151
|
Borek-Dorosz A, Pieczara A, Czamara K, Stojak M, Matuszyk E, Majzner K, Brzozowski K, Bresci A, Polli D, Baranska M. What is the ability of inflamed endothelium to uptake exogenous saturated fatty acids? A proof-of-concept study using spontaneous Raman, SRS and CARS microscopy. Cell Mol Life Sci 2022; 79:593. [PMID: 36380212 PMCID: PMC9666316 DOI: 10.1007/s00018-022-04616-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Endothelial cells (EC) in vivo buffer and regulate the transfer of plasma fatty acid (FA) to the underlying tissues. We hypothesize that inflammation could alter the functionality of the EC, i.e., their capacity and uptake of different FA. The aim of this work is to verify the functionality of inflamed cells by analyzing their ability to uptake and accumulate exogenous saturated FA. Control and inflammatory human microvascular endothelial cells stimulated in vitro with two deuterium-labeled saturated FA (D-FA), i.e., palmitic (D31-PA) and myristic (D27-MA) acids. Cells were measured both by spontaneous and stimulated Raman imaging to extract detailed information about uptaken FA, whereas coherent anti-Stokes Raman scattering and fluorescence imaging showed the global content of FA in cells. Additionally, we employed atomic force microscopy to obtain a morphological image of the cells. The results indicate that the uptake of D-FA in inflamed cells is dependent on their concentration and type. Cells accumulated D-FA when treated with a low concentration, and the effect was more pronounced for D27-MA, in normal cells, but even more so, in inflamed cells. In the case of D31-PA, a slightly increased uptake was observed for inflamed cells when administered at higher concentration. The results provide a better understanding of the EC inflammation and indicate the impact of the pathological state of the EC on their capacity to buffer fat. All the microscopic methods used showed complementarity in the analysis of FA uptake by EC, but each method recognized this process from a different perspective.
Collapse
Affiliation(s)
| | - Anna Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland ,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Brzozowski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Arianna Bresci
- Physics Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Dario Polli
- Physics Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy ,Institute for Photonics and Nanotechnology at CNR (CNR-IFN), Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland ,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| |
Collapse
|
152
|
Belinskaia DA, Voronina PA, Goncharov NV. Integrative Role of Albumin: Evolutionary, Biochemical and Pathophysiological Aspects. J EVOL BIOCHEM PHYS+ 2021; 57:1419-1448. [PMID: 34955553 PMCID: PMC8685822 DOI: 10.1134/s002209302106020x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Being one of the main proteins in the human body and many
animal species, albumin plays a crucial role in the transport of
various ions, electrically neutral molecules and in maintaining
the colloidal osmotic pressure of the blood. Albumin is able to
bind almost all known drugs, many nutraceuticals and toxic substances,
determining their pharmaco- and toxicokinetics. However, albumin
is not only the passive but also the active participant of the pharmacokinetic
and toxicokinetic processes possessing a number of enzymatic activities.
Due to the thiol group of Cys34, albumin can serve as a trap for
reactive oxygen and nitrogen species, thus participating in redox
processes. The interaction of the protein with blood cells, blood
vessels, and also with tissue cells outside the vascular bed is
of great importance. The interaction of albumin with endothelial glycocalyx
and vascular endothelial cells largely determines its integrative
role. This review provides information of a historical nature, information
on evolutionary changes, inflammatory and antioxidant properties
of albumin, on its structural and functional modifications and their significance
in the pathogenesis of some diseases.
Collapse
Affiliation(s)
- D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - P. A. Voronina
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| |
Collapse
|
153
|
Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on the Immune Responses to Transplantation: Tolerance or Rejection? Front Immunol 2021; 12:667834. [PMID: 34880853 PMCID: PMC8647190 DOI: 10.3389/fimmu.2021.667834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Transplantation (Tx) remains the optimal therapy for end-stage disease (ESD) of various solid organs. Although alloimmune events remain the leading cause of long-term allograft loss, many patients develop innate and adaptive immune responses leading to graft tolerance. The focus of this review is to provide an overview of selected aspects of the effects of inflammation on this delicate balance following solid organ transplantation. Initially, we discuss the inflammatory mediators detectable in an ESD patient. Then, the specific inflammatory mediators found post-Tx are elucidated. We examine the reciprocal relationship between donor-derived passenger leukocytes (PLs) and those of the recipient, with additional emphasis on extracellular vesicles, specifically exosomes, and we examine their role in determining the balance between tolerance and rejection. The concept of recipient antigen-presenting cell "cross-dressing" by donor exosomes is detailed. Immunological consequences of the changes undergone by cell surface antigens, including HLA molecules in donor and host immune cells activated by proinflammatory cytokines, are examined. Inflammation-mediated donor endothelial cell (EC) activation is discussed along with the effect of donor-recipient EC chimerism. Finally, as an example of a specific inflammatory mediator, a detailed analysis is provided on the dynamic role of Interleukin-6 (IL-6) and its receptor post-Tx, especially given the potential for therapeutic interdiction of this axis with monoclonal antibodies. We aim to provide a holistic as well as a reductionist perspective of the inflammation-impacted immune events that precede and follow Tx. The objective is to differentiate tolerogenic inflammation from that enhancing rejection, for potential therapeutic modifications. (Words 247).
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA, United States
- Terasaki Foundation Laboratory, Santa Monica, CA, United States
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
154
|
Xiao X, Huang S, Chen S, Wang Y, Sun Q, Xu X, Li Y. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:367. [PMID: 34794490 PMCID: PMC8600921 DOI: 10.1186/s13046-021-02148-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has yielded impressive outcomes and transformed treatment algorithms for hematological malignancies. To date, five CAR T-cell products have been approved by the US Food and Drug Administration (FDA). Nevertheless, some significant toxicities pose great challenges to the development of CAR T-cell therapy, most notably cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Understanding the mechanisms underlying these toxicities and establishing prevention and treatment strategies are important. In this review, we summarize the mechanisms underlying CRS and ICANS and provide potential treatment and prevention strategies.
Collapse
Affiliation(s)
- Xinyi Xiao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Shengkang Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Sifei Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yazhuo Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.,Medical College of Rehabilitation, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510623, People's Republic of China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, People's Republic of China.
| |
Collapse
|
155
|
Vasishta S, Umakanth S, Adiga P, Joshi MB. Extrinsic and intrinsic factors influencing metabolic memory in type 2 diabetes. Vascul Pharmacol 2021; 142:106933. [PMID: 34763098 DOI: 10.1016/j.vph.2021.106933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Direct and indirect influence of pathological conditions in Type 2 Diabetes (T2D) on vasculature manifests in micro and/or macro vascular complications that act as a major source of morbidity and mortality. Although preventive therapies exist to control hyperglycemia, diabetic subjects are always at risk to accrue vascular complications. One of the hypotheses explained is 'glycemic' or 'metabolic' memory, a process of permanent epigenetic change in different cell types whereby diabetes associated vascular complications continue despite glycemic control by antidiabetic drugs. Epigenetic mechanisms including DNA methylation possess a strong influence on the association between environment and gene expression, thus indicating its importance in the pathogenesis of a complex disease such as T2D. The vascular system is more prone to environmental influences and present high flexibility in response to physiological and pathological challenges. DNA methylation based epigenetic changes during metabolic memory are influenced by sustained hyperglycemia, inflammatory mediators, gut microbiome composition, lifestyle modifications and gene-nutrient interactions. Hence, understanding underlying mechanisms in manifesting vascular complications regulated by DNA methylation is of high clinical importance. The review provides an insight into various extrinsic and intrinsic factors influencing the regulation of DNA methyltransferases contributing to the pathogenesis of vascular complications during T2D.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. T.M.A. Pai Hospital, Manipal Academy of Higher Education, Udupi 576101, Karnataka, India
| | - Prashanth Adiga
- Department of Reproductive Medicine and Surgery (MARC), Kasturba Hospital, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
156
|
Endothelial Dysfunction through Oxidatively Generated Epigenetic Mark in Respiratory Viral Infections. Cells 2021; 10:cells10113067. [PMID: 34831290 PMCID: PMC8623825 DOI: 10.3390/cells10113067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed.
Collapse
|
157
|
Su C, Lv Y, Lu W, Yu Z, Ye Y, Guo B, Liu D, Yan H, Li T, Zhang Q, Cheng J, Mo Z. Single-Cell RNA Sequencing in Multiple Pathologic Types of Renal Cell Carcinoma Revealed Novel Potential Tumor-Specific Markers. Front Oncol 2021; 11:719564. [PMID: 34722263 PMCID: PMC8551404 DOI: 10.3389/fonc.2021.719564] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Background Renal cell carcinoma (RCC) is the most common type of kidney cancer. Studying the pathogenesis of RCC is particularly important, because it could provide a direct guide for clinical treatment. Given that tumor heterogeneity is probably reflected at the mRNA level, the study of mRNA in RCC may reveal some potential tumor-specific markers, especially single-cell RNA sequencing (scRNA-seq). Methods We performed an exploratory study on three pathological types of RCC with a small sample size. This study presented clear-cell RCC (ccRCC), type 2 pRCC, and chRCC in a total of 30,263 high-quality single-cell transcriptome information from three pathological types of RCC. In addition, scRNA-seq was performed on normal kidneys. Tumor characteristics were well identified by the comparison between different pathological types of RCC and normal kidneys at the scRNA level. Results Some new tumor-specific markers for different pathologic types of RCC, such as SPOCK1, PTGIS, REG1A, CP and SPAG4 were identified and validated. We also discovered that NDUFA4L2 both highly expressed in tumor cells of ccRCC and type 2 pRCC. The presence of two different types of endothelial cells in ccRCC and type 2 pRCC was also identified and verified. An endothelial cell in ccRCC may be associated with fibroblasts and significantly expressed fibroblast markers, such as POSTN and COL3A1. At last, by applying scRNA-seq results, the activation of drug target pathways and sensitivity to drug responses was predicted in different pathological types of RCC. Conclusions Taken together, these findings considerably enriched the single-cell transcriptomic information for RCC, thereby providing new insights into the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Cheng Su
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yufang Lv
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Wenhao Lu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zhenyuan Yu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yu Ye
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Scientific Research Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bingqian Guo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Deyun Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haibiao Yan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyu Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingyun Zhang
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
158
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
159
|
The Blood-Brain Barrier: Much More Than a Selective Access to the Brain. Neurotox Res 2021; 39:2154-2174. [PMID: 34677787 DOI: 10.1007/s12640-021-00431-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier is a dynamic structure, collectively referred to as the neurovascular unit. It is responsible for the exchange of blood, oxygen, ions, and other molecules between the peripheral circulation and the brain compartment. It is the main entrance to the central nervous system and as such critical for the maintenance of its homeostasis. Dysfunction of the blood-brain barrier is a characteristic of several neurovascular pathologies. Moreover, physiological changes, environmental factors, nutritional habits, and psychological stress can modulate the tightness of the barrier. In this contribution, we summarize our current understanding of structure and function of this important component of the brain. We also describe the neurological deficits associated with its damage. A special emphasis is placed in the effect of the exposure to xenobiotics and pollutants in the permeability of the barrier. Finally, current protective strategies as well as the culture models to study this fascinating structure are discussed.
