151
|
Aschbacher K, Derakhshandeh R, Flores AJ, Narayan S, Mendes WB, Springer ML. Circulating angiogenic cell function is inhibited by cortisol in vitro and associated with psychological stress and cortisol in vivo. Psychoneuroendocrinology 2016; 67:216-23. [PMID: 26925833 PMCID: PMC4808379 DOI: 10.1016/j.psyneuen.2016.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023]
Abstract
Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health.
Collapse
Affiliation(s)
- Kirstin Aschbacher
- Department of Psychiatry, University of California, 3333 California Street, San Francisco, CA 94143, United States; The Institute for Integrative Health, 1407 Fleet Street, Baltimore, MD 21231, United States.
| | | | | | | | | | | |
Collapse
|
152
|
Dauwe D, Pelacho B, Wibowo A, Walravens AS, Verdonck K, Gillijns H, Caluwe E, Pokreisz P, van Gastel N, Carmeliet G, Depypere M, Maes F, Vanden Driessche N, Droogne W, Van Cleemput J, Vanhaecke J, Prosper F, Verfaillie C, Luttun A, Janssens S. Neovascularization Potential of Blood Outgrowth Endothelial Cells From Patients With Stable Ischemic Heart Failure Is Preserved. J Am Heart Assoc 2016; 5:e002288. [PMID: 27091182 PMCID: PMC4843533 DOI: 10.1161/jaha.115.002288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Blood outgrowth endothelial cells (BOECs) mediate therapeutic neovascularization in experimental models, but outgrowth characteristics and functionality of BOECs from patients with ischemic cardiomyopathy (ICMP) are unknown. We compared outgrowth efficiency and in vitro and in vivo functionality of BOECs derived from ICMP with BOECs from age‐matched (ACON) and healthy young (CON) controls. Methods and Results We isolated 3.6±0.6 BOEC colonies/100×106 mononuclear cells (MNCs) from 60‐mL blood samples of ICMP patients (n=45; age: 66±1 years; LVEF: 31±2%) versus 3.5±0.9 colonies/100×106MNCs in ACON (n=32; age: 60±1 years) and 2.6±0.4 colonies/100×106MNCs in CON (n=55; age: 34±1 years), P=0.29. Endothelial lineage (VEGFR2+/CD31+/CD146+) and progenitor (CD34+/CD133−) marker expression was comparable in ICMP and CON. Growth kinetics were similar between groups (P=0.38) and not affected by left ventricular systolic dysfunction, maladaptive remodeling, or presence of cardiovascular risk factors in ICMP patients. In vitro neovascularization potential, assessed by network remodeling on Matrigel and three‐dimensional spheroid sprouting, did not differ in ICMP from (A)CON. Secretome analysis showed a marked proangiogenic profile, with highest release of angiopoietin‐2 (1.4±0.3×105 pg/106ICMP‐BOECs) and placental growth factor (5.8±1.5×103 pg/106ICMP BOECs), independent of age or ischemic disease. Senescence‐associated β‐galactosidase staining showed comparable senescence in BOECs from ICMP (5.8±2.1%; n=17), ACON (3.9±1.1%; n=7), and CON (9.0±2.8%; n=13), P=0.19. High‐resolution microcomputed tomography analysis in the ischemic hindlimb of nude mice confirmed increased arteriogenesis in the thigh region after intramuscular injections of BOECs from ICMP (P=0.025; n=8) and CON (P=0.048; n=5) over vehicle control (n=8), both to a similar extent (P=0.831). Conclusions BOECs can be successfully culture‐expanded from patients with ICMP. In contrast to impaired functionality of ICMP‐derived bone marrow MNCs, BOECs retain a robust proangiogenic profile, both in vitro and in vivo, with therapeutic potential for targeting ischemic disease.
Collapse
Affiliation(s)
- Dieter Dauwe
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Beatriz Pelacho
- Cell Therapy Department, Center for Applied Medicine Research, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Arief Wibowo
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Ann-Sophie Walravens
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Kristoff Verdonck
- Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Hilde Gillijns
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Ellen Caluwe
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Nick van Gastel
- Department of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Maarten Depypere
- Department of Electrical Engineering, Center for the Processing of Speech and Images, KU Leuven, Leuven, Belgium
| | - Frederik Maes
- Department of Electrical Engineering, Center for the Processing of Speech and Images, KU Leuven, Leuven, Belgium
| | - Nina Vanden Driessche
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Walter Droogne
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Johan Van Cleemput
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Johan Vanhaecke
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Felipe Prosper
- Cell Therapy Department, Center for Applied Medicine Research, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain Hematology Department, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven, Belgium
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
153
|
Flex A, Biscetti F, Iachininoto MG, Nuzzolo ER, Orlando N, Capodimonti S, Angelini F, Valentini CG, Bianchi M, Larocca LM, Martini M, Teofili L. Human cord blood endothelial progenitors promote post-ischemic angiogenesis in immunocompetent mouse model. Thromb Res 2016; 141:106-11. [PMID: 26994683 DOI: 10.1016/j.thromres.2016.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Human cord blood (CB) endothelial colony forming cells (ECFCs) are endowed with high vascular regenerative ability in immunodeficient mice, but their immunogenicity and susceptibility to rejection in immunocompetent models has yet to be explored. METHODS We injected CB ECFCs in non-immuno-suppressed C57BL/6J mice after having induced the hindlimb ischemia and we investigated their contribution to the recovery from the ischemic injury. Human ECFCs (hECFCs) were administered by intramuscular injection and hindlimb blood perfusion was measured by laser Doppler analysis at 7-day intervals for 28days after treatment. Mice were sacrificed after 7 and 28days and immunohistochemistry for specific human (CD31) and mouse (von Willebrand factor) endothelial antigens was carried out. Before euthanasia, blood samples to assess cytokines and angiogenic growth factor levels were collected. RESULTS Mice injected with hECFCs showed a prompter and greater recovery of blood flow than controls. Several endothelial cells of human origin were detected at day7 after injection and their number declined progressively. Likewise, a progressive increase of mouse-derived vascular structures were observed, paralleled by the amplified endogenous production of various soluble mediators of angiogenesis, including Vascular Endothelial Growth Factor and Fibroblast Growth Factor. CONCLUSIONS Overall, our findings are consistent with the hypothesis that human ECFCs might expand the endogenous vascular repair potential of recipients and support their possible HLA-independent unconventional use.
Collapse
Affiliation(s)
- Andrea Flex
- Department of Internal Medicine, Catholic University, Rome, Italy
| | | | | | | | | | | | - Flavia Angelini
- Department of Internal Medicine, Catholic University, Rome, Italy
| | | | - Maria Bianchi
- Institute of Hematology, Catholic University, Rome, Italy
| | | | | | | |
Collapse
|
154
|
Paneni F, Costantino S, Kränkel N, Cosentino F, Lüscher TF. Reprogramming ageing and longevity genes restores paracrine angiogenic properties of early outgrowth cells. Eur Heart J 2016; 37:1733-7. [DOI: 10.1093/eurheartj/ehw073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/01/2016] [Indexed: 01/20/2023] Open
|
155
|
Huang Z, Miao X, Patarroyo M, Nilsson GP, Pernow J, Li N. Tetraspanin CD151 and integrin α6β1 mediate platelet-enhanced endothelial colony forming cell angiogenesis. J Thromb Haemost 2016; 14:606-18. [PMID: 26749288 DOI: 10.1111/jth.13248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED ESSENTIALS: Platelet releasates (PRs) enhance endothelial colony forming cell (ECFC) angiogenesis. The impact of platelet membrane components on ECFC angiogenesis was studied by a tube formation assay. Platelets enhanced ECFC angiogenesis more potently than PR, via tetraspanin CD151 and integrin α6β1. Optimal enhancement of ECFC angiogenesis by platelets requires both membrane proteins and PR. SUMMARY BACKGROUND Platelets promote angiogenesis of endothelial colony forming cells (ECFCs), with the underlying mechanisms not being fully understood. OBJECTIVE To investigate if platelets regulate the angiogenic property of ECFCs via mechanisms beyond platelet-released angiogenic regulators. METHODS AND RESULTS Endothelial colony forming cells were generated by ECFC-directed cell culture of peripheral blood mononuclear cells. Capillary-like tube formation of ECFCs was assessed using a Matrigel assay. Platelets promoted ECFC tube formation in both basic and complete ECFC medium. Importantly, the ECFC angiogenic responses induced by platelets were stronger than those induced by platelet releasates. Thus, the branching points of ECFC tube formation (30.5 ± 9.0/field, ECFC alone) were increased by platelet releasates (58.2 ± 8.3/field) and even more profoundly by platelets (95.5 ± 17.6/field), indicating that platelet membrane components also promoted ECFC tube formation. The latter was further supported by evidence that fixed platelets did enhance ECFC tube formation. Subsequent experiments revealed that the promotion was dependent on platelet-surface glycoproteins, as removal of sialic acid from platelet glycoproteins by neuraminidase abolished the enhancement. Furthermore, platelet-expressed, but not ECFC-expressed, CD151 was important for the enhancement, as pretreatment of platelets, but not ECFCs, with a CD151-blocking antibody attenuated the effect. Integrin α6β1 on both ECFCs and platelets also participated in platelet-promoted tube formation, as integrin α6 or β1 blockade of either cell type markedly or totally inhibited the phenomenon. Moreover, platelets exerted the enhancement via the Src-PI3K signaling pathway of ECFCs. CONCLUSION Platelet-enhanced ECFC angiogenesis requires platelet tetraspanin CD151 and α6β1 integrin, as well as ECFC α6β1 integrin and Src-PI3K signaling.
