151
|
Frump A, Prewitt A, de Caestecker MP. BMPR2 mutations and endothelial dysfunction in pulmonary arterial hypertension (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018765840. [PMID: 29521190 PMCID: PMC5912278 DOI: 10.1177/2045894018765840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the discovery more than 15 years ago that patients with hereditary pulmonary arterial hypertension (HPAH) inherit BMP type 2 receptor ( BMPR2) mutations, it is still unclear how these mutations cause disease. In part, this is attributable to the rarity of HPAH and difficulty obtaining tissue samples from patients with early disease. However, in addition, limitations to the approaches used to study the effects of BMPR2 mutations on the pulmonary vasculature have restricted our ability to determine how individual mutations give rise to progressive pulmonary vascular pathology in HPAH. The importance of understanding the mechanisms by which BMPR2 mutations cause disease in patients with HPAH is underscored by evidence that there is reduced BMPR2 expression in patients with other, more common, non-hereditary form of PAH, and that restoration of BMPR2 expression reverses established disease in experimental models of pulmonary hypertension. In this paper, we focus on the effects on endothelial function. We discuss some of the controversies and challenges that have faced investigators exploring the role of BMPR2 mutations in HPAH, focusing specifically on the effects different BMPR2 mutation have on endothelial function, and whether there are qualitative differences between different BMPR2 mutations. We discuss evidence that BMPR2 signaling regulates a number of responses that may account for endothelial abnormalities in HPAH and summarize limitations of the models that are used to study these effects. Finally, we discuss evidence that BMPR2-dependent effects on endothelial metabolism provides a unifying explanation for the many of the BMPR2 mutation-dependent effects that have been described in patients with HPAH.
Collapse
Affiliation(s)
- Andrea Frump
- Division
of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University
School of Medicine, Indianapolis, IN,
USA
| | | | - Mark P. de Caestecker
- Division
of Nephrology and Hypertension, Department of Medicine, Vanderbilt University
Medical center, Nashville, TN, USA
| |
Collapse
|
152
|
Chen Y, Zhang H, Liu H, Li K, Su X. Homocysteine up-regulates ET B receptors via suppression of autophagy in vascular smooth muscle cells. Microvasc Res 2018; 119:13-21. [PMID: 29601873 DOI: 10.1016/j.mvr.2018.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/21/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
The change of autophagy is implicated in cardiovascular diseases (CVDs). Homocysteine (Hcy) up-regulates endothelin type B (ETB) receptors in vascular smooth muscle cells (VSMCs). However, it is unclear whether autophagy is involved in Hcy-induced-up-regulation of ETB receptors in VSMCs. The present study was designed to examine the hypothesis that Hcy up-regulates ETB receptors by inhibiting autophagy in VSMCs. Hcy treated the rat superior mesenteric artery (SMA) without endothelium in the presence and absence of AICAR, rapamycin or MHY1485 for 24 h. The contractile responses to sarafotoxin 6c (S6c) (an ETB receptor agonist) were studied using a sensitive myograph. Levels of protein expression were determined using Western blot analysis. Punctate staining of LC3B was exanimated by immunofluorescence using confocal microscopy. The results showed that Hcy inhibited AMPK, and activated mTOR, followed by impairing autophagy, and increased the levels of ETB receptor protein expression and the ETB receptor-mediated contractile responses to S6c in SMA without endothelium. However, these effects were reversed by AICAR or rapamycin. Additionally, MHY1485 up-regulated the AICAR-inhibited ETB receptor-mediated contractile response and the levels of ETB receptor protein expression in presence of Hcy. In conclusion, this suggested that Hcy up-regulated ETB receptors by inhibiting autophagy in VSMCs via AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yulong Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ke Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xingli Su
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
153
|
Abstract
Pulmonary hypertension is defined as a resting mean pulmonary artery pressure of 25 mm Hg or above. This review deals with pulmonary arterial hypertension (PAH), a type of pulmonary hypertension that primarily affects the pulmonary vasculature. In PAH, the pulmonary vasculature is dynamically obstructed by vasoconstriction, structurally obstructed by adverse vascular remodeling, and pathologically non-compliant as a result of vascular fibrosis and stiffening. Many cell types are abnormal in PAH, including vascular cells (endothelial cells, smooth muscle cells, and fibroblasts) and inflammatory cells. Progress has been made in identifying the causes of PAH and approving new drug therapies. A cancer-like increase in cell proliferation and resistance to apoptosis reflects acquired abnormalities of mitochondrial metabolism and dynamics. Mutations in the type II bone morphogenetic protein receptor (BMPR2) gene dramatically increase the risk of developing heritable PAH. Epigenetic dysregulation of DNA methylation, histone acetylation, and microRNAs also contributes to disease pathogenesis. Aberrant bone morphogenetic protein signaling and epigenetic dysregulation in PAH promote cell proliferation in part through induction of a Warburg mitochondrial-metabolic state of uncoupled glycolysis. Complex changes in cytokines (interleukins and tumor necrosis factor), cellular immunity (T lymphocytes, natural killer cells, macrophages), and autoantibodies suggest that PAH is, in part, an autoimmune, inflammatory disease. Obstructive pulmonary vascular remodeling in PAH increases right ventricular afterload causing right ventricular hypertrophy. In some patients, maladaptive changes in the right ventricle, including ischemia and fibrosis, reduce right ventricular function and cause right ventricular failure. Patients with PAH have dyspnea, reduced exercise capacity, exertional syncope, and premature death from right ventricular failure. PAH targeted therapies (prostaglandins, phosphodiesterase-5 inhibitors, endothelin receptor antagonists, and soluble guanylate cyclase stimulators), used alone or in combination, improve functional capacity and hemodynamics and reduce hospital admissions. However, these vasodilators do not target key features of PAH pathogenesis and have not been shown to reduce mortality, which remains about 50% at five years. This review summarizes the epidemiology, pathogenesis, diagnosis, and treatment of PAH.
Collapse
Affiliation(s)
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - John J Ryan
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
154
|
Chinnappan M, Mohan A, Agarwal S, Dalvi P, Dhillon NK. Network of MicroRNAs Mediate Translational Repression of Bone Morphogenetic Protein Receptor-2: Involvement in HIV-Associated Pulmonary Vascular Remodeling. J Am Heart Assoc 2018; 7:e008472. [PMID: 29478969 PMCID: PMC5866341 DOI: 10.1161/jaha.117.008472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/26/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Earlier, we reported that the simultaneous exposure of pulmonary arterial smooth muscle cells to HIV proteins and cocaine results in the attenuation of antiproliferative bone morphogenetic protein receptor-2 (BMPR2) protein expression without any decrease in its mRNA levels. Therefore, in this study, we aimed to investigate the micro RNA-mediated posttranscriptional regulation of BMPR2 expression. METHODS AND RESULTS We identified a network of BMPR2 targeting micro RNAs including miR-216a to be upregulated in response to cocaine and Tat-mediated augmentation of oxidative stress and transforming growth factor-β signaling in human pulmonary arterial smooth muscle cells. By using a loss or gain of function studies, we observed that these upregulated micro RNAs are involved in the Tat- and cocaine-mediated smooth muscle hyperplasia via regulation of BMPR2 protein expression. These in vitro findings were further corroborated using rat pulmonary arterial smooth muscle cells isolated from HIV transgenic rats exposed to cocaine. More importantly, luciferase reporter and in vitro translation assays demonstrated that direct binding of novel miR-216a and miR-301a to 3'UTR of BMPR2 results in the translational repression of BMPR2 without any degradation of its mRNA. CONCLUSIONS We identified for the first time miR-216a as a negative modulator of BMPR2 translation and observed it to be involved in HIV protein(s) and cocaine-mediated enhanced proliferation of pulmonary smooth muscle cells.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Binding Sites
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cell Proliferation
- Cells, Cultured
- Cocaine/pharmacology
- Down-Regulation
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats, Transgenic
- Signal Transduction
- Vascular Remodeling/drug effects
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
155
|
Abstract
Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Collapse
|
156
|
Racanelli AC, Kikkers SA, Choi AM, Cloonan SM. Autophagy and inflammation in chronic respiratory disease. Autophagy 2018; 14:221-232. [PMID: 29130366 PMCID: PMC5902194 DOI: 10.1080/15548627.2017.1389823] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Persistent inflammation within the respiratory tract underlies the pathogenesis of numerous chronic pulmonary diseases including chronic obstructive pulmonary disease, asthma and pulmonary fibrosis. Chronic inflammation in the lung may arise from a combination of genetic susceptibility and environmental influences, including exposure to microbes, particles from the atmosphere, irritants, pollutants, allergens, and toxic molecules. To this end, an immediate, strong, and highly regulated inflammatory defense mechanism is needed for the successful maintenance of homeostasis within the respiratory system. Macroautophagy/autophagy plays an essential role in the inflammatory response of the lung to infection and stress. At baseline, autophagy may be critical for inhibiting spontaneous pulmonary inflammation and fundamental for the response of pulmonary leukocytes to infection; however, when not regulated, persistent or inefficient autophagy may be detrimental to lung epithelial cells, promoting lung injury. This perspective will discuss the role of autophagy in driving and regulating inflammatory responses of the lung in chronic lung diseases with a focus on potential avenues for therapeutic targeting. Abbreviations AR allergic rhinitis AM alveolar macrophage ATG autophagy-related CF cystic fibrosis CFTR cystic fibrosis transmembrane conductance regulator COPD chronic obstructive pulmonary disease CS cigarette smoke CSE cigarette smoke extract DC dendritic cell IH intermittent hypoxia IPF idiopathic pulmonary fibrosis ILD interstitial lung disease MAP1LC3B microtubule associated protein 1 light chain 3 beta MTB Mycobacterium tuberculosis MTOR mechanistic target of rapamycin kinase NET neutrophil extracellular traps OSA obstructive sleep apnea PAH pulmonary arterial hypertension PH pulmonary hypertension ROS reactive oxygen species TGFB1 transforming growth factor beta 1 TNF tumor necrosis factor.