Collapse
|
160
|
Pivoriūnas A, Verkhratsky A. Astrocyte-Endotheliocyte Axis in the Regulation of the Blood-Brain Barrier. Neurochem Res 2021; 46:2538-2550. [PMID: 33961207 DOI: 10.1007/s11064-021-03338-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022]
Abstract
The evolution of blood-brain barrier paralleled centralisation of the nervous system: emergence of neuronal masses required control over composition of the interstitial fluids. The barriers were initially created by glial cells, which employed septate junctions to restrict paracellular diffusion in the invertebrates and tight junctions in some early vertebrates. The endothelial barrier, secured by tight and adherent junctions emerged in vertebrates and is common in mammals. Astrocytes form the parenchymal part of the blood-brain barrier and commutate with endothelial cells through secretion of growth factors, morphogens and extracellular vesicles. These secreted factors control the integrity of the blood-brain barrier through regulation of expression of tight junction proteins. The astrocyte-endotheliocyte communications are particularly important in various neurological diseases associated with impairments to the blood-brain barrier. Molecular mechanisms supporting astrocyte-endotheliocyte axis in health and disease are in need of detailed characterisation.
Collapse
Affiliation(s)
- Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
| | - Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| |
Collapse
|
161
|
Malheiro LF, Gaio R, Vaz da Silva M, Martins S, Sarmento A, Santos L. Peripheral arterial tonometry as a method of measuring reactive hyperaemia correlates with organ dysfunction and prognosis in the critically ill patient: a prospective observational study. J Clin Monit Comput 2021; 35:1169-1181. [PMID: 32889643 PMCID: PMC7474512 DOI: 10.1007/s10877-020-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/24/2020] [Indexed: 11/05/2022]
Abstract
Predictions of mortality may help in the selection of patients who benefit from intensive care. Endothelial dysfunction is partially responsible for many of the organic dysfunctions in critical illness. Reactive hyperaemia is a vascular response of the endothelium that can be measured by peripheral arterial tonometry (RH-PAT). We aimed to assess if reactive hyperaemia is affected by critical illness and if it correlates with outcomes. Prospective study with a cohort of consecutive patients admitted to an Intensive Care Unit. RH-PAT was accessed on admission and on the 7th day after admission. Early and late survivors were compared to non-survivors. The effect of RH-PAT variation on late mortality was studied by a logistic regression model. The association between RH-PAT and severity scores and biomarkers of organic dysfunction was investigated by multivariate analysis. 86 patients were enrolled. Mean ln(RHI) on admission was 0.580 and was significantly lower in patients with higher severity scores (p < 0.01) and early non-survivors (0.388; p = 0.027). The model for prediction of early-mortality estimated that each 0.1 decrease in ln(RHI) increased the odds for mortality by 13%. In 39 patients, a 2nd RH-PAT measurement was performed on the 7th day. The variation of ln(RHI) was significantly different between non-survivors and survivors (- 24.2% vs. 63.9%, p = 0.026). Ln(RHI) was significantly lower in patients with renal and cardiovascular dysfunction (p < 0.01). RH-PAT is correlated with disease severity and seems to be an independent marker of early mortality, cardiovascular and renal dysfunctions. RH-PAT variation predicts late mortality. There appears to be an RH-PAT impairment in the acute phase of severe diseases that may be reversible and associated with better outcomes.
Collapse
Affiliation(s)
- Luis Filipe Malheiro
- Intensive Care Unit, Infectious Diseases Department, Centro Hospitalar de São João, Porto, Portugal.
- Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), Nephrology and Infectious Diseases Research Group, University of Porto, Porto, Portugal.
- Department of Medicine Faculty of Medicine, University of Porto, Porto, Portugal.
- Serviço de Doenças Infeciosas, Centro Hospitalar de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Rita Gaio
- Department of Mathematics, Faculty of Science Sciences and CMUP, Centre of Mathematics of the University of Porto; University of Porto, Porto, Portugal
| | - Manuel Vaz da Silva
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sandra Martins
- Clinical Pathology Department, Centro Hospitalar de São João and EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
| | - António Sarmento
- Intensive Care Unit, Infectious Diseases Department, Centro Hospitalar de São João, Porto, Portugal
- Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), Nephrology and Infectious Diseases Research Group, University of Porto, Porto, Portugal
- Department of Medicine Faculty of Medicine, University of Porto, Porto, Portugal
| | - Lurdes Santos
- Intensive Care Unit, Infectious Diseases Department, Centro Hospitalar de São João, Porto, Portugal
- Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), Nephrology and Infectious Diseases Research Group, University of Porto, Porto, Portugal
- Department of Medicine Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
162
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|
163
|
Non-Viral Gene Delivery Systems for Treatment of Myocardial Infarction: Targeting Strategies and Cardiac Cell Modulation. Pharmaceutics 2021; 13:pharmaceutics13091520. [PMID: 34575595 PMCID: PMC8465433 DOI: 10.3390/pharmaceutics13091520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality worldwide. Conventional therapies involving surgery or pharmacological strategies have shown limited therapeutic effects due to a lack of cardiac tissue repair. Gene therapy has opened an avenue for the treatment of cardiac diseases through manipulating the underlying gene mechanics. Several gene therapies for cardiac diseases have been assessed in clinical trials, while the clinical translation greatly depends on the delivery technologies. Non-viral vectors are attracting much attention due to their safety and facile production compared to viral vectors. In this review, we discuss the recent progress of non-viral gene therapies for the treatment of cardiovascular diseases, with a particular focus on myocardial infarction (MI). Through a summary of delivery strategies with which to target cardiac tissue and different cardiac cells for MI treatment, this review aims to inspire new insights into the design/exploitation of non-viral delivery systems for gene cargos to promote cardiac repair/regeneration.
Collapse
|
164
|
Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J. Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 2021; 25:15-33. [PMID: 34499264 PMCID: PMC8813834 DOI: 10.1007/s10456-021-09817-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The cardiovascular system is composed around the central function of the endothelium that lines the inner surfaces of its vessels. In recent years, the existence of a progenitor population within the endothelium has been validated through the study of endothelial colony-forming cells (ECFCs) in human peripheral blood and certain vascular beds. However, our knowledge on endothelial populations in vivo that can give rise to ECFCs in culture has been limited. In this review we report and analyse recent attempts at describing progenitor populations in vivo from murine studies that reflect the self-renewal and stemness capacity observed in ECFCs. We pinpoint seminal discoveries within the field, which have phenotypically defined, and functionally scrutinised these endothelial progenitors. Furthermore, we review recent publications utilising single-cell sequencing technologies to better understand the endothelium in homeostasis and pathology.
Collapse
Affiliation(s)
- James Dight
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Jilai Zhao
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Cassandra Styke
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| | - Jatin Patel
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia. .,Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| |
Collapse
|
165
|
Ryan AR, England AR, Chaney CP, Cowdin MA, Hiltabidle M, Daniel E, Gupta AK, Oxburgh L, Carroll TJ, Cleaver O. Vascular deficiencies in renal organoids and ex vivo kidney organogenesis. Dev Biol 2021; 477:98-116. [PMID: 34000274 PMCID: PMC8382085 DOI: 10.1016/j.ydbio.2021.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Chronic kidney disease (CKD) and end stage renal disease (ESRD) are increasingly frequent and devastating conditions that have driven a surge in the need for kidney transplantation. A stark shortage of organs has fueled interest in generating viable replacement tissues ex vivo for transplantation. One promising approach has been self-organizing organoids, which mimic developmental processes and yield multicellular, organ-specific tissues. However, a recognized roadblock to this approach is that many organoid cell types fail to acquire full maturity and function. Here, we comprehensively assess the vasculature in two distinct kidney organoid models as well as in explanted embryonic kidneys. Using a variety of methods, we show that while organoids can develop a wide range of kidney cell types, as previously shown, endothelial cells (ECs) initially arise but then rapidly regress over time in culture. Vasculature of cultured embryonic kidneys exhibit similar regression. By contrast, engraftment of kidney organoids under the kidney capsule results in the formation of a stable, perfused vasculature that integrates into the organoid. This work demonstrates that kidney organoids offer a promising model system to define the complexities of vascular-nephron interactions, but the establishment and maintenance of a vascular network present unique challenges when grown ex vivo.
