingolipids and atherosclerosis. Atherosclerosis 2012; 226:16-28. [PMID: 23075523 DOI: 10.1016/j.atherosclerosis.2012.08.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/06/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022]
Abstract
The atherosclerotic lesion contains a high amount of sphingolipids, a large group of structurally diverse lipids that regulate distinct biological functions beyond their role as structural membrane components. Assessment of their role in atherogenesis has been enabled after genes that regulate their metabolism had been identified and facilitated by the more wide availability of mass spectrometry. Here we discuss recent mechanistic insights obtained in animal and epidemiological studies that have greatly enhanced our understanding of mechanisms how sphingolipids affect the atherosclerotic process.
Collapse
Affiliation(s)
- Thorsten Hornemann
- Inst. for Clinical Chemistry, University Hospital Zuerich, Raemistrasse 100, 8091 Zuerich, Switzerland.
| | | |
Collapse
|
154
|
von Elverfeldt D, von zur Muhlen C, Wiens K, Neudorfer I, Zirlik A, Meissner M, Tilly P, Charles AL, Bode C, Peter K, Fabre JE. In vivo detection of activated platelets allows characterizing rupture of atherosclerotic plaques with molecular magnetic resonance imaging in mice. PLoS One 2012; 7:e45008. [PMID: 23028736 PMCID: PMC3441740 DOI: 10.1371/journal.pone.0045008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/11/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Early and non-invasive detection of platelets on micro atherothrombosis provides a means to identify unstable plaque and thereby allowing prophylactic treatment towards prevention of stroke or myocardial infarction. Molecular magnetic resonance imaging (mMRI) of activated platelets as early markers of plaque rupture using targeted contrast agents is a promising strategy. In this study, we aim to specifically image activated platelets in murine atherothrombosis by in vivo mMRI, using a dedicated animal model of plaque rupture. METHODS An antibody targeting ligand-induced binding sites (LIBS) on the glycoprotein IIb/IIIa-receptor of activated platelets was conjugated to microparticles of iron oxide (MPIO) to form the LIBS-MPIO contrast agent causing a signal-extinction in T2*-weighted MRI. ApoE(-/-) mice (60 weeks-old) were fed a high fat diet for 5 weeks. Using a small needle, the surface of their carotid plaques was scratched under blood flow to induce atherothrombosis. In vivo 9.4 Tesla MRI was performed before and repetitively after intravenous injection of either LIBS-MPIO versus non-targeted-MPIO. RESULTS LIBS-MPIO injected animals showed a significant signal extinction (p<0.05) in MRI, corresponding to the site of plaque rupture and atherothrombosis in histology. The signal attenuation was effective for atherothrombosis occupying ≥ 2% of the vascular lumen. Histology further confirmed significant binding of LIBS-MPIO compared to control-MPIO on the thrombus developing on the surface of ruptured plaques (p<0.01). CONCLUSION in vivo mMRI detected activated platelets on mechanically ruptured atherosclerotic plaques in ApoE(-/-) mice with a high sensititvity. This imaging technology represents a unique opportunity for noninvasive detection of atherothrombosis and the identification of unstable atherosclerotic plaques with the ultimate promise to prevent strokes and myocardial infarctions.
Collapse
Affiliation(s)
| | | | - Kristina Wiens
- Department of Cardiology and Angiology I, University Heart Center, Freiburg, Germany
| | - Irene Neudorfer
- Department of Cardiology and Angiology I, University Heart Center, Freiburg, Germany
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center, Freiburg, Germany
| | - Mirko Meissner
- Department of Radiology/Medical Physics, University Hospital, Freiburg, Germany
| | - Peg Tilly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France
| | - Anne-Laure Charles
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center, Freiburg, Germany
| | | | - Jean-Etienne Fabre
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
155
|
Lian J, Quiroga AD, Li L, Lehner R. Ces3/TGH deficiency improves dyslipidemia and reduces atherosclerosis in Ldlr(-/-) mice. Circ Res 2012; 111:982-90. [PMID: 22872154 DOI: 10.1161/circresaha.112.267468] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE Carboxylesterase 3/triacylglycerol hydrolase (TGH) has been shown to participate in hepatic very low-density lipoprotein (VLDL) assembly. Deficiency of TGH in mice lowers plasma lipids and atherogenic lipoproteins without inducing hepatic steatosis. OBJECTIVE To investigate the contribution of TGH to atherosclerotic lesion development in mice that lack low-density lipoprotein receptor (LDLR). METHODS AND RESULTS Mice deficient in LDL receptor (Ldlr(-/-)) and mice lacking both TGH and LDLR (Tgh(-/-)/Ldlr(-/-)) were fed with a Western-type diet for 12 weeks. Analysis of Tgh(-/-)/Ldlr(-/-) plasma showed an atheroprotective lipoprotein profile with decreased cholesterol in the VLDL and the LDL fractions, concomitant with elevated high-density lipoprotein cholesterol. Significantly reduced plasma apolipoprotein B levels were also observed in Tgh(-/-)/Ldlr(-/-) mice. Consequently, Tgh(-/-)/Ldlr(-/-) mice presented with a significant reduction (54%, P<0.01) of the high-fat, high-cholesterol dieteninduced atherosclerotic plaques when compared with Tgh(+/+)/Ldlr(-/-) mice in the cross-sectional aortic root analysis. TGH deficiency did not further increase liver steatosis despite lowering plasma lipids, mainly due to reduced hepatic lipogenesis. The ameliorated dyslipidemia in Tgh(-/-)/Ldlr(-/-) mice was accompanied with significantly improved insulin sensitivity. CONCLUSIONS Inhibition of TGH activity ameliorates atherosclerosis development and improves insulin sensitivity in Ldlr(-/-) mice.
Collapse
Affiliation(s)
- Jihong Lian
- Department of Pediatrics, Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
156
|
Balkanci ZD, Pehlivanoğlu B, Bayrak S, Karabulut I, Karaismailoğlu S, Erdem A. The effect of hypercholesterolemia on carbachol-induced contractions of the detrusor smooth muscle in rats: increased role of L-type Ca2+ channels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2012; 385:1141-8. [PMID: 22868398 DOI: 10.1007/s00210-012-0784-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/15/2012] [Indexed: 10/27/2022]
Abstract
To investigate a possible relation between hypercholesterolemia and detrusor smooth muscle function, we studied the contractile response to potassium challenge, carbachol (CCh), and the components of CCh-induced contractile mechanism in high-cholesterol diet-fed rats. Adult male Sprague-Dawley rats were fed with standard (control group, N = 17) or 4 % cholesterol diet (hypercholesterolemia group (HC), N = 16) for 4 weeks. Spontaneous contractions of detrusor muscle strips and their responses to potassium chloride (KCl) or cumulative dose-contraction curves to CCh were recorded. The effects of muscarinic receptor antagonists (methoctramin and/or 4-diphenylacetoxy-N-methylpiperidine), L-type Ca(+2) channel blocker (nifedipine), and/or rho-kinase inhibitor Y-27632 were investigated. Blood cholesterol level was increased in the HC group with no sign of atherosclerosis. The KCl-induced detrusor smooth muscle contractions were higher in HC, whereas spontaneous and CCh-induced responses were similar in both groups. Preincubation with receptor antagonist for M(3) but not for M(2) attenuated contraction significantly, shifting the dose-response curve to the right. This response was similar in both groups. Among two effector mechanisms of M(3)-mediated detrusor smooth muscle contraction, rho-kinase pathway was not affected by hypercholesterolemia, whereas blockade of L-type Ca(+2) channels potently reduced contractions. The results of this study point out a relation between hypercholesterolemia and contractile mechanism of detrusor smooth muscle likely to change urinary bladder function, via altering L-type Ca(+2) channels. Taken together with escalating incidence of hypercholesterolemia and lower urinary tract symptoms, it is a field which deserves to be investigated further.
Collapse
Affiliation(s)
- Zeynep Dicle Balkanci
- Department of Physiology, Faculty of Medicine, Hacettepe University, 39, Sihhiye, 06100, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
157
|
Low carbohydrate, high protein diet promotes atherosclerosis in apolipoprotein E/low-density lipoprotein receptor double knockout mice (apoE/LDLR−/−). Atherosclerosis 2012; 223:327-31. [DOI: 10.1016/j.atherosclerosis.2012.05.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/22/2022]
|
158
|
Reifenberg K, Cheng F, Orning C, Crain J, Küpper I, Wiese E, Protschka M, Blessing M, Lackner KJ, Torzewski M. Overexpression of TGF-ß1 in macrophages reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice. PLoS One 2012; 7:e40990. [PMID: 22829904 PMCID: PMC3400574 DOI: 10.1371/journal.pone.0040990] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/19/2012] [Indexed: 12/28/2022] Open
Abstract
Although macrophages represent the hallmark of both human and murine atherosclerotic lesions and have been shown to express TGF-ß1 (transforming growth factor β1) and its receptors, it has so far not been experimentally addressed whether the pleiotropic cytokine TGF-ß1 may influence atherogenesis by a macrophage specific mechanism. We developed transgenic mice with macrophage specific TGF-ß1 overexpression, crossed the transgenics to the atherosclerotic ApoE (apolipoprotein E) knock-out strain and quantitatively analyzed both atherosclerotic lesion development and composition of the resulting double mutants. Compared with control ApoE−/− mice, animals with macrophage specific TGF-ß1 overexpression developed significantly less atherosclerosis after 24 weeks on the WTD (Western type diet) as indicated by aortic plaque area en face (p<0.05). Reduced atherosclerotic lesion development was associated with significantly less macrophages (p<0.05 after both 8 and 24 weeks on the WTD), significantly more smooth muscle cells (SMCs; p<0.01 after 24 weeks on the WTD), significantly more collagen (p<0.01 and p<0.05 after 16 and 24 weeks on the WTD, respectively) without significant differences of inner aortic arch intima thickness or the number of total macrophages in the mice pointing to a plaque stabilizing effect of macrophage-specific TGF-ß1 overexpression. Our data shows that macrophage specific TGF-ß1 overexpression reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice.