Collapse
Affiliation(s)
- Alexandra C. Racanelli
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- New York-Presbyterian Hospital, New York, NY, USA
| | - Sarah Ann Kikkers
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Augustine M.K. Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- New York-Presbyterian Hospital, New York, NY, USA
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
157
|
Zhai K, Yang Z, Zhu X, Nyirimigabo E, Mi Y, Wang Y, Liu Q, Man L, Wu S, Jin J, Ji G. Activation of bitter taste receptors (tas2rs) relaxes detrusor smooth muscle and suppresses overactive bladder symptoms. Oncotarget 2018; 7:21156-67. [PMID: 27056888 PMCID: PMC5008275 DOI: 10.18632/oncotarget.8549] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/18/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) are traditionally thought to be expressed exclusively on the taste buds of the tongue. However, accumulating evidence has indicated that this receptor family performs non-gustatory functions outside the mouth in addition to taste. Here, we examined the role of TAS2Rs in human and mouse detrusor smooth muscle (DSM). We showed that mRNA for various TAS2R subtypes was expressed in both human and mouse detrusor smooth muscle (DSM) at distinct levels. Chloroquine (CLQ), an agonist for TAS2Rs, concentration-dependently relaxed carbachol- and KCl-induced contractions of human DSM strips. Moreover, 100 μM of CLQ significantly inhibited spontaneous and electrical field stimulation (EFS)-induced contractions of human DSM strips. After a slight contraction, CLQ (1 mM) entirely relaxed carbachol-induced contraction of mouse DSM strips. Furthermore, denatonium and quinine concentration-dependently decreased carbachol-induced contractions of mouse DSM strips. Finally, we demonstrated that CLQ treatment significantly suppressed the overactive bladder (OAB) symptoms of mice with partial bladder outlet obstruction (PBOO). In conclusion, we for the first time provide evidence of the existence of TAS2Rs in the urinary DSM and demonstrate that TAS2Rs may represent a potential target for OAB. These findings open a new approach to develop drugs for OAB in the future.
Collapse
Affiliation(s)
- Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhiguang Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Zhu
- Department of Urology, Beijing Jishuitan Hospital, Beijing, China
| | - Eric Nyirimigabo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yue Mi
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Yan Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Qinghua Liu
- Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Libo Man
- Department of Urology, Beijing Jishuitan Hospital, Beijing, China
| | - Shiliang Wu
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Jie Jin
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
158
|
Yang K, Zhao M, Huang J, Zhang C, Zheng Q, Chen Y, Jiang H, Lu W, Wang J. Pharmacological activation of PPARγ inhibits hypoxia-induced proliferation through a caveolin-1-targeted and -dependent mechanism in PASMCs. Am J Physiol Cell Physiol 2018; 314:C428-C438. [PMID: 29351409 DOI: 10.1152/ajpcell.00143.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previously, we and others have demonstrated that activation of peroxisome proliferator-activated receptor γ (PPARγ) by specific pharmacological agonists inhibits the pathogenesis of chronic hypoxia-induced pulmonary hypertension (CHPH) by suppressing the proliferation and migration in distal pulmonary arterial smooth muscle cells (PASMCs). Moreover, these beneficial effects of PPARγ are mediated by targeting the intracellular calcium homeostasis and store-operated calcium channel (SOCC) proteins, including the main caveolae component caveolin-1. However, other than the caveolin-1 targeted mechanism, in this study, we further uncovered a caveolin-1 dependent mechanism within the activation of PPARγ by the specific agonist GW1929. First, effective knockdown of caveolin-1 by small-interfering RNA (siRNA) markedly abolished the upregulation of GW1929 on PPARγ expression at both mRNA and protein levels; Then, in HEK293T, which has previously been reported with low endogenous caveolin-1 expression, exogenous expression of caveolin-1 significantly enhanced the upregulation of GW1929 on PPARγ expression compared with nontransfection control. In addition, inhibition of PPARγ by either siRNA or pharmacological inhibitor T0070907 led to increased phosphorylation of cellular mitogen-activated protein kinases ERK1/2 and p38. In parallel, GW1929 dramatically decreased the expression of the proliferative regulators (cyclin D1 and PCNA), whereas it increased the apoptotic factors (p21, p53, and mdm2) in hypoxic PASMCs. Furthermore, these effects of GW1929 could be partially reversed by recovery of the drug treatment. In combination, PPARγ activation by GW1929 reversibly drove the cell toward an antiproliferative and proapoptotic phenotype in a caveolin-1-dependent and -targeted mechanism.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Mingming Zhao
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | - Junyi Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China.,Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| |
Collapse
|
159
|
Hemnes AR, Humbert M. Pathobiology of pulmonary arterial hypertension: understanding the roads less travelled. Eur Respir Rev 2017; 26:26/146/170093. [DOI: 10.1183/16000617.0093-2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The pathobiology of pulmonary arterial hypertension (PAH) is complex and incompletely understood. Although three pathogenic pathways have been relatively well characterised, it is widely accepted that dysfunction in a multitude of other cellular processes is likely to play a critical role in driving the development of PAH. Currently available therapies, which all target one of the three well-characterised pathways, provide significant benefits for patients; however, PAH remains a progressive and ultimately fatal disease. The development of drugs to target alternative pathogenic pathways is, therefore, an attractive proposition and one that may complement existing treatment regimens to improve outcomes for patients. Considerable research has been undertaken to identify the role of the less well-understood pathways and in this review we will highlight some of the key discoveries and the potential for utility as therapeutic targets.
Collapse
|
160
|
Autophagy in health and disease: focus on the cardiovascular system. Essays Biochem 2017; 61:721-732. [PMID: 29233881 DOI: 10.1042/ebc20170022] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/03/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022]
Abstract
Autophagy is a highly conserved mechanism of lysosome-mediated protein and organelle degradation that plays a crucial role in maintaining cellular homeostasis. In the last few years, specific functions for autophagy have been identified in many tissues and organs. In the cardiovascular system, autophagy appears to be essential to heart and vessel homeostasis and function; however defective or excessive autophagy activity seems to contribute to major cardiovascular disorders including heart failure (HF) or atherosclerosis. Here, we review the current knowledge on the role of cardiovascular autophagy in physiological and pathophysiological conditions.
Collapse
|
161
|
Singh N, Singh H, Jagavelu K, Wahajuddin M, Hanif K. Fatty acid synthase modulates proliferation, metabolic functions and angiogenesis in hypoxic pulmonary artery endothelial cells. Eur J Pharmacol 2017; 815:462-469. [DOI: 10.1016/j.ejphar.2017.09.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 01/06/2023]
|
162
|
Ivanovska J, Shah S, Wong MJ, Kantores C, Jain A, Post M, Yeganeh B, Jankov RP. mTOR-Notch3 signaling mediates pulmonary hypertension in hypoxia-exposed neonatal rats independent of changes in autophagy. Pediatr Pulmonol 2017; 52:1443-1454. [PMID: 28759157 DOI: 10.1002/ppul.23777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIM Mammalian target of rapamycin (mTOR) is a pivotal regulator of cell proliferation, survival, and autophagy. Autophagy is increased in adult experimental chronic pulmonary hypertension (PHT), but its contributory role to pulmonary vascular disease remains uncertain and has yet to be explored in the neonatal animal. Notch is a major pro-proliferative pathway activated by mTOR. A direct relationship between autophagy and Notch signaling has not been previously explored. Our aim was to examine changes in mTOR-, Notch-, and autophagy-related pathways and the therapeutic effects of autophagy modulators in experimental chronic neonatal PHT secondary to chronic hypoxia. METHODS Rat pups were exposed to normoxia or hypoxia (13% O2 ) from postnatal days 1-21, while receiving treatment with temsirolimus (mTOR inhibitor), DAPT (Notch inhibitor), or chloroquine (inhibitor of autophagic flux). RESULTS Exposure to hypoxia up-regulated autophagy and Notch3 signaling markers in lung, pulmonary artery (PA), and PA-derived smooth muscle cells (SMCs). Temsirolimus prevented chronic PHT and attenuated PA and SMC signaling secondary to hypoxia. These effects were replicated by DAPT. mTOR or Notch inhibition also down-regulated smooth muscle content of platelet-derived growth factor β-receptor, a known contributor to vascular remodeling. In contrast, chloroquine had no modifying effects on markers of chronic PHT. Knockdown of Beclin-1 in SMCs had no effect on hypoxia-stimulated Notch3 signaling. CONCLUSIONS mTOR-Notch3 signaling plays a critical role in experimental chronic neonatal PHT. Inhibition of autophagy did not suppress Notch signaling and had no effect on markers of chronic PHT.
Collapse
Affiliation(s)
- Julijana Ivanovska
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Sparsh Shah
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Mathew J Wong
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Crystal Kantores
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Amish Jain
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Behzad Yeganeh
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Robert P Jankov
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Molecular Biomedicine Program, Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
163
|
Kato F, Sakao S, Takeuchi T, Suzuki T, Nishimura R, Yasuda T, Tanabe N, Tatsumi K. Endothelial cell-related autophagic pathways in Sugen/hypoxia-exposed pulmonary arterial hypertensive rats. Am J Physiol Lung Cell Mol Physiol 2017; 313:L899-L915. [DOI: 10.1152/ajplung.00527.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive obstructive remodeling of pulmonary arteries. However, no reports have described the causative role of the autophagic pathway in pulmonary vascular endothelial cell (EC) alterations associated with PAH. This study investigated the time-dependent role of the autophagic pathway in pulmonary vascular ECs and pulmonary vascular EC kinesis in a severe PAH rat model (Sugen/hypoxia rat) and evaluated whether timely induction of the autophagic pathway by rapamycin improves PAH. Hemodynamic and histological examinations as well as flow cytometry of pulmonary vascular EC-related autophagic pathways and pulmonary vascular EC kinetics in lung cell suspensions were performed. The time-dependent and therapeutic effects of rapamycin on the autophagic pathway were also assessed. Sugen/hypoxia rats treated with the vascular endothelial growth factor receptor blocker SU5416 showed increased right ventricular systolic pressure (RVSP) and numbers of obstructive vessels due to increased pulmonary vascular remodeling. The expression of the autophagic marker LC3 in ECs also changed in a time-dependent manner, in parallel with proliferation and apoptotic markers as assessed by flow cytometry. These results suggest the presence of cross talk between pulmonary vascular remodeling and the autophagic pathway, especially in small vascular lesions. Moreover, treatment of Sugen/hypoxia rats with rapamycin after SU5416 injection activated the autophagic pathway and improved the balance between cell proliferation and apoptosis in pulmonary vascular ECs to reduce RVSP and pulmonary vascular remodeling. These results suggested that the autophagic pathway can suppress PAH progression and that rapamycin-dependent activation of the autophagic pathway could ameliorate PAH.
Collapse
Affiliation(s)
- Fumiaki Kato
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takao Takeuchi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Tadashi Yasuda
- Department of Respirology, National Hospital Organization Chiba Medical Center, Chiba, Japan
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
164
|
Jafri S, Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities. Am J Physiol Regul Integr Comp Physiol 2017; 313:R693-R705. [PMID: 28978513 DOI: 10.1152/ajpregu.00259.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4+ helper T cell populations, defined by excessive Th17 responses and impaired Treg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8+ T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders.