Collapse
Affiliation(s)
- Anne R Ryan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alicia R England
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher P Chaney
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mitzy A Cowdin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Max Hiltabidle
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward Daniel
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Thomas J Carroll
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
166
|
Große-Segerath L, Lammert E. Role of vasodilation in liver regeneration and health. Biol Chem 2021; 402:1009-1019. [PMID: 33908220 DOI: 10.1515/hsz-2021-0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Recently, we have shown that an enhanced blood flow through the liver triggers hepatocyte proliferation and thereby liver growth. In this review, we first explain the literature on hepatic blood flow and its changes after partial hepatectomy (PHx), before we present the different steps of liver regeneration that take place right after the initial hemodynamic changes induced by PHx. Those parts of the molecular mechanisms governing liver regeneration, which are directly associated with the hepatic vascular system, are subsequently reviewed. These include β1 integrin-dependent mechanotransduction in liver sinusoidal endothelial cells (LSECs), triggering mechanically-induced activation of the vascular endothelial growth factor receptor-3 (VEGFR3) and matrix metalloproteinase-9 (MMP9) as well as release of growth-promoting angiocrine signals. Finally, we speculate how advanced age and obesity negatively affect the hepatic vasculature and thus liver regeneration and health, and we conclude our review with some recent technical progress in the clinic that employs liver perfusion. In sum, the mechano-elastic properties and alterations of the hepatic vasculature are key to better understand and influence liver health, regeneration, and disease.
Collapse
Affiliation(s)
- Linda Große-Segerath
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
167
|
Exaggerated Microvascular Vasodilating Responses in Cirrhotic Patients With Septic Shock. Crit Care Med 2021; 49:e404-e411. [PMID: 33591010 DOI: 10.1097/ccm.0000000000004846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Cirrhosis is associated with hemodynamic and vascular disorders. However, microvascular reactivity of cirrhotic patients in the context of sepsis has poorly been investigated. DESIGN Prospective observational study. SETTING Medical ICU in a tertiary teaching hospital. PATIENTS We prospectively included adult patients admitted in the ICU for septic shock with and without cirrhosis. After initial resuscitation, global hemodynamic parameters were recorded and skin microvascular reactivity to local acetylcholine iontophoresis was measured. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Thirty patients with septic shock were included (60% male), 10 with cirrhosis and 20 without, with a median age of 61 years (54-74 yr). Cirrhotic patients were mainly classed as Child-Pugh C (80%) and all of them had ascites. Sequential Organ Failure Assessment score and ICU mortality of cirrhotic patients were higher than the noncirrhotic patients, respectively (6.5 [5.0-8.3] vs 11.5 [9.0-14.0]; p < 0.01; 15% vs 70%; p < 0.01). Peripheral tissue perfusion and global hemodynamic parameters were not different between the cirrhotic and noncirrhotic patients but arterial lactate level was three times higher in patients with cirrhosis (6.0 mmol/L [3.9-8.0 mmol/L] vs 2.0 mmol/L [0.9-3.5 mmol/L]; p < 0.01). Basal skin microvascular blood flow was not statistically different between the groups (4.94 perfusion units [3.45-8.73 perfusion units] vs 6.95 perfusion units [5.24-8.38 perfusion units]; p = 0.29). After acetylcholine simulation, skin microvascular blood flow increased more in cirrhotic patients than in noncirrhotic patients (644% [217-966%] vs 169% [73-505%], p = 0.03). Global microvascular reactivity was seven times higher in cirrhotic patients (area under the curve, 16,412 perfusion units [13,898-19,041 perfusion units] vs 2,664 perfusion units [969-4,604 perfusion units]; p < 0.001). CONCLUSIONS We identified an exaggerated vasodilating microvascular response in cirrhotic patients with septic shock. Such a result may explain vasopressor resistance and paves the way for future therapeutic trials, targeting nitric oxide pathway specifically in this population.
Collapse
|
168
|
Hanidziar D, Robson SC. Synapomorphic features of hepatic and pulmonary vasculatures include comparable purinergic signaling responses in host defense and modulation of inflammation. Am J Physiol Gastrointest Liver Physiol 2021; 321:G200-G212. [PMID: 34105986 PMCID: PMC8410108 DOI: 10.1152/ajpgi.00406.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatosplanchnic and pulmonary vasculatures constitute synapomorphic, highly comparable networks integrated with the external environment. Given functionality related to obligatory requirements of "feeding and breathing," these organs are subject to constant environmental challenges entailing infectious risk, antigenic and xenobiotic exposures. Host responses to these stimuli need to be both protective and tightly regulated. These functions are facilitated by dualistic, high-low pressure blood supply of the liver and lungs, as well as tolerogenic characteristics of resident immune cells and signaling pathways. Dysregulation in hepatosplanchnic and pulmonary blood flow, immune responses, and microbiome implicate common pathogenic mechanisms across these vascular networks. Hepatosplanchnic diseases, such as cirrhosis and portal hypertension, often impact lungs and perturb pulmonary circulation and oxygenation. The reverse situation is also noted with lung disease resulting in hepatic dysfunction. Others, and we, have described common features of dysregulated cell signaling during liver and lung inflammation involving extracellular purines (e.g., ATP, ADP), either generated exogenously or endogenously. These metabokines serve as danger signals, when released by bacteria or during cellular stress and cause proinflammatory and prothrombotic signals in the gut/liver-lung vasculature. Dampening of these danger signals and organ protection largely depends upon activities of vascular and immune cell-expressed ectonucleotidases (CD39 and CD73), which convert ATP and ADP into anti-inflammatory adenosine. However, in many inflammatory disorders involving gut, liver, and lung, these protective mechanisms are compromised, causing perpetuation of tissue injury. We propose that interventions that specifically target aberrant purinergic signaling might prevent and/or ameliorate inflammatory disorders of the gut/liver and lung axis.
Collapse
Affiliation(s)
- Dusan Hanidziar
- 1Department of Anesthesia, Critical Care and Pain Medicine, grid.32224.35Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- 2Department of Anesthesia, Critical Care and Pain Medicine, Center for Inflammation Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,3Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
169
|
Secretome and Tunneling Nanotubes: A Multilevel Network for Long Range Intercellular Communication between Endothelial Cells and Distant Cells. Int J Mol Sci 2021; 22:ijms22157971. [PMID: 34360735 PMCID: PMC8347715 DOI: 10.3390/ijms22157971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.
Collapse
|
170
|
Single-cell transcriptomic profile of human pulmonary artery endothelial cells in health and pulmonary arterial hypertension. Sci Rep 2021; 11:14714. [PMID: 34282213 PMCID: PMC8289993 DOI: 10.1038/s41598-021-94163-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an insidious disease characterized by severe remodeling of the pulmonary vasculature caused in part by pathologic changes of endothelial cell functions. Although heterogeneity of endothelial cells across various vascular beds is well known, the diversity among endothelial cells in the healthy pulmonary vascular bed and the pathologic diversity among pulmonary arterial endothelial cells (PAEC) in PAH is unknown and previously unexplored. Here single-cell RNA sequencing technology was used to decipher the cellular heterogeneity among PAEC in the human pulmonary arteries isolated from explanted lungs from three patients with PAH undergoing lung transplantation and three healthy donor lungs not utilized for transplantation. Datasets of 36,368 PAH individual endothelial cells and 36,086 healthy cells were analyzed using the SeqGeq bioinformatics program. Total population differential gene expression analyses identified 629 differentially expressed genes between PAH and controls. Gene Ontology and Canonical Ingenuity analysis revealed pathways that are known to be involved in pathogenesis, as well as unique new pathways. At the individual cell level, dimensionality reduction followed by density based clustering revealed the presence of eight unique PAEC clusters that were typified by proliferative, angiogenic or quiescent phenotypes. While control and PAH harbored many similar subgroups of endothelial cells, PAH had greater proportions of angiogenic and proliferative subsets. These findings identify that only specific subgroups of PAH PAEC have gene expression different than healthy PAEC, and suggest these subpopulations lead to the pathologic functions leading to remodeling.
Collapse
|
171
|
Wartalski K, Gorczyca G, Wiater J, Tabarowski Z, Duda M. Porcine ovarian cortex-derived putative stem cells can differentiate into endothelial cells in vitro. Histochem Cell Biol 2021; 156:349-362. [PMID: 34269874 PMCID: PMC8550686 DOI: 10.1007/s00418-021-02016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Endothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.
Collapse
Affiliation(s)
- Kamil Wartalski
- Faculty of Medicine, Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034, Krakow, Poland
| | - Gabriela Gorczyca
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Endocrinology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Jerzy Wiater
- Faculty of Medicine, Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034, Krakow, Poland
| | - Zbigniew Tabarowski
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Experimental Hematology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Małgorzata Duda
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Endocrinology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland.
| |
Collapse
|
172
|
Zeng J, Jiang WG, Sanders AJ. Epithelial Protein Lost in Neoplasm, EPLIN, the Cellular and Molecular Prospects in Cancers. Biomolecules 2021; 11:biom11071038. [PMID: 34356662 PMCID: PMC8301816 DOI: 10.3390/biom11071038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Epithelial Protein Lost In Neoplasm (EPLIN), also known as LIMA1 (LIM Domain And Actin Binding 1), was first discovered as a protein differentially expressed in normal and cancerous cell lines. It is now known to be key to the progression and metastasis of certain solid tumours. Despite a slow pace in understanding the biological role in cells and body systems, as well as its clinical implications in the early years since its discovery, recent years have witnessed a rapid progress in understanding the mechanisms of this protein in cells, diseases and indeed the body. EPLIN has drawn more attention over the past few years with its roles expanding from cell migration and cytoskeletal dynamics, to cell cycle, gene regulation, angiogenesis/lymphangiogenesis and lipid metabolism. This concise review summarises and discusses the recent progress in understanding EPLIN in biological processes and its implications in cancer.