Collapse
Affiliation(s)
- Z Huang
- Clinical Pharmacology Unit, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden
| | - X Miao
- Clinical Pharmacology Unit, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden
| | - M Patarroyo
- Department of Dental Medicine, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden
| | - G P Nilsson
- Clinical Immunology and Allergy Unit, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden
| | - J Pernow
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - N Li
- Clinical Pharmacology Unit, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
156
|
Zou T, Fan J, Fartash A, Liu H, Fan Y. Cell-based strategies for vascular regeneration. J Biomed Mater Res A 2016; 104:1297-314. [PMID: 26864677 DOI: 10.1002/jbm.a.35660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
Vascular regeneration is known to play an essential role in the repair of injured tissues mainly through accelerating the repair of vascular injury caused by vascular diseases, as well as the recovery of ischemic tissues. However, the clinical vascular regeneration is still challenging. Cell-based therapy is thought to be a promising strategy for vascular regeneration, since various cells have been identified to exert important influences on the process of vascular regeneration such as the enhanced endothelium formation on the surface of vascular grafts, and the induction of vessel-like network formation in the ischemic tissues. Here are a vast number of diverse cell-based strategies that have been extensively studied in vascular regeneration. These strategies can be further classified into three main categories, including cell transplantation, construction of tissue-engineered grafts, and surface modification of scaffolds. Cells used in these strategies mainly refer to terminally differentiated vascular cells, pluripotent stem cells, multipotent stem cells, and unipotent stem cells. The aim of this review is to summarize the reported research advances on the application of various cells for vascular regeneration, yielding insights into future clinical treatment for injured tissue/organ.
Collapse
Affiliation(s)
- Tongqiang Zou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Armita Fartash
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
157
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
158
|
Chen Q, Varga M, Wang X, Haddad DJ, An S, Medzikovic L, Derakhshandeh R, Kostyushev DS, Zhang Y, Clifford BT, Luu E, Danforth OM, Rafikov R, Gong W, Black SM, Suchkov SV, Fineman JR, Heiss C, Aschbacher K, Yeghiazarians Y, Springer ML. Overexpression of Nitric Oxide Synthase Restores Circulating Angiogenic Cell Function in Patients With Coronary Artery Disease: Implications for Autologous Cell Therapy for Myocardial Infarction. J Am Heart Assoc 2016; 5:e002257. [PMID: 26738788 PMCID: PMC4859354 DOI: 10.1161/jaha.115.002257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/25/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Circulating angiogenic cells (CACs) are peripheral blood cells whose functional capacity inversely correlates with cardiovascular risk and that have therapeutic benefits in animal models of cardiovascular disease. However, donor age and disease state influence the efficacy of autologous cell therapy. We sought to determine whether age or coronary artery disease (CAD) impairs the therapeutic potential of CACs for myocardial infarction (MI) and whether the use of ex vivo gene therapy to overexpress endothelial nitric oxide (NO) synthase (eNOS) overcomes these defects. METHODS AND RESULTS We recruited 40 volunteers varying by sex, age (< or ≥45 years), and CAD and subjected their CACs to well-established functional tests. Age and CAD were associated with reduced CAC intrinsic migration (but not specific response to vascular endothelial growth factor, adherence of CACs to endothelial tubes, eNOS mRNA and protein levels, and NO production. To determine how CAC function influences therapeutic potential, we injected the 2 most functional and the 2 least functional CAC isolates into mouse hearts post MI. The high-function isolates substantially improved cardiac function, whereas the low-function isolates led to cardiac function only slightly better than vehicle control. Transduction of the worst isolate with eNOS cDNA adenovirus increased NO production, migration, and cardiac function of post-MI mice implanted with the CACs. Transduction of the best isolate with eNOS small interfering RNA adenovirus reduced all of these capabilities. CONCLUSIONS Age and CAD impair multiple functions of CACs and limit therapeutic potential for the treatment of MI. eNOS gene therapy in CACs from older donors or those with CAD has the potential to improve autologous cell therapy outcomes.
Collapse
Affiliation(s)
- Qiumei Chen
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Monika Varga
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Xiaoyin Wang
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Daniel J. Haddad
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Songtao An
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Lejla Medzikovic
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Ronak Derakhshandeh
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | | | - Yan Zhang
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Brian T. Clifford
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Emmy Luu
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Olivia M. Danforth
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | | | - Wenhui Gong
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoCA
| | | | | | - Jeffrey R. Fineman
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoCA
| | - Christian Heiss
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Kirstin Aschbacher
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCA
| | - Yerem Yeghiazarians
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
- Eli & Edythe Broad Institute of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoCA
| | - Matthew L. Springer
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
- Eli & Edythe Broad Institute of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoCA
| |
Collapse
|
159
|
Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease. Stem Cells Int 2015; 2016:8043792. [PMID: 26839569 PMCID: PMC4709789 DOI: 10.1155/2016/8043792] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/16/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs) in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to "endothelial progenitor cells" and "endothelium" and, for the different categories, respectively, "smoking"; "blood pressure"; "diabetes mellitus" or "insulin resistance"; "dyslipidemia"; "aging" or "elderly"; "angina pectoris" or "myocardial infarction"; "stroke" or "cerebrovascular disease"; "homocysteine"; "C-reactive protein"; "vitamin D". Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.
Collapse
|
160
|
Lewis DM, Abaci HE, Xu Y, Gerecht S. Endothelial progenitor cell recruitment in a microfluidic vascular model. Biofabrication 2015; 7:045010. [PMID: 26693599 DOI: 10.1088/1758-5090/7/4/045010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During vessel injury, endothelial progenitors cells (EPCs) are recruited from bone marrow and directed to the hypoxic injury site. The hypoxic conditions in the damaged blood vessel promote TNF-α, which upregulates intercellular adhesion molecule-1 (ICAM-1). EPCs attach to endothelial cell lining using ICAM-1. Here we aimed to examine EPC attachment to ECs in an injured-blood vessel conditions. We first determined ICAM-1 expression in stimulated HUVECs. We stimulated HUVECs with 21% oxygen (atmospheric), atmospheric with TNF-α-supplemented media, 1% oxygen (hypoxia), and hypoxia with TNF-α-supplemented media and found the highest ECFC attachment on HUVECs stimulated with TNF-α and hypoxia, correlating with the highest ICAM-1 expression. We next designed, fabricated and tested a three-dimensional microbioreactor (3D MBR) system with precise control and monitoring of dissolve oxygen and media flow rate in the cellular environment. We utilized a step-wise seeding approach, producing monolayer of HUVECs on all four walls. When stimulated with both TNF-α and hypoxia, ECFC retention on HUVECs was significantly increased under low shear stress compared to static controls. Overall, the 3D MBR system mimics the pathological oxygen tension and shear stress in the damaged vasculature, providing a platform to model vascular-related disorders.
Collapse
Affiliation(s)
- Daniel M Lewis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
161
|
Pang JH, Farhatnia Y, Godarzi F, Tan A, Rajadas J, Cousins BG, Seifalian AM. In situ Endothelialization: Bioengineering Considerations to Translation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6248-64. [PMID: 26460851 DOI: 10.1002/smll.201402579] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 06/14/2015] [Indexed: 05/10/2023]
Abstract
Improving patency rates of current cardiovascular implants remains a major challenge. It is widely accepted that regeneration of a healthy endothelium layer on biomaterials could yield the perfect blood-contacting surface. Earlier efforts in pre-seeding endothelial cells in vitro demonstrated success in enhancing patency, but translation to the clinic is largely hampered due to its impracticality. In situ endothelialization, which aims to create biomaterial surfaces capable of self-endothelializing upon implantation, appears to be an extremely promising solution, particularly with the utilization of endothelial progenitor cells (EPCs). Nevertheless, controlling cell behavior in situ using immobilized biomolecules or physical patterning can be complex, thus warranting careful consideration. This review aims to provide valuable insight into the rationale and recent developments in biomaterial strategies to enhance in situ endothelialization. In particular, a discussion on the important bio-/nanoengineering considerations and lessons learnt from clinical trials are presented to aid the future translation of this exciting paradigm.
Collapse
Affiliation(s)
- Jun Hon Pang
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Yasmin Farhatnia
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Fatemeh Godarzi
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
- UCL Medical School, University College London (UCL), London, UK
- Biomaterials & Advanced Drug Delivery Laboratory, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Jayakumar Rajadas
- Biomaterials & Advanced Drug Delivery Laboratory, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Brian G Cousins
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Alexander M Seifalian
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
- Royal Free Hospital, London, UK
- NanoRegMed Ltd, London, UK
| |
Collapse
|
162
|
Wilson HK, Canfield SG, Shusta EV, Palecek SP. Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells. Stem Cells 2015; 32:3037-45. [PMID: 25070152 DOI: 10.1002/stem.1797] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/22/2014] [Indexed: 01/06/2023]
Abstract
Accumulating evidence suggests that endothelial cells (ECs) display significant heterogeneity across tissue types, playing an important role in tissue regeneration and homeostasis. Recent work demonstrating the derivation of tissue-specific microvascular endothelial cells (TS-MVECs) from human pluripotent stem cells (hPSCs) has ignited the potential to generate tissue-specific models which may be applied to regenerative medicine and in vitro modeling applications. Here, we review techniques by which hPSC-derived TS-MVECs have been made to date and discuss how current hPSC-EC differentiation protocols may be directed toward tissue-specific fates. We begin by discussing the nature of EC tissue specificity in vivo and review general hPSC-EC differentiation protocols generated over the last decade. Finally, we describe how specificity can be integrated into hPSC-EC protocols to generate hPSC-derived TS-MVECs in vitro, including EC and parenchymal cell coculture, directed differentiation, and direct reprogramming strategies.
Collapse
Affiliation(s)
- Hannah K Wilson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
163
|
Yıldırım C, Favre J, Weijers EM, Fontijn RD, van Wijhe MH, van Vliet SJ, Boon RA, Koolwijk P, van der Pouw Kraan TCTM, Horrevoets AJG. IFN-β affects the angiogenic potential of circulating angiogenic cells by activating calpain 1. Am J Physiol Heart Circ Physiol 2015; 309:H1667-78. [DOI: 10.1152/ajpheart.00810.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 09/01/2015] [Indexed: 01/15/2023]
Abstract
Circulating angiogenic cells (CACs) are monocyte-derived cells with endothelial characteristics, which contribute to both angiogenesis and arteriogenesis in a paracrine way. Interferon-β (IFN-β) is known to inhibit these divergent processes in animals and patients. We hypothesized that IFN-β might act by affecting the differentiation and function of CACs. CACs were cultured from peripheral blood mononuclear cells and phenotypically characterized by surface expression of monocytic and endothelial markers. IFN-β significantly reduced the number of CACs by 18–64%. Apoptosis was not induced by IFN-β, neither in mononuclear cells during differentiation, nor after maturation to CACs. Rather, IFN-β impaired adhesion to, and spreading on, fibronectin, which was dependent on α5β1 (VLA-5)-integrin. IFN-β affected the function of VLA-5 in mature CACs, leading to rounding and detachment of cells, by induction of calpain 1 activity. Cell rounding and detachment was completely reversed by inhibition of calpain 1 activity in mature CACs. During in vitro capillary formation, CAC addition and calpain 1 inhibition enhanced sprouting of endothelial cells to a comparable extent, but were not sufficient to rescue tube formation in the presence of IFN-β. We show that the IFN-β-induced reduction of the numbers of in vitro differentiated CACs is based on activation of calpain 1, resulting in an attenuated adhesion to extracellular matrix proteins via VLA-5. In vivo, this could lead to inhibition of vessel formation due to reduction of the locally recruited CAC numbers and their paracrine angiogenic factors.