Collapse
Affiliation(s)
- Salema Jafri
- University of Cambridge, Department of Medicine, Cambridge, United Kingdom; and
| | - Mark L Ormiston
- Queen's University, Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, Canada
| |
Collapse
|
165
|
Wu K, Zhang Q, Wu X, Lu W, Tang H, Liang Z, Gu Y, Song S, Ayon RJ, Wang Z, McDermott KM, Balistrieri A, Wang C, Black SM, Garcia JGN, Makino A, Yuan JXJ, Wang J. Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia-induced pulmonary hypertension. Br J Pharmacol 2017; 174:4155-4172. [PMID: 28849593 DOI: 10.1111/bph.13990] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sustained pulmonary vasoconstriction and excessive pulmonary vascular remodelling are two major causes of elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension. The purpose of this study was to investigate whether chloroquine induced relaxation in the pulmonary artery (PA) and attenuates hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Isometric tension was measured in rat PA rings pre-constricted with phenylephrine or high K+ solution. PA pressure was measured in mouse isolated, perfused and ventilated lungs. Fura-2 fluorescence microscopy was used to measure cytosolic free Ca2+ concentration levels in PA smooth muscle cells (PASMCs). Patch-clamp experiments were performed to assess the activity of voltage-dependent Ca2+ channels (VDCCs) in PASMC. Rats exposed to hypoxia (10% O2 ) for 3 weeks were used as the model of HPH or Sugen5416/hypoxia (SuHx) for in vivo experiments. KEY RESULTS Chloroquine attenuated agonist-induced and high K+ -induced contraction in isolated rat PA. Pretreatment with l-NAME or indomethacin and functional removal of endothelium failed to inhibit chloroquine-induced PA relaxation. In PASMC, extracellular application of chloroquine attenuated store-operated Ca2+ entry and ATP-induced Ca2+ entry. Furthermore, chloroquine also inhibited whole-cell Ba2+ currents through VDCC in PASMC. In vivo experiments demonstrated that chloroquine treatment ameliorated the HPH and SuHx models. CONCLUSIONS AND IMPLICATIONS Chloroquine is a potent pulmonary vasodilator that may directly or indirectly block VDCC, store-operated Ca2+ channels and receptor-operated Ca2+ channels in PASMC. The therapeutic potential of chloroquine in pulmonary hypertension is probably due to the combination of its vasodilator, anti-proliferative and anti-autophagic effects.
Collapse
Affiliation(s)
- Kang Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Qian Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Xiongting Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Zhihao Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yali Gu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ziyi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kimberly M McDermott
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Angela Balistrieri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Christina Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Joe G N Garcia
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
166
|
Hachulla E, Jais X, Cinquetti G, Clerson P, Rottat L, Launay D, Cottin V, Habib G, Prevot G, Chabanne C, Foïs E, Amoura Z, Mouthon L, Le Guern V, Montani D, Simonneau G, Humbert M, Sobanski V, Sitbon O. Pulmonary Arterial Hypertension Associated With Systemic Lupus Erythematosus: Results From the French Pulmonary Hypertension Registry. Chest 2017; 153:143-151. [PMID: 28851621 DOI: 10.1016/j.chest.2017.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare complication of systemic lupus erythematosus (SLE). METHODS We identified all patients with SLE and PAH (SLE-PAH) who were enrolled in the French Pulmonary Hypertension Registry with a diagnosis confirmed by right heart catheterization (RHC). A control group of 101 patients with SLE without known PAH was selected from SLE expert centers participating in the Pulmonary Hypertension Registry. Survival was estimated by the Kaplan-Meier method. Hazard ratios associated with potential predictors of death were estimated using Cox proportional hazard models. RESULTS Of the 69 patients with SLE-PAH identified in the French Pulmonary Hypertension Registry, 51 were included in the study. They did not differ from the control group regarding age, sex, or duration of SLE at the time of the analysis but had a higher frequency of anti-SSA and anti-SSB antibodies. The delay between SLE diagnosis and PAH diagnosis was 4.9 years (range, 2.8-12.9) years. The 3- and 5-year overall survival rates were 89.4% (95% CI, 76.2%-96.5%) and 83.9% (95% CI, 68.8%-92.1%), respectively. The survival rate was significantly better in patients with anti-U1-RNP antibodies (P = .04). CONCLUSIONS Patients with SLE-PAH have an overall 5-year survival rate of 83.9% after the PAH diagnosis. Anti-SSA/SSB antibodies may be a risk factor for PAH, and the presence of anti-U1-RNP antibodies appears to be a protective factor regarding survival.
Collapse
Affiliation(s)
- Eric Hachulla
- Centre de reference des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest (CeRAINO), Service de Médecine Interne, Hôpital Huriez, Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), INSERM U995 - LIRIC - Lille Inflammation Research International Centre, Université de Lille, Lille, France.
| | - Xavier Jais
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre; AP-HP, Centre de reference de l'Hypertension Pulmonaire, Service de Pneumologie, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre; INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gaël Cinquetti
- Service des Maladies Infectieuses et Systémiques, Hôpital d'instruction des armées Legouest, Metz, France
| | | | - Laurence Rottat
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre; AP-HP, Centre de reference de l'Hypertension Pulmonaire, Service de Pneumologie, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre; INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson, France
| | - David Launay
- Centre de reference des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest (CeRAINO), Service de Médecine Interne, Hôpital Huriez, Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), INSERM U995 - LIRIC - Lille Inflammation Research International Centre, Université de Lille, Lille, France
| | - Vincent Cottin
- Service de Pneumologie - Centre des Maladies Orphelines Pulmonaires, CHU de Lyon HCL-GH Est-Hôpital Louis Pradel, Bron, France
| | - Gilbert Habib
- Service de Cardiologie, CHU de Marseille - Hôpital de la Timone, Marseille, France
| | - Grégoire Prevot
- Service de Pneumologie, Pôle voies respiratoires, Hôpital Larrey, Toulouse, France
| | - Céline Chabanne
- Département de Cardiologie et Maladies vasculaires, CHU de Rennes - Hôpital Pontchaillou, Rennese, France
| | - Eléna Foïs
- Unité des maladies génétiques du globule rouge, Hôpital Henri Mondor, Créteile, France
| | - Zahir Amoura
- Service de Médecine Interne 2, Centre de Référence du Lupus, Syndrome des Antiphospholipides et autres Maladies Auto-Immunes Systémiques Rares, Institut E3M, Hôpital Pitié-Salpêtrière, Paris, et Université Paris VI Pierre et Marie Curie CIMI -UPMC UMRS CR7-INSERM U1135 - CNRS, France
| | - Luc Mouthon
- Service de Médecine Interne, hôpital Cochin, Centre de Référence des Maladies Auto-immunes Systémiques Rares Ile de France, Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Véronique Le Guern
- Service de Médecine Interne, hôpital Cochin, Centre de Référence des Maladies Auto-immunes Systémiques Rares Ile de France, Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - David Montani
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre; AP-HP, Centre de reference de l'Hypertension Pulmonaire, Service de Pneumologie, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre; INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gérald Simonneau
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre; AP-HP, Centre de reference de l'Hypertension Pulmonaire, Service de Pneumologie, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre; INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre; AP-HP, Centre de reference de l'Hypertension Pulmonaire, Service de Pneumologie, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre; INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson, France
| | - Vincent Sobanski
- Centre de reference des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest (CeRAINO), Service de Médecine Interne, Hôpital Huriez, Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), INSERM U995 - LIRIC - Lille Inflammation Research International Centre, Université de Lille, Lille, France
| | - Olivier Sitbon
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre; AP-HP, Centre de reference de l'Hypertension Pulmonaire, Service de Pneumologie, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre; INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson, France
| | | |
Collapse
|
167
|
Acetylated cyclophilin A is a major mediator in hypoxia-induced autophagy and pulmonary vascular angiogenesis. J Hypertens 2017; 35:798-809. [PMID: 28079595 DOI: 10.1097/hjh.0000000000001224] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autophagy is a major intracellular degradation and recycling process that maintains cellular homeostasis, which is involved in structural and functional abnormalities of pulmonary vasculature in hypoxic pulmonary arterial hypertension (HPAH). Cyclophilin A (CyPA) is a secreted, oxidative stress-induced factor. Its role in inducing autophagy and augmenting endothelial cell dysfunction has never been explored. METHODS Lungs from rats exposed to chronic hypoxia were examined for autophagy with electron microscopy, western blotting, and fluorescence microscopy. RESULTS Activated autophagy was seen in the endothelium of the pulmonary artery from experimental rat models of HPAH and cultured bovine pulmonary arterial endothelial cells under hypoxia. Inhibiting autophagy attenuated the pathological progression of HPAH and repressed endothelial cell migration and angiogenesis. We also showed that CyPA was upregulated and acetylated under hypoxia and led to the abnormal occurrence of autophagy through its interaction with autophagy protein 5 and autophagy protein 7. Moreover, acetylated CyPA was essential for the excessive proliferation, migration, and tube formation networks of pulmonary arterial endothelial cells. CONCLUSION Our results indicate the crucial role of acetylated CyPA in the abnormal occurrence of autophagy and subsequent pulmonary vascular angiogenesis.
Collapse
|
168
|
HDAC6: A Novel Histone Deacetylase Implicated in Pulmonary Arterial Hypertension. Sci Rep 2017; 7:4546. [PMID: 28674407 PMCID: PMC5495763 DOI: 10.1038/s41598-017-04874-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 11/24/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with limited therapeutic options. Although exposed to stressful conditions, pulmonary artery (PA) smooth muscle cells (PASMCs) exhibit a “cancer-like” pro-proliferative and anti-apoptotic phenotype. HDAC6 is a cytoplasmic histone deacetylase regulating multiple pro-survival mechanisms and overexpressed in response to stress in cancer cells. Due to the similarities between cancer and PAH, we hypothesized that HDAC6 expression is increased in PAH-PASMCs to face stress allowing them to survive and proliferate, thus contributing to vascular remodeling in PAH. We found that HDAC6 is significantly up-regulated in lungs, distal PAs, and isolated PASMCs from PAH patients and animal models. Inhibition of HDAC6 reduced PAH-PASMC proliferation and resistance to apoptosis in vitro sparing control cells. Mechanistically, we demonstrated that HDAC6 maintains Ku70 in a hypoacetylated state, blocking the translocation of Bax to mitochondria and preventing apoptosis. In vivo, pharmacological inhibition of HDAC6 improved established PAH in two experimental models and can be safely given in combination with currently approved PAH therapies. Moreover, Hdac6 deficient mice were partially protected against chronic hypoxia-induced pulmonary hypertension. Our study shows for the first time that HDAC6 is implicated in PAH development and represents a new promising target to improve PAH.