Collapse
|
173
|
von Willebrand factor variants in C3 glomerulopathy: A Chinese cohort study. Clin Immunol 2021; 229:108794. [PMID: 34245915 DOI: 10.1016/j.clim.2021.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
C3 glomerulopathy (C3G) is a rare renal disease characterized by predominant glomerular C3 staining. Complement alternative pathway dysregulation due to inherited complement defects is associated with C3G. To identify novel C3G-related genes, we screened 86 genes in the complement, coagulation and endothelial systems in 35 C3G patients by targeted genomic enrichment and massively parallel sequencing. Surprisingly, the most frequently mutated gene was VWF. Patients with VWF variants had significantly higher proteinuria levels, higher crescent formation and lower factor H (FH) levels. We further selected two VWF variants to transiently express the von Willebrand factor (vWF) protein, we found that vWF expression from the c.1519A > G variant was significantly reduced. In vitro results further indicated that vWF could regulate complement activation, as it could bind to FH and C3b, act as a cofactor for factor I-mediated cleavage of C3b. Thus, we speculated that vWF might be involved in the pathogenesis of C3G.
Collapse
|
174
|
Dai H, Penack O, Radujkovic A, Schult D, Majer-Lauterbach J, Blau IW, Bullinger L, Jiang S, Müller-Tidow C, Dreger P, Luft T. Early bilirubinemia after allogeneic stem cell transplantation-an endothelial complication. Bone Marrow Transplant 2021; 56:1573-1583. [PMID: 33517355 PMCID: PMC8263345 DOI: 10.1038/s41409-020-01186-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
Hyperbilirubinemia occurs frequently after allogeneic stem cell transplantation. Causes include primary liver damage and endothelial complications as major contributors. Here, we have investigated the impact of early bilirubinemia (EB) on posttransplant outcomes. Maximum total bilirubin levels (days 0-28) were categorized using maximally selected log rank statistics to identify a cut off for the endpoint non-relapse mortality (NRM) in a training cohort of 873 patients. EB above this cut off was correlated with NRM and overall survival (OS) and with pre- and posttransplant Angiopoietin-2, interleukin (IL)18, CXCL8 and suppressor of tumorigenicity-2 (ST2) serum levels, and the endothelial activation and stress index (EASIX). Clinical correlations were validated in a sample of 388 patients transplanted in an independent institution. The EB cut off was determined at 3.6 mg/dL (61.6 µM). EB predicted OS (HR 1.60, 95% CI 1.21-2.12, p < 0.001), and NRM (CSHR 2.14; 1.28-3.56, p = 0.004), also independent of typical endothelial complications such as veno-occlusive disease, refractory acute graft-versus-host disease, or transplant-associated microangiopathy. However, EB correlated with high Angiopoietin-2, EASIX-pre and EASIX-day 0, as well as increased levels of posttransplant CXCL8, IL18, and ST2. In summary, EB indicates a poor prognosis. The association of EB with endothelial biomarkers suggests an endothelial pathomechanism also for this posttransplant complication.
Collapse
Affiliation(s)
- Hao Dai
- Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Olaf Penack
- Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Aleksandar Radujkovic
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Schult
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joshua Majer-Lauterbach
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Igor Wolfgang Blau
- Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Bullinger
- Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sihe Jiang
- Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
175
|
Tratwal J, Rojas-Sutterlin S, Bataclan C, Blum S, Naveiras O. Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pract Res Clin Endocrinol Metab 2021; 35:101564. [PMID: 34417114 DOI: 10.1016/j.beem.2021.101564] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Here we review the current knowledge on bone marrow adipocytes (BMAds) as active contributors to the regulation of the hematopoietic niche, and as potentially pivotal players in the progression of hematological malignancies. We highlight the hierarchical and functional heterogeneity of the adipocyte lineage within the bone marrow, and how potentially different contexts dictate their interactions with hematopoietic populations. RECENT FINDINGS Growing evidence associates the adipocyte lineage with important functions in hematopoietic regulation within the BM niche. Initially proposed to serve as negative regulators of the hematopoietic microenvironment, studies have also demonstrated that BMAds positively influence the survival and maintenance of hematopoietic stem cells (HSCs). These seemingly incongruous findings may at least be partially explained by stage-specificity across the adipocytic differentiation axis and by BMAds subtypes, suggesting that the heterogeneity of these populations allows for differential context-based interactions. One such distinction relies on the location of adipocytes. Constitutive bone marrow adipose tissue (cBMAT) historically associates to the "yellow" marrow containing so-called "stable" BMAs larger in size, less responsive to stimuli, and linked to HSC quiescence. On the other hand, regulated bone marrow adipose tissue (rBMAT)-associated adipocytes, also referred to as "labile" are smaller, more responsive to hematopoietic demand and strategically situated in hematopoietically active regions of the skeleton. Here we propose a model where the effect of distinct BM stromal cell populations (BMSC) in hematopoiesis is structured along the BMSC-BMAd differentiation axis, and where the effects on HSC maintenance versus hematopoietic proliferation are segregated. In doing so, it is possible to explain how recently identified, adipocyte-primed leptin receptor-expressing, CXCL12-high adventitial reticular cells (AdipoCARs) and marrow adipose lineage precursor cells (MALPs) best support active hematopoietic cell proliferation, while adipose progenitor cells (APCs) and maturing BMAd gradually lose the capacity to support active hematopoiesis, favoring HSC quiescence. Implicated soluble mediators include MCP-1, PAI-1, NRP1, possibly DPP4 and limiting availability of CXCL12 and SCF. How remodeling occurs within the BMSC-BMAd differentiation axis is yet to be elucidated and will likely unravel a three-way regulation of the hematopoietic, bone, and adipocytic compartments orchestrated by vascular elements. The interaction of malignant hematopoietic cells with BMAds is precisely contributing to unravel specific mechanisms of remodeling. SUMMARY BMAds are important operative components of the hematopoietic microenvironment. Their heterogeneity directs their ability to exert a range of regulatory capacities in a manner dependent on their hierarchical, spatial, and biological context. This complexity highlights the importance of (i) developing experimental tools and nomenclature adapted to address stage-specificity and heterogeneity across the BMSC-BMAd differentiation axis when reporting effects in hematopoiesis, (ii) interpreting gene reporter studies within this framework, and (iii) quantifying changes in all three compartments (hematopoiesis, adiposity and bone) when addressing interdependency.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Shanti Rojas-Sutterlin
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Charles Bataclan
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Sabine Blum
- Hematology Service, Departments of Oncology and Laboratory Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland; Hematology Service, Departments of Oncology and Laboratory Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
176
|
Pati S, Fennern E, Holcomb JB, Barry M, Trivedi A, Cap AP, Martin MJ, Wade C, Kozar R, Cardenas JC, Rappold JF, Spiegel R, Schreiber MA. Treating the endotheliopathy of SARS-CoV-2 infection with plasma: Lessons learned from optimized trauma resuscitation with blood products. Transfusion 2021; 61 Suppl 1:S336-S347. [PMID: 34269437 PMCID: PMC8446992 DOI: 10.1111/trf.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Shibani Pati
- Department of Lab MedicineUniversity of California San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Erin Fennern
- Department of SurgeryMount Sinai Icahn School of MedicineNew YorkNew YorkUSA
| | | | - Mark Barry
- Department of SurgeryUniversity of California San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Alpa Trivedi
- Department of Lab MedicineUniversity of California San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Andrew P. Cap
- U.S. Army Institute of Surgical ResearchJBSA‐FT Sam HoustonSan AntonioTexasUSA
| | | | - Charles Wade
- Department of Surgery McGovern School of MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rosemary Kozar
- Department of SurgeryUniversity of MarylandBaltimoreMarylandUSA
| | - Jessica C. Cardenas
- Department of Surgery McGovern School of MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Joseph F. Rappold
- Department of Surgery Maine Medical CenterTufts University School of MedicinePortlandMaineUSA
| | - Renee Spiegel
- Department of SurgeryElmhurst Hospital CenterElmhurstNew YorkUSA
| | | |
Collapse
|
177
|
Madyaningrana K, Vijayan V, Nikolin C, Aljabri A, Tumpara S, Korenbaum E, Shah H, Stankov M, Fuchs H, Janciauskiene S, Immenschuh S. Alpha1-antitrypsin counteracts heme-induced endothelial cell inflammatory activation, autophagy dysfunction and death. Redox Biol 2021; 46:102060. [PMID: 34246063 PMCID: PMC8274343 DOI: 10.1016/j.redox.2021.102060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 11/04/2022] Open
Abstract
Free heme toxicity in the vascular endothelium is critical for the pathogenesis of hemolytic disorders including sickle cell disease. In the current study, it is demonstrated that human alpha1-antitrypsin (A1AT), a serine protease inhibitor with high binding-affinity for heme, rescues endothelial cell (EC) injury caused by free heme. A1AT provided endothelial protection against free heme toxicity via a pathway that differs from human serum albumin and hemopexin, two prototypical heme-binding proteins. A1AT inhibited heme-mediated pro-inflammatory activation and death of ECs, but did not affect the increase in intracellular heme levels and up-regulation of the heme-inducible enzyme heme oxygenase-1. Moreover, A1AT reduced heme-mediated generation of mitochondrial reactive oxygen species. Extracellular free heme led to an increased up-take of A1AT by ECs, which was detected in lysosomes and was found to reduce heme-dependent alkalization of these organelles. Finally, A1AT was able to restore heme-dependent dysfunctional autophagy in ECs. Taken together, our findings show that A1AT rescues ECs from free heme-mediated pro-inflammatory activation, cell death and dysfunctional autophagy. Hence, A1AT therapy may be useful in the treatment of hemolytic disorders such as sickle cell disease.