Collapse
Affiliation(s)
- Cansu Yıldırım
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Julie Favre
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ester M. Weijers
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; and
| | - Ruud D. Fontijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Michiel H. van Wijhe
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; and
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Reinier A. Boon
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Pieter Koolwijk
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; and
| | | | - Anton J. G. Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
164
|
Mazzucchelli I, Lisini D, Garofoli F, Dragoni S, Angelini M, Pozzi M, Bonetti E, Tzialla C, Kramer BW, Spinillo A, Maccario R, Rosti V, Moccia F, Borghesi A, Stronati M. Expression and function of toll-like receptors in human circulating endothelial colony forming cells. Immunol Lett 2015; 168:98-104. [DOI: 10.1016/j.imlet.2015.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/27/2015] [Indexed: 12/11/2022]
|
165
|
Hong Y, Eleftheriou D, Klein NJ, Brogan PA. Impaired function of endothelial progenitor cells in children with primary systemic vasculitis. Arthritis Res Ther 2015; 17:292. [PMID: 26475131 PMCID: PMC4609146 DOI: 10.1186/s13075-015-0810-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/30/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Previously, we demonstrated that children with active systemic vasculitis (SV) have higher circulating CD34 + CD133 + KDR+ endothelial progenitor cells (EPC); the function of these EPCs, and their relationship with disease activity in vasculitis remains largely unexplored. We hypothesized that although EPC numbers are higher, EPC function is impaired in active SV of the young. The aims of this study were therefore to: 1. investigate the relationship between disease activity and EPC function in children with SV; and 2. study the influence of systemic inflammation on EPC function by investigating the effects of hyperthermia and TNF-α on EPC function. METHODS We performed a cross-sectional study of unselected children with SV with different levels of disease activity attending a single center (Great Ormond Street Hospital, London) between October 2008 and December 2014. EPCs were isolated from peripheral blood of children with SV, and healthy child controls. EPC function was assessed by their potential to form colonies (EPC-CFU), and ability to form clusters and incorporate into human umbilical vein endothelial cell (HUVEC) vascular structures in matrigel. The effects of hyperthermia and TNF-α on EPC function were also studied. RESULTS Twenty children, median age 12-years (5-16.5; nine males) were studied. EPC-CFU and the number of EPC clusters formed on matrigel were significantly reduced in children with active vasculitis compared with healthy controls (p = 0.02 for EPC-CFU; p = 0.01 for EPC cluster formation). Those with active vasculitis had lower EPC-CFU and EPC cluster formation than those with inactive disease, although non-significantly so. In addition, EPC incorporation into matrigel HUVEC networks was lower in children with SV compared with healthy children, irrespective of disease activity. Ex-vivo pre-treatment of EPC with hyperthermia impaired EPC function; TNF-α down-regulated EPC expression of CD18/CD11b and resulted in decreased incorporation into HUVEC networks. CONCLUSIONS Whilst our previous work showed that circulating CD34 + EPC numbers are well preserved, this study revealed that EPC function is significantly impaired in children with vasculitis. It is possible that the chronic inflammatory milieu associated with vasculitis may impair EPC function, and thus contribute to an unfavourable balance between endothelial injury and repair. The mechanism of this remains to be established, however.
Collapse
Affiliation(s)
- Ying Hong
- Infection, Immunity, Immunology and Physiological Medicine, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Despina Eleftheriou
- Infection, Immunity, Immunology and Physiological Medicine, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Nigel J Klein
- Infection, Immunity, Immunology and Physiological Medicine, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Paul A Brogan
- Infection, Immunity, Immunology and Physiological Medicine, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
166
|
Sradnick J, Rong S, Luedemann A, Parmentier SP, Bartaun C, Todorov VT, Gueler F, Hugo CP, Hohenstein B. Extrarenal Progenitor Cells Do Not Contribute to Renal Endothelial Repair. J Am Soc Nephrol 2015; 27:1714-26. [PMID: 26453608 DOI: 10.1681/asn.2015030321] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) may be relevant contributors to endothelial cell (EC) repair in various organ systems. In this study, we investigated the potential role of EPCs in renal EC repair. We analyzed the major EPC subtypes in murine kidneys, blood, and spleens after induction of selective EC injury using the concanavalin A/anti-concanavalin A model and after ischemia/reperfusion (I/R) injury as well as the potential of extrarenal cells to substitute for injured local EC. Bone marrow transplantation (BMTx), kidney transplantation, or a combination of both were performed before EC injury to allow distinction of extrarenal or BM-derived cells from intrinsic renal cells. During endothelial regeneration, cells expressing markers of endothelial colony-forming cells (ECFCs) were the most abundant EPC subtype in kidneys, but were not detected in blood or spleen. Few cells expressing markers of EC colony-forming units (EC-CFUs) were detected. In BM chimeric mice (C57BL/6 with tandem dimer Tomato-positive [tdT+] BM cells), circulating and splenic EC-CFUs were BM-derived (tdT+), whereas cells positive for ECFC markers in kidneys were not. Indeed, most BM-derived tdT+ cells in injured kidneys were inflammatory cells. Kidneys from C57BL/6 donors transplanted into tdT+ recipients with or without prior BMTx from C57BL/6 mice were negative for BM-derived or extrarenal ECFCs. Overall, extrarenal cells did not substitute for any intrinsic ECs. These results demonstrate that endothelial repair in mouse kidneys with acute endothelial lesions depends exclusively on local mechanisms.
Collapse
Affiliation(s)
- Jan Sradnick
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Song Rong
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Hannover, Germany
| | - Anika Luedemann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Simon P Parmentier
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Christoph Bartaun
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Vladimir T Todorov
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Faikah Gueler
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Hannover, Germany
| | - Christian P Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Bernd Hohenstein
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| |
Collapse
|
167
|
Gandhi JK, Zivkovic L, Fisher JP, Yoder MC, Brey EM. Enhanced Viability of Endothelial Colony Forming Cells in Fibrin Microbeads for Sensor Vascularization. SENSORS 2015; 15:23886-902. [PMID: 26393602 PMCID: PMC4610420 DOI: 10.3390/s150923886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 11/29/2022]
Abstract
Enhanced vascularization at sensor interfaces can improve long-term function. Fibrin, a natural polymer, has shown promise as a biomaterial for sensor coating due to its ability to sustain endothelial cell growth and promote local vascularization. However, the culture of cells, particularly endothelial cells (EC), within 3D scaffolds for more than a few days is challenging due to rapid loss of EC viability. In this manuscript, a robust method for developing fibrin microbead scaffolds for long-term culture of encapsulated ECs is described. Fibrin microbeads are formed using sodium alginate as a structural template. The size, swelling and structural properties of the microbeads were varied with needle gauge and composition and concentration of the pre-gel solution. Endothelial colony-forming cells (ECFCs) were suspended in the fibrin beads and cultured within a perfusion bioreactor system. The perfusion bioreactor enhanced ECFCs viability and genome stability in fibrin beads relative to static culture. Perfusion bioreactors enable 3D culture of ECs within fibrin beads for potential application as a sensor coating.
Collapse
Affiliation(s)
- Jarel K Gandhi
- Department of Biomedical Engineering, Wishnick Hall 223, 3255 South Dearborn Street, Chicago, IL 60616, USA.
| | - Lada Zivkovic
- Department of Biomedical Engineering, Wishnick Hall 223, 3255 South Dearborn Street, Chicago, IL 60616, USA.
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade 11000, Serbia.
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Mervin C Yoder
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46201, USA.
| | - Eric M Brey
- Department of Biomedical Engineering, Wishnick Hall 223, 3255 South Dearborn Street, Chicago, IL 60616, USA.
- Research Service, Hines Veterans Administration Hospital, Hines, IL 60141, USA.
| |
Collapse
|
168
|
Ikutomi M, Sahara M, Nakajima T, Minami Y, Morita T, Hirata Y, Komuro I, Nakamura F, Sata M. Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation. J Mol Cell Cardiol 2015; 86:121-35. [DOI: 10.1016/j.yjmcc.2015.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/10/2015] [Accepted: 07/24/2015] [Indexed: 01/29/2023]
|
169
|
Lo Gullo A, Mandraffino G, Bagnato G, Aragona CO, Imbalzano E, D’Ascola A, Rotondo F, Cinquegrani A, Mormina E, Saitta C, Versace AG, Sardo MA, Lo Gullo R, Loddo S, Saitta A. Vitamin D Status in Rheumatoid Arthritis: Inflammation, Arterial Stiffness and Circulating Progenitor Cell Number. PLoS One 2015; 10:e0134602. [PMID: 26241902 PMCID: PMC4524708 DOI: 10.1371/journal.pone.0134602] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/12/2015] [Indexed: 12/11/2022] Open
Abstract
Background and Aims Suboptimal vitamin D status was recently acknowledged as an independent predictor of cardiovascular diseases and all-cause mortality in several clinical settings, and its serum levels are commonly reduced in Rheumatoid Arthritis (RA). Patients affected by RA present accelerated atherosclerosis and increased cardiovascular morbidity and mortality with respect to the general population. In RA, it has been reported an impairment of the number and the activity of circulating proangiogenic haematopoietic cells (PHCs), including CD34+, that may play a role in endothelial homeostasis. The purpose of the study is to investigate the association between vitamin D levels and PHCs, inflammatory markers, and arterial stiffening in patients with RA. Methods and Results CD34+ cells were isolated from 27 RA patients and 41 controls. Vitamin D levels, C-reactive protein (CRP), fibrinogen, pulse wave velocity (PWV), and carotid intima-media thickness (cIMT) were also evaluated. CD34+ count and vitamin D levels were lower in RA patients as compared to controls, while fibrinogen, CRP, PWV and cIMT were higher in RA patients. CD34+ cell number appeared to be associated with vitamin D levels, and negatively correlated to fibrinogen and early atherosclerosis markers (PWV and cIMT); vitamin D levels appear also to be inversely associated to fibrinogen. Conclusions RA patients with moderate disease activity presented with low vitamin D levels, low CD34+ cell count, increased PWV and cIMT; we found that vitamin D deficiency is associated to CD34+ cell reduction in peripheral blood, and with fibrinogen levels. This suggests that vitamin D might contribute to endothelial homeostasis in patients with RA.