Collapse
|
169
|
Chen J, Wang YX, Dong MQ, Zhang B, Luo Y, Niu W, Li ZC. Reoxygenation Reverses Hypoxic Pulmonary Arterial Remodeling by Inducing Smooth Muscle Cell Apoptosis via Reactive Oxygen Species-Mediated Mitochondrial Dysfunction. J Am Heart Assoc 2017; 6:e005602. [PMID: 28645933 PMCID: PMC5669176 DOI: 10.1161/jaha.117.005602] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pulmonary arterial remodeling, a main characteristic of hypoxic pulmonary hypertension, can gradually reverse once oxygen has been restored. Previous studies documented that apoptosis increased markedly during the reversal of remodeled pulmonary arteries, but the types of cells and mechanisms related to the apoptosis have remained elusive. This study aimed to determine whether pulmonary artery smooth muscle cell (PASMC)-specific apoptosis was involved in the reoxygenation-induced reversal of hypoxic pulmonary arterial remodeling and elucidate the underlying mechanism. METHODS AND RESULTS Hypoxic pulmonary hypertension was induced in adult male Sprague-Dawley rats (n=6/group) by chronic hypobaric hypoxia. and the hypoxic pulmonary hypertension rats were then transferred to a normoxia condition. During reoxygenation, hypoxia-induced pulmonary arterial remodeling gradually reversed. The reversal of remodeled pulmonary arteries was associated with increased H2O2 and with changes in lung expression of cleaved caspase3/PARP, Bax, and Bcl-2, consistent with increased apoptosis. The PASMC apoptosis, in particular, increased remarkably during this reversal. In vitro, reoxygenation induced the apoptosis of cultured rat primary PASMCs accompanied by increased mitochondrial reactive oxygen species, mitochondrial dysfunction, and the release of cytochrome C from mitochondria to cytoplasm. Clearance of reactive oxygen species alleviated mitochondrial dysfunction as well as the release of cytochrome C and, finally, decreased PASMC apoptosis. CONCLUSIONS Reoxygenation-induced apoptosis of PASMCs is implicated in the reversal of hypoxic pulmonary arterial remodeling, which may be attributed to the mitochondrial reactive oxygen species-mediated mitochondrial dysfunction.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins/metabolism
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Male
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxygen/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Time Factors
- Vascular Remodeling
Collapse
Affiliation(s)
- Jian Chen
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yan-Xia Wang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Ming-Qing Dong
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Bo Zhang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Ying Luo
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wen Niu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Chao Li
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
170
|
Schroeder RD, Choi W, Hong DS, McConkey DJ. Autophagy is required for crizotinib-induced apoptosis in MET-amplified gastric cancer cells. Oncotarget 2017; 8:51675-51687. [PMID: 28881678 PMCID: PMC5584279 DOI: 10.18632/oncotarget.18386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/01/2017] [Indexed: 01/26/2023] Open
Abstract
MET amplification has been clinically credentialed as a therapeutic target in gastric cancer, but the molecular mechanisms underlying sensitivity and resistance to MET inhibitors are still not well understood. Using whole-genome mRNA expression profiling, we identified autophagy as a top molecular pathway that was activated by the MET inhibitor crizotinib in drug-sensitive human gastric cancer cells, and functional studies confirmed that crizotinib increased autophagy levels in the drug-sensitive cells in a concentration-dependent manner. We then used chemical and molecular approaches to inhibit autophagy in order to define its role in cell death. The clinically available inhibitor of autophagy, chloroquine, or RNAi-mediated knockdown of two obligate components of the autophagy pathway (ATG5 and ATG7) blocked cell death induced by crizotinib or RNAi-mediated knockdown of MET, and mechanistic studies localized the effects of autophagy to cytochrome c release from the mitochondria. Overall, the data reveal a novel relationship between autophagy and apoptosis in gastric cancer cells exposed to MET inhibitors. The observations suggest that autophagy inhibitors should not be used to enhance the effects of MET inhibitors in gastric cancer patients.
Collapse
Affiliation(s)
- Rebecca D Schroeder
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA.,Experimental Therapeutics Academic Program, Houston, Texas, USA
| | - Woonyoung Choi
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - David J McConkey
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA.,Experimental Therapeutics Academic Program, Houston, Texas, USA
| |
Collapse
|
171
|
Yang K, Wang J, Lu W. Bone morphogenetic protein signalling in pulmonary hypertension: advances and therapeutic implications. Exp Physiol 2017; 102:1083-1089. [PMID: 28449240 DOI: 10.1113/ep086041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 01/07/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review covers recent evidence highlighting the crucial pathophysiological roles and molecular mechanisms of the bone morphogenetic protein (BMP) signalling pathway during the progression of pulmonary hypertension (PH) and discusses targeting of BMP signalling as a new treatment option against PH. What advances does it highlight? A series of breakthrough findings have greatly enriched our understanding about the mechanism of action of BMP signalling in PH and proved the feasibility of BMP targeting strategies in experimental PH models. This review collects these ideas and discusses the frontiers of BMP signalling-targeted PH therapy at different steps of the signal transduction. The bone morphogenetic protein (BMP)-mediated signalling pathway plays crucial roles in the development and progression of pulmonary hypertension (PH). Typical BMP signalling involves BMP ligands, specific transmembrane serine/threonine kinase receptors, cellular responsive kinases and secreted antagonists. As more and more studies have been conducted, the specific protective or pathogenic roles of these molecules within all these subgroups of BMP signalling have been continuously uncovered. Based on this evidence, specific strategies have been designed by targeting these factors as a new treatment approach to PH. In this review, we have collected recent advances in the exciting findings that link BMP signalling with the pathogenesis of PH and we discuss the potential future frontiers in therapeutic design.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
172
|
Jee AS, Corte TJ, Wort SJ, Eves ND, Wainwright CE, Piper A. Year in review 2016: Interstitial lung disease, pulmonary vascular disease, pulmonary function, paediatric lung disease, cystic fibrosis and sleep. Respirology 2017; 22:1022-1034. [PMID: 28544189 DOI: 10.1111/resp.13080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Adelle S Jee
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tamera J Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen J Wort
- Pulmonary Hypertension Department, Royal Brompton Hospital and Imperial College, London, UK
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
| | - Claire E Wainwright
- School of Medicine, Lady Cilento Children's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Piper
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
173
|
Mahrouf-Yorgov M, Augeul L, Da Silva CC, Jourdan M, Rigolet M, Manin S, Ferrera R, Ovize M, Henry A, Guguin A, Meningaud JP, Dubois-Randé JL, Motterlini R, Foresti R, Rodriguez AM. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ 2017; 24:1224-1238. [PMID: 28524859 PMCID: PMC5520168 DOI: 10.1038/cdd.2017.51] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) protect tissues against cell death induced by ischemia/reperfusion insults. This therapeutic effect seems to be controlled by physiological cues released by the local microenvironment following injury. Recent lines of evidence indicate that MSC can communicate with their microenvironment through bidirectional exchanges of mitochondria. In particular, in vitro and in vivo studies report that MSCs rescue injured cells through delivery of their own mitochondria. However, the role of mitochondria conveyed from somatic cells to MSC remains unknown. By using a co-culture system consisting of MSC and distressed somatic cells such as cardiomyocytes or endothelial cells, we showed that mitochondria from suffering cells acted as danger-signaling organelles that triggered the anti-apoptotic function of MSC. We demonstrated that foreign somatic-derived mitochondria were engulfed and degraded by MSC, leading to induction of the cytoprotective enzyme heme oxygenase-1 (HO-1) and stimulation of mitochondrial biogenesis. As a result, the capacity of MSC to donate their mitochondria to injured cells to combat oxidative stress injury was enhanced. We found that similar mechanisms - activation of autophagy, HO-1 and mitochondrial biogenesis - occurred after exposure of MSC to exogenous mitochondria isolated from somatic cells, strengthening the idea that somatic mitochondria alert MSC of a danger situation and subsequently promote an adaptive reparative response. In addition, the cascade of events triggered by the transfer of somatic mitochondria into MSC was recapitulated in a model of myocardial infarction in vivo. Specifically, MSC engrafted into infarcted hearts of mice reduced damage, upregulated HO-1 and increased mitochondrial biogenesis, while inhibition of mitophagy or HO-1 failed to protect against cardiac apoptosis. In conclusion, our study reveals a new facet about the role of mitochondria released from dying cells as a key environmental cue that controls the cytoprotective function of MSC and opens novel avenues to improve the effectiveness of MSC-based therapies.
Collapse
Affiliation(s)
- Meriem Mahrouf-Yorgov
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - Lionel Augeul
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France
| | - Claire Crola Da Silva
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France
| | - Maud Jourdan
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - Muriel Rigolet
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM U955 Team 10, Créteil, Paris, France
| | - Sylvie Manin
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - René Ferrera
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France
| | - Michel Ovize
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France.,Hospices Civils de Lyon, Hôpital Louis Pradel, Service d'Explorations Fonctionnelles, Cardiovasculaires and Centre d'Investigation Clinique, Lyon, France
| | - Adeline Henry
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM U955, Plateforme de Cytométrie en flux, Créteil, Paris, France
| | - Aurélie Guguin
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM U955, Plateforme de Cytométrie en flux, Créteil, Paris, France
| | - Jean-Paul Meningaud
- Service de Chirurgie Plastique et Maxillo-Faciale, AP-HP, Hôpital Henri Mondor-A. Chenevier, Créteil, Paris, France
| | - Jean-Luc Dubois-Randé
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,Fédération de Cardiologie, AP-HP, Hôpital Henri Mondor-A. Chenevier, Créteil, Paris, France
| | - Roberto Motterlini
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - Roberta Foresti
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - Anne-Marie Rodriguez
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| |
Collapse
|
174
|
Berger MD, Yamauchi S, Cao S, Hanna DL, Sunakawa Y, Schirripa M, Matsusaka S, Yang D, Groshen S, Zhang W, Ning Y, Okazaki S, Miyamoto Y, Suenaga M, Lonardi S, Cremolini C, Falcone A, Heinemann V, Loupakis F, Stintzing S, Lenz HJ. Autophagy-related polymorphisms predict hypertension in patients with metastatic colorectal cancer treated with FOLFIRI and bevacizumab: Results from TRIBE and FIRE-3 trials. Eur J Cancer 2017; 77:13-20. [PMID: 28347919 PMCID: PMC7497847 DOI: 10.1016/j.ejca.2017.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE The most frequent bevacizumab-related side-effects are hypertension, proteinuria, bleeding and thromboembolism. To date, there is no biomarker that predicts anti-VEGF-associated toxicity. As autophagy inhibits angiogenesis, we hypothesised that single-nucleotide polymorphisms (SNPs) within autophagy-related genes may predict bevacizumab-mediated toxicity in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS Patients with mCRC treated with first-line FOLFIRI and bevacizumab in two phase III randomised trials, namely the TRIBE trial (n = 219, discovery cohort) and the FIRE-3 trial (n = 234, validation cohort) were included in this study. Patients receiving treatment with FOLFIRI and cetuximab (FIRE-3, n = 204) served as a negative control. 12 SNPs in eight autophagy-related genes (ATG3/5/8/13, beclin 1, FIP200, unc-51-like kinase 1, UVRAG) were analysed by PCR-based direct sequencing. RESULTS The FIP200 rs1129660 variant showed significant associations with hypertension in the TRIBE cohort. Patients harbouring any G allele of the FIP200 rs1129660 SNP showed a significantly lower rate of grade 2-3 hypertension compared with the A/A genotype (3% versus 15%, odds ratio [OR] 0.17; 95% confidence interval [CI], 0.02-0.73; P = 0.009). Similarly, G allele carriers of the FIP200 rs1129660 SNP were less likely to develop grade 2-3 hypertension than patients with an A/A genotype in the FIRE-3 validation cohort (9% versus 20%, OR 0.43; 95% CI, 0.14-1.11; P = 0.077), whereas this association could not be observed in the control cohort (12% versus 9%, OR 1.40; 95% CI, 0.45-4.04; P = 0.60). CONCLUSION This is the first report demonstrating that polymorphisms in the autophagy-related FIP200 gene may predict hypertension in patients with mCRC treated with FOLFIRI and bevacizumab.