Collapse
Affiliation(s)
- Kukuh Madyaningrana
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany; Faculty of Biotechnology, Universitas Kristen Duta Wacana, Yogyakarta, Indonesia
| | - Vijith Vijayan
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Abid Aljabri
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Srinu Tumpara
- Department of Pulmonology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Elena Korenbaum
- Institute for Biophysical Chemistry Hannover Medical School, Hannover, Germany
| | - Harshit Shah
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Metodi Stankov
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Heiko Fuchs
- Institute of Experimental Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
178
|
Shao Y, Saredy J, Xu K, Sun Y, Saaoud F, Drummer C, Lu Y, Luo JJ, Lopez-Pastrana J, Choi ET, Jiang X, Wang H, Yang X. Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Front Immunol 2021; 12:653110. [PMID: 34248940 PMCID: PMC8269631 DOI: 10.3389/fimmu.2021.653110] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
To characterize transcriptomic changes in endothelial cells (ECs) infected by coronaviruses, and stimulated by DAMPs, the expressions of 1311 innate immune regulatomic genes (IGs) were examined in 28 EC microarray datasets with 7 monocyte datasets as controls. We made the following findings: The majority of IGs are upregulated in the first 12 hours post-infection (PI), and maintained until 48 hours PI in human microvascular EC infected by middle east respiratory syndrome-coronavirus (MERS-CoV) (an EC model for COVID-19). The expressions of IGs are modulated in 21 human EC transcriptomic datasets by various PAMPs/DAMPs, including LPS, LPC, shear stress, hyperlipidemia and oxLDL. Upregulation of many IGs such as nucleic acid sensors are shared between ECs infected by MERS-CoV and those stimulated by PAMPs and DAMPs. Human heart EC and mouse aortic EC express all four types of coronavirus receptors such as ANPEP, CEACAM1, ACE2, DPP4 and virus entry facilitator TMPRSS2 (heart EC); most of coronavirus replication-transcription protein complexes are expressed in HMEC, which contribute to viremia, thromboembolism, and cardiovascular comorbidities of COVID-19. ECs have novel trained immunity (TI), in which subsequent inflammation is enhanced. Upregulated proinflammatory cytokines such as TNFα, IL6, CSF1 and CSF3 and TI marker IL-32 as well as TI metabolic enzymes and epigenetic enzymes indicate TI function in HMEC infected by MERS-CoV, which may drive cytokine storms. Upregulated CSF1 and CSF3 demonstrate a novel function of ECs in promoting myelopoiesis. Mechanistically, the ER stress and ROS, together with decreased mitochondrial OXPHOS complexes, facilitate a proinflammatory response and TI. Additionally, an increase of the regulators of mitotic catastrophe cell death, apoptosis, ferroptosis, inflammasomes-driven pyroptosis in ECs infected with MERS-CoV and the upregulation of pro-thrombogenic factors increase thromboembolism potential. Finally, NRF2-suppressed ROS regulate innate immune responses, TI, thrombosis, EC inflammation and death. These transcriptomic results provide novel insights on the roles of ECs in coronavirus infections such as COVID-19, cardiovascular diseases (CVD), inflammation, transplantation, autoimmune disease and cancers.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jin J Luo
- Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jahaira Lopez-Pastrana
- Psychiatry and Behavioral Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Eric T Choi
- Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
179
|
van Lier D, Kox M, Pickkers P. Promotion of vascular integrity in sepsis through modulation of bioactive adrenomedullin and dipeptidyl peptidase 3. J Intern Med 2021; 289:792-806. [PMID: 33381880 PMCID: PMC8246835 DOI: 10.1111/joim.13220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Sepsis represents one of the major medical challenges of the 21st century. Despite substantial improvements in the knowledge on pathophysiological mechanisms, this has so far not translated into novel adjuvant treatment strategies for sepsis. In sepsis, both vascular tone and vascular integrity are compromised, and contribute to the development of shock, which is strongly related to the development of organ dysfunction and mortality. In this review, we focus on dipeptidyl peptidase 3 (DPP3) and adrenomedullin (ADM), two molecules that act on the vasculature and are involved in the pathophysiology of sepsis and septic shock. DPP3 is an ubiquitous cytosolic enzyme involved in the degradation of several important signalling molecules essential for regulation of vascular tone, including angiotensin II. ADM is a key hormone involved in the regulation of vascular tone and endothelial barrier function. Previous studies have shown that circulating concentrations of both DPP3 and ADM are independently associated with the development of organ failure and adverse outcome in sepsis. We now discuss new evidence illustrating that these molecules indeed represent two distinct pathways involved in the development of septic shock. Recently, both ADM-enhancing therapies aimed at improving endothelial barrier function and vascular tone and DPP3-blocking therapies aimed at restoring systemic angiotensin responses have been shown to improve outcome in various preclinical sepsis models. Given the current lack of effective adjuvant therapies in sepsis, additional research on the therapeutic application of these peptides in humans is highly warranted.
Collapse
Affiliation(s)
- D van Lier
- From the, Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Kox
- From the, Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - P Pickkers
- From the, Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
180
|
Wu MA, Fossali T, Pandolfi L, Carsana L, Ottolina D, Frangipane V, Rech R, Tosoni A, Lopez G, Agarossi A, Cogliati C, Meloni F, Marchini B, Nebuloni M, Catena E, Colombo R. Hypoalbuminemia in COVID-19: assessing the hypothesis for underlying pulmonary capillary leakage. J Intern Med 2021; 289:861-872. [PMID: 33411411 DOI: 10.1111/joim.13208] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Since the first observations of patients with COVID-19, significant hypoalbuminaemia was detected. Its causes have not been investigated yet. OBJECTIVE We hypothesized that pulmonary capillary leakage affects the severity of respiratory failure, causing a shift of fluids and proteins through the epithelial-endothelial barrier. METHODS One hundred seventy-four COVID-19 patients with respiratory symptoms, 92 admitted to the intermediate medicine ward (IMW) and 82 to the intensive care unit (ICU) at Luigi Sacco Hospital in Milan, were studied. RESULTS Baseline characteristics at admission were considered. Proteins, interleukin 8 (IL-8) and interleukin 10 (IL-10) in bronchoalveolar lavage fluid (BALF) were analysed in 26 ICU patients. In addition, ten autopsy ultrastructural lung studies were performed in patients with COVID-19 and compared with postmortem findings in a control group (bacterial pneumonia-ARDS and H1N1-ARDS). ICU patients had lower serum albumin than IMW patients [20 (18-23) vs 28 (24-33) g L-1 , P < 0.001]. Serum albumin was lower in more compromised groups (lower PaO2 -to-FiO2 ratio and worst chest X-ray findings) and was associated with 30 days of probability of survival. Protein concentration was correlated with IL-8 and IL-10 levels in BALF. Electron microscopy examinations of eight out of ten COVID-19 lung tissues showed loosening of junctional complexes, quantitatively more pronounced than in controls, and direct viral infection of type 2 pneumocytes and endothelial cells. CONCLUSION Hypoalbuminaemia may serve as severity marker of epithelial-endothelial damage in patients with COVID-19. There are clues that pulmonary capillary leak syndrome plays a key role in the pathogenesis of COVID-19 and might be a potential therapeutic target.
Collapse
Affiliation(s)
- M A Wu
- From the, Division of Internal Medicine, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - T Fossali
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - L Pandolfi
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - L Carsana
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - D Ottolina
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - V Frangipane
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - R Rech
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - A Tosoni
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - G Lopez
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - A Agarossi
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - C Cogliati
- From the, Division of Internal Medicine, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - F Meloni
- Department of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, Pavia, Italy.,Department of Internal Medicine, Section of Pneumology, University of Pavia, Pavia, Italy
| | - B Marchini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - M Nebuloni
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy.,Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - E Catena
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - R Colombo
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
181
|
Sakamoto R, Katayose M, Yamada Y, Neki T, Kamoda T, Tamai K, Yamazaki K, Iwamoto E. High-but not moderate-intensity exercise acutely attenuates hypercapnia-induced vasodilation of the internal carotid artery in young men. Eur J Appl Physiol 2021; 121:2471-2485. [PMID: 34028613 DOI: 10.1007/s00421-021-04721-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Exercise-induced increases in shear rate (SR) across different exercise intensities may differentially affect hypercapnia-induced vasodilation of the internal carotid artery (ICA), a potential index of cerebrovascular function. We aimed to elucidate the effects of exercise intensity on ICA SR during exercise and post-exercise hypercapnia-induced vasodilation of the ICA in young men. METHODS Twelve healthy men completed 30 min of cycling at moderate [MIE; 65 ± 5% of age-predicted maximal heart rate (HRmax)] and high (HIE; 85 ± 5% HRmax) intensities. Hypercapnia-induced vasodilation was induced by 3 min of hypercapnia (target end-tidal partial pressure of CO2 + 10 mmHg) and was assessed at pre-exercise, 5 min and 60 min after exercise. Doppler ultrasound was used to measure ICA diameter and blood velocity during exercise and hypercapnia tests. RESULTS SR was not altered during either exercise (interaction and main effects of time; both P > 0.05). ICA conductance decreased during HIE from resting values (5.1 ± 1.3 to 3.2 ± 1.0 mL·min-1·mmHg-1; P < 0.01) but not during MIE (5.0 ± 1.3 to 4.0 ± 0.8 mL·min-1·mmHg-1; P = 0.11). Consequently, hypercapnia-induced vasodilation declined immediately after HIE (6.9 ± 1.7% to 4.0 ± 1.4%; P < 0.01), but not after MIE (7.2 ± 2.1% to 7.3 ± 1.8%; P > 0.05). Sixty minutes after exercise, hypercapnia-induced vasodilation returned to baseline values in both trials (MIE 8.0 ± 3.1%; HIE 6.4 ± 2.9%; both P > 0.05). CONCLUSION The present study showed blunted hypercapnia-induced vasodilation of the ICA immediately after high-intensity exercise, but not a moderate-intensity exercise in young men. Given that the acute response is partly linked to the adaptive response in the peripheral endothelial function, the effects of aerobic training on cerebrovascular health may vary depending on exercise intensity.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Department of Physical Therapy, Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Yutaka Yamada
- Department of Physical Therapy, Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Tatsuki Kamoda
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Katsuyuki Tamai
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Kotomi Yamazaki
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- School of Health Science, Sapporo Medical University, Sapporo, Japan.
| |
Collapse
|
182
|
Circulating biomarkers to assess cardiovascular function in critically ill. Curr Opin Crit Care 2021; 27:261-268. [PMID: 33899816 DOI: 10.1097/mcc.0000000000000829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Circulatory shock is one of the most common reasons for ICU admission. Mortality rates in excess of 40% necessitate the rapid identification of high-risk patients, as well as the early assessment of effects of initiated treatments. There is an unmet medical need for circulating biomarkers that may improve patient stratification, predict responses to treatment interventions and may even be a target for novel therapies, enabling a better biological rationale to personalize therapy. RECENT FINDINGS Apart from established biomarkers such as lactate, ScvO2 or NT-pro-BNP, novel biomarkers, including adrenomedullin, angiopoietins, angiotensin I/II ratios, renin and DPP3 show promise, as they are all associated with well defined, therapeutically addressable molecular pathways that are dysregulated during circulatory shock. Although some of the therapies related to these biomarkers are still in preclinical stages of development, they may represent personalized treatment opportunities for patients in circulatory shock. SUMMARY From a molecular perspective, shock represents a highly heterologous syndrome, in which multiple unique pathways are dysregulated. Assessment of the status of these pathways with circulating biomarkers may provide a unique opportunity to detect specific phenotypes and implement personalized medicine in the treatment of circulatory shock.