Collapse
Affiliation(s)
- Alberto Lo Gullo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- * E-mail:
| | - Gianluca Bagnato
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Angela D’Ascola
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Messina, Italy
| | - Francesco Rotondo
- Department of General Surgery and Oncology, University of Messina, Messina, Italy
| | - Antonella Cinquegrani
- Department of Biomedical Sciences and of Morphologic and Functional Images, University of Messina, Messina, Italy
| | - Enricomaria Mormina
- Department of Biomedical Sciences and of Morphologic and Functional Images, University of Messina, Messina, Italy
| | - Carlo Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Maria Adriana Sardo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Renato Lo Gullo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Saverio Loddo
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
170
|
Endothelial progenitor cells support tumour growth and metastatisation: implications for the resistance to anti-angiogenic therapy. Tumour Biol 2015; 36:6603-14. [DOI: 10.1007/s13277-015-3823-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022] Open
|
171
|
Hu J, Xu Q, McTiernan C, Lai YC, Osei-Hwedieh D, Gladwin M. Novel Targets of Drug Treatment for Pulmonary Hypertension. Am J Cardiovasc Drugs 2015; 15:225-34. [PMID: 26016608 DOI: 10.1007/s40256-015-0125-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biomedical advances over the last decade have identified the central role of proliferative pulmonary arterial smooth muscle cells (PASMCs) in the development of pulmonary hypertension (PH). Furthermore, promoters of proliferation and apoptosis resistance in PASMCs and endothelial cells, such as aberrant signal pathways involving growth factors, G protein-coupled receptors, kinases, and microRNAs, have also been described. As a result of these discoveries, PH is currently divided into subgroups based on the underlying pathology, which allows focused and targeted treatment of the condition. The defining features of PH, which subsequently lead to vascular wall remodeling, are dysregulated proliferation of PASMCs, local inflammation, and apoptosis-resistant endothelial cells. Efforts to assess the relative contributions of these factors have generated several promising targets. This review discusses recent novel targets of therapies for PH that have been developed as a result of these advances, which are now in pre-clinical and clinical trials (e.g., imatinib [phase III]; nilotinib, AT-877ER, rituximab, tacrolimus, paroxetine, sertraline, fluoxetine, bardoxolone methyl [phase II]; and sorafenib, FK506, aviptadil, endothelial progenitor cells (EPCs) [phase I]). While substantial progress has been made in recent years in targeting key molecular pathways, PH still remains without a cure, and these novel therapies provide an important conceptual framework of categorizing patients on the basis of molecular phenotype(s) for effective treatment of the disease.
Collapse
|
172
|
Combination of granulocyte colony-stimulating factor and CXCR4 antagonist AMD3100 for effective harvest of endothelial progenitor cells from peripheral blood and in vitro formation of primitive endothelial networks. Cell Tissue Bank 2015. [DOI: 10.1007/s10561-015-9527-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
173
|
Lineen JR, Kuliszewski M, Dacouris N, Liao C, Rudenko D, Deva DP, Goldstein M, Leong-Poi H, Wald R, Yan AT, Yuen DA. Early outgrowth pro-angiogenic cell number and function do not correlate with left ventricular structure and function in conventional hemodialysis patients: a cross-sectional study. Can J Kidney Health Dis 2015; 2:25. [PMID: 26229686 PMCID: PMC4520283 DOI: 10.1186/s40697-015-0060-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Left ventricular hypertrophy (LVH) is commonly found in chronic dialysis (CD) recipients, and is associated with impaired microvascular cardiac perfusion and heart failure. In response to LVH and cardiac ischemia, early outgrowth pro-angiogenic cellS(EPCs) mobilize from the bone marrow to facilitate angiogenesis and endothelial repair. In the general population, EPC number and function correlate inversely with cardiovascular risk. In end-stage renal disease (ESRD), EPC number and function are generally reduced. Objectives To test whether left ventricular abnormalities retain their potent ability to promote EPC reparative responses in the setting of ESRD. Design Cross-sectional study. Setting St. Michael’s Hospital, Toronto, Ontario, Canada. Patients 47 prevalent chronic dialysis recipients. Measurements (1) circulating CD34+ and CD133+ EPC number, (2) cultured EPC migratory ability, in vitro differentiation potential, and apoptosis rate, and (3) cardiac magnetic resonance-measured LV mass, volume and ejection fraction. Methods Bivariate correlation analysis was performed with Spearman's rho test. Results Of the 47 patients (mean age: 54 ± 13 years), the mean delivered urea reduction was 74 ± 10 %. Mean LV mass was 123 ± 38 g. Circulating CD34+ and CD133+ EPCs represented 0.14 % (IQR: 0.05 – 0.29 %) and 0.05 % (IQR: 0.01 – 0.10 %) of peripheral blood mononuclear cells. There were no significant correlations between any EPC parameter and measures of LV mass or ejection fraction. Limitations Lack of a non-ESRD control population, and the inability to measure all parameters of EPC function due to limitations in blood sampling. Our inability to measure cardiac VEGF expression prevented an assessment of changes in cardiac EPC mobilization signals. Conclusions These data suggest that in ESRD, the reparative EPC response to cardiac hypertrophy may be blunted. Further investigation of the effects of uremia on EPC physiology and its relationship to cardiac injury are required.
Collapse
Affiliation(s)
- James R Lineen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Michael Kuliszewski
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Niki Dacouris
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Christine Liao
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Dmitriy Rudenko
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Djeven P Deva
- Department of Medical Imaging, St. Michael's Hospital, Toronto, ON Canada
| | - Marc Goldstein
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Howard Leong-Poi
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Ron Wald
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Andrew T Yan
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Darren A Yuen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada ; Division of Nephrology, St. Michael's Hospital, Li Ka Shing Knowledge Institute, Rm 509, 5th Floor, Toronto, ON M5B 2T2 Canada
| |
Collapse
|
174
|
Attar A, Aghasadeghi K, Parsanezhad ME, Namavar Jahromi B, Habibagahi M. Absence of Correlation between Changes in the Number of Endothelial Progenitor Cell Subsets. Korean Circ J 2015; 45:325-32. [PMID: 26240587 PMCID: PMC4521111 DOI: 10.4070/kcj.2015.45.4.325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 11/11/2022] Open
Abstract
Background and Objectives Previously, various methodologies were used to enumerate the endothelial progenitor cells (EPCs). We now know that these methodologies enumerate at least three different EPC subsets: circulating angiogenic cells (CACs), colony-forming unit endothelial cells (CFU-ECs), and endothelial colony-forming cells (ECFCs). It is not clear whether there is a correlation between changes in the number of these subsets. The aim of the current study is to find an answer to this question. Materials and Methods The number of all EPC subsets was quantified in the peripheral blood of nine pregnant women in their first and third trimesters of pregnancy. We enumerated 14 cell populations by quantitative flow-cytometry using various combinations of the markers, CD34, CD133, CD309, and CD45, to cover most of the reported phenotypes of CACs and ECFCs. Culturing technique was used to enumerate the CFU-ECs. Changes in the number of cells were calculated by subtracting the number of cells in the first trimester peripheral blood from the number of cells in the third trimester peripheral blood, and correlations between these changes were analyzed. Results The number of CFU-ECs did not correlate with the number of ECFCs and CACs. Also, CACs and ECFCs showed independent behaviors. However, the number of CACs showed a strong correlation with the number of CD133+CD309+ cells (p=0.001) and a moderate correlation with the number of CD34+CD309+ cells (p=0.042). Also, the number of ECFCs was correlated with the number of CD309+CD45- cells (p=0.029) and CD34+CD45- cells (p=0.03). Conclusion Our study showed that the three commonly used methods for quantifying EPC subsets represent different cells with independent behaviors. Also, any study that measured the number of EPCs using the flow cytometry method with a marker combination that lacks CD309 may be inaccurate.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ; Cell and Molecular Medicine Research Club, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ; Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Aghasadeghi
- Department of Cardiovascular Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ; Cardiovascular Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ebrahim Parsanezhad
- Department of OB-GYN, Division of Infertility and Reproductive Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ; Infertility and Reproductive Medicine Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Perinatology Research Center, Infertility Reaserch Center, Department of OB-GYN, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Habibagahi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
175
|
Abstract
Endothelial progenitor cells (EPCs) play a critical role in maintenance of the endothelial integrity and vascular homeostasis, as well as in neovascularization. Dysfunctional EPCs are believed to contribute to the endothelial dysfunction and are closely related to the development of various cardiovascular diseases, such as hypertension, hyperlipidemia, and stroke. However, the underlying mechanisms of EPC dysfunction are complicated and remain largely elusive. Recent studies have demonstrated that reactive oxygen species (ROS) are key factors that involve in modulation of stem and progenitor cell function under various physiologic and pathologic conditions. It has been shown that NADPH oxidase (NOX)-derived ROS are the major sources of ROS in cardiovascular system. Accumulating evidence suggests that NOX-mediated oxidative stress can modulate EPC bioactivities, such as mobilization, migration, and neovascularization, and that inhibition of NOX has been shown to improve EPC functions. This review summarized recent progress in the studies on the correlation between NOX-mediated EPC dysfunction and cardiovascular diseases.