Collapse
Affiliation(s)
- Kurt Reifenberg
- Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Fei Cheng
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Carolin Orning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Jeanine Crain
- Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Ines Küpper
- Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Elena Wiese
- Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Martina Protschka
- Center for Biotechnology and Biomedicine, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Manfred Blessing
- Center for Biotechnology and Biomedicine, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Michael Torzewski
- Department of Laboratory Medicine, Robert-Bosch-Hospital, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
159
|
Teodoro BG, Natali AJ, Fernandes SAT, Silva LAD, Pinho RAD, Matta SLPD, Peluzio MDCG. Improvements of atherosclerosis and hepatic oxidative stress are independent of exercise intensity in LDLr(-/-) mice. J Atheroscler Thromb 2012; 19:904-11. [PMID: 22786443 DOI: 10.5551/jat.11569] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Cardiovascular diseases are the main causes of death in the Western world and are manifested by atherosclerosis. Depending on its intensity, regular aerobic exercise may be either beneficial or harmful to the atherosclerosis process. AIM The aim of this study was to verify the effects of aerobic exercise training of different intensities on the profile of atherosclerotic lesions and serum lipid, and in the hepatic oxidative balance of low-density lipoprotein receptor-deficient (LDLr(-/-)) mice previously developed with atherosclerosis. METHODS All animals were submitted to a three-month high-fat and high-cholesterol diet regime. The animals were then randomly divided into no exercise (G1, n=9), low-intensity aerobic exercise (G2, n=10, 8 weeks of treadmill running, 30 min/day(-1) at 8-10 m/min(-1)) and moderate-intensity aerobic exercise (G3, n=10, 8 weeks of treadmill running, 30 min/day(-1) at 10-16 m/min(-1)) groups. Serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG), and oxidative damage (protein carbonyls and lipid hydroperoxides) were measured. The activity of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the liver tissue was assessed. RESULTS G2 (0.015 ± 0.005cm(2)) and G3 (0.014 ± 0.001cm(2)) presented lower aortic fat deposition than G1 (0.039 ± 0.005cm(2)). G2 and G3 exhibited higher HDL-C, TG and CAT activity, but lower lipid peroxidation and carbonyl protein than G1. SOD values were higher in G3 than G2 and G1, and GPx was higher in G2 than in G3 and G1. CONCLUSIONS Our protocols of low- and moderate-intensity aerobic exercise training (30 min daily for 8 weeks) induced similar benefits in LDLr(-/-) mice with atherosclerosis.
Collapse
Affiliation(s)
- Bruno Gonzaga Teodoro
- Departamento de Educação Física, Universidade Federal de Viçosa (UFV), Viçosa, Brazil.
| | | | | | | | | | | | | |
Collapse
|
160
|
Denes A, Drake C, Stordy J, Chamberlain J, McColl BW, Gram H, Crossman D, Francis S, Allan SM, Rothwell NJ. Interleukin-1 mediates neuroinflammatory changes associated with diet-induced atherosclerosis. J Am Heart Assoc 2012; 1:e002006. [PMID: 23130147 PMCID: PMC3487321 DOI: 10.1161/jaha.112.002006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/03/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Systemic inflammation contributes to brain pathology in cerebrovascular disease through mechanisms that are poorly understood. METHODS AND RESULTS Here we show that atherosclerosis, a major systemic inflammatory disease, is associated with severe cerebrovascular inflammation in mice and that this effect is mediated by the proinflammatory cytokine interleukin-1 (IL-1). Apolipoprotein E-deficient mice fed Paigen or Western diets develop vascular inflammation, microglial activation, and leukocyte recruitment in the brain, which are absent in apolipoprotein E-deficient mice crossed with IL-1 type 1 receptor-deficient mice. Systemic neutralization of IL-1β with an anti-IL-1β antibody reversed aortic plaque formation (by 34% after a Paigen and 45% after a Western diet) and reduced inflammatory cytokine expression in peripheral organs. Central, lipid accumulation-associated leukocyte infiltration into the choroid plexus was reversed by IL-1β antibody administration. Animals fed a Western diet showed 57% lower vascular inflammation in the brain than that of mice fed a Paigen diet, and this was reduced further by 24% after IL-1β antibody administration. CONCLUSIONS These results indicate that IL-1 is a key driver of systemically mediated cerebrovascular inflammation and that interventions against IL-1β could be therapeutically useful in atherosclerosis, dementia, or stroke. (J Am Heart Assoc. 2012;1:e002006 doi: 10.1161/JAHA.112.002006.).
Collapse
Affiliation(s)
- Adam Denes
- Faculty of Life Sciences, University of Manchester, Manchester, UK (A.D., C.D., S.M.A., N.J.R.)
| | - Caroline Drake
- Faculty of Life Sciences, University of Manchester, Manchester, UK (A.D., C.D., S.M.A., N.J.R.)
| | - Jing Stordy
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK (J.S., J.C., D.C., S.F.)
| | - Janet Chamberlain
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK (J.S., J.C., D.C., S.F.)
| | - Barry W. McColl
- The Roslin Institute and R(D)SVS, University of Edinburgh, UK (B.W.M.)
| | - Hermann Gram
- Novartis Institutes of BioMedical Research, Basel, Switzerland (H.G.)
| | - David Crossman
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK (J.S., J.C., D.C., S.F.),Norwich Medical School, University of East Anglia, Norwich, UK (D.C.)
| | - Sheila Francis
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK (J.S., J.C., D.C., S.F.)
| | - Stuart M. Allan
- Faculty of Life Sciences, University of Manchester, Manchester, UK (A.D., C.D., S.M.A., N.J.R.)
| | - Nancy J. Rothwell
- Faculty of Life Sciences, University of Manchester, Manchester, UK (A.D., C.D., S.M.A., N.J.R.)
| |
Collapse
|
161
|
Higashi Y, Sukhanov S, Anwar A, Shai SY, Delafontaine P. Aging, atherosclerosis, and IGF-1. J Gerontol A Biol Sci Med Sci 2012; 67:626-39. [PMID: 22491965 PMCID: PMC3348497 DOI: 10.1093/gerona/gls102] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/01/2012] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, and tissue repair. Recent evidence indicates that IGF-1 reduces atherosclerosis burden and improves features of atherosclerotic plaque stability in animal models. Potential mechanisms for this atheroprotective effect include IGF-1-induced reduction in oxidative stress, cell apoptosis, proinflammatory signaling, and endothelial dysfunction. Aging is associated with increased vascular oxidative stress and vascular disease, suggesting that IGF-1 may exert salutary effects on vascular aging processes. In this review, we will provide a comprehensive update on IGF-1's ability to modulate vascular oxidative stress and to limit atherogenesis and the vascular complications of aging.
Collapse
Affiliation(s)
- Yusuke Higashi
- Tulane University Heart & Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
162
|
Grosskopf I, Shaish A, Afek A, Shemesh S, Harats D, Kamari Y. Apolipoprotein A-V modulates multiple atherogenic mechanisms in a mouse model of disturbed clearance of triglyceride-rich lipoproteins. Atherosclerosis 2012; 224:75-83. [PMID: 22809445 DOI: 10.1016/j.atherosclerosis.2012.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Apolipoprotein A-V plays an important role in reducing plasma triglyceride levels. We hypothesized that expression of apoA-V would inhibit atherogenesis in apoE(-/-) mice fed chow diet which is a known model of hypercholesterolemia. Our aim was to study this protective effect and to explore possible mechanisms. METHODS AND RESULTS ApoA-V(+/+)ApoE(-/-) mice expressing human apolipoprotein A-V (hapoA-V) were generated and compared to apoE(-/-) mice. Atherosclerotic aortic sinus lesion area was 70% smaller in hapoA-V(+/+)apoE(-/-). This was accompanied by a 58% reduction in lesion macrophage content. Furthermore, advanced atherosclerotic lesions in hapoA-V(+/+)apoE(-/-) mice showed features of a more stable plaque, manifested by 59% and 37% higher collagen and α-actin content, respectively. Plasma triglyceride and cholesterol levels in hapoA-V(+/+)apoE(-/-) mice were 47% and 33% lower, respectively. These were associated with a 33% reduction in very low density lipoprotein triglyceride production and 2-fold acceleration in triglyceride-rich lipoprotein clearance in hapoA-V(+/+)apoE(-/-) mice. In addition, hapoA-V(+/+)apoE(-/-) mice showed enhanced insulin sensitivity (25% and 15% improvement in glucose tolerance and insulin responsiveness, respectively). Finally, hapoA-V(+/+)apoE(-/-) displayed a milder systemic inflammatory response compared to apoE(-/-) mice, manifested by 22%, 65% and 15% lower plasma levels of TNFα, IL-1β and IL-6, respectively. CONCLUSIONS We showed that human apolipoprotein A-V is a potent modulator of atherosclerosis in mice through multiple modes of action. These findings may identify apoA-V as a potential therapeutic target for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Itamar Grosskopf
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|
163
|
Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H, Wang Y. Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PLoS One 2012; 7:e35835. [PMID: 22558236 PMCID: PMC3338468 DOI: 10.1371/journal.pone.0035835] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Mice deficient in the LDL receptor (Ldlr−/− mice) have been widely used as a model to mimic human atherosclerosis. However, the time-course of atherosclerotic lesion development and distribution of lesions at specific time-points are yet to be established. The current study sought to determine the progression and distribution of lesions in Ldlr−/− mice. Methodology/Principal Findings Ldlr-deficient mice fed regular chow or a high-fat (HF) diet for 0.5 to 12 months were analyzed for atherosclerotic lesions with en face and cross-sectional imaging. Mice displayed significant individual differences in lesion development when fed a chow diet, whereas those on a HF diet developed lesions in a time-dependent and site-selective manner. Specifically, mice subjected to the HF diet showed slight atherosclerotic lesions distributed exclusively in the aortic roots or innominate artery before 3 months. Lesions extended to the thoracic aorta at 6 months and abdominal aorta at 9 months. Cross-sectional analysis revealed the presence of advanced lesions in the aortic sinus after 3 months in the group on the HF diet and in the innominate artery at 6 to 9 months. The HF diet additionally resulted in increased total cholesterol, LDL, glucose, and HBA1c levels, along with the complication of obesity. Conclusions/Significance Ldlr-deficient mice on the HF diet tend to develop site-selective and size-specific atherosclerotic lesions over time. The current study should provide information on diet induction or drug intervention times and facilitate estimation of the appropriate locations of atherosclerotic lesions in Ldlr−/− mice.