Collapse
Affiliation(s)
- Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Shinichi Yamauchi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Diana L Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Yu Sunakawa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Marta Schirripa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA; Oncologia Medica 1, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Gattamelata 64, 35128 Padova, Italy
| | - Satoshi Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Susan Groshen
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Yan Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Satoshi Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Yuji Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Mitsukuni Suenaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Sara Lonardi
- Oncologia Medica 1, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Gattamelata 64, 35128 Padova, Italy
| | - Chiara Cremolini
- U.O. Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Via Roma 67, 56126 Pisa, Italy
| | - Alfredo Falcone
- U.O. Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Via Roma 67, 56126 Pisa, Italy
| | - Volker Heinemann
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich (LMU), Marchioninistrasse 15, 81377 Munich, Germany
| | - Fotios Loupakis
- Oncologia Medica 1, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Gattamelata 64, 35128 Padova, Italy
| | - Sebastian Stintzing
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich (LMU), Marchioninistrasse 15, 81377 Munich, Germany
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA.
| |
Collapse
|
175
|
BMP type II receptor as a therapeutic target in pulmonary arterial hypertension. Cell Mol Life Sci 2017; 74:2979-2995. [PMID: 28447104 PMCID: PMC5501910 DOI: 10.1007/s00018-017-2510-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 12/30/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. The most common cause of PAH is inactivating mutations in the gene encoding a bone morphogenetic protein type II receptor (BMPRII). Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease. Emerging data suggest that restoration of BMPRII signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. Here we will focus on recent advances in rescuing BMPRII expression, function or signaling to prevent and reverse pulmonary vascular remodeling in PAH and its feasibility for clinical translation. Furthermore, we summarize the role of described miRNAs that directly target the BMPR2 gene in blood vessels. We discuss the therapeutic potential and the limitations of promising new approaches to restore BMPRII signaling in PAH patients. Different mutations in BMPR2 and environmental/genetic factors make PAH a heterogeneous disease and it is thus likely that the best approach will be patient-tailored therapies.
Collapse
|
176
|
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Studies regarding the role of autophagy in cardiac and vascular tissues have opened new therapeutic avenues to treat cardiovascular disorders. Altogether, these studies point out that autophagic activity needs to be maintained at an optimal level to preserve cardiovascular function. Reaching this goal constitutes a challenge for future efficient therapeutic strategies. The present review therefore highlights recent advances in the understanding of the role of autophagy in cardiovascular pathologies.
Collapse
Affiliation(s)
- Marouane Kheloufi
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France - Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Pierre-Emmanuel Rautou
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France - Service d'hépatologie, DHU unity, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Chantal M Boulanger
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France
| |
Collapse
|
177
|
Wang R, Xi L, Kukreja RC. PDE5 Inhibitor Tadalafil and Hydroxychloroquine Cotreatment Provides Synergistic Protection against Type 2 Diabetes and Myocardial Infarction in Mice. J Pharmacol Exp Ther 2017; 361:29-38. [PMID: 28123046 PMCID: PMC5363764 DOI: 10.1124/jpet.116.239087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Diabetes is associated with a high risk for ischemic heart disease. We have previously shown that phosphodiesterase 5 inhibitor tadalafil (TAD) induces cardioprotection against ischemia/ reperfusion (I/R) injury in diabetic mice. Hydroxychloroquine (HCQ) is a widely used antimalarial and anti-inflammatory drug that has been reported to reduce hyperglycemia in diabetic patients. Therefore, we hypothesized that a combination of TAD and HCQ may induce synergistic cardioprotection in diabetes. We also investigated the role of insulin-Akt-mammalian target of rapamycin (mTOR) signaling, which regulates protein synthesis and cell survival. Adult male db/db mice were randomized to receive vehicle, TAD (6 mg/kg), HCQ (50 mg/kg), or TAD + HCQ daily by gastric gavage for 7 days. Hearts were isolated and subjected to 30-minute global ischemia, followed by 1-hour reperfusion in Langendorff mode. Cardiac function and myocardial infarct size were determined. Plasma glucose, insulin and lipid levels, and relevant pancreatic and cardiac protein markers were measured. Treatment with TAD + HCQ reduced myocardial infarct size (17.4% ± 4.3% vs. 37.8% ± 4.9% in control group, P < 0.05) and enhanced the production of ATP. The TAD + HCQ combination treatment also reduced fasting blood glucose, plasma free fatty acids, and triglyceride levels. Furthermore, TAD + HCQ increased plasma insulin levels (513 ± 73 vs. 232 ± 30 mU/liter, P < 0.05) with improved insulin sensitivity, larger pancreatic β-cell area, and pancreas mass. Insulin-like growth factor-1 (IGF-1) levels were also elevated by TAD + HCQ (343 ± 14 vs. 262 ± 22 ng/ml, P < 0.05). The increased insulin/IGF-1 resulted in activation of downstream Akt/mTOR cellular survival pathway. These results suggest that combination treatment with TAD and HCQ could be a novel and readily translational pharmacotherapy for reducing cardiovascular risk factors and protecting against myocardial I/R injury in type 2 diabetes.
Collapse
Affiliation(s)
- Rui Wang
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University. Richmond, Virginia
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University. Richmond, Virginia
| | - Rakesh C Kukreja
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University. Richmond, Virginia
| |
Collapse
|
178
|
Abstract
Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of hyper-proliferative and apoptotic resistant clone of cells including pulmonary artery smooth muscle cells, fibroblasts, and even pulmonary artery endothelial cells allowing vascular remodeling and PAH development. Molecularly, these cells exhibit many features common to cancer cells offering the opportunity to exploit therapeutic strategies used in cancer to treat PAH. In this review, we outline the signaling pathways and mechanisms described in cancer that drive PAH cells' survival and proliferation and discuss the therapeutic potential of antineoplastic drugs in PAH.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Geraldine Vitry
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Isabelle Trinh
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| |
Collapse
|
179
|
Deng Y, Wu W, Guo S, Chen Y, Liu C, Gao X, Wei B. Altered mTOR and Beclin-1 mediated autophagic activation during right ventricular remodeling in monocrotaline-induced pulmonary hypertension. Respir Res 2017; 18:53. [PMID: 28340591 PMCID: PMC5366117 DOI: 10.1186/s12931-017-0536-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/12/2017] [Indexed: 01/25/2023] Open
Abstract
Background Right ventricular structure and function is a major predictor of outcomes in pulmonary hypertension (PH), yet the underlying mechanisms remain poorly understood. Growing evidence suggests the importance of autophagy in cardiac remodeling; however, its dynamics in the process of right ventricle(RV) remodeling in PH has not been fully explored. We sought to study the time course of cardiomyocyte autophagy in the RV in PH and determine whether mammalian target of rapamycin (mTOR) and Beclin-1 hypoxia-related pro-autophagic pathways are underlying mechanisms. Methods Rats were studied at 2, 4, and 6 weeks after subcutaneous injection of 60 mg/kg monocrotaline (MCT) (MCT-2 W, 4 W, 6 W) or vehicle (CON-2 W, 4 W, 6 W). Cardiac hemodynamics and RV function were assessed in rats. Autophagy structures and markers were assessed using transmission electron microscope, RT-qPCR, immunohistochemistry staining, and western blot analyses. Western blot was also used to quantify the expression of mTOR and Beclin-1 mediated pro-autophagy signalings in the RV. Results Two weeks after MCT injection, pulmonary artery systolic pressure increased and mild RV hypertrophy without RV dilation was observed. RV enlargement presented at 4 weeks with moderately decreased function, whereas typical characteristics of RV decompensation and failure occurred at 6 weeks thus demonstrating the progression of RV remodeling in the MCT model. A higher LC3 (microtubule- associated protein light chain 3) II/I ratio, upregulated LC3 mRNA and protein levels, as well as accumulation of autophagosomes in RV of MCT rats indicated autophagy induction. Autophagy activation was coincident with increased pulmonary artery systolic pressure. Pro-autophagy signaling pathways were activated in a RV remodeling stage-dependent manner since phospho-AMPK (adenosine monophosphate-activated protein kinase)-α were primarily upregulated and phospho-mTOR suppressed in the RV at 2 and 4 weeks post-MCT injection, whearas, BNIP3 (Bcl2-interacting protein 3) and beclin-1 expression were relatively low during these stages, they were significantly upregulated after 6 weeks in this model. Conclusions Our findings provide evidence of sustained activation of autophagy in RV remodeling of MCT induced PH model, while pro-autophagic signaling pathways varied depending on the phase.