Collapse
|
176
|
Kim H, Prasain N, Vemula S, Ferkowicz MJ, Yoshimoto M, Voytik-Harbin SL, Yoder MC. Human platelet lysate improves human cord blood derived ECFC survival and vasculogenesis in three dimensional (3D) collagen matrices. Microvasc Res 2015; 101:72-81. [PMID: 26122935 DOI: 10.1016/j.mvr.2015.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices. We report that the percentage of ECFC co-cultured with HPL that were alive was significantly enhanced on days 1 and 3 post-matrix formation, compared to ECFC alone containing matrices. Also, co-culture of ECFC with HPL displayed significantly more vasculogenic activity compared to ECFC alone and expressed significantly more pro-survival molecules (pAkt, p-Bad and Bcl-xL) in the 3D collagen matrices in vitro. Treatment with Akt1 inhibitor (A-674563), Akt2 inhibitor (CCT128930) and Bcl-xL inhibitor (ABT-263/Navitoclax) significantly decreased the cell survival and vasculogenesis of ECFC co-cultured with or without HPL and implicated activation of the Akt1 pathway as the critical mediator of the HPL effect on ECFC in vitro. A significantly greater average vessel number and total vascular area of human CD31(+) vessels were present in implants containing ECFC and HPL, compared to the ECFC alone implants in vivo. We conclude that implantation of ECFC with HPL in vivo promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA.
| | - Nutan Prasain
- Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA.
| | - Sasidhar Vemula
- Division of Hematology and Oncology, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA.
| | - Michael J Ferkowicz
- Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA.
| | - Momoko Yoshimoto
- Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA.
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA.
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
177
|
Carneiro GD, Godoy JAP, Werneck CC, Vicente CP. Differentiation of C57/BL6 mice bone marrow mononuclear cells into early endothelial progenitors cells in different culture conditions. Cell Biol Int 2015; 39:1138-50. [DOI: 10.1002/cbin.10487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/29/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Giane D. Carneiro
- Department of Structural and Functional Biology; State University of Campinas (UNICAMP); São Paulo Brazil
| | - Juliana A. P. Godoy
- Department of Structural and Functional Biology; State University of Campinas (UNICAMP); São Paulo Brazil
| | - Claudio C. Werneck
- Department of Biochemistry and Tissue Biology; Institute of Biology; State University of Campinas (UNICAMP); São Paulo Brazil
| | - Cristina P. Vicente
- Department of Structural and Functional Biology; State University of Campinas (UNICAMP); São Paulo Brazil
| |
Collapse
|
178
|
Angiotensin II-derived reactive oxygen species promote angiogenesis in human late endothelial progenitor cells through heme oxygenase-1 via ERK1/2 and AKT/PI3K pathways. Inflammation 2015; 37:858-70. [PMID: 24442713 DOI: 10.1007/s10753-013-9806-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II), the main component of renin-angiotensin system, could mediate pathogenic angiogenesis in cardiovascular disorders. Late endothelial progenitor cells (EPCs) possess potent self-renewal and angiogenic potency superior to early EPCs, but few study focused on the cross-talk between Ang II and late EPCs. We observed that Ang II could increase reactive oxygen species (ROS) and promote capillary formation in late EPCs. Ang II-derived ROS could also upregulate heme oxygenase-1 (HO-1) expression, and treating late EPCs with HO-1 small interfering RNA or heme oxygenase inhibitor (HO inhibitor) could inhibit Ang II-induced tube formation and increase ROS level and apoptosis rate. In addition, PD98059 and LY294002 pretreatment attenuated Ang II-induced HO-1 expression. Accordingly, Ang II-derived ROS could promote angiogenesis in late EPCs by inducing HO-1 expression via ERK1/2 and AKT/PI3K pathways, and we believe HO-1 might be a promising intervention target in EPCs due to its potent proangiogenic, antioxidant, and antiapoptosis potentials.
Collapse
|
179
|
Salvatore P, Zullo A, Sommese L, Colicchio R, Picascia A, Schiano C, Mancini FP, Napoli C. Infections and cardiovascular disease: is Bartonella henselae contributing to this matter? J Med Microbiol 2015; 64:799-809. [PMID: 26066633 DOI: 10.1099/jmm.0.000099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease is still the major cause of death worldwide despite the remarkable progress in its prevention and treatment. Endothelial progenitor cells (EPCs) have recently emerged as key players of vascular repair and regenerative medicine applied to cardiovascular disease. A large amount of effort has been put into discovering the factors that could aid or impair the number and function of EPCs, and also into characterizing these cells at the molecular level in order to facilitate their therapeutic applications in vascular disease. Interestingly, the major cardiovascular risk factors have been associated with reduced number and function of EPCs. The bacterial contribution to cardiovascular disease represents a long-standing controversy. The discovery that Bartonella henselae can infect and damage EPCs revitalizes the enduring debate about the microbiological contribution to atherosclerosis, thus allowing the hypothesis that this infection could impair the cardiovascular regenerative potential and increase the risk for cardiovascular disease. In this review, we summarize the rationale suggesting that Bartonella henselae could favour atherogenesis by infecting and damaging EPCs, thus reducing their vascular repair potential. These mechanisms suggest a novel link between communicable and non-communicable human diseases, and put forward the possibility that Bartonella henselae could enhance the susceptibility and worsen the prognosis in cardiovascular disease.
Collapse
Affiliation(s)
- Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Alberto Zullo
- CEINGE-Advanced Biotechnologies, Naples, Italy.,Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Linda Sommese
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Department of Experimental Medicine, Section of Microbiology, Second University of Naples, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonietta Picascia
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Concetta Schiano
- Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| | | | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| |
Collapse
|
180
|
Kachamakova-Trojanowska N, Bukowska-Strakova K, Zukowska M, Dulak J, Jozkowicz A. The real face of endothelial progenitor cells - Circulating angiogenic cells as endothelial prognostic marker? Pharmacol Rep 2015; 67:793-802. [PMID: 26321283 DOI: 10.1016/j.pharep.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) have been extensively studied for almost 19 years now and were considered as a potential marker for endothelial regeneration ability. On the other hand, circulating endothelial cells (CEC) were studied as biomarker for endothelial injury. Yet, in the literature, there is also huge incoherency in regards to terminology and protocols used. This results in misleading conclusions on the role of so called "EPCs", especially in the clinical field. The discrepancies are mainly due to strong phenotypic overlap between EPCs and circulating angiogenic cells (CAC), therefore changes in "EPC" terminology have been suggested. Other factors leading to inconsistent results are varied definitions of the studied populations and the lack of universal data reporting, which could strongly affect data interpretation. The current review is focused on controversies concerning the use of "EPCs"/CAC and CEC as putative endothelial diagnostic markers.
Collapse
Affiliation(s)
- Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
181
|
Zhang X, Huang Z, Xie Y, Chen X, Zhang J, Qiu Z, Ma N, Xu G, Liu X. Lower levels of plasma adiponectin and endothelial progenitor cells are associated with large artery atherosclerotic stroke. Int J Neurosci 2015; 126:121-6. [PMID: 25469454 DOI: 10.3109/00207454.2014.994624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Both adiponectin and endothelial progenitor cells (EPCs) have been proposed recently with anti-atherosclerosis effects. However, their impacts on vascular outcomes in patients with large artery atherosclerosis (LAA) are unclear. This study aimed to investigate the relationship between adiponectin, EPCs and stroke with a case-control design. METHODS The study cohort included 127 patients (61.3 ± 11.0 years; 73.2% men) with LAA stroke and 58 control subjects (60.9 ± 9.2 years; 70.7% men) referred for adiponectin and EPCs levels testing. We collected demographic, clinical, angiographical features, and laboratory data. Influence of adiponectin and EPCs levels on cerebral atherosclerosis and LAA stroke was analyzed with regression models. RESULTS The levels of adiponectin and EPCs in atherosclerotic stroke patients were significantly lower compared with matched controls (p < 0.05). Logistic regression analysis identified that reduced levels of adiponectin and EPCs were closely correlated with cerebral atherosclerosis and LAA stroke. The associations remained significant after adjustment for age, sex and other confounders. Additionally, partial correlation analysis revealed a significant positive association between adiponectin and three subpopulations of EPCs levels (CD34(+)CD133(+)CD309(+)cells: r = 0.510, p = 0.001; CD34(+) CD133(-)CD309(+)cells: r = 0.262, p = 0.004; CD34(-)CD133(+)CD309(+)cells: r = 0.348, p < 0.001). CONCLUSIONS Adiponectin is positively correlated with EPCs levels, and both of them are independently associated with LAA stroke.
Collapse
Affiliation(s)
- Xiaohao Zhang
- a Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhixin Huang
- c Department of Neurology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Shenzhen, China
| | - Yi Xie
- a Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiangliang Chen
- a Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jun Zhang
- a Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhongming Qiu
- b Department of Neurology, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Nan Ma
- a Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Gelin Xu
- a Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,b Department of Neurology, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Xinfeng Liu
- a Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,b Department of Neurology, Jinling Hospital, Second Military Medical University, Nanjing, China
| |
Collapse
|
182
|
Chauhan SK, Lee HK, Lee HS, Park EY, Jeong E, Dana R. PTK7+ Mononuclear Cells Express VEGFR2 and Contribute to Vascular Stabilization by Upregulating Angiopoietin-1. Arterioscler Thromb Vasc Biol 2015; 35:1606-15. [PMID: 25997931 DOI: 10.1161/atvbaha.114.305228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/01/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE In angiogenesis, circulating mononuclear cells are recruited to vascular lesions; however, the underlying mechanisms are poorly understood. APPROACH AND RESULTS Here, we characterize the functional role of protein tyrosine kinase 7 (PTK7)-expressing CD11b(+) mononuclear cells in vitro and in vivo using a mouse model of angiogenesis. Although the frequencies of PTK7(+)CD11b(+) cells in the bone marrow remained similar after vascular endothelial growth factor-A-induced neovascularization, we observed an 11-fold increase in the cornea. Importantly, vascular endothelial growth factor-A-induced chemotaxis of PTK7(+) cells was mediated by vascular endothelial growth factor receptor 2. In a coculture with endothelial cells, PTK7(+)CD11b(+) cells stabilized the vascular network for 2 weeks by expressing high levels of angiopoietin-1. The enhanced vascular stability was abolished by knockdown of angiopoietin-1 in PTK7(+)CD11b(+) cells and could be restored by angiopoietin-1 treatment. CONCLUSIONS We conclude that PTK7 expression in perivascular mononuclear cells induces vascular endothelial growth factor receptor 2 and angiopoietin-1 expression and thus contributes to vascular stabilization in angiogenesis.