Collapse
Affiliation(s)
- Yanling Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenyi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youli Lu
- Central Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Wenyu Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiping Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
164
|
Poti F, Costa S, Bergonzini V, Galletti M, Pignatti E, Weber C, Simoni M, Nofer JR. Effect of sphingosine 1-phosphate (S1P) receptor agonists FTY720 and CYM5442 on atherosclerosis development in LDL receptor deficient (LDL-R⁻/⁻) mice. Vascul Pharmacol 2012; 57:56-64. [PMID: 22459073 DOI: 10.1016/j.vph.2012.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/12/2012] [Accepted: 03/10/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Sphingosine 1-phosphate (S1P)--a lysosphingolipid present in HDL--exerts atheroprotective effects in vitro, while FTY720, a non-selective S1P mimetic inhibits atherosclerosis in LDL receptor-deficient (LDL-R⁻/⁻) mice under conditions of severe hypercholesterolemia. We here examined the effect of FTY720 and a selective S1P receptor type 1 agonist CYM5442 on atherosclerosis in moderately hypercholesterolemic LDL-R⁻/⁻ mice. METHODS AND RESULTS LDL-R⁻/⁻ mice fed Western diet (0.25% cholesterol) were given FTY720 (0.4 mg/kg/day) or CYM5442 (2.0 mg/kg/day) for 18 weeks. FTY720 but not CYM5422 persistently lowered blood lymphocytes, depleted CD4⁺ and CD8⁺ T cells in spleen and lymph nodes, and reduced splenocyte IL-2 secretion. However, both compounds reduced the activity of splenic and peritoneal macrophages as inferred from the down-regulated CD68 and MHC-II expression in CD11b⁺ cells and the reduced IL-6 secretion in response to LPS, respectively. CYM5442 and FTY720 reduced weight gain, white adipose tissue depots and fasting glucose suggesting improvement of metabolic control, but failed to influence atherosclerosis in LDL-R⁻/⁻ mice. CONCLUSION Despite down-regulating macrophage function and--in case of FTY720--altering lymphocyte distribution CYM5442 and FTY720 fail to affect atherosclerosis in moderately hypercholesterolemic LDL-R⁻/⁻ mice. We hypothesize that S1P mimetics exert atheroprotective effects only under conditions of increased cholesterol burden exacerbating vascular inflammation.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Body Weight/immunology
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Female
- Fingolimod Hydrochloride
- Genes, MHC Class II/immunology
- Indans/pharmacology
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocyte Activation/immunology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Oxadiazoles/pharmacology
- Proprotein Convertases/immunology
- Proprotein Convertases/metabolism
- Propylene Glycols/immunology
- Propylene Glycols/pharmacology
- Receptors, LDL/immunology
- Receptors, LDL/metabolism
- Receptors, Lysosphingolipid/agonists
- Receptors, Lysosphingolipid/immunology
- Receptors, Lysosphingolipid/metabolism
- Serine Endopeptidases/immunology
- Serine Endopeptidases/metabolism
- Sphingosine/analogs & derivatives
- Sphingosine/immunology
- Sphingosine/pharmacology
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Francesco Poti
- Department of Medicine, Endocrinology, Metabolism and Geriatrics, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Stylianou IM, Bauer RC, Reilly MP, Rader DJ. Genetic basis of atherosclerosis: insights from mice and humans. Circ Res 2012; 110:337-55. [PMID: 22267839 DOI: 10.1161/circresaha.110.230854] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a complex and heritable disease involving multiple cell types and the interactions of many different molecular pathways. The genetic and molecular mechanisms of atherosclerosis have, in part, been elucidated by mouse models; at least 100 different genes have been shown to influence atherosclerosis in mice. Importantly, unbiased genome-wide association studies have recently identified a number of novel loci robustly associated with atherosclerotic coronary artery disease. Here, we review the genetic data elucidated from mouse models of atherosclerosis, as well as significant associations for human coronary artery disease. Furthermore, we discuss in greater detail some of these novel human coronary artery disease loci. The combination of mouse and human genetics has the potential to identify and validate novel genes that influence atherosclerosis, some of which may be candidates for new therapeutic approaches.
Collapse
Affiliation(s)
- Ioannis M Stylianou
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, 654 BRBII/III Labs, 421 Curie Boulevard, Philadelphia, Pennsylvania, 19104-6160, USA
| | | | | | | |
Collapse
|
166
|
van der Sluis RJ, van Puijvelde GH, Van Berkel TJ, Hoekstra M. Adrenalectomy stimulates the formation of initial atherosclerotic lesions: Reversal by adrenal transplantation. Atherosclerosis 2012; 221:76-83. [DOI: 10.1016/j.atherosclerosis.2011.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 01/26/2023]
|
167
|
Pirih F, Lu J, Ye F, Bezouglaia O, Atti E, Ascenzi MG, Tetradis S, Demer L, Aghaloo T, Tintut Y. Adverse effects of hyperlipidemia on bone regeneration and strength. J Bone Miner Res 2012; 27:309-18. [PMID: 21987408 PMCID: PMC3274629 DOI: 10.1002/jbmr.541] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hyperlipidemia increases the risk for generation of lipid oxidation products, which accumulate in the subendothelial spaces of vasculature and bone. Atherogenic high-fat diets increase serum levels of oxidized lipids, which are known to attenuate osteogenesis in culture and to promote bone loss in mice. In this study, we investigated whether oxidized lipids affect bone regeneration and mechanical strength. Wild-type (WT) and hyperlipidemic (Ldlr(-/-)) mice were placed on a high-fat (HF) diet for 13 weeks. Bilateral cranial defects were introduced on each side of the sagittal suture, and 5 weeks postsurgery on the respective diets, the repair/regeneration of cranial bones and mechanical properties of femoral bones were assessed. MicroCT and histological analyses demonstrated that bone regeneration was significantly impaired by the HF diet in WT and Ldlr(-/-) mice. In femoral bone, cortical bone volume fraction (bone volume [BV]/tissue volume [TV]) was significantly reduced, whereas cortical porosity was increased by the HF diet in Ldlr(-/-) but not in WT mice. Femoral bone strength and stiffness, measured by three-point bending analysis, were significantly reduced by the HF diet in Ldlr(-/-), but not in WT mice. Serum analysis showed that the HF diet significantly increased levels of parathyroid hormone, tumor necrosis factor (TNF)-α, calcium, and phosphorus, whereas it reduced procollagen type I N-terminal propeptide, a serum marker of bone formation, in Ldlr(-/-), but not in WT mice. The serum level of carboxyl-terminal collagen crosslinks, a marker for bone resorption, was also 1.7-fold greater in Ldlr(-/-) mice. These findings suggest that hyperlipidemia induces secondary hyperparathyroidism and impairs bone regeneration and mechanical strength.
Collapse
Affiliation(s)
- Flavia Pirih
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Hypermethylation of repetitive DNA elements in livers of mice fed an atherogenic diet. Nutrition 2012; 28:127-30. [DOI: 10.1016/j.nut.2011.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/20/2022]
|
169
|
Niemeier A, Schinke T, Heeren J, Amling M. The role of apolipoprotein E in bone metabolism. Bone 2012; 50:518-24. [PMID: 21798384 DOI: 10.1016/j.bone.2011.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/23/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
Apolipoprotein E (apoE) is a major structural apolipoprotein of several lipoprotein classes. Over the last 13 years, numerous studies have focused on the question whether human apoE affects bone phenotypes and, more recently, whether apoE regulates bone metabolism in mice. Here, we first provide a brief background introduction into the structure, established physiological and pathophysiological functions of apoE, and will then discuss the new aspects of the emerging role of apoE in bone.
Collapse
Affiliation(s)
- Andreas Niemeier
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
170
|
Interleukin-1 receptor type-1 in non-hematopoietic cells is the target for the pro-atherogenic effects of interleukin-1 in apoE-deficient mice. Atherosclerosis 2011; 222:329-36. [PMID: 22236482 DOI: 10.1016/j.atherosclerosis.2011.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 12/02/2011] [Accepted: 12/10/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Interleukin (IL)-1 produced by vascular and bone marrow-derived cells exerts proinflammatory effects in these cell types by binding to IL-1 receptor type-1 (IL-1R1). We have previously shown that bone marrow-derived IL-1α and IL-1β are critical for atherogenesis in apoE knockout (KO) mice. The aim of the present study was to investigate whether IL-1R1 on vascular wall resident or bone marrow-derived cells mediates IL-1's effects in atherogenesis. METHODS AND RESULTS We generated apoE-/-/IL-1R1-/- double knockout (DKO) mice and created radiation chimeras. Aortic sinus lesion area was 20-47% lower in DKO compared to apoE KO mice with similar plasma lipids. The production of IL-1α and IL-1β upon stimulation with LPS was not altered in IL-1R1-/- compared to IL-1R1+/+ peritoneal macrophages. DKO mice transplanted with IL-1R1+/+ bone marrow-derived cells had reduced (48%) aortic sinus lesion compared to apoE KO mice while specific deficiency of IL-1R1 in bone marrow-derived cells did not attenuate atherosclerosis. The mRNA levels of genes that promote macrophage recruitment to the vascular wall, namely CD68, VCAM-1, ICAM-1 and MCP-1 were lower in aortas from DKO compared to apoE KO mice. Finally, blockade of IL-1R1 with IL-1R antagonist (IL-1Ra) resulted in complete abrogation of IL-1β-induced expression of adhesion and chemotactic molecules and IL-1α, in isolated human umbilical vein endothelial cells (HUVEC). CONCLUSIONS Vascular wall resident cells are the main targets for the pro-atherogenic effects of bone marrow-derived IL-1 through IL-1R1, partly by induction of adhesion and chemotactic molecules in endothelial cells.