Collapse
|
183
|
Okamoto T, Park EJ, Kawamoto E, Usuda H, Wada K, Taguchi A, Shimaoka M. Endothelial connexin-integrin crosstalk in vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166168. [PMID: 33991620 DOI: 10.1016/j.bbadis.2021.166168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases including blood vessel disorders represent a major cause of death globally. The essential roles played by local and systemic vascular inflammation in the pathogenesis of cardiovascular diseases have been increasingly recognized. Vascular inflammation triggers the aberrant activation of endothelial cells, which leads to the functional and structural abnormalities in vascular vessels. In addition to humoral mediators such as pro-inflammatory cytokines and prostaglandins, the alteration of physical and mechanical microenvironment - including vascular stiffness and shear stress - modify the gene expression profiles and metabolic profiles of endothelial cells via mechano-transduction pathways, thereby contributing to the pathogenesis of vessel disorders. Notably, connexins and integrins crosstalk each other in response to the mechanical stress, and, thereby, play an important role in regulating the mechano-transduction of endothelial cells. Here, we provide an overview on how the inter-play between connexins and integrins in endothelial cells unfold during the mechano-transduction in vascular inflammation.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan.
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan.
| |
Collapse
|
184
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
185
|
Yamada M. Extracellular vesicles: Their emerging roles in the pathogenesis of respiratory diseases. Respir Investig 2021; 59:302-311. [PMID: 33753011 DOI: 10.1016/j.resinv.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Alveoli are the basic structure of the lungs, consisting of various types of parenchymal and bone marrow-derived cells including alveolar macrophages. These various types of cells have several important functions; thus, communication between these cells plays an important role in homeostasis as well as in the pathophysiology of diseases in the lungs. For a better understanding of the pathophysiology of lung diseases, researchers have isolated each type of lung cell to investigate the changes in their gene expressions, including their humoral factor or adhesion molecules, to reveal the intercellular communication among these cells. In particular, investigations during the past decade have focused on extracellular vesicles, which are lipid bilayer delimited vesicles released from a cell that can move among various cells and transfer substances, including microRNAs, mRNAs and proteins, thus, functioning as intercellular messengers. Extracellular vesicles can be classified into three general groups: apoptotic bodies, exosomes, and microparticles. Extracellular vesicles, especially exosomes and microparticles, are attracting increasing attention from pulmonologists as tools for understanding pathogenesis and disease diagnosis. Here, we review studies, including our own, on exosomes and microparticles and their roles in both lung homeostasis and the pathogenesis of lung diseases such as idiopathic pulmonary fibrosis, chronic obstructive lung diseases, and acute respiratory distress syndrome. This review also addresses the roles of extracellular vesicles in COVID-19, the current global public health crisis.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 9808574, Japan.
| |
Collapse
|
186
|
Rayner SG, Howard CC, Mandrycky CJ, Stamenkovic S, Himmelfarb J, Shih AY, Zheng Y. Multiphoton-Guided Creation of Complex Organ-Specific Microvasculature. Adv Healthc Mater 2021; 10:e2100031. [PMID: 33586357 PMCID: PMC8137585 DOI: 10.1002/adhm.202100031] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary-scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre-formed microvessels is used to successfully create perfusable and cellularized organ-specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney-specific microvascular structure is achieved, using laser-guided angiogenesis. Finally, proof-of-concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ-on-a-chip devices.
Collapse
Affiliation(s)
- Samuel G. Rayner
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Department of MedicineDivision of PulmonaryCritical Care and Sleep MedicineUniversity of WashingtonSeattleWA98195USA
| | - Caitlin C. Howard
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
| | | | | | - Jonathan Himmelfarb
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Department of MedicineDivision of NephrologyUniversity of WashingtonSeattleWA98195USA
- Kidney Research InstituteSeattleWA98104USA
| | - Andy Y. Shih
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Seattle Children's Research InstituteSeattleWA98101USA
| | - Ying Zheng
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Kidney Research InstituteSeattleWA98104USA
- Institute for Stem Cell and Regenerative MedicineSeattleWA98195USA
| |
Collapse
|
187
|
de Haan W, Dheedene W, Apelt K, Décombas-Deschamps S, Vinckier S, Verhulst S, Conidi A, Deffieux T, Staring MW, Vandervoort P, Caluwé E, Lox M, Mannaerts I, Takagi T, Jaekers J, Berx G, Haigh J, Topal B, Zwijsen A, Higashi Y, van Grunsven LA, van IJcken WFJ, Mulugeta E, Tanter M, Lebrin FPG, Huylebroeck D, Luttun A. Endothelial Zeb2 preserves the hepatic angioarchitecture and protects against liver fibrosis. Cardiovasc Res 2021; 118:1262-1275. [PMID: 33909875 PMCID: PMC8953454 DOI: 10.1093/cvr/cvab148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Aims Hepatic capillaries are lined with specialized liver sinusoidal endothelial cells (LSECs) which support macromolecule passage to hepatocytes and prevent fibrosis by keeping hepatic stellate cells (HSCs) quiescent. LSEC specialization is co-determined by transcription factors. The zinc-finger E-box-binding homeobox (Zeb)2 transcription factor is enriched in LSECs. Here, we aimed to elucidate the endothelium-specific role of Zeb2 during maintenance of the liver and in liver fibrosis. Methods and results To study the role of Zeb2 in liver endothelium we generated EC-specific Zeb2 knock-out (ECKO) mice. Sequencing of liver EC RNA revealed that deficiency of Zeb2 results in prominent expression changes in angiogenesis-related genes. Accordingly, the vascular area was expanded and the presence of pillars inside ECKO liver vessels indicated that this was likely due to increased intussusceptive angiogenesis. LSEC marker expression was not profoundly affected and fenestrations were preserved upon Zeb2 deficiency. However, an increase in continuous EC markers suggested that Zeb2-deficient LSECs are more prone to dedifferentiation, a process called ‘capillarization’. Changes in the endothelial expression of ligands that may be involved in HSC quiescence together with significant changes in the expression profile of HSCs showed that Zeb2 regulates LSEC–HSC communication and HSC activation. Accordingly, upon exposure to the hepatotoxin carbon tetrachloride (CCl4), livers of ECKO mice showed increased capillarization, HSC activation, and fibrosis compared to livers from wild-type littermates. The vascular maintenance and anti-fibrotic role of endothelial Zeb2 was confirmed in mice with EC-specific overexpression of Zeb2, as the latter resulted in reduced vascularity and attenuated CCl4-induced liver fibrosis. Conclusion Endothelial Zeb2 preserves liver angioarchitecture and protects against liver fibrosis. Zeb2 and Zeb2-dependent genes in liver ECs may be exploited to design novel therapeutic strategies to attenuate hepatic fibrosis.
Collapse
Affiliation(s)
- Willeke de Haan
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Dheedene
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Katerina Apelt
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine. Leiden University Medical Center, . Leiden, The Netherlands
| | - Sofiane Décombas-Deschamps
- Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, Paris, France
| | - Stefan Vinckier
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thomas Deffieux
- Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, Paris, France
| | - Michael W Staring
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Petra Vandervoort
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ellen Caluwé
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marleen Lox
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Inge Mannaerts
- Liver Cell Biology research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tsuyoshi Takagi
- Department of Disease Model, Institute of Developmental Research, Aichi Developmental Disability Center, Aichi, Japan
| | | | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jody Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Baki Topal
- Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - An Zwijsen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Yujiro Higashi
- Department of Disease Model, Institute of Developmental Research, Aichi Developmental Disability Center, Aichi, Japan
| | - Leo A van Grunsven
- Liver Cell Biology research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Biomics-Genomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, Paris, France
| | - Franck P G Lebrin
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine. Leiden University Medical Center, . Leiden, The Netherlands.,Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, Paris, France
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
188
|
Robert J, Osto E, von Eckardstein A. The Endothelium Is Both a Target and a Barrier of HDL's Protective Functions. Cells 2021; 10:1041. [PMID: 33924941 PMCID: PMC8146309 DOI: 10.3390/cells10051041] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelium serves as a barrier between the intravascular and extravascular compartments. High-density lipoproteins (HDL) have two kinds of interactions with this barrier. First, bloodborne HDL must pass the endothelium to access extravascular tissues, for example the arterial wall or the brain, to mediate cholesterol efflux from macrophages and other cells or exert other functions. To complete reverse cholesterol transport, HDL must even pass the endothelium a second time to re-enter circulation via the lymphatics. Transendothelial HDL transport is a regulated process involving scavenger receptor SR-BI, endothelial lipase, and ATP binding cassette transporters A1 and G1. Second, HDL helps to maintain the integrity of the endothelial barrier by (i) promoting junction closure as well as (ii) repair by stimulating the proliferation and migration of endothelial cells and their progenitor cells, and by preventing (iii) loss of glycocalix, (iv) apoptosis, as well as (v) transmigration of inflammatory cells. Additional vasoprotective functions of HDL include (vi) the induction of nitric oxide (NO) production and (vii) the inhibition of reactive oxygen species (ROS) production. These vasoprotective functions are exerted by the interactions of HDL particles with SR-BI as well as specific agonists carried by HDL, notably sphingosine-1-phophate (S1P), with their specific cellular counterparts, e.g., S1P receptors. Various diseases modify the protein and lipid composition and thereby the endothelial functionality of HDL. Thorough understanding of the structure-function relationships underlying the multiple interactions of HDL with endothelial cells is expected to elucidate new targets and strategies for the treatment or prevention of various diseases.