Collapse
Affiliation(s)
- Sunil K Chauhan
- From the Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA (S.K.C., H.K.L., H.S.L., E.Y.P., R.D.); Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea (H.K.L., E.J.); and Department of Ophthalmology, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea (H.S.L.)
| | - Hyung Keun Lee
- From the Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA (S.K.C., H.K.L., H.S.L., E.Y.P., R.D.); Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea (H.K.L., E.J.); and Department of Ophthalmology, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea (H.S.L.).
| | - Hyun Soo Lee
- From the Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA (S.K.C., H.K.L., H.S.L., E.Y.P., R.D.); Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea (H.K.L., E.J.); and Department of Ophthalmology, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea (H.S.L.)
| | - Eun Young Park
- From the Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA (S.K.C., H.K.L., H.S.L., E.Y.P., R.D.); Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea (H.K.L., E.J.); and Department of Ophthalmology, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea (H.S.L.)
| | - Eunae Jeong
- From the Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA (S.K.C., H.K.L., H.S.L., E.Y.P., R.D.); Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea (H.K.L., E.J.); and Department of Ophthalmology, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea (H.S.L.)
| | - Reza Dana
- From the Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA (S.K.C., H.K.L., H.S.L., E.Y.P., R.D.); Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea (H.K.L., E.J.); and Department of Ophthalmology, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea (H.S.L.).
| |
Collapse
|
183
|
Cubbon RM, Yuldasheva NY, Viswambharan H, Mercer BN, Baliga V, Stephen SL, Askham J, Sukumar P, Skromna A, Mughal RS, Walker AMN, Bruns A, Bailey MA, Galloway S, Imrie H, Gage MC, Rakobowchuk M, Li J, Porter KE, Ponnambalam S, Wheatcroft SB, Beech DJ, Kearney MT. Restoring Akt1 activity in outgrowth endothelial cells from South Asian men rescues vascular reparative potential. Stem Cells 2015; 32:2714-23. [PMID: 24916783 DOI: 10.1002/stem.1766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 01/09/2023]
Abstract
Recent data suggest reduced indices of vascular repair in South Asian men, a group at increased risk of cardiovascular events. Outgrowth endothelial cells (OEC) represent an attractive tool to study vascular repair in humans and may offer potential in cell-based repair therapies. We aimed to define and manipulate potential mechanisms of impaired vascular repair in South Asian (SA) men. In vitro and in vivo assays of vascular repair and angiogenesis were performed using OEC derived from SA men and matched European controls, prior defining potentially causal molecular mechanisms. SA OEC exhibited impaired colony formation, migration, and in vitro angiogenesis, associated with decreased expression of the proangiogenic molecules Akt1 and endothelial nitric oxide synthase (eNOS). Transfusion of European OEC into immunodeficient mice after wire-induced femoral artery injury augmented re-endothelialization, in contrast with SA OEC and vehicle; SA OEC also failed to promote angiogenesis after induction of hind limb ischemia. Expression of constitutively active Akt1 (E17KAkt), but not green fluorescent protein control, in SA OEC increased in vitro angiogenesis, which was abrogated by a NOS antagonist. Moreover, E17KAkt expressing SA OEC promoted re-endothelialization of wire-injured femoral arteries, and perfusion recovery of ischemic limbs, to a magnitude comparable with nonmanipulated European OEC. Silencing Akt1 in European OEC recapitulated the functional deficits noted in SA OEC. Reduced signaling via the Akt/eNOS axis is causally linked with impaired OEC-mediated vascular repair in South Asian men. These data prove the principle of rescuing marked reparative dysfunction in OEC derived from these men.
Collapse
Affiliation(s)
- Richard M Cubbon
- Leeds Multidisciplinary Cardiovascular Research Centre, LIGHT Laboratories, The University of Leeds, Clarendon Way, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Brief report: Endothelial colony-forming cells and inflammatory monocytes in HIV. J Acquir Immune Defic Syndr 2015; 68:550-3. [PMID: 25564108 DOI: 10.1097/qai.0000000000000506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relationships between HIV infection, monocyte activation, and endothelial colony-forming cells (ECFCs) are unknown. We compared ECFC, intermediate monocytes (CD14 CD16), and nonclassical monocytes (CD14 CD16) levels in HIV-infected participants virologically suppressed on antiretroviral therapy, HIV-infected treatment-naive participants, and HIV-uninfected healthy controls. ECFC levels were significantly higher in the HIV-infected virologically suppressed group compared with the uninfected controls. CD14 CD16 percentages (but not CD14 CD16 cells) were significantly higher in both HIV-infected groups vs. uninfected controls. In the HIV-infected groups, ECFCs and CD14 CD16 intermediate monocytes were significantly and inversely correlated. Lower availability of ECFCs may partly explain the relationship between greater intermediate monocytes and atherosclerosis in HIV.
Collapse
|
185
|
Odent Grigorescu G, Preda MB, Radu E, Rosca AM, Tutuianu R, Mitroi DN, Simionescu M, Burlacu A. Combinatorial approach for improving the outcome of angiogenic therapy in ischemic tissues. Biomaterials 2015; 60:72-81. [PMID: 25985154 DOI: 10.1016/j.biomaterials.2015.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/03/2015] [Indexed: 01/01/2023]
Abstract
Two major populations of endothelial progenitor cells (EPC), namely endothelial colony forming cells (ECFC, or late outgrowth EPC) and circulating angiogenic cells (CAC, or early outgrowth EPC) have been reported to play important roles in vasculogenesis in numerous pathological conditions. However, the poor retention of cells into the ischemic tissue and neovessel fragility are two major flaws that need to be overcome for successful angiogenic therapy. The objective of this study was to explore and exploit the functional properties of EPC populations in order to increase the effectiveness of post-ischemic cell therapy. The results indicate different, still complementary, effects of the two EPC populations on adherence and proliferation of vascular endothelial cells. Matrigel plug assay and mouse hind limb ischemia model showed that concomitant administration of CAC-secreted factors and ECFC resulted in three-fold increase in local cell retention and improved muscle perfusion, vessel maturation and hind limb regeneration, in comparison to either treatment alone. By concluding, factors secreted by CAC co-administered at the time of ECFC transplantation improve tissue regeneration and vascular repair through stabilization of newly-derived blood vessels.
Collapse
Affiliation(s)
- G Odent Grigorescu
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - M B Preda
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - E Radu
- University Emergency Hospital, Bucharest, Romania
| | - A-M Rosca
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - R Tutuianu
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - D N Mitroi
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - M Simionescu
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - A Burlacu
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania.
| |
Collapse
|
186
|
Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 2015; 22:1230-42. [PMID: 25330054 PMCID: PMC4410282 DOI: 10.1089/ars.2014.6158] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. RECENT ADVANCES Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. CRITICAL ISSUES Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. FUTURE DIRECTIONS Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance.
Collapse
Affiliation(s)
- Christian Heiss
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf , Duesseldorf, Germany
| | | | | |
Collapse
|
187
|
Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res 2015; 116:1561-78. [PMID: 25908729 PMCID: PMC4869986 DOI: 10.1161/circresaha.115.303565] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
The age-adjusted prevalence of peripheral arterial disease in the US population has been estimated to approach 12%. The clinical consequences of occlusive peripheral arterial disease include pain on walking (claudication), pain at rest, and loss of tissue integrity in the distal limbs; the latter may ultimately lead to amputation of a portion of the lower extremity. Surgical bypass techniques and percutaneous catheter-based interventions may successfully reperfuse the limbs of certain patients with peripheral arterial disease. In many patients, however, the anatomic extent and distribution of arterial occlusion is too severe to permit relief of pain and healing of ischemic ulcers. No effective medical therapy is available for the treatment of such patients, for many of whom amputation represents the only hope for alleviation of symptoms. The ultimate failure of medical treatment and procedural revascularization in significant numbers of patients has led to attempts to develop alternative therapies for ischemic disease. These strategies include administration of angiogenic cytokines, either as recombinant protein or as gene therapy, and more recently, to investigations of stem/progenitor cell therapy. The purpose of this review is to provide an outline of the preclinical basis for angiogenic and stem cell therapies, review the clinical research that has been done, summarize the lessons learned, identify gaps in knowledge, and suggest a course toward successfully addressing an unmet medical need in a large and growing patient population.
Collapse
Affiliation(s)
- John P Cooke
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.); and NeoStem Inc, New York, NY (D.W.L.).
| | - Douglas W Losordo
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.); and NeoStem Inc, New York, NY (D.W.L.).
| |
Collapse
|
188
|
Association between microalbuminuria predicting in-stent restenosis after myocardial infarction and cellular senescence of endothelial progenitor cells. PLoS One 2015; 10:e0123733. [PMID: 25874702 PMCID: PMC4395282 DOI: 10.1371/journal.pone.0123733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/26/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Relationship between microalbuminuria and worse outcome of coronary artery disease patients is discussed, but its underlying pathophysiological mechanism remains unclear. We investigated the role of microalbuminuria to the function of endothelial progenitor cells (EPCs), that might affect to outcome of acute myocardial infarction (AMI) patients. METHODS Forty-five AMI patients were divided into two groups according to their urinary albumin excretion: normal (n = 24) and microalbuminuria (>30 mg/day, n = 21). At day-2 and day-7 after AMI onset, circulating-EPCs (CD34+ Flk1+) were quantified by flow cytometry. The number of lectin-acLDL-positive cultured-EPCs immobilized on fibronectin was determined. To assess the cellular senescence of cultured-EPCs, the expression level of sirtuin-1 mRNA and the number of SA-β-gal positive cell were evaluated. Angiographic late in-stent loss after percutaneous coronary intervention (PCI) was evaluated at a six-month follow-up. RESULTS No significant differences in coronary risk and the extent of myocardial damage were observed between the two groups. Late in-stent loss at the six-month follow-up was significantly higher in the microalbuminuria group (normal:microalbuminuria = 0.76±0.34:1.18±0.57 mm, p=0.021). The number of circulating-EPCs was significantly increased in microalbuminuria group at day-7, however, improved adhesion of EPCs was observed in normal group but not in microalbuminuria group from baseline to day-7 (+3.1±8.3:-1.3±4.4%: p<0.05). On the other hand, in microalbuminuria group at day-7, the level of sirtuin-1 mRNA expression of cultured-EPCs was significantly decreased (7.1±8.9:2.5±3.7 fold, p<0.05), which was based on the negative correlation between the level of sirtuin-1 mRNA expression and the extent of microalbuminuria. The ratio of SA-β-gal-positive cells in microalbuminuria group was increased compared to that of normal group. CONCLUSIONS Microalbuminuria in AMI patients is closely associated with functional disorder of EPCs via cellular senescence, that predicts the aggravation of coronary remodeling after PCI.