Collapse
|
171
|
Francescut L, Steiner T, Byrne S, Cianflone K, Francis S, Stover C. The role of complement in the development and manifestation of murine atherogenic inflammation: novel avenues. J Innate Immun 2011; 4:260-72. [PMID: 22116497 DOI: 10.1159/000332435] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease which manifests in the arterial vascular tree. It is a major cause of cardiovascular morbidity and contributes significantly to mortality in the developed world. Triggers for this inflammatory process are elevated levels of cholesterol, bacterial infection and obesity. The immune response in atherosclerosis is essentially pro-atherogenic, leading to lipid accumulation and cellular changes within the arterial wall. Small-animal models of atherosclerosis are used to study the relevance of candidate factors (cells, genes, diets) in the development and progression of lesions. From a multidisciplinary viewpoint, there are challenges and limitations to this approach. Activation of complement determines or modifies the outcome of acute and chronic inflammation. This review dissects the role of complement in the early development as well as the progressive manifestation of murine atherosclerosis and the advances in knowledge provided by the use of specific mouse models. It gives a critical overview of existing models, analyses seemingly conflicting results obtained with complement-deficient mouse models, highlights the importance of interrelationships between pro-coagulpant activity, adipose tissue, macrophages and complement, and uncovers exciting avenues of topical research.
Collapse
Affiliation(s)
- Lorenza Francescut
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|
172
|
Lammers B, Zhao Y, Hoekstra M, Hildebrand RB, Ye D, Meurs I, Van Berkel TJC, Van Eck M. Augmented atherogenesis in LDL receptor deficient mice lacking both macrophage ABCA1 and ApoE. PLoS One 2011; 6:e26095. [PMID: 22022523 PMCID: PMC3191178 DOI: 10.1371/journal.pone.0026095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022] Open
Abstract
AIM ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored. METHODS AND RESULTS LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO's, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×10(3) µm(2)), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×10(3) µm(2); apoE KO: 402±78×10(3) µm(2), respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×10(3) µm(2)). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05). CONCLUSIONS Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development.
Collapse
Affiliation(s)
- Bart Lammers
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Shabrova EV, Tarnopolsky O, Singh AP, Plutzky J, Vorsa N, Quadro L. Insights into the molecular mechanisms of the anti-atherogenic actions of flavonoids in normal and obese mice. PLoS One 2011; 6:e24634. [PMID: 22016761 PMCID: PMC3189911 DOI: 10.1371/journal.pone.0024634] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/17/2011] [Indexed: 01/02/2023] Open
Abstract
Obesity is a major and independent risk factor for cardiovascular disease and it is strongly associated with the development of dyslipidemia, insulin resistance and type 2 diabetes. Flavonoids, a diverse group of polyphenol compounds of plant origin widely distributed in human diet, have been reported to have numerous health benefits, although the mechanisms underlying these effects have remained obscure. We analyzed the effects of chronic dietary supplementation with flavonoids extracted from cranberry (FLS) in normal and obese C57/BL6 mice compared to mice maintained on the same diets lacking FLS. Obese mice supplemented with flavonoids showed an amelioration of insulin resistance and plasma lipid profile, and a reduction of visceral fat mass. We provide evidence that the adiponectin-AMPK pathway is the main mediator of the improvement of these metabolic disorders. In contrast, the reduced plasma atherogenic cholesterol observed in normal mice under FLS seems to be due to a downregulation of the hepatic cholesterol synthesis pathway. Overall, we demonstrate for the first time that the molecular mechanisms underlying the beneficial effects of flavonoids are determined by the metabolic state.
Collapse
Affiliation(s)
- Elena V. Shabrova
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
- Food Science Department and Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Olga Tarnopolsky
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Ajay P. Singh
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Jorge Plutzky
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Nicholi Vorsa
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
- PE Marucci Center, Rutgers, The State University of New Jersey, Chatsworth, New Jersey, United States of America
- * E-mail: (LQ); (NV)
| | - Loredana Quadro
- Food Science Department and Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail: (LQ); (NV)
| |
Collapse
|
174
|
Park JG, Yoo JY, Jeong SJ, Choi JH, Lee MR, Lee MN, Hwa Lee J, Kim HC, Jo H, Yu DY, Kang SW, Rhee SG, Lee MH, Oh GT. Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein E-deficient mice. Circ Res 2011; 109:739-49. [PMID: 21835911 DOI: 10.1161/circresaha.111.245530] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Peroxiredoxin 2 (Prdx2), a thiol-specific peroxidase, has been reported to regulate proinflammatory responses, vascular remodeling, and global oxidative stress. OBJECTIVE Although Prdx2 has been proposed to retard atherosclerosis development, no direct evidence and mechanisms have been reported. METHODS AND RESULTS We show that Prdx2 is highly expressed in endothelial and immune cells in atherosclerotic lesions and blocked the increase of endogenous H(2)O(2) by atherogenic stimulation. Deficiency of Prdx2 in apolipoprotein E-deficient (ApoE(-/-)) mice accelerated plaque formation with enhanced activation of p65, c-Jun, JNKs, and p38 mitogen-activated protein kinase; and these proatherogenic effects of Prdx2 deficiency were rescued by administration of the antioxidant ebselen. In bone marrow transplantation experiments, we found that Prdx2 has a major role in inhibiting atherogenic responses in both vascular and immune cells. Prdx2 deficiency resulted in increased expression of vascular adhesion molecule-1, intercellular adhesion molecule-1, and monocyte chemotactic protein-1, which led to increased immune cell adhesion and infiltration into the aortic intima. Compared with deficiency of glutathione peroxidase 1 or catalase, Prdx2 deficiency showed a severe predisposition to develop atherosclerosis. CONCLUSIONS Prdx2 is a specific peroxidase that inhibits atherogenic responses in vascular and inflammatory cells, and specific activation of Prdx2 may be an effective means of antiatherogenic therapy.
Collapse
Affiliation(s)
- Jong-Gil Park
- Division of Life and Pharmaceutical Science, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Salem NA, Salem EA. Renoprotective effect of grape seed extract against oxidative stress induced by gentamicin and hypercholesterolemia in rats. Ren Fail 2011; 33:824-32. [PMID: 21787152 DOI: 10.3109/0886022x.2011.601832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RATIONALE Kidneys are dynamic organs and represent one of the major systems maintaining the body homeostasis; they are affected by many chemicals and drugs. Grape seed extract (GSE) has been targeted to prevent drug-induced renal toxicity. OBJECTIVES This study investigates the possible renoprotective effect of GSE against oxidative stress, renal impairment, and hypercholesterolemia (HC) induced by gentamicin (GM) and cholesterol-enriched diet. Seventy adult male Wistar rats (160 ± 10 g) were divided into seven groups: (1) served as control, (2) GSE, (3) GM, (4) GSE + GM, (5) hypercholesterolemic (HC) group, (6) GM + HC group, and (7) GM + HC + GSE. Kidney functions, inflammatory mediators, cytokines, lipid profile, nitric oxide (NO), cyclic guanosine monophosphate (cGMP), and oxidative and antioxidative stress parameters were assessed in all groups. MAIN FINDINGS GM induced renal dysfunction, which was exacerbated by the presence of HC as confirmed by laboratory determinations. Administration of GSE attenuated the renal toxicity evidenced in significant reduction in elevated kidney function, inflammatory cytokines as well as lipid profile, NO, cGMP, enzymatic, and nonenzymatic antioxidants. CONCLUSION Administration of GSE simultaneously with GM attenuated oxidative stress, diminished renal toxicity, and improved lipid profile induced by GM and HC.