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Weifeng Wu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Shenglan Guo
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yuming Chen
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Chang Liu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Xingcui Gao
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Bin Wei
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| |
Collapse
|
180
|
He Y, Cao X, Guo P, Li X, Shang H, Liu J, Xie M, Xu Y, Liu X. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic Biol Med 2017; 103:165-176. [PMID: 27979659 DOI: 10.1016/j.freeradbiomed.2016.12.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Quercetin, an important dietary flavonoid has been demonstrated to potentially reverse or even prevent pulmonary arterial hypertension (PAH) progression. However, the effects of quercetin on apoptosis and autophagy in pulmonary arterial smooth muscle cells (PASMCs) have not yet been clearly elucidated. The current study found that quercetin significantly induce the apoptotic and autophagic capacities of PASMCs in vitro and in vivo in hypoxia. In addition, we found that quercetin increases FOXO1 (a major mediator in autophagy regulation) expression and transcriptional activity. Moreover, FOXO1 knockdown by siRNAs inhibited the phosphorylation of mTOR and 4E-BPI, which is downstream of P70-S6K, and markedly blocked quercetin-induced autophagy. We also observed that FOXO1-mediated autophagy was achieved via SESN3 not Rictor upregulation and after mTOR suppression. Furthermore, Treatment with autophagy-specific inhibitors could markedly enhance quercetin-induced apoptosis in PASMCs under hypoxia. Finally, quercetin in combination with autophagy inhibition treatment could enhance the therapeutic effects of quercetin in hypoxia-associated PAH in vivo. Taken together, quercetin could enhance hypoxia-induced autophagy through the FOXO1-SENS3-mTOR pathway in PASMCs. Combining quercetin and autophagy inhibitors may be a novel therapeutic strategy for treating hypoxia-associated PAH.
Collapse
Affiliation(s)
- Yuanzhou He
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiaopei Cao
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Pujian Guo
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiaochen Li
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Huihui Shang
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jin Liu
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Min Xie
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yongjian Xu
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiansheng Liu
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
181
|
McCarthy CG, Wenceslau CF, Goulopoulou S, Baban B, Matsumoto T, Webb RC. Chloroquine Suppresses the Development of Hypertension in Spontaneously Hypertensive Rats. Am J Hypertens 2017; 30:173-181. [PMID: 27623761 DOI: 10.1093/ajh/hpw113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/27/2016] [Accepted: 08/26/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Innate immune system responses to damage-associated molecular patterns (DAMPs) are involved in hypertension. However, the mechanisms of this contribution are not well understood. Circulating mitochondrial DNA is a DAMP that activates Toll-like receptor (TLR) 9 and is elevated in spontaneously hypertensive rats (SHR). Therefore, we hypothesized that lysosomotropic agent chloroquine (CQ) would impair TLR9 signaling, as well as prevent the development of hypertension and immune cell recruitment to the vasculature, in SHR. METHODS Initially, adult SHR and Wistar-Kyoto (WKY) rats (12 weeks old), as well as a group of young SHR (5 weeks old), were treated with CQ (40mg/kg/day) or vehicle (saline) via intraperitoneal injections for 21 days and then TLR9-myeloid differentiation primary response protein (MyD88) signaling proteins were assessed in mesenteric resistance arteries (MRA) via western blot. Subsequently, young SHR and WKY were treated from 5-8 weeks of age and then were allowed to mature without further treatment. Blood pressure was measured pretreatment, posttreatment, and after maturation, and immune cell recruitment to the vasculature was measured via flow cytometry after maturation. RESULTS In MRA from adult SHR, CQ increased the expression of MyD88-dependent proteins, whereas young SHR MRA exhibited a decrease. This inhibition was subsequently associated with suppression of blood pressure, as well as decreased counts of circulating T cells and vascular infiltrating leukocytes in SHR, when CQ was administered during the prehypertensive phase. CONCLUSIONS These data bring into question the participation of TLRs during the maintenance phase of hypertension and promote the exploration of innate immune system therapy during the critical developmental phase.
Collapse
Affiliation(s)
| | | | - Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Babak Baban
- Department of Oral Biology, Augusta University, Augusta, Georgia, USA
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
182
|
Banse C, Polena H, Stidder B, Khalil-Mgharbel A, Houivet E, Lequerré T, Fardellone P, Le-Loët X, Philippe P, Marcelli C, Vittecoq O, Vilgrain I. Soluble vascular endothelial (VE) cadherin and autoantibodies to VE-cadherin in rheumatoid arthritis patients treated with etanercept or adalimumab. Joint Bone Spine 2016; 84:685-691. [PMID: 28011155 DOI: 10.1016/j.jbspin.2016.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/31/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the clinical value of sVE and anti-vascular endothelial-cadherin antibodies (AAVE) in RA treated with etanercept or adalimumab combined with methotrexate. METHODS This was an 18-month prospective multicenter study in which patients had active RA, requiring TNF antagonist. sVE rates and AAVE titers were measured respectively by dot blot and ELISA. The relationship of these biomarkers with parameters reflecting articular or systemic disease activity, progression of structural damage, and response or remission to treatment was analyzed. RESULTS Forty-eight patients received TNF blocking agents. Variation of sVE rates were significantly correlated with that of C-reactive protein (CRP) levels at weeks 6, 12, 26 and 52. A significant decrease in sVE levels was observed in the group of patients exhibiting a decrease in CRP levels as compared to the patient group with unmodified CRP. AAVE at baseline were correlated with rheumatoid factor. Kinetics analysis of sVE levels and AAVE titers showed that their level were not associated with disease activity score and to methotrexate/adalimumab or etanercept response. CONCLUSIONS sVE is a biomarker associated with systemic RA activity under anti-TNF. AAVE are related to autoantibodies usually associated to RA.
Collapse
Affiliation(s)
- Christopher Banse
- Rheumatology Department, Rouen University Hospital, Inserm U905, CIC/CRB 1404, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76000 Rouen, France.
| | - Helena Polena
- Inserm, Unit 1036, Biology of Cancer and Infection, 38054 Grenoble, France; UJF-Grenoble 1, Biology of Cancer and Infection, 38054 Grenoble, France; CEA Comission at Atomic Energy and Alternative Energies, DRF/B(2)IG direction de la recherche fondamentale/BioScience and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| | - Barry Stidder
- Inserm, Unit 1036, Biology of Cancer and Infection, 38054 Grenoble, France; UJF-Grenoble 1, Biology of Cancer and Infection, 38054 Grenoble, France; CEA Comission at Atomic Energy and Alternative Energies, DRF/B(2)IG direction de la recherche fondamentale/BioScience and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| | - Abir Khalil-Mgharbel
- Inserm, Unit 1036, Biology of Cancer and Infection, 38054 Grenoble, France; UJF-Grenoble 1, Biology of Cancer and Infection, 38054 Grenoble, France; CEA Comission at Atomic Energy and Alternative Energies, DRF/B(2)IG direction de la recherche fondamentale/BioScience and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| | - Estelle Houivet
- Department of Biostatistics, Rouen University Hospital, IRIB, University of Rouen, 76031 Rouen, France
| | - Thierry Lequerré
- Rheumatology Department, Rouen University Hospital, Inserm U905, CIC/CRB 1404, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76000 Rouen, France
| | - Patrice Fardellone
- Rheumatology Department, Amiens University Hospital, Inserm U1088, University of Picardie Jules Verne, 80054 Amiens, France
| | - Xavier Le-Loët
- Rheumatology Department, Rouen University Hospital, Inserm U905, CIC/CRB 1404, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76000 Rouen, France
| | - Peggy Philippe
- Rheumatology Department, Roger Salengro Hospital, University of Lille 2, 59037 Lille Cedex, France
| | | | - Olivier Vittecoq
- Rheumatology Department, Rouen University Hospital, Inserm U905, CIC/CRB 1404, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76000 Rouen, France
| | - Isabelle Vilgrain
- Inserm, Unit 1036, Biology of Cancer and Infection, 38054 Grenoble, France; UJF-Grenoble 1, Biology of Cancer and Infection, 38054 Grenoble, France; CEA Comission at Atomic Energy and Alternative Energies, DRF/B(2)IG direction de la recherche fondamentale/BioScience and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| |
Collapse
|
183
|
Sex-specific pharmacological modulation of autophagic process in human umbilical artery smooth muscle cells. Pharmacol Res 2016; 113:166-174. [DOI: 10.1016/j.phrs.2016.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 01/29/2023]
|
184
|
Dong Q, Xing W, Fu F, Liu Z, Wang J, Liang X, Zhou X, Yang Q, Zhang W, Gao F, Wang S, Zhang H. Tetrahydroxystilbene Glucoside Inhibits Excessive Autophagy and Improves Microvascular Endothelial Dysfunction in Prehypertensive Spontaneously Hypertensive Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1393-1412. [PMID: 27776426 DOI: 10.1142/s0192415x16500786] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Autophagy exists in vascular endothelial cells, but the relationship between autophagy and blood vessel dysfunction in hypertension remains elusive. This study aimed to investigate role of autophagy in vascular endothelial dysfunction in prehypertension and hypertension and the underlying mechanisms involved. Furthermore, we sought to determine if and how tetrahydroxystilbene glucoside (TSG), a resveratrol analogue and active ingredient of Polygonum multiflorum Thunb used for its cardiovascular protective properties in traditional Chinese medicine, influences vascular endothelial function. Male spontaneously hypertensive rats (SHRs) aged 4 weeks (young) and 12 weeks (adult) were studied and the vascular function of isolated aorta and mesenteric artery was assessed in vitro. Compared with Wistar Kyoto rats (WKY), young and adult SHRs showed endothelial dysfunction of the aorta and mesenteric artery, along with decreased pAkt, pmTOR, and autophagic marker protein p62 and increased LC3 II/I in microvascular but not aortic tissues. TSG administration for 14 days significantly improved mesenteric vascular endothelial function, increased levels of pAkt and pmTOR, and decreased autophagy. Pretreatment of young SHRs with the mTOR inhibitor rapamycin blocked the antiautophagic and vasodilative effects of TSG. Moreover, TSG significantly activated Akt-mTOR signaling in HUVECs and reduced the autophagic levels in vitro, which were almost completely blocked by rapamycin. In summary, mesenteric endothelial dysfunction in prehypertensive SHRs was at least partly attributable to excessive autophagy in vascular tissues. TSG partly restored microvascular endothelial dysfunction through activating the Akt/mTOR pathway, which consequently suppressed autophagy, indicating that TSG could be potentially applied to protect vascular function against subclinical changes in prehypertension.