Collapse
Affiliation(s)
| | | | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, 8091 Zurich, Switzerland; (J.R.); (E.O.)
| |
Collapse
|
189
|
Tan X, Petri B, DeVinney R, Jenne CN, Chaconas G. The Lyme disease spirochete can hijack the host immune system for extravasation from the microvasculature. Mol Microbiol 2021; 116:498-515. [PMID: 33891779 DOI: 10.1111/mmi.14728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Lyme disease is the most common tick-transmitted disease in the northern hemisphere and is caused by the spirochete Borrelia burgdorferi and related Borrelia species. The constellation of symptoms attributable to this malady results from vascular dissemination of B. burgdorferi throughout the body to invade various tissue types. However, little is known about the mechanism by which the spirochetes can breach the blood vessel wall to reach distant tissues. We have studied this process by direct observation of spirochetes in the microvasculature of living mice using multi-laser spinning-disk intravital microscopy. Our results show that in our experimental system, instead of phagocytizing B. burgdorferi, host neutrophils are involved in the production of specific cytokines that activate the endothelium and potentiate B. burgdorferi escape into the surrounding tissue. Spirochete escape is not induced by paracellular permeability and appears to occur via a transcellular pathway. Neutrophil repurposing to promote bacterial extravasation represents a new and innovative pathogenic strategy.
Collapse
Affiliation(s)
- Xi Tan
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Björn Petri
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Rebekah DeVinney
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
190
|
Silva Andrade B, Siqueira S, de Assis Soares WR, de Souza Rangel F, Santos NO, dos Santos Freitas A, Ribeiro da Silveira P, Tiwari S, Alzahrani KJ, Góes-Neto A, Azevedo V, Ghosh P, Barh D. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021; 13:700. [PMID: 33919537 PMCID: PMC8072585 DOI: 10.3390/v13040700] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has infected millions worldwide, leaving a global burden for long-term care of COVID-19 survivors. It is thus imperative to study post-COVID (i.e., short-term) and long-COVID (i.e., long-term) effects, specifically as local and systemic pathophysiological outcomes of other coronavirus-related diseases (such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS)) were well-cataloged. We conducted a comprehensive review of adverse post-COVID health outcomes and potential long-COVID effects. We observed that such adverse outcomes were not localized. Rather, they affected different human systems, including: (i) immune system (e.g., Guillain-Barré syndrome, rheumatoid arthritis, pediatric inflammatory multisystem syndromes such as Kawasaki disease), (ii) hematological system (vascular hemostasis, blood coagulation), (iii) pulmonary system (respiratory failure, pulmonary thromboembolism, pulmonary embolism, pneumonia, pulmonary vascular damage, pulmonary fibrosis), (iv) cardiovascular system (myocardial hypertrophy, coronary artery atherosclerosis, focal myocardial fibrosis, acute myocardial infarction, cardiac hypertrophy), (v) gastrointestinal, hepatic, and renal systems (diarrhea, nausea/vomiting, abdominal pain, anorexia, acid reflux, gastrointestinal hemorrhage, lack of appetite/constipation), (vi) skeletomuscular system (immune-mediated skin diseases, psoriasis, lupus), (vii) nervous system (loss of taste/smell/hearing, headaches, spasms, convulsions, confusion, visual impairment, nerve pain, dizziness, impaired consciousness, nausea/vomiting, hemiplegia, ataxia, stroke, cerebral hemorrhage), (viii) mental health (stress, depression and anxiety). We additionally hypothesized mechanisms of action by investigating possible molecular mechanisms associated with these disease outcomes/symptoms. Overall, the COVID-19 pathology is still characterized by cytokine storm that results to endothelial inflammation, microvascular thrombosis, and multiple organ failures.
Collapse
Affiliation(s)
- Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Sérgio Siqueira
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Wagner Rodrigues de Assis Soares
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Departamento de Saúde II, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil
| | - Fernanda de Souza Rangel
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia CEP 45662-900, Brazil;
| | - Naiane Oliveira Santos
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia CEP 45662-900, Brazil;
| | - Andria dos Santos Freitas
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Priscila Ribeiro da Silveira
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Insti-tuto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CEP 31270-901, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Bio-technology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
| |
Collapse
|
191
|
Starodubtseva MN, Nadyrov EA, Shkliarava NM, Tsukanava AU, Starodubtsev IE, Kondrachyk AN, Matveyenkau MV, Nedoseikina MS. Heterogeneity of nanomechanical properties of the human umbilical vein endothelial cell surface. Microvasc Res 2021; 136:104168. [PMID: 33845104 DOI: 10.1016/j.mvr.2021.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
Endothelial cells, due to heterogeneity in the cell structure, can potentially form an inhomogeneous on structural and mechanical properties of the inner layer of the capillaries. Using quantitative nanomechanical mapping mode of atomic force microscopy, the parameters of the structural, elastic, and adhesive properties of the cell surface for living and glutaraldehyde-fixed human umbilical vein endothelial cells were studied. A significant difference in the studied parameters for three cell surface zones (peripheral, perinuclear, and nuclear zones) was established. The perinuclear zone appeared to be the softest zone of the endothelial cell surface. The heterogeneity of the endothelial cell mechanical properties at the nanoscale level can be an important mechanism in regulating the endothelium functions in blood vessels.
Collapse
Affiliation(s)
- Maria N Starodubtseva
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus; Gomel State Medical University, 5 Lange str., Gomel BY-246000, Belarus.
| | - Eldar A Nadyrov
- Gomel State Medical University, 5 Lange str., Gomel BY-246000, Belarus
| | - Nastassia M Shkliarava
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | - Alena U Tsukanava
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | | | | | - Matsvei V Matveyenkau
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | | |
Collapse
|
192
|
Speer AL, Ren X, McNeill EP, Aziz JM, Muir SM, Marino DI, Dadhich P, Sawant K, Ciccocioppo R, Asthana A, Bitar KN, Orlando G. Bioengineering of the digestive tract: approaching the clinic. Cytotherapy 2021; 23:381-389. [PMID: 33840629 DOI: 10.1016/j.jcyt.2021.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
The field of regenerative medicine is developing technologies that, in the near future, will offer alternative approaches to either cure diseases affecting the gastrointestinal tract or slow their progression by leveraging the intrinsic ability of our tissues and organs to repair after damage. This article will succinctly illustrate the three technologies that are closer to clinical translation-namely, human intestinal organoids, sphincter bioengineering and decellularization, whereby the cellular compartment of a given segment of the digestive tract is removed to obtain a scaffold consisting of the extracellular matrix. The latter will be used as a template for the regeneration of a functional organ, whereby the newly generated cellular compartment will be obtained from the patient's own cells. Although clinical application of this technology is approaching, product development challenges are being tackled to warrant safety and efficacy.
Collapse
Affiliation(s)
- Allison L Speer
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Eoin P McNeill
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Justine M Aziz
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sean M Muir
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Domenica I Marino
- College of Arts and Sciences, Ohio State University, Columbus, Ohio, USA
| | | | - Ketki Sawant
- Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Giambattista Rossi University Hospital, University Hospital Integrated Trust of Verona, University of Verona, Verona, Italy
| | - Amish Asthana
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Khalil N Bitar
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
193
|
Barbosa LC, Gonçalves TL, de Araujo LP, Rosario LVDO, Ferrer VP. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol 2021; 137:106829. [PMID: 33422689 PMCID: PMC7834309 DOI: 10.1016/j.vph.2021.106829] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is an important player of the renin-angiotensin-aldosterone system (RAAS) in regulating the conversion of angiotensin II into angiotensin (1-7). While expressed on the surface of human cells, such as lung, heart, kidney, neurons, and endothelial cells (EC), ACE2 is the entry receptor for SARS-CoV-2. Here, we would like to highlight that ACE2 is predominant on the EC membrane. Many of coronavirus disease 2019 (COVID-19) symptoms have been associated with the large recruitment of immune cells, directly affecting EC. Additionally, cytokines, hypoxia, and complement activation can trigger the activation of EC leading to the coagulation cascade. The EC dysfunction plus the inflammation due to SARS-CoV-2 infection may lead to abnormal coagulation, actively participating in thrombo-inflammatory processes resulting in vasculopathy and indicating poor prognosis in patients with COVID-19. Considering the intrinsic relationship between EC and the pathophysiology of SARS-CoV-2, EC-associated therapies such as anticoagulants, fibrinolytic drugs, immunomodulators, and molecular therapies have been proposed. In this review, we will discuss the role of EC in the lung inflammation and edema, in the disseminate coagulation process, ACE2 positive cancer patients, and current and future EC-associated therapies to treat COVID-19.