Collapse
Affiliation(s)
- Neveen A Salem
- Medical Division, National Research Centre, Cairo, Egypt.
| | | |
Collapse
|
176
|
Zhao Y, Ye D, Wang J, Calpe-Berdiel L, Azzis SBRN, Van Berkel TJC, Van Eck M. Stage-specific remodeling of atherosclerotic lesions upon cholesterol lowering in LDL receptor knockout mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1522-32. [PMID: 21741939 DOI: 10.1016/j.ajpath.2011.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 04/21/2011] [Accepted: 05/05/2011] [Indexed: 12/25/2022]
Abstract
Reducing the concentration of circulating lipids leads to decreased cardiovascular morbidity and mortality, but the dynamic remodeling that established atherosclerotic lesions undergo upon lipid lowering is poorly understood. Early or advanced lesions in the aortic root were induced by feeding LDL receptor knockout mice a high-fat, high-cholesterol Western-type diet for 5 or 9 weeks, respectively. In the first week after switching to a chow diet, plasma total cholesterol levels dropped 70%, but both early and advanced lesions increased in size. Early lesions grew because of an increase in smooth muscle cells; advanced lesions had an enlargement of absolute macrophage area. From 1 to 3 weeks after the diet switch, plasma total cholesterol levels were completely normalized, but the size of early lesions remained stable; however, advanced lesions became smaller due to a reduction of the absolute macrophage area. From 3 to 6 weeks, both early and advanced lesions progressed further, as a result of expansion of the absolute collagen and necrotic core area. In contrast, early lesions became proinflammatory, as evidenced by the increased infiltration of neutrophils and increased oxidative stress, probably caused by the activation of mast cells in the adventitia. Thus, the severity of atherosclerotic lesions affects their dynamic response to lipid lowering, indicating the importance of establishing stage-specific therapeutic protocols for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
177
|
Zhang X, Mao S, Luo G, Wei J, Berggren-Söderlund M, Nilsson-Ehle P, Xu N. Effects of simvastatin on apolipoprotein M in vivo and in vitro. Lipids Health Dis 2011; 10:112. [PMID: 21729290 PMCID: PMC3141548 DOI: 10.1186/1476-511x-10-112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/05/2011] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate effects of lipid lowering drug, simvastatin, on apolipoprotein M expression in the hyperlipidemic mice and in hepatic cell line, HepG2 cells. METHODS Swiss male mice were randomly divided into the high fat group and control group, and were intragastrically fed with 0.9% saline (control group) or lipid emulsion (high fat group) at the daily dosage of 15 ml/kg body weight, respectively. After 8 weeks feeding, the hyperlipidemic model was successfully induced and these hyperlipidemic mice were then randomly divided into three experimental groups: vehicle control group, high-dose simvastatin-treated group (100 mg/kg body weight), and low-dose simvastatin-treated group (10 mg/kg body weight). Mice were dosed daily for 6 weeks of simvastatin before mice were sacrificed for determining serum lipid profile and apoM protein levels that was determined by using dot blotting analysis. Effects of simvastatin on apoM mRNA expression in the HepG2 cells were determined by real-time RT-PCR. RESULTS Comparing to high fat model mice without simvastatin treatment, 100 mg/kg simvastatin could significantly increase serum total cholesterol (P < 0.05). Serum apoM levels, in all mice, were significantly lower in the mice at the age of 26 weeks than the mice at 12 weeks old (P < 0.05), which indicated that serum apoM levels were significantly correlated to the mice age. It demonstrated also that treatment of simvastatin did not influence serum apoM levels in these mouse model, although serum apoM levels were increased by about 13% in the 10 mg/kg simvastatin group than in the vehicle control group without simvastatin. In HepG2 cell cultures, simvastatin could significantly decrease apoM mRNA levels with dose- and time-dependent manners. At 10 μM simvastatin treatment, apoM mRNA decreased by 52% compared to the controls. CONCLUSION The present study suggested that simvastatin, in vivo, had no effect on apoM levels in the hyperlipidemic mouse model. ApoM serum levels in mice were significantly correlated to the animal's age, whereas in cell cultures simvastatin does inhibit apoM expression in the HepG2 cells. The mechanism behind it is not known yet.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Comprehensive Laboratory, Third Affiliated Hospital of Suzhou University, Changzhou 213003, China
| | - Shubing Mao
- Comprehensive Laboratory, Third Affiliated Hospital of Suzhou University, Changzhou 213003, China
| | - Guanghua Luo
- Comprehensive Laboratory, Third Affiliated Hospital of Suzhou University, Changzhou 213003, China
| | - Jiang Wei
- Comprehensive Laboratory, Third Affiliated Hospital of Suzhou University, Changzhou 213003, China
| | - Maria Berggren-Söderlund
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund, Sweden
| | - Peter Nilsson-Ehle
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund, Sweden
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund, Sweden
| |
Collapse
|
178
|
Abstract
Cardiovascular disease remains a major cause of morbidity and mortality in the westernized world. Atherosclerosis is the underlying cause of most cardiovascular diseases. Atherosclerosis is a slowly evolving chronic inflammatory disorder involving the intima of large and medium sized arteries that is initiated in response to high plasma lipid levels, especially LDL. Cells of both the innate and adaptive immunity are involved in this chronic inflammation. Although high plasma LDL levels are a major contributor to most stages of the evolution of atherosclerosis, HDL and its major protein apoA-I possess properties that attenuate and may even reverse atherosclerosis. Two major functions are the ability to induce the efflux of cholesterol from cells, particularly lipid-loaded macrophages, in the artery wall for transfer to the liver, a process referred to as reverse cholesterol transport, and the ability to attenuate the pro-inflammatory properties of LDL. The removal of cellular cholesterol from lipid-loaded macrophages may also be anti-inflammatory. One of the most promising therapies to enhance the anti-atherogenic, anti-inflammatory properties of HDL is apoA-I mimetic peptides. Several of these peptides have been shown to promote cellular cholesterol efflux, attenuate the production of pro-inflammatory cytokines by macrophages, and to attenuate the pro-inflammatory properties of LDL. This latter effect may be related to their high affinity for oxidized lipids present in LDL. This review discusses the functional properties of the peptides and their effect on experimental atherosclerosis and the results of initial clinical studies in humans.
Collapse
Affiliation(s)
- Godfrey S Getz
- The University of Chicago, Department of Pathology, Chicago, IL, USA
| | | |
Collapse
|
179
|
Farris SD, Hu JH, Krishnan R, Emery I, Chu T, Du L, Kremen M, Dichek HL, Gold E, Ramsey SA, Dichek DA. Mechanisms of urokinase plasminogen activator (uPA)-mediated atherosclerosis: role of the uPA receptor and S100A8/A9 proteins. J Biol Chem 2011; 286:22665-77. [PMID: 21536666 DOI: 10.1074/jbc.m110.202135] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Data from clinical studies, cell culture, and animal models implicate the urokinase plasminogen activator (uPA)/uPA receptor (uPAR)/plasminogen system in the development of atherosclerosis and aneurysms. However, the mechanisms through which uPA/uPAR/plasminogen stimulate these diseases are not yet defined. We used genetically modified, atherosclerosis-prone mice, including mice with macrophage-specific uPA overexpression and mice genetically deficient in uPAR to elucidate mechanisms of uPA/uPAR/plasminogen-accelerated atherosclerosis and aneurysm formation. We found that macrophage-specific uPA overexpression accelerates atherosclerosis and causes aortic root dilation in fat-fed Ldlr(-/-) mice (as we previously reported in Apoe(-/-) mice). Macrophage-expressed uPA accelerates atherosclerosis by stimulation of lesion progression rather than initiation and causes disproportionate lipid accumulation in early lesions. uPA-accelerated atherosclerosis and aortic dilation are largely, if not completely, independent of uPAR. In the absence of uPA overexpression, however, uPAR contributes modestly to both atherosclerosis and aortic dilation. Microarray studies identified S100A8 and S100A9 mRNA as the most highly up-regulated transcripts in uPA-overexpressing macrophages; up-regulation of S100A9 protein in uPA-overexpressing macrophages was confirmed by Western blotting. S100A8/A9, which are atherogenic in mice and are expressed in human atherosclerotic plaques, are also up-regulated in the aortae of mice with uPA-overexpressing macrophages, and macrophage S100A9 mRNA is up-regulated by exposure of wild-type macrophages to medium from uPA-overexpressing macrophages. Macrophage microarray data suggest significant effects of uPA overexpression on cell migration and cell-matrix interactions. Our results confirm in a second animal model that macrophage-expressed uPA stimulates atherosclerosis and aortic dilation. They also reveal uPAR independence of these actions and implicate specific pathways in uPA/Plg-accelerated atherosclerosis and aneurysmal disease.
Collapse
Affiliation(s)
- Stephen D Farris
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Zhang X, Hurng J, Rateri DL, Daugherty A, Schmid-Schönbein GW, Shin HY. Membrane cholesterol modulates the fluid shear stress response of polymorphonuclear leukocytes via its effects on membrane fluidity. Am J Physiol Cell Physiol 2011; 301:C451-60. [PMID: 21525434 DOI: 10.1152/ajpcell.00458.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Continuous exposure of polymorphonuclear leukocytes (PMNLs) to circulatory hemodynamics points to fluid flow as a biophysical regulator of their activity. Specifically, fluid flow-derived shear stresses deactivate leukocytes via actions on the conformational activities of proteins on the cell surface. Because membrane properties affect activities of membrane-bound proteins, we hypothesized that changes in the physical properties of cell membranes influence PMNL sensitivity to fluid shear stress. For this purpose, we modified PMNL membranes and showed that the cellular mechanosensitivity to shear was impaired whether we increased, reduced, or disrupted the organization of cholesterol within the lipid bilayer. Notably, PMNLs with enriched membrane cholesterol exhibited attenuated pseudopod retraction responses to shear that were recovered by select concentrations of benzyl alcohol (a membrane fluidizer). In fact, PMNL responses to shear positively correlated (R(2) = 0.96; P < 0.0001) with cholesterol-related membrane fluidity. Moreover, in low-density lipoprotein receptor-deficient (LDLr(-/-)) mice fed a high-fat diet (a hypercholesterolemia model), PMNL shear-responses correlated (R(2) = 0.5; P < 0.01) with blood concentrations of unesterified (i.e., free) cholesterol. In this regard, the shear-responses of PMNLs gradually diminished and eventually reversed as free cholesterol levels in blood increased during 8 wk of the high-fat diet. Collectively, our results provided evidence that cholesterol is an important component of the PMNL mechanotransducing capacity and elevated membrane cholesterol impairs PMNL shear-responses at least partially through its impact on membrane fluidity. This cholesterol-linked perturbation may contribute to dysregulated PMNL activity (e.g., chronic inflammation) related to hypercholesterolemia and causal for cardiovascular pathologies (e.g., atherosclerosis).