Collapse
|
189
|
Zou S, Meng X, Meng Y, Liu J, Liu B, Zhang S, Ding W, Wu J, Zhou J. Microarray analysis of anti-cancer effects of docosahexaenoic acid on human colon cancer model in nude mice. Int J Clin Exp Med 2015; 8:5075-5084. [PMID: 26131080 PMCID: PMC4483951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Docosahexaenoic acid (DHA), a derivative of ω3- polyunsaturated fatty acids present in fish oil, is well known to have anticancer activity on colon cancer cells, but the molecular and cellular mechanisms remain to be further clarified. In this study, anti-cancer effects of DHA on colon cancer cells were observed in a nude mouse HCT-15 xenograft model. And then, the different genes expression and signal pathways involved in this process were screened and identified using cDNA microarray analysis. Results of genes expression profiles indicated a reprogramming pattern of previously known and unknown genes and transcription factors associated with the action of DHA on colon cancer cells. And several genes related to tumor growth and metastasis including COX2, HIF-1α, VEGF-A, COMP, MMP-1, MMP-9, SCP2, SDC3, which were down-regulated by DHA, were further confirmed in HCT-15 cell line using RT-PCR method. In summary, our data might provide novel information for anti-cancer mechanism of DHA in colon cancer model.
Collapse
Affiliation(s)
- Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou HospitalSuzhou 215001, Jiangsu, P. R. China
| | - Xingjun Meng
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou HospitalSuzhou 215001, Jiangsu, P. R. China
| | - You Meng
- Department of Surgical Oncology, Nanjing Medical University Affiliated Suzhou HospitalSuzhou 215001, Jiangsu, P. R. China
| | - Jin Liu
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou HospitalSuzhou 215001, Jiangsu, P. R. China
| | - Biao Liu
- Department of Pathology, Nanjing Medical University Affiliated Suzhou HospitalSuzhou 215001, Jiangsu, P. R. China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow UniversitySuzhou 215001, Jiangsu, P. R. China
| | - Weiqun Ding
- Department of Pathology, University of Oklahoma Health Science CenterOklahoma City, Oklahoma, USA
| | - Jinchang Wu
- Department of Radio-Oncology, Nanjing Medical University Affiliated Suzhou HospitalSuzhou 215001, Jiangsu, P. R. China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou HospitalSuzhou 215001, Jiangsu, P. R. China
- Department of Radio-Oncology, Nanjing Medical University Affiliated Suzhou HospitalSuzhou 215001, Jiangsu, P. R. China
| |
Collapse
|
190
|
Moldenhauer LM, Cockshell MP, Frost L, Parham KA, Tvorogov D, Tan LY, Ebert LM, Tooley K, Worthley S, Lopez AF, Bonder CS. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties. Stem Cell Res 2015; 14:380-95. [PMID: 25900163 DOI: 10.1016/j.scr.2015.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 12/19/2022] Open
Abstract
Circulating endothelial progenitor cells (EPCs) provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3) strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs) with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133(+) EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs), namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133(+) cell expansion with clear pro-angiogenic properties (in vitro and in vivo) and thus may provide clinical utility for humans in the future.
Collapse
Affiliation(s)
- Lachlan M Moldenhauer
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
| | - Michaelia P Cockshell
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
| | - Lachlan Frost
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Kate A Parham
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Denis Tvorogov
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Lih Y Tan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Lisa M Ebert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Katie Tooley
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia
| | - Stephen Worthley
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Centre for Stem Cell Research, Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Centre for Stem Cell Research, Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
191
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
192
|
Cong XP, Wang WH, Zhu X, Jin C, Liu L, Li XM. Silence of STIM1 attenuates the proliferation and migration of EPCs after vascular injury and its mechanism. ASIAN PAC J TROP MED 2015; 7:373-7. [PMID: 25063063 DOI: 10.1016/s1995-7645(14)60058-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To investigate the effect of stromal interaction molecule 1(STIM1) knockdown on the proliferation and migration of endothelial progenitor cells (EPCs) after vascular injury and its mechanism. METHODS The rat bone marrow derived EPCs were divided into three groups: adenovirus negative control (group NSC), rat STIM1 adenovirus vector transfection group (group si/rSTIM1) and rat &human recombinant STIM1 adenovirus transfection group (group si/rSTIM1+hSTIM1). The STIM1 expressions in each group were detected by reverse transcription PCR after transfection; the cell proliferation was tested by [(3)H] thymidine incorporation assay ((3)H-TdR); Cell cycle was analyzed by flow cytometry; the cells' migration activity was detected by Boyden assay; Calcium ion concentration was detected by using laser confocal method. RESULTS 48 h later after transfection, the expression level of STIM1 in si/rSTIM1 cells was significantly lower than that in NSC group (0.21 ± 0.12 vs 1.01 ± 0.01, P<0.05); EPCs that stayed in G1 phase in si/rSTIM1 group [(93.31 ± 0.24)%] were significantly more than that in NSC group [(78.03 ± 0.34)%, P<0.05]; EPCs' migration activity in si/rSTIM1 group (10.03±0.33) was significantly lower than that in NSC group: (32.11 ± 0.54, P<0.05); EPCs calcium ion concentration changes in EPCs in si/rSTIM1 group (38.03 ± 0.13) was significantly lower than that in NSC group (98.11 ± 0.34, P<0.05). While there was no significant difference between si/rSTIM1+hSTIM1 group and NSC group on the four indexes above. CONCLUSIONS Silence of STIM1 attenuates EPCs proliferation and migration after vascular injury, by mediating the calcium ion concentration in EPCs.
Collapse
Affiliation(s)
- Xin-Peng Cong
- Affiliated Shanghai East Hospital of Tongji University, Shanghai 200120, China
| | - Wen-Hui Wang
- Affiliated Shanghai East Hospital of Tongji University, Shanghai 200120, China
| | - Xi Zhu
- Shanghai Zhoupu Hospital, Shanghai 201318, China
| | - Can Jin
- Shanghai Zhoupu Hospital, Shanghai 201318, China
| | - Liang Liu
- Shanghai Zhoupu Hospital, Shanghai 201318, China.
| | - Xin-Min Li
- Shanghai Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
193
|
Deb A. Stem Cells. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
194
|
Peters EB, Liu B, Christoforou N, West JL, Truskey GA. Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro. Ann Biomed Eng 2015; 43:2552-68. [PMID: 25777295 DOI: 10.1007/s10439-015-1301-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/11/2015] [Indexed: 01/17/2023]
Abstract
Umbilical cord blood represents a promising cell source for pro-angiogenic therapies. The present study examined the potential of mononuclear cells (MNCs) from umbilical cord blood to support endothelial progenitor cell (EPC) microvessel formation. MNCs were isolated from the cord blood of 20 separate donors and selected for further characterization based upon their proliferation potential and morphological resemblance to human vascular pericytes (HVPs). MNCs were screened for their ability to support EPC network formation using an in vitro assay (Matrigel™) as well as a reductionist, coculture system consisting of no additional angiogenic cytokines beyond those present in serum. In less than 15% of the isolations, we identified a population of highly proliferative MNCs that phenotypically resembled HVPs as assessed by expression of PDGFR-β, NG2, α-SMA, and ephrin-B2. Within a Matrigel™ system, MNCs demonstrated pericyte-like function through colocalization to EPC networks and similar effects as HVPs upon total EPC tubule length (p = 0.95) and number of branch points (p = 0.93). In a reductionist coculture system, MNCs served as pro-angiogenic mural cells by supporting EPC network formation to a significantly greater extent than HVP cocultures, by day 14 of coculture, as evidenced through EPC total tubule length (p < 0.0001) and number of branch points (p < 0.0001). Our findings are significant as we demonstrate mural cell progenitors can be isolated from umbilical cord blood and develop culture conditions to support their use in microvascular tissue engineering applications.
Collapse
|
195
|
Minami Y, Nakajima T, Ikutomi M, Morita T, Komuro I, Sata M, Sahara M. Angiogenic potential of early and late outgrowth endothelial progenitor cells is dependent on the time of emergence. Int J Cardiol 2015; 186:305-14. [PMID: 25838182 DOI: 10.1016/j.ijcard.2015.03.166] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/18/2015] [Accepted: 03/16/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Recent studies have suggested that late-outgrowth endothelial progenitor cells (EPCs) derived from human peripheral blood mononuclear cells (hPBMNCs) might have higher angiogenic potential than classically-defined early-outgrowth EPCs (EOCs). However, it still remains unclear which of "so-called" EPC subpopulations defined in a variety of ways has the highest angiogenic potential. METHODS AND RESULTS We classified hPBMNC-derived EPC subpopulations by the time of their emergence in culture. EOCs were defined as attached cells on culture days 3-7. Late-outgrowth EPCs, defined as the cell forming colonies with cobblestone appearance since day 10, were further classified as follows: "moderate"-outgrowth EPCs (MOCs) emerging on days 10-16, "late"-outgrowth EPCs (LOCs) on days 17-23, and "very late"-outgrowth EPCs (VOCs) on days 24-30. Flow cytometry analyses showed the clear differences of hematopoietic/endothelial markers between EOC (CD31(+)VE-cadherin(-)CD34(-)CD14(+)CD45(+)) and LOC (CD31(+)VE-cadherin(+)CD34(+)CD14(-)CD45(-)). We found that LOCs had the highest proliferation and tube formation capabilities in vitro along with the highest expression of angiogenic genes including KDR and eNOS. To investigate the in vivo therapeutic efficacies, each EPC subpopulation was intravenously transplanted into immunocompromised mice (total 4 × 10(5) cells) after unilateral hindlimb ischemia surgery. The LOC-treated mice exhibited significantly-enhanced blood flow recovery (flow ratios of ischemic/non-ischemic leg: 0.99±0.02 [LOC group] versus 0.67 ± 0.07 to 0.78 ± 0.09 [other groups]; P < 0.05) and augmented capillary collateral formation in ischemic leg, which were attributable to their direct engraftment into host angiogenic vessels (approximately 10%) and paracrine effects. CONCLUSION hPBMNC-derived late-outgrowth EPCs emerging on culture days 17-23 are superior to other EPC subpopulations with regard to therapeutic angiogenic potential.