Collapse
Affiliation(s)
- Lucas Cunha Barbosa
- Graduate Program in Medicine - Pathological Anatomy, Clementino Fraga Filho Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Brain's Biomedicine Lab, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil
| | | | | | | | - Valéria Pereira Ferrer
- Graduate Program in Medicine - Pathological Anatomy, Clementino Fraga Filho Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Brazil.
| |
Collapse
|
194
|
Guy A, Poisson J, James C. Pathogenesis of cardiovascular events in BCR-ABL1-negative myeloproliferative neoplasms. Leukemia 2021; 35:935-955. [PMID: 33658660 DOI: 10.1038/s41375-021-01170-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Thrombosis, both in arterial and venous territories, is the major complication of myeloproliferative neoplasms and is responsible for a high rate of morbidity and mortality. The currently accepted risk factors are an age over 60 years and a history of thrombosis. However, many complex mechanisms contribute to this increased prothrombotic risk, with involvement of all blood cell types, plasmatic factors, and endothelial cells. Besides, some cardiovascular events may originate from arterial vasospasm that could contribute to thrombotic complications. In this review, we discuss recent results obtained in mouse models in the light of data obtained from clinical studies. We emphasize on actors of thrombosis that are currently not targeted with current therapeutics but could be promising targets, i.e, neutrophil extracellular traps and vascular reactivity.
Collapse
Affiliation(s)
- Alexandre Guy
- UMR1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Johanne Poisson
- Inserm, Centre de recherche sur l'inflammation, University of Paris, Paris, France.,Geriatrics Department, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Chloe James
- UMR1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France. .,Laboratoire d'Hématologie, CHU de Bordeaux, Pessac, France.
| |
Collapse
|
195
|
Grigonyte AM, Hapeshi A, Constantinidou C, Millard A. Modification of Bacteriophages to Increase Their Association with Lung Epithelium Cells In Vitro. Pharmaceuticals (Basel) 2021; 14:308. [PMID: 33915737 PMCID: PMC8067280 DOI: 10.3390/ph14040308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
There is currently a renaissance in research on bacteriophages as alternatives to antibiotics. Phage specificity to their bacterial host, in addition to a plethora of other advantages, makes them ideal candidates for a broad range of applications, including bacterial detection, drug delivery, and phage therapy in particular. One issue obstructing phage efficiency in phage therapy settings is their poor localization to the site of infection in the human body. Here, we engineered phage T7 with lung tissue targeting homing peptides. We then used in vitro studies to demonstrate that the engineered T7 phages had a more significant association with the lung epithelium cells than wild-type T7. In addition, we showed that, in general, there was a trend of increased association of engineered phages with the lung epithelium cells but not mouse fibroblast cells, allowing for targeted tissue specificity. These results indicate that appending phages with homing peptides would potentially allow for greater phage concentrations and greater efficacy at the infection site.
Collapse
Affiliation(s)
- Aurelija M. Grigonyte
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK;
| | - Alexia Hapeshi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK;
| | | | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
196
|
Lu TM, Barcia Durán JG, Houghton S, Rafii S, Redmond D, Lis R. Human Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells: Current Controversies. Front Physiol 2021; 12:642812. [PMID: 33868008 PMCID: PMC8044318 DOI: 10.3389/fphys.2021.642812] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Brain microvascular endothelial cells (BMECs) possess unique properties that are crucial for many functions of the blood-brain-barrier (BBB) including maintenance of brain homeostasis and regulation of interactions between the brain and immune system. The generation of a pure population of putative brain microvascular endothelial cells from human pluripotent stem cell sources (iBMECs) has been described to meet the need for reliable and reproducible brain endothelial cells in vitro. Human pluripotent stem cells (hPSCs), embryonic or induced, can be differentiated into large quantities of specialized cells in order to study development and model disease. These hPSC-derived iBMECs display endothelial-like properties, such as tube formation and low-density lipoprotein uptake, high transendothelial electrical resistance (TEER), and barrier-like efflux transporter activities. Over time, the de novo generation of an organotypic endothelial cell from hPSCs has aroused controversies. This perspective article highlights the developments made in the field of hPSC derived brain endothelial cells as well as where experimental data are lacking, and what concerns have emerged since their initial description.
Collapse
Affiliation(s)
- Tyler M Lu
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States.,Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, United States
| | - José Gabriel Barcia Durán
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States
| | - Sean Houghton
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States
| | - Shahin Rafii
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States
| | - David Redmond
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States
| | - Raphaël Lis
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States.,Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
197
|
Sluiter TJ, van Buul JD, Huveneers S, Quax PHA, de Vries MR. Endothelial Barrier Function and Leukocyte Transmigration in Atherosclerosis. Biomedicines 2021; 9:328. [PMID: 33804952 PMCID: PMC8063931 DOI: 10.3390/biomedicines9040328] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelium is a highly specialized barrier that controls passage of fluids and migration of cells from the lumen into the vessel wall. Endothelial cells assist leukocytes to extravasate and despite the variety in the specific mechanisms utilized by different leukocytes to cross different vascular beds, there is a general principle of capture, rolling, slow rolling, arrest, crawling, and ultimately diapedesis via a paracellular or transcellular route. In atherosclerosis, the barrier function of the endothelium is impaired leading to uncontrolled leukocyte extravasation and vascular leakage. This is also observed in the neovessels that grow into the atherosclerotic plaque leading to intraplaque hemorrhage and plaque destabilization. This review focuses on the vascular endothelial barrier function and the interaction between endothelial cells and leukocytes during transmigration. We will discuss the role of endothelial dysfunction, transendothelial migration of leukocytes and plaque angiogenesis in atherosclerosis.
Collapse
Affiliation(s)
- Thijs J. Sluiter
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jaap D. van Buul
- Sanquin Research and Landsteiner Laboratory, Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Paul H. A. Quax
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Margreet R. de Vries
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
198
|
Abstract
Recreating human organ-level function in vitro is a rapidly evolving field that integrates tissue engineering, stem cell biology, and microfluidic technology to produce 3D organoids. A critical component of all organs is the vasculature. Herein, we discuss general strategies to create vascularized organoids, including common source materials, and survey previous work using vascularized organoids to recreate specific organ functions and simulate tumor progression. Vascularization is not only an essential component of individual organ function but also responsible for coupling the fate of all organs and their functions. While some success in coupling two or more organs together on a single platform has been demonstrated, we argue that the future of vascularized organoid technology lies in creating organoid systems complete with tissue-specific microvasculature and in coupling multiple organs through a dynamic vascular network to create systems that can respond to changing physiological conditions.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| |
Collapse
|
199
|
Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 2021; 24:289-310. [PMID: 33745018 PMCID: PMC7982081 DOI: 10.1007/s10456-021-09780-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
‘Angiodiversity’ refers to the structural and functional heterogeneity of endothelial cells (EC) along the segments of the vascular tree and especially within the microvascular beds of different organs. Organotypically differentiated EC ranging from continuous, barrier-forming endothelium to discontinuous, fenestrated endothelium perform organ-specific functions such as the maintenance of the tightly sealed blood–brain barrier or the clearance of macromolecular waste products from the peripheral blood by liver EC-expressed scavenger receptors. The microvascular bed of the liver, composed of discontinuous, fenestrated liver sinusoidal endothelial cells (LSEC), is a prime example of organ-specific angiodiversity. Anatomy and development of LSEC have been extensively studied by electron microscopy as well as linage-tracing experiments. Recent advances in cell isolation and bulk transcriptomics or single-cell RNA sequencing techniques allowed the identification of distinct LSEC molecular programs and have led to the identification of LSEC subpopulations. LSEC execute homeostatic functions such as fine tuning the vascular tone, clearing noxious substances from the circulation, and modulating immunoregulatory mechanisms. In recent years, the identification and functional analysis of LSEC-derived angiocrine signals, which control liver homeostasis and disease pathogenesis in an instructive manner, marks a major change of paradigm in the understanding of liver function in health and disease. This review summarizes recent advances in the understanding of liver vascular angiodiversity and the functional consequences resulting thereof.
Collapse
|
200
|
Park JH, Shin HH, Rhyu HS, Kim SH, Jeon ES, Lim BK. Vascular Endothelial Integrity Affects the Severity of Enterovirus-Mediated Cardiomyopathy. Int J Mol Sci 2021; 22:3053. [PMID: 33802680 PMCID: PMC8002520 DOI: 10.3390/ijms22063053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Coxsackievirus and adenovirus receptor (CAR) is present in epithelial and vascular endothelial cell junctions. We have previously shown a hemorrhagic phenotype in germ-line CAR knock-out mouse embryos; we have also found that CAR interacts with ZO-1 and β-catenin. However, the role of CAR in vascular endothelial junction permeability has not been proven. To understand the roles of CAR in the vascular endothelial junctions, we generated endothelium-specific CAR knockout (CAR-eKO) mice. In the absence of CAR, the endothelial cell layer showed an increase in transmembrane electrical resistance (TER, Ω) and coxsackievirus permeability. Evans blue dye and 70 kDa dextran-FITC were delivered by tail vein injection. We observed increased vascular permeability in the hearts of adult CAR-eKO mice compare with wild-type (WT) mice. There was a marked increase in monocyte and macrophage penetration into the peritoneal cavity caused by thioglycolate-induced peritonitis. We found that CAR ablation in endothelial cells was not significantly increased coxsackievirus B3 (CVB3) induced myocarditis in murine model. However, tissue virus titers were significantly higher in CAR-eKO mice compared with WT. Moreover, CVB3 was detected in the brain of CAR-eKO mice. Endothelial CAR deletion affects the expression of major endothelial junction proteins, such as cadherin and platelet endothelial cell adhesion molecule-1 (PECAM-1) in the cultured endothelial cells as well as liver vessel. We suggest that CAR expression is required for normal vascular permeability and endothelial tight junction homeostasis. Furthermore, CVB3 organ penetration and myocarditis severities were dependent on the endothelial CAR level.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - Ha-Hyeon Shin
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - Hyun-Seung Rhyu
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - So-Hee Kim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine 50 Irwon dong, Gangnam-gu, Seoul 06351, Korea;
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| |
Collapse
|