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| | | | | | | | | | | |
Collapse
|
181
|
Animal models of cardiovascular diseases. J Biomed Biotechnol 2011; 2011:497841. [PMID: 21403831 PMCID: PMC3042667 DOI: 10.1155/2011/497841] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/04/2011] [Accepted: 01/17/2011] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.
Collapse
|
182
|
Ying Z, Kherada N, Kampfrath T, Mihai G, Simonetti O, Desikan R, Selvendiran K, Sun Q, Ziouzenkova O, Parthasarathy S, Rajagopalan S. A modified sesamol derivative inhibits progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 31:536-42. [PMID: 21183734 DOI: 10.1161/atvbaha.110.219287] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Sesamol, a phenolic component of lignans, has been previously shown to reduce lipopolysaccharide-induced oxidative stress and upregulate phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase pathways. In the present study, we synthesized a modified form of sesamol (INV-403) to enhance its properties and assessed its effects on atherosclerosis. METHODS AND RESULTS Watanabe heritable hyperlipidemic rabbits were fed with high-cholesterol chow for 6 weeks and then randomized to receive high-cholesterol diet either alone or combined with INV-403 (20 mg/kg per day) for 12 weeks. Serial MRI analysis demonstrated that INV-403 rapidly reduced atherosclerotic plaques (within 6 weeks), with confirmatory morphological analysis at 12 weeks posttreatment revealing reduced atherosclerosis paralleled by reduction in lipid and inflammatory cell content. Consistent with its effect on atherosclerosis, INV-403 improved vascular function (decreased constriction to angiotensin II and increased relaxation to acetylcholine), reduced systemic and plaque oxidative stress, and inhibited nuclear factor-κB activation via effects on nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation with coordinate reduction in key endothelial adhesion molecules. In vitro experiments in cultured endothelial cells revealed effects of INV-403 in reducing IκBα phosphorylation via inhibition of IκB kinase 2 (IKK2). CONCLUSIONS INV-403 is a novel modified lignan derivative that potently inhibits atherosclerosis progression via its effects on IKK2 and nuclear factor-κB signaling.
Collapse
Affiliation(s)
- Zhekang Ying
- Davis Heart Lung Research Institute, Ohio State University, Columbus, OH 43210-1252, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Erdely A, Kepka-Lenhart D, Salmen-Muniz R, Chapman R, Hulderman T, Kashon M, Simeonova PP, Morris SM. Arginase activities and global arginine bioavailability in wild-type and ApoE-deficient mice: responses to high fat and high cholesterol diets. PLoS One 2010; 5:e15253. [PMID: 21151916 PMCID: PMC2997799 DOI: 10.1371/journal.pone.0015253] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/02/2010] [Indexed: 12/03/2022] Open
Abstract
Increased catabolism of arginine by arginase is increasingly viewed as an important pathophysiological factor in cardiovascular disease, including atherosclerosis induced by high cholesterol diets. Whereas previous studies have focused primarily on effects of high cholesterol diets on arginase expression and arginine metabolism in specific blood vessels, there is no information regarding the impact of lipid diets on arginase activity or arginine bioavailability at a systemic level. We, therefore, evaluated the effects of high fat (HF) and high fat-high cholesterol (HC) diets on arginase activity in plasma and tissues and on global arginine bioavailability (defined as the ratio of plasma arginine to ornithine + citrulline) in apoE−/− and wild-type C57BL/6J mice. HC and HF diets led to reduced global arginine bioavailability in both strains. The HC diet resulted in significantly elevated plasma arginase in both strains, but the HF diet increased plasma arginase only in apoE−/− mice. Elevated plasma arginase activity correlated closely with increased alanine aminotransferase levels, indicating that liver damage was primarily responsible for elevated plasma arginase. The HC diet, which promotes atherogenesis, also resulted in increased arginase activity and expression of the type II isozyme of arginase in multiple tissues of apoE−/− mice only. These results raise the possibility that systemic changes in arginase activity and global arginine bioavailability may be contributing factors in the initiation and/or progression of cardiovascular disease.
Collapse
Affiliation(s)
- Aaron Erdely
- Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Gao Q, Esworthy RS, Kim BW, Synold TW, Smith DD, Chu FF. Atherogenic diets exacerbate colitis in mice deficient in glutathione peroxidase. Inflamm Bowel Dis 2010; 16:2043-54. [PMID: 20848490 PMCID: PMC2991606 DOI: 10.1002/ibd.21317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The proinflammatory effect of high-fat diet has been observed beyond the cardiovascular system, but there is little evidence to support its role in triggering inflammatory bowel disease. GPx1/2-double-knockout (DKO) mice deficient in 2 intracellular glutathione peroxidases, GPx1 and GPx2, on a C57BL/6 (B6) background, have mild ileocolitis on a conventional chow. METHODS We fed B6 DKO mice 2 atherogenic diets to test the dietary effect on atherosclerosis and ileocolitis. Both atherogenic diets have high cholesterol-the Chol+/CA diet has cholic acid (CA), and the Chol+ diet has no CA. RESULTS The Chol+/CA diet induced severe colitis, but not ileitis, in the DKO mice compared with the Chol+ and the Chol- control diet. On the Chol+/CA diet, the wild-type (WT) mice had levels of aortic lesions and hypercholesterolemia similar to those of DKO mice but had no intestinal pathology. The diet-associated inflammatory responses in the DKO mice included increased colonic proinflammatory serum amyloid A3 expression, plasma lipopolysaccharide, and TNF-α levels. The Chol+/CA diet lowered the expression of the unfolded protein response genes ATF6, CHOP, unspliced Xbp(U) , and Grp78/Bip, in WT and DKO mice compared with mice on the Chol- diet. CONCLUSIONS We concluded that a cholesterol diet weakens the colon unfolded protein response, which can aggravate spontaneous colitis, leading to gut barrier breakdown. GPx has no impact on atherosclerosis without ultrahypercholesterolemia.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000
| | - R. Steven Esworthy
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000
| | - Byung-Wook Kim
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000
| | - Timothy W. Synold
- Department of Molecular Pharmacology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000
| | - David D. Smith
- Department of Biostatistics, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000
| | - Fong-Fong Chu
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000
| |
Collapse
|
185
|
Brackmann C, Gabrielsson B, Svedberg F, Holmaang A, Sandberg AS, Enejder A. Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:066008. [PMID: 21198182 DOI: 10.1117/1.3505024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hallmarks of high-fat Western diet intake, such as excessive lipid accumulation in skeletal muscle and liver as well as liver fibrosis, are investigated in tissues from mice using nonlinear microscopy, second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS), supported by conventional analysis methods. Two aspects are presented; intake of standard chow versus Western diet, and a comparison between two high-fat Western diets of different polyunsaturated lipid content. CARS microscopy images of intramyocellular lipid droplets in muscle tissue show an increased amount for Western diet compared to standard diet samples. Even stronger diet impact is found for liver samples, where combined CARS and SHG microscopy visualize clear differences in lipid content and collagen fiber development, the latter indicating nonalcoholic fatty liver disease (NAFLD) and steatohepatitis induced at a relatively early stage for Western diet. Characteristic for NAFLD, the fibrous tissue-containing lipids accumulate in larger structures. This is also observed in CARS images of liver samples from two Western-type diets of different polyunsaturated lipid contents. In summary, nonlinear microscopy has strong potential (further promoted by technical advances toward clinical use) for detection and characterization of steatohepatitis already in its early stages.
Collapse
Affiliation(s)
- Christian Brackmann
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Molecular Microscopy, 412 96 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
186
|
Chen S, Shimada K, Zhang W, Huang G, Crother TR, Arditi M. IL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:5619-27. [PMID: 20935201 DOI: 10.4049/jimmunol.1001879] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of IL-17 in atherogenesis remains controversial. We previously reported that the TLR/MyD88 signaling pathway plays an important role in high-fat diet as well as Chlamydophila pneumoniae infection-mediated acceleration of atherosclerosis in apolipoprotein E-deficient mice. In this study, we investigated the role of the IL-17A in high-fat diet (HFD)- and C. pneumoniae-induced acceleration of atherosclerosis. The aortic sinus plaque and aortic lesion size and lipid composition as well as macrophage accumulation in the lesions were significantly diminished in IL-17A(-/-) mice fed an HFD compared with wild-type (WT) C57BL/6 control mice. As expected, C. pneumoniae infection led to a significant increase in size and lipid content of the atherosclerotic lesions in WT mice. However, IL-17A(-/-) mice developed significantly less acceleration of lesion size following C. pneumoniae infection compared with WT control despite similar levels of blood cholesterol levels. Furthermore, C. pneumoniae infection in WT but not in IL-17A(-/-) mice was associated with significant increases in serum concentrations of IL-12p40, CCL2, IFN-γ, and numbers of macrophages in their plaques. Additionally, in vitro studies suggest that IL-17A activates vascular endothelial cells, which secrete cytokines that in turn enhance foam cell formation in macrophages. Taken together, our data suggest that IL-17A is proatherogenic and that it plays an important role in both diet-induced atherosclerotic lesion development, and C. pneumoniae infection-mediated acceleration of atherosclerotic lesions in the presence of HFD.