Collapse
Affiliation(s)
- Yoshiyasu Minami
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Ischemic Circulatory Physiology, 22nd Century Medical and Research Center, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Ischemic Circulatory Physiology, 22nd Century Medical and Research Center, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masayasu Ikutomi
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Cardiovascular Medicine, Teikyo University Chiba Medical Center, 3426-3 Anegasaki, Ichihara 299-0111, Japan
| | - Toshihiro Morita
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Ischemic Circulatory Physiology, 22nd Century Medical and Research Center, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School of Medicine, 2-10-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Makoto Sahara
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Medicine-Cardiology/Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
196
|
Sirtuins in vascular diseases: Emerging roles and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1311-22. [PMID: 25766107 DOI: 10.1016/j.bbadis.2015.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 11/20/2022]
Abstract
Silent information regulator-2 (Sir-2) proteins, or sirtuins, are a highly conserved protein family of histone deacetylases that promote longevity by mediating many of the beneficial effects of calorie restriction which extends life span and reduces the incidence of cancer, cardiovascular disease (CVD), and diabetes. Here, we review the role of sirtuins (SIRT1-7) in vascular homeostasis and diseases by providing an update on the latest knowledge about their roles in endothelial damage and vascular repair mechanisms. Among all sirtuins, in the light of the numerous functions reported on SIRT1 in the vascular system, herein we discuss its roles not only in the control of endothelial cells (EC) functionality but also in other cell types beyond EC, including endothelial progenitor cells (EPC), smooth muscle cells (SMC), and immune cells. Furthermore, we also provide an update on the growing field of compounds under clinical evaluation for the modulation of SIRT1 which, at the state of the art, represents the most promising target for the development of novel drugs against CVD, especially when concomitant with type 2 diabetes.
Collapse
|
197
|
Yuan Q, Hu CP, Gong ZC, Bai YP, Liu SY, Li YJ, Jiang JL. Accelerated onset of senescence of endothelial progenitor cells in patients with type 2 diabetes mellitus: Role of dimethylarginine dimethylaminohydrolase 2 and asymmetric dimethylarginine. Biochem Biophys Res Commun 2015; 458:869-76. [DOI: 10.1016/j.bbrc.2015.02.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 11/17/2022]
|
198
|
Kepecs DM, Zhang Y, Thai K, Advani SL, Yuen DA, Connelly KA, Kosanam H, Diamandis E, Sefton MV, Gilbert RE. Application of Modular Therapy for Renoprotection in Experimental Chronic Kidney Disease. Tissue Eng Part A 2015; 21:1963-72. [PMID: 25661544 DOI: 10.1089/ten.tea.2014.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell-based regenerative therapies offer a new alternative approach to the treatment of chronic disease. Specifically, studies by our laboratory and others have shown that a subpopulation of cells derived from the bone marrow, known as early outgrowth cells (EOCs), are able to attenuate the progression of chronic kidney disease (CKD). In this study we examined the efficacy of a tissue engineering system, in which EOCs were embedded into submillimeter-sized collagen cylinders. These small individual units are referred to as modules and together form a functional microtissue. Due to their resemblance to endothelial cells, late outgrowth cells (LOCs) were used to coat the module surface, hypothesizing that as such they would promote vascularization and enhance engraftment of the encapsulated EOCs. These coated modules were transplanted subcutaneously into the subtotally nephrectomized rat model of CKD. While coated module therapy significantly improved both renal structure and function, noncoated modules with embedded EOCs were unable to reproduce these salutary effects on the kidney. Nevertheless, in both treatments, the embedded EOCs quickly degraded the modular environment and were seen to migrate to the liver, spleen, and bone marrow as early as 6 days after transplantation. With the efflux of EOCs, and unexpectedly no evidence of vascularization, we hypothesized that the LOCs did not enhance EOC engraftment, but rather augmented the renoprotection provided by EOCs by secretion of their own soluble and potent antifibrotic factors. To the best of our knowledge, this is the first study to document an effective subcutaneous approach for renoprotection.
Collapse
Affiliation(s)
- David M Kepecs
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Yanling Zhang
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Kerri Thai
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Suzanne L Advani
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Darren A Yuen
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Kim A Connelly
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Hari Kosanam
- 2 Department of Pathology and Laboratory Medicine, Mt. Sinai Hospital , Toronto, Canada
| | - Eleftherios Diamandis
- 2 Department of Pathology and Laboratory Medicine, Mt. Sinai Hospital , Toronto, Canada
| | - Michael V Sefton
- 3 Donnelly Centre for Cellular and Biomedical Research, University of Toronto , Toronto, Canada
| | - Richard E Gilbert
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| |
Collapse
|
199
|
Melchiorri AJ, Hibino N, Yi T, Lee YU, Sugiura T, Tara S, Shinoka T, Breuer C, Fisher JP. Contrasting biofunctionalization strategies for the enhanced endothelialization of biodegradable vascular grafts. Biomacromolecules 2015; 16:437-46. [PMID: 25545620 PMCID: PMC4325601 DOI: 10.1021/bm501853s] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Indexed: 01/26/2023]
Abstract
Surface modification of biodegradable vascular grafts is an important strategy to improve the in situ endothelialization of tissue engineered vascular grafts (TEVGs) and prevent major complications associated with current synthetic grafts. Important strategies for improving endothelialization include increasing endothelial cell mobilization and increased endothelial cell capture through biofunctionalization of TEVGs. The objective of this study was to assess two biofunctionalization strategies for improving endothelialization of biodegradable polyester vascular grafts. These techniques consisted of cross-linking heparin to graft surfaces to immobilize vascular endothelial growth factor (VEGF) or antibodies against CD34 (anti-CD34Ab). To this end, heparin, VEGF, and anti-CD34Ab attachment and quantification assays confirmed the efficacy of the modification strategy. Cell attachment and proliferation on these groups were compared to unmodified grafts in vitro and in vivo. To assess in vivo graft functionality, the grafts were implanted as inferior vena cava interpositional conduits in mice. Modified vascular grafts displayed increased endothelial cell attachment and activity in vivo, according to microscopy techniques, histological results, and eNOS expression. Inner lumen diameter of the modified grafts was also better maintained than controls. Overall, while both functionalized grafts outperformed the unmodified control, grafts modified with anti-CD34Ab appeared to yield the most improved results compared to VEGF-loaded grafts.
Collapse
Affiliation(s)
- A. J. Melchiorri
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - N. Hibino
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - T. Yi
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - Y. U. Lee
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - T. Sugiura
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - S. Tara
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - T. Shinoka
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - C. Breuer
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - J. P. Fisher
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
200
|
Poloni A, Maurizi G, Anastasi S, Mondini E, Mattiucci D, Discepoli G, Tiberi F, Mancini S, Partelli S, Maurizi A, Cinti S, Olivieri A, Leoni P. Plasticity of human dedifferentiated adipocytes toward endothelial cells. Exp Hematol 2015; 43:137-146. [PMID: 25448487 DOI: 10.1016/j.exphem.2014.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/01/2014] [Accepted: 10/11/2014] [Indexed: 12/28/2022]
Abstract
The process of cellular differentiation in terminally differentiated cells is thought to be irreversible, and these cells are thought to be incapable of differentiating into distinct cell lineages. Our previous study showed that mature adipocytes represent an alternative source of mesenchymal stem cells. Here, results showed the capacity of mature adipocytes to differentiate into endothelial-like cells, using the ability of these cells to revert into an immature phase without any relievable chromosomal alterations. Mature adipocytes were isolated from human omental and subcutaneous fat and were dedifferentiated in vitro. The resulting cells were subcultivated for endothelial differentiation and were analyzed for their expression of specific genes and proteins. Endothelial-like cells were harvested from the differentiation medium and were traditionally cultured to evaluate the endothelial markers and the karyotype. Cells cultured in specific medium formed tube-like structures and expressed several endothelial marker genes and proteins. The endothelial-like cells expressed significantly higher levels of vascular endothelium growth factor receptor 2, vascular endothelial cadherin, Von Willebrand factor, and CD133 than the untreated cells. These cells were positively stained for CD31 and vascular endothelial cadherin, markers of mature endothelial cells. Moreover, the low-density lipoprotein-uptake assay demonstrated a functionally endothelial differentiation of these cells. When these cells were harvested and reseeded in basal medium, they lost the endothelial markers and reacquired the typical mesenchymal stem cell markers and the ability to expand in a short time period. Moreover, karyotype analysis showed that these cells reverted into an immature phase without any karyotype alterations. In conclusion, the results showed that adipocytes exhibited a great plasticity toward the endothelial lineage, suggesting their possible use in cell therapy applications for vascular disease.
Collapse
Affiliation(s)
- Antonella Poloni
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy.
| | - Giulia Maurizi
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Anastasi
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Mondini
- Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Domenico Mattiucci
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | - Giancarlo Discepoli
- Laboratorio di Citogenetica e Genetica Molecolare, Clinica di Pediatria, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Tiberi
- Laboratorio di Citogenetica e Genetica Molecolare, Clinica di Pediatria, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Mancini
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | - Stefano Partelli
- Clinica Chirurgia del Pancreas, Università Politecnica delle Marche, Ospedali Riuniti, Ancona, Italy
| | - Angela Maurizi
- Clinica Chirurgia del Pancreas, Università Politecnica delle Marche, Ospedali Riuniti, Ancona, Italy
| | - Saverio Cinti
- Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Attilio Olivieri
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | - Pietro Leoni
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|