Collapse
Affiliation(s)
- Qianqian Dong
- * Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Wenjuan Xing
- † Department of Physiology, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Feng Fu
- † Department of Physiology, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Zhenghua Liu
- † Department of Physiology, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Jie Wang
- ‡ Experiment Teaching Center, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Xiangyan Liang
- ‡ Experiment Teaching Center, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Xuanxuan Zhou
- * Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Qian Yang
- * Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Wei Zhang
- § Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Feng Gao
- † Department of Physiology, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Siwang Wang
- * Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Haifeng Zhang
- ‡ Experiment Teaching Center, Fourth Military Medical University, Xi'an 710032, P.R. China
| |
Collapse
|
185
|
Dalvi P, Sharma H, Chinnappan M, Sanderson M, Allen J, Zeng R, Choi A, O'Brien-Ladner A, Dhillon NK. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: Role in HIV-related pulmonary arterial hypertension. Autophagy 2016; 12:2420-2438. [PMID: 27723373 DOI: 10.1080/15548627.2016.1238551] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intravenous drug use is one of the major risk factors for HIV-infection in HIV-related pulmonary arterial hypertension patients. We previously demonstrated exaggerated pulmonary vascular remodeling with enhanced apoptosis followed by increased proliferation of pulmonary endothelial cells on simultaneous exposure to both opioids and HIV protein(s). Here we hypothesize that the exacerbation of autophagy may be involved in the switching of endothelial cells from an early apoptotic state to later hyper-proliferative state. Treatment of human pulmonary microvascular endothelial cells (HPMECs) with both the HIV-protein Tat and morphine resulted in an oxidative stress-dependent increase in the expression of various markers of autophagy and formation of autophagosomes when compared to either Tat or morphine monotreatments as demonstrated by western blot, transmission electron microscopy and immunofluorescence. Autophagy flux experiments suggested increased formation rather than decreased clearance of autolysosomes. Inhibition of autophagy resulted in a significant increase in apoptosis and reduction in proliferation of HPMECs with combined morphine and Tat (M+T) treatment compared to monotreatments whereas stimulation of autophagy resulted in opposite effects. Significant increases in the expression of autophagy markers as well as the number of autophagosomes and autolysosomes was observed in the lungs of SIV-infected macaques and HIV-infected humans exposed to opioids. Overall our findings indicate that morphine in combination with viral protein(s) results in the induction of autophagy in pulmonary endothelial cells that may lead to an increase in severity of angio-proliferative remodeling of the pulmonary vasculature on simian and human immunodeficiency virus infection in the presence of opioids.
Collapse
Affiliation(s)
- Pranjali Dalvi
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Himanshu Sharma
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Mahendran Chinnappan
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Miles Sanderson
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Julie Allen
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Ruoxi Zeng
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Augustine Choi
- b Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Amy O'Brien-Ladner
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Navneet K Dhillon
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA.,c Department of Molecular and Integrative Physiology , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
186
|
Autophagy-related proteins are functionally active in human spermatozoa and may be involved in the regulation of cell survival and motility. Sci Rep 2016; 6:33647. [PMID: 27633131 PMCID: PMC5025659 DOI: 10.1038/srep33647] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy (hereafter autophagy) is an evolutionarily highly conserved cellular process that participates in the maintenance of intracellular homeostasis through the degradation of most long-lived proteins and entire organelles. Autophagy participates in some reproductive events; however, there are not reports regarding the role of autophagy in the regulation of sperm physiology. Hence, the aim of this study was to investigate whether autophagy-related proteins are present and functionally active in human spermatozoa. Proteins related to autophagy/mitophagy process (LC3, Atg5, Atg16, Beclin 1, p62, m-TOR, AMPKα 1/2, and PINK1) were present in human spermatozoa. LC3 colocalized with p62 in the middle piece of the spermatozoa. Autophagy activation induced a significant increase in motility and a decrease in PINK1, TOM20 expression and caspase 3/7 activation. In contrast, autophagy inhibition resulted in decreased motility, viability, ATP and intracellular calcium concentration whereas PINK1, TOM20 expression, AMPK phosphorylation and caspase 3/7 activation were significantly increased. In conclusion our results show that autophagy related proteins and upstream regulators are present and functional in human spermatozoa. Modification of mitochondrial proteins expression after autophagy activation/inhibition may be indicating that a specialized form of autophagy named mitophagy may be regulating sperm function such as motility and viability and may be cooperating with apoptosis.
Collapse
|
187
|
McCarthy CG, Wenceslau CF, Goulopoulou S, Ogbi S, Matsumoto T, Webb RC. Autoimmune therapeutic chloroquine lowers blood pressure and improves endothelial function in spontaneously hypertensive rats. Pharmacol Res 2016; 113:384-394. [PMID: 27639600 DOI: 10.1016/j.phrs.2016.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
It has been suggested that hypertension results from a loss of immunological tolerance and the resulting autoimmunity may be an important underlying factor of its pathogenesis. This stems from the observations that many of the features involved in autoimmunity are also implicated in hypertension. Furthermore, the underlying presence of hypertension and cardiovascular disease are frequently observed in patients with autoimmune diseases. Antimalarial agents such as chloroquine are generally among the first line treatment options for patients with autoimmune diseases; however, whether they can improve a hypertensive phenotype in a genetic model of essential hypertension remains to be clarified. Therefore, we hypothesized that chloroquine treatment would improve endothelial function and lower blood pressure in spontaneously hypertensive rats (SHR). We treated adult SHR and Wistar-Kyoto rats (12 weeks old), as well as a group of young SHR (5 weeks old), with chloroquine (40mg/kg/day via intraperitoneal injection) for 21 days. Chloroquine lowered blood pressure in adult SHR, but did not impede the development of high blood pressure in young SHR. In isolated mesenteric resistance arteries from SHR of both ages, chloroquine treatment inhibited cyclooxygenase-dependent contraction to acetylcholine, lowered vascular and systemic generation of reactive oxygen species, and improved nitric oxide bioavailability. Overall, these data reveal the anti-hypertensive mechanisms of chloroquine in the vasculature, which may be important for lowering risk of cardiovascular disease in patients with autoimmune diseases. Furthermore, it adds to the growing body of evidence suggesting that autoimmunity underlies hypertension.
Collapse
Affiliation(s)
| | | | - Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Safia Ogbi
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, GA, USA
| |
Collapse
|
188
|
Aggarwal S, Mannam P, Zhang J. Differential regulation of autophagy and mitophagy in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L433-52. [PMID: 27402690 PMCID: PMC5504426 DOI: 10.1152/ajplung.00128.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022] Open
Abstract
Lysosomal-mediated degradation of intracellular lipids, proteins and organelles, known as autophagy, represents a inducible adaptive response to lung injury resulting from exposure to insults, such as hypoxia, microbes, inflammation, ischemia-reperfusion, pharmaceuticals (e.g., bleomycin), or inhaled xenobiotics (i.e., air pollution, cigarette smoke). This process clears damaged or toxic cellular constituents and facilitates cell survival in stressful environments. Autophagic degradation of dysfunctional or damaged mitochondria is termed mitophagy. Enhanced mitophagy is usually an early response to promote survival. However, overwhelming or prolonged mitochondrial damage can induce excessive/pathological levels of mitophagy, thereby promoting cell death and tissue injury. Autophagy/mitophagy is therefore an important modulator in human pulmonary diseases and a potential therapeutic target. This review article will summarize the most recent studies highlighting the role of autophagy/mitophagy and its molecular pathways involved in stress response in pulmonary pathologies.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Praveen Mannam
- Department of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
189
|
MnTBAP increases BMPR-II expression in endothelial cells and attenuates vascular inflammation. Vascul Pharmacol 2016; 84:67-73. [PMID: 27401963 DOI: 10.1016/j.vph.2016.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/03/2016] [Accepted: 07/01/2016] [Indexed: 11/21/2022]
Abstract
AIMS The endothelium plays an important role during vascular inflammation. Previous data have demonstrated a high expression level of manganese-superoxide dismutase (MnSOD) in endothelial cells and suggested an important role of MnSOD in several cardiovascular diseases. Manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) has been shown to mimic some of the effects of MnSOD and prevented the development of diabetes and obesity. However, its effect on vascular inflammation and the underlying mechanism is still unknown. METHODS AND RESULTS Leukocyte adhesion was evaluated in-vivo and in-vitro using dynamic flow chamber and intravital microscopy in mice. Expression of adhesion molecules induced by TNFα and adhesion of leukocytes to the vessel wall were inhibited by MnTBAP. The anti-inflammatory effect of MnTBAP was partly mediated by up-regulation of the BMPR-II and Smad dependent pathway. Additionally, MnTBAP decelerated the turn-over of endogenous BMPR-II. CONCLUSION Our data demonstrate that MnTBAP activates Smad signaling, preserves the turn-over of BMPR-II and elicits anti-inflammatory effects in endothelial cells, partly mediated by BMPR-II. This finding suggests a potential therapeutic impact of MnTBAP in the treatment of vascular inflammation.
Collapse
|
190
|
Singh N, Manhas A, Kaur G, Jagavelu K, Hanif K. Inhibition of fatty acid synthase is protective in pulmonary hypertension. Br J Pharmacol 2016; 173:2030-45. [PMID: 27061087 PMCID: PMC4882492 DOI: 10.1111/bph.13495] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 03/21/2016] [Accepted: 03/26/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE In pulmonary hypertension (PH), similar to cancer, there is altered energy metabolism, apoptosis resistance and cellular proliferation leading to pulmonary vascular remodelling. Proliferating cells exhibit higher rate of de novo fatty acid synthesis to provide lipids for membrane formation and energy production. As inhibition of de novo fatty acid synthesis proved protective in cancer experimentally, therefore, it was hypothesized that modulation of de novo fatty acid synthesis by inhibition of fatty acid synthase (FAS) may prove beneficial for PH. EXPERIMENTAL APPROACH For in vitro studies, human pulmonary artery smooth muscle cells (HPASMCs) were exposed to hypoxia and to induce PH in vivo, rats were treated with monocrotaline (MCT). FAS was inhibited by siRNA (60 nM) and C75 (2 mg·kg(-1) , i.p. once a week for 5 weeks) in in vitro and in vivo studies respectively. RESULTS Increased expression and activity of FAS were observed in hypoxic HPASMCs and lungs of MCT-treated rats. Inhibition of FAS increased apoptosis and glucose oxidation, but decreased proliferation and markers of autophagy, glycolysis and insulin resistance in hypoxic HPASMCs. It also improved the mitochondrial functions as evident by increased level of ATP and restoration of normal level of ROS and membrane potential of mitochondria. In MCT-treated rats, FAS inhibition decreased right ventricular pressure, hypertrophy, pulmonary vascular remodelling (increased apoptosis and decreased proliferation of cells) and endothelial dysfunction in lungs. CONCLUSIONS Our results demonstrate that FAS activity is modulated in PH, and its inhibition may provide a new therapeutic approach to treat PH.