Collapse
Affiliation(s)
- Shuang Chen
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
187
|
Bartelt A, Beil FT, Schinke T, Roeser K, Ruether W, Heeren J, Niemeier A. Apolipoprotein E-dependent inverse regulation of vertebral bone and adipose tissue mass in C57Bl/6 mice: modulation by diet-induced obesity. Bone 2010; 47:736-45. [PMID: 20633710 DOI: 10.1016/j.bone.2010.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 07/03/2010] [Accepted: 07/06/2010] [Indexed: 12/16/2022]
Abstract
The long prevailing view that obesity is generally associated with beneficial effects on the skeleton has recently been challenged. Apolipoprotein E (apoE) is known to influence both adipose tissue and bone. The goal of the current study was to examine the impact of apoE on the development of fat mass and bone mass in mice under conditions of diet-induced obesity (DIO). Four week-old male C57BL/6 (WT) and apoE-deficient (apoE(-/-)) mice received a control or a diabetogenic high-fat diet (HFD) for 16 weeks. The control-fed apoE(-/-) animals displayed less total fat mass and higher lumbar trabecular bone volume (BV/TV) than WT controls. When stressed with HFD to induce obesity, apoE(-/-) mice had a lower body weight, lower serum glucose, insulin and leptin levels and accumulated less white adipose tissue mass at all sites including bone marrow. While WT animals showed no significant change in BV/TV and bone formation rate (BFR), apoE deficiency led to a decrease of BV/TV and BFR when stressed with HFD. Bone resorption parameters were not affected by HFD in either genotype. Taken together, under normal dietary conditions, apoE-deficient mice acquire less fat mass and more bone mass than WT littermates. When stressed with HFD to develop DIO, the difference of total body fat mass becomes larger and the difference of bone mass smaller between the genotypes. We conclude that apoE is involved in an inverse regulation of bone mass and fat mass in growing mice and that this effect is modulated by diet-induced obesity.
Collapse
Affiliation(s)
- Alexander Bartelt
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
188
|
Swindell WR, Johnston A, Gudjonsson JE. Transcriptional profiles of leukocyte populations provide a tool for interpreting gene expression patterns associated with high fat diet in mice. PLoS One 2010; 5:e11861. [PMID: 20686622 PMCID: PMC2912331 DOI: 10.1371/journal.pone.0011861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/05/2010] [Indexed: 12/24/2022] Open
Abstract
Background Microarray experiments in mice have shown that high fat diet can lead to elevated expression of genes that are disproportionately associated with immune functions. These effects of high fat (atherogenic) diet may be due to infiltration of tissues by leukocytes in coordination with inflammatory processes. Methodology/Principal Findings The Novartis strain-diet-sex microarray database (GSE10493) was used to evaluate the hepatic effects of high fat diet (4 weeks) in 12 mouse strains and both genders. We develop and apply an algorithm that identifies “signature transcripts” for many different leukocyte populations (e.g., T cells, B cells, macrophages) and uses this information to derive an in silico “inflammation profile”. Inflammation profiles highlighted monocytes, macrophages and dendritic cells as key drivers of gene expression patterns associated with high fat diet in liver. In some strains (e.g., NZB/BINJ, B6), we estimate that 50–60% of transcripts elevated by high fat diet might be due to hepatic infiltration by these cell types. Interestingly, DBA mice appeared to exhibit resistance to localized hepatic inflammation associated with atherogenic diet. A common characteristic of infiltrating cell populations was elevated expression of genes encoding components of the toll-like receptor signaling pathway (e.g., Irf5 and Myd88). Conclusions/Significance High fat diet promotes infiltration of hepatic tissue by leukocytes, leading to elevated expression of immune-associated transcripts. The intensity of this effect is genetically controlled and sensitive to both strain and gender. The algorithm developed in this paper provides a framework for computational analysis of tissue remodeling processes and can be usefully applied to any in vivo setting in which inflammatory processes play a prominent role.
Collapse
Affiliation(s)
- William R Swindell
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
189
|
Hakuno D, Kimura N, Yoshioka M, Mukai M, Kimura T, Okada Y, Yozu R, Shukunami C, Hiraki Y, Kudo A, Ogawa S, Fukuda K. Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. J Clin Invest 2010; 120:2292-306. [PMID: 20551517 DOI: 10.1172/jci40973] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 04/21/2010] [Indexed: 12/19/2022] Open
Abstract
Valvular heart disease (VHD) is the term given to any disease process involving one or more of the heart valves. The condition can be congenital or acquired, for example as a result of atherosclerosis or rheumatic fever. Despite its clinical importance, the molecular mechanisms underlying VHD remain unknown. We investigated the pathophysiologic role and molecular mechanism of periostin, a protein that plays critical roles in cardiac valve development, in degenerative VHD. Unexpectedly, we found that periostin levels were drastically increased in infiltrated inflammatory cells and myofibroblasts in areas of angiogenesis in human atherosclerotic and rheumatic VHD, whereas periostin was localized to the subendothelial layer in normal valves. The expression patterns of periostin and chondromodulin I, an angioinhibitory factor that maintains cardiac valvular function, were mutually exclusive. In WT mice, a high-fat diet markedly increased aortic valve thickening, annular fibrosis, and MMP-2 and MMP-13 expression levels, concomitant with increased periostin expression; these changes were attenuated in periostin-knockout mice. In vitro and ex vivo studies revealed that periostin promoted tube formation and mobilization of ECs. Furthermore, periostin prominently increased MMP secretion from cultured valvular interstitial cells, ECs, and macrophages in a cell type-specific manner. These findings indicate that, in contrast to chondromodulin I, periostin plays an essential role in the progression of cardiac valve complex degeneration by inducing angiogenesis and MMP production.
Collapse
Affiliation(s)
- Daihiko Hakuno
- Department of Regenerative Medicine and Advanced Cardiac Therapeutics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Higashi Y, Sukhanov S, Anwar A, Shai SY, Delafontaine P. IGF-1, oxidative stress and atheroprotection. Trends Endocrinol Metab 2010; 21:245-54. [PMID: 20071192 PMCID: PMC2848911 DOI: 10.1016/j.tem.2009.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 01/30/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a crucial role not only in initial lesion formation but also in lesion progression and destabilization. Although most growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that insulin-like growth factor (IGF)-1 exerts both pleiotropic anti-oxidant effects and anti-inflammatory effects, which together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in models of vascular injury and atherosclerosis, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1.
Collapse
Affiliation(s)
- Yusuke Higashi
- Tulane University School of Medicine, 1430 Tulane Avenue, SL 48, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
191
|
Korou LM, Agrogiannis G, Pantopoulou A, Vlachos IS, Iliopoulos D, Karatzas T, Perrea DN. Comparative antilipidemic effect of N-acetylcysteine and sesame oil administration in diet-induced hypercholesterolemic mice. Lipids Health Dis 2010; 9:23. [PMID: 20205925 PMCID: PMC2848040 DOI: 10.1186/1476-511x-9-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/06/2010] [Indexed: 11/10/2022] Open
Abstract
Background There is an increasing number of novel antilipidemic therapies under consideration. The putative hypolipidemic effect of N-acetylcysteine (NAC) and sesame oil was studied in a mouse model of dietary-induced hypercholesterolemia. Methods Male C57bl/6 mice were assigned to the following groups: (NC) control group, (HC) group receiving test diet supplemented with 2% cholesterol and 0.5% cholic acid for 8 weeks, (HCN) group receiving the test diet with NAC supplementation (230 mg/kg p.o.) and (HCS) group fed the test diet enriched with 10% sesame oil. Total serum cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides were assayed at the beginning and at the end of the experiment. Total peroxides and nitric oxide (NO) levels were measured in the serum at the end of the experiment. Hepatic and aortic lesions were evaluated by haematoxylin-eosin staining. Results Higher serum levels of total and LDL-cholesterol were recorded in all groups fed the high cholesterol diet. The HCN group presented reduced lipid levels compared to HC and HCS groups. No differences were observed between HCS and HC groups. Peroxide content in serum was markedly increased in mice consuming high cholesterol diet. NAC and sesame oil administration led to a significant decrease of serum lipid peroxidation in the levels of control group, whereas only NAC restored NO bioavailability. In terms of liver histology, the lesions observed in HCN group were less severe than those seen in the other high cholesterol groups. Conclusion Co-administration of NAC, but not sesame oil, restored the disturbed lipid profile and improved hepatic steatosis in the studied diet-induced hypercholesterolemic mice. Both agents appear to ameliorate serum antioxidant defense.
Collapse
Affiliation(s)
- Laskarina-Maria Korou
- Department of Experimental Surgery and Surgical Research NS Christeas, Athens School of Medicine, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
192
|
Mulvihill EE, Assini JM, Sutherland BG, DiMattia AS, Khami M, Koppes JB, Sawyez CG, Whitman SC, Huff MW. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2010; 30:742-8. [PMID: 20110573 DOI: 10.1161/atvbaha.109.201095] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Naringenin is a citrus flavonoid that potently inhibits the assembly and secretion of apolipoprotein B100-containing lipoproteins in cultured hepatocytes and improves the dyslipidemia and insulin resistance in a mouse model of the metabolic syndrome. In the present study, we used low-density lipoprotein receptor-null mice fed a high-fat diet (Western, TD96125) to test the hypothesis that naringenin prevents atherosclerosis. METHODS AND RESULTS Three groups (chow, Western, and Western plus naringenin) were fed ad libitum for 6 months. The Western diet increased fasting plasma triglyceride (TG) (5-fold) and cholesterol (8-fold) levels compared with chow, whereas the addition of naringenin significantly decreased both lipids by 50%. The Western-fed mice developed extensive atherosclerosis in the aortic sinus because plaque area was increased by 10-fold compared with chow-fed animals. Quantitation of fat-soluble dye (Sudan IV)-stained aortas, prepared en face, revealed that Western-fed mice also had a 10-fold increase in plaque deposits throughout the arch and in the abdominal sections of the aorta, compared with chow. Atherosclerosis in both areas was significantly decreased by more than 70% in naringenin-treated mice. Consistent with quantitation of aortic lesions, the Western-fed mice had a significant 6-fold increase in cholesterol and a 4-fold increase in TG deposition in the aorta compared with chow-fed mice. Both were reduced more than 50% by naringenin. The Western diet induced extensive hepatic steatosis, with a 10-fold increase in both TG and cholesteryl ester mass compared with chow. The addition of naringenin decreased both liver TG and cholesteryl ester mass by 80%. The hyperinsulinemia and obesity that developed in Western-fed mice was normalized by naringenin to levels observed in chow-fed mice. CONCLUSIONS These in vivo studies demonstrate that the citrus flavonoid naringenin ameliorates the dyslipidemia in Western-fed low-density lipoprotein receptor-null mice, leading to decreased atherosclerosis; and suggests a potential therapeutic strategy for the hyperlipidemia and increased risk of atherosclerosis associated with insulin resistance.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Vascular Biology Group, Robarts Research Institute, The University of Western Ontario, 100 Perth Dr, London, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
|
194
|
Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice. Atherosclerosis 2009; 207:399-404. [DOI: 10.1016/j.atherosclerosis.2009.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 06/06/2009] [Accepted: 06/11/2009] [Indexed: 11/20/2022]
|
195
|
Roncal C, Buysschaert I, Gerdes N, Georgiadou M, Ovchinnikova O, Fischer C, Stassen JM, Moons L, Collen D, De Bock K, Hansson GK, Carmeliet P. Short-term delivery of anti-PlGF antibody delays progression of atherosclerotic plaques to vulnerable lesions. Cardiovasc Res 2009; 86:29-36. [PMID: 19952000 DOI: 10.1093/cvr/cvp380] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS Placental growth factor (PlGF), a homologue of vascular endothelial growth factor, is a pleiotropic cytokine with a pro-inflammatory activity. Previous gene-inactivation studies revealed that the loss of PlGF delays atherosclerotic lesion development and inhibits macrophage infiltration, but the activity of an anti-PlGF antibody (alphaPlGF mAb) has not been evaluated yet. METHODS AND RESULTS We characterized the potential of short-term delivery of alphaPlGF mAb in inhibiting lesion development in ApoE-deficient mice (apoE(-/-)) and in CD4:TGFbetaRII(DN) x apoE(-/-) mice, a more severe atherosclerosis model. Short-term treatment of alphaPlGF mAb reduces early atherosclerotic plaque size and inflammatory cell infiltration in the lesion. CONCLUSION These pharmacological alphaPlGF mAb results confirm previous genetic evidence that inhibition of PlGF slows down early atherosclerotic lesion development. Furthermore, the phenocopy of genetic and pharmacological loss-of-function strategies underscores that alphaPlGF acts by selectively neutralizing PlGF.
Collapse
Affiliation(s)
- Carmen Roncal
- Vesalius Research Center, VIB, KULeuven, Campus Gasthuisberg, Herestraat 49, Box 912, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Rai S, Hare DL, Zulli A. A physiologically relevant atherogenic diet causes severe endothelial dysfunction within 4 weeks in rabbit. Int J Exp Pathol 2009; 90:598-604. [PMID: 19758419 DOI: 10.1111/j.1365-2613.2009.00668.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A physiological atherogenic human diet consists of 0.1% cholesterol, fat, as well as high levels of methionine, which is the precursor to homocysteine. The pathological effects of a diet enriched with physiologically high levels of cholesterol, methionine and fat over a short period on the aorta are unknown. In this regard, we sought to determine the effects of a 0.1% cholesterol diet in combination with a 1% methionine over a 4-week period on endothelial function and artery pathology and the expression of endothelial nitric oxide synthase as well as nitrosative stress by nitrotyrosine (NT), oxidative stress by heat shock protein 70 (HSP70) and endoplasmic reticulum stress by glucose regulated protein 78 (GRP78). Rabbits were fed for 4 weeks a diet supplemented with 1% methionine + 0.1% cholesterol + 5% peanut oil (MC). The endothelial function of the abdominal aorta was examined using organ bath techniques, atherosclerosis determined in each artery by microscopy and eNOS, NT, GRP78 and HSP70 by standard immunohistochemistry. Endothelium dependent relaxation in response to acetylcholine significantly decreased by 63% at 1 muM acetylcholine (P < 0.001) compared with control arteries. There was no evidence of atherosclerosis formation in any artery studied, however, eNOS, NT and GRP78 was clearly present in all arteries studied but HSP70 was not easily detectable. Severe endothelial dysfunction is present in the abdominal aorta of rabbits within 4 weeks of physiological dietary manipulation, possibly due to NT formation and endoplasmic reticulum stress. This model could be used to study the early onset of endothelial dysfunction prior to the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Sudarshan Rai
- Departments of Cardiology and Medicine, University of Melbourne, Austin Health, Australia
| | | | | |
Collapse
|
197
|
Zulli A, Hare DL. High dietary methionine plus cholesterol stimulates early atherosclerosis and late fibrous cap development which is associated with a decrease in GRP78 positive plaque cells. Int J Exp Pathol 2009; 90:311-20. [PMID: 19563613 DOI: 10.1111/j.1365-2613.2009.00649.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of homocysteine, or its precursor methionine, in the formation of fibrous caps and its association with endoplasmic reticulum (ER) stress is unclear. Homocysteine can stimulate collagen accumulation and upregulate the ER stress chaperone glucose regulated protein 78 (GRP78). The aim of this study was to determine if high dietary methionine would increase fibrous caps, and that removal of an atherogenic diet would decrease the amount of ER stressed cells. New Zealand white rabbits were fed for 2, 4, or 12 weeks an atherogenic diet [1% methionine + 0.5% cholesterol (2MC, 4MC or 12MC)]; for 4 or 12 weeks a 0.5% cholesterol diet (4Ch, 12Ch); and to study plaque regression, an MC diet for 2 or 4 weeks accompanied by 10 weeks of a normal diet (2MCr, 4MCr). Endothelial function, atherosclerosis and GRP78 positive cells were studied. Endothelial function was abolished in 4MC and atherosclerosis increased 17-fold (P < 0.05) compared with 4Ch. Fibrous caps composed 48% of total plaque area in 12MC vs. 10% in 12Ch (P < 0.01), and 12MC expressed less GRP78 plaque cells vs. 12Ch (P < 0.01). Four MCr had less plaque GRP78 cells than 12MC (P < 0.05) and less endothelial GRP78 cells (P < 0.01). In addition, GRP78 positive cells were the highest in 4MC, but decreased in all other groups (P < 0.01). GRP78 positive cells within the fibrous cap inversely correlated with cap size (r(2) = 0.9). These studies suggest that high dietary methionine could be beneficial for plaque stabilisation, and a normal diet also stabilises plaque and decreases the number of stressed plaque cells.
Collapse
Affiliation(s)
- Anthony Zulli
- Departments of Cardiology and Medicine, University of Melbourne, Austin Health, Australia.
| | | |
Collapse
|
198
|
Abarbanell AM, Herrmann JL, Weil BR, Wang Y, Tan J, Moberly SP, Fiege JW, Meldrum DR. Animal models of myocardial and vascular injury. J Surg Res 2009; 162:239-49. [PMID: 20053409 DOI: 10.1016/j.jss.2009.06.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 06/06/2009] [Accepted: 06/16/2009] [Indexed: 01/09/2023]
Abstract
Over the past century, numerous animal models have been developed in an attempt to understand myocardial and vascular injury. However, the successful translation of results observed in animals to human therapy remains low. To understand this problem, we present several animal models of cardiac and vascular injury that are of particular relevance to the cardiac or vascular surgeon. We also explore the potential clinical implications and limitations of each model with respect to the human disease state. Our results underscore the concept that animal research requires an in-depth understanding of the model, animal physiology, and the potential confounding factors. Future outcome analyses with standardized animal models may improve translation of animal research from the bench to the bedside.
Collapse
Affiliation(s)
- Aaron M Abarbanell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Catanozi S, Rocha J, Passarelli M, Chiquito F, Quintão E, Nakandakare E. Pitfalls in the assessment of murine atherosclerosis. Braz J Med Biol Res 2009; 42:471-5. [DOI: 10.1590/s0100-879x2009000600001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 03/11/2009] [Indexed: 11/22/2022] Open
|
200
|
Chamberlain J, Francis S, Brookes Z, Shaw G, Graham D, Alp NJ, Dower S, Crossman DC. Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding. PLoS One 2009; 4:e5073. [PMID: 19347044 PMCID: PMC2661361 DOI: 10.1371/journal.pone.0005073] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/15/2009] [Indexed: 02/07/2023] Open
Abstract
Background Atherosclerosis is an inflammatory process that develops in individuals with known risk factors that include hypertension and hyperlipidaemia, influenced by diet. However, the interplay between diet, inflammatory mechanisms and vascular risk factors requires further research. We hypothesised that interleukin-1 (IL-1) signaling in the vessel wall would raise arterial blood pressure and promote atheroma. Methodology/Principal Findings Apoe−/− and Apoe−/−/IL-1R1−/− mice were fed high fat diets for 8 weeks, and their blood pressure and atherosclerosis development measured. Apoe−/−/IL-R1−/− mice had a reduced blood pressure and significantly less atheroma than Apoe−/− mice. Selective loss of IL-1 signaling in the vessel wall by bone marrow transplantation also reduced plaque burden (p<0.05). This was associated with an IL-1 mediated loss of endothelium-dependent relaxation and an increase in vessel wall Nox 4. Inhibition of IL-1 restored endothelium-dependent vasodilatation and reduced levels of arterial oxidative stress. Conclusions/Significance The IL-1 cytokine system links atherogenic environmental stimuli with arterial inflammation, oxidative stress, increased blood pressure and atherosclerosis. This is the first demonstration that inhibition of a single cytokine can block the rise in blood pressure in response to an environmental stimulus. IL-1 inhibition may have profound beneficial effects on atherogenesis in man.
Collapse
Affiliation(s)
- Janet Chamberlain
- Cardiovascular Research Unit, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|