Collapse
Affiliation(s)
- Neetu Singh
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
- Academy of Scientific and Innovative ResearchNew DelhiIndia
| | - Amit Manhas
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
| | - Gurpreet Kaur
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
| | - Kumaravelu Jagavelu
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
- Academy of Scientific and Innovative ResearchNew DelhiIndia
| | - Kashif Hanif
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
- Academy of Scientific and Innovative ResearchNew DelhiIndia
| |
Collapse
|
191
|
Li L, Xu J, He L, Peng L, Zhong Q, Chen L, Jiang Z. The role of autophagy in cardiac hypertrophy. Acta Biochim Biophys Sin (Shanghai) 2016; 48:491-500. [PMID: 27084518 PMCID: PMC4913516 DOI: 10.1093/abbs/gmw025] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is conserved in nature from lower eukaryotes to mammals and is an important self-cannibalizing, degradative process that contributes to the elimination of superfluous materials. Cardiac hypertrophy is primarily characterized by excess protein synthesis, increased cardiomyocyte size, and thickened ventricular walls and is a major risk factor that promotes arrhythmia and heart failure. In recent years, cardiomyocyte autophagy has been considered to play a role in controlling the hypertrophic response. However, the beneficial or aggravating role of cardiomyocyte autophagy in cardiac hypertrophy remains controversial. The exact mechanism of cardiomyocyte autophagy in cardiac hypertrophy requires further study. In this review, we summarize the controversies associated with autophagy in cardiac hypertrophy and provide insights into the role of autophagy in the development of cardiac hypertrophy. We conclude that future studies should emphasize the relationship between autophagy and the different stages of cardiac hypertrophy, as well as the autophagic flux and selective autophagy. Autophagy will be a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Lanfang Li
- Post-Doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China Hunan Children's Hospital and School of Pediatrics, University of South China, Changsha 410007, China
| | - Jin Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lijun Peng
- Post-Doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China Hunan Children's Hospital and School of Pediatrics, University of South China, Changsha 410007, China
| | - Qiaoqing Zhong
- Post-Doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Zhisheng Jiang
- Post-Doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
192
|
Rothman AMK, Arnold ND, Pickworth JA, Iremonger J, Ciuclan L, Allen RMH, Guth-Gundel S, Southwood M, Morrell NW, Thomas M, Francis SE, Rowlands DJ, Lawrie A. MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension. J Clin Invest 2016; 126:2495-508. [PMID: 27214554 DOI: 10.1172/jci83361] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Loss of the growth-suppressive effects of bone morphogenetic protein (BMP) signaling has been demonstrated to promote pulmonary arterial endothelial cell dysfunction and induce pulmonary arterial smooth muscle cell (PASMC) proliferation, leading to the development of pulmonary arterial hypertension (PAH). MicroRNAs (miRs) mediate higher order regulation of cellular function through coordinated modulation of mRNA targets; however, miR expression is altered by disease development and drug therapy. Here, we examined treatment-naive patients and experimental models of PAH and identified a reduction in the levels of miR-140-5p. Inhibition of miR-140-5p promoted PASMC proliferation and migration in vitro. In rat models of PAH, nebulized delivery of miR-140-5p mimic prevented the development of PAH and attenuated the progression of established PAH. Network and pathway analysis identified SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) as a key miR-140-5p target and regulator of BMP signaling. Evaluation of human tissue revealed that SMURF1 is increased in patients with PAH. miR-140-5p mimic or SMURF1 knockdown in PASMCs altered BMP signaling, further supporting these factors as regulators of BMP signaling. Finally, Smurf1 deletion protected mice from PAH, demonstrating a critical role in disease development. Together, these studies identify both miR-140-5p and SMURF1 as key regulators of disease pathology and as potential therapeutic targets for the treatment of PAH.
Collapse
|
193
|
The autophagy-related protein LC3 is processed in stallion spermatozoa during short-and long-term storage and the related stressful conditions. Animal 2016; 10:1182-91. [PMID: 26932581 DOI: 10.1017/s1751731116000240] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Use of cooled and frozen semen is becoming increasingly prevalent in the equine industry. However, these procedures cause harmful effects in the sperm cell resulting in reduced cell lifespan and fertility rates. Apoptosis and necrosis-related events are increased during semen cryopreservation. However, a third type of cell death, named autophagy, has not been studied during equine semen storage. Light chain (LC)3 protein is a key component of the autophagy pathway. Under autophagy activation, LC3-I is lipidated and converted to LC3-II. The ratio of LC3-II/LC3-I is widely used as a marker of autophagy activation. The main objective of this study was to investigate whether LC3 is processed during cooling, freezing and the stressful conditions associated with these technologies. A secondary objective was to determine if LC3 processing can be modulated and if that may improve the quality of cryopreserved semen. LC3 processing was studied by Western blot with a specific antibody that recognized both LC3-I and LC3-II. Viability was assessed by flow cytometry. Modulation of LC3-I to LC3-II was studied with known autophagy activators (STF-62247 and rapamycin) or inhibitors (chloroquine and 3-MA) used in somatic cells. The results showed that conversion of LC3-I to LC3-II increased significantly during cooling at 4°C, freezing/thawing and each of the stressful conditions tested (UV radiation, oxidative stress, osmotic stress and changes in temperature). STF-62247 and rapamycin increased the LC3-II/LC3-I ratio and decreased the viability of equine sperm, whereas chloroquine and 3-MA inhibited LC3 processing and maintained the percentage of viable cells after 2 h of incubation at 37°C. Finally, refrigeration at 4°C for 96 h and freezing at -196°C in the presence of chloroquine and 3-MA resulted in higher percentages of viable cells. In conclusion, results showed that an 'autophagy-like' mechanism may be involved in the regulation of sperm viability during equine semen cryopreservation. Modulation of autophagy during these reproductive technologies may result in an improvement of semen quality and therefore in higher fertility rates.
Collapse
|
194
|
Tai S, Hu XQ, Peng DQ, Zhou SH, Zheng XL. The roles of autophagy in vascular smooth muscle cells. Int J Cardiol 2016; 211:1-6. [PMID: 26954728 DOI: 10.1016/j.ijcard.2016.02.128] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
Autophagy, which is an evolutionarily conserved mechanism and links to several cellular pathways, impacts vascular smooth muscle cells (VSMCs) survival and function. Activation of autophagy by intercellular and/or extracellular stimuli has protective effects on VSMCs against cell death, while on the contrary, overloading autophagy has been recognized as a deleterious process by excessive self-digestion. Alterations in autophagy has been documented in VSMC in response to various stimuli, resulting in modulation of VSMC functions, including proliferation, migration, matrix secretion, contraction/relaxation, and differentiation. Each of these changes in VSMC functions plays a critical role in the development of vascular diseases. Importantly, emerging evidence demonstrates that autophagy deficiency in VSMCs would contribute to atherosclerosis and restenosis, shedding novel light on therapeutic target of the vascular disorders. Herein, this review summarizes the recent progress associated with the roles of autophagy in VSMC and offers the perspectives to several challenges and future directions for further studies.
Collapse
Affiliation(s)
- Shi Tai
- Dept. of Biochemistry & Molecular Biology, Faculty of Medicine, Univ. of Calgary, Calgary, Alberta, Canada; Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin-Qun Hu
- Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dao-Quan Peng
- Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sheng-Hua Zhou
- Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Dept. of Biochemistry & Molecular Biology, Faculty of Medicine, Univ. of Calgary, Calgary, Alberta, Canada; Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
195
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
196
|
Maiuri MC, De Stefano D. Pathophysiologic Role of Autophagy in Human Airways. AUTOPHAGY NETWORKS IN INFLAMMATION 2016. [PMCID: PMC7123327 DOI: 10.1007/978-3-319-30079-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lung diseases are among the most common and widespread disorders worldwide. They refer to many different pathological conditions affecting the pulmonary system in acute or chronic forms, such as asthma, chronic obstructive pulmonary disease, infections, cystic fibrosis, lung cancer and many other breath complications. Environmental, epigenetic and genetic co-factors are responsible for these pathologies that can lead to respiratory failure, and, even, ultimately death. Increasing evidences have highlighted the implication of the autophagic pathways in the pathogenesis of lung diseases and, in some cases, the deregulated molecular mechanisms underlying autophagy may be considered as potential new therapeutic targets. This chapter summarizes recent advances in understanding the pathophysiological functions of autophagy and its possible roles in the causation and/or prevention of human lung diseases.
Collapse
|
197
|
Goulopoulou S, McCarthy CG, Webb RC. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev 2016; 68:142-67. [PMID: 26721702 PMCID: PMC4709508 DOI: 10.1124/pr.114.010090] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study.
Collapse
Affiliation(s)
- Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - R Clinton Webb
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
198
|
Cai J, Wen J, Bauer E, Zhong H, Yuan H, Chen AF. The Role of HMGB1 in Cardiovascular Biology: Danger Signals. Antioxid Redox Signal 2015; 23:1351-69. [PMID: 26066838 DOI: 10.1089/ars.2015.6408] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Accumulating evidence shows that dysregulated immune response contributes to several types of CVDs such as atherosclerosis and pulmonary hypertension (PH). Vascular intimal impairment and low-density lipoprotein oxidation trigger a complex network of innate immune responses and sterile inflammation. RECENT ADVANCES High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, was recently discovered to function as a damage-associated molecular pattern molecule (DAMP) that initiates the innate immune responses. These findings lead to the understanding that HMGB1 plays a critical role in the inflammatory response in the pathogenesis of CVD. CRITICAL ISSUES In this review, we highlight the role of extracellular HMGB1 as a proinflammatory mediator as well as a DAMP in coronary artery disease, cerebral artery disease, peripheral artery disease, and PH. FUTURE DIRECTIONS A key focus for future researches on HMGB1 location, structure, modification, and signaling will reveal HMGB1's multiple functions and discover a targeted therapy that can eliminate HMGB1-mediated inflammation without interfering with adaptive immune responses.
Collapse
Affiliation(s)
- Jingjing Cai
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Juan Wen
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Eileen Bauer
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Hua Zhong
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Hong Yuan
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Alex F Chen
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
199
|
Ormiston ML, Upton PD, Li W, Morrell NW. The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2015; 2015:47. [PMID: 26779522 PMCID: PMC4710869 DOI: 10.5339/gcsp.2015.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy.
Collapse
Affiliation(s)
- Mark L Ormiston
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Paul D Upton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Wei Li
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Nicholas W Morrell
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
200
|
Li L, Wang X, Wang L, Qu L, Zhu X, Li M, Dang X, Li P, Gao Y, Peng Z, Pan L, Wan L. Mammalian target of rapamycin overexpression antagonizes chronic hypoxia-triggered pulmonary arterial hypertension via the autophagic pathway. Int J Mol Med 2015; 36:316-322. [PMID: 26017061 DOI: 10.3892/ijmm.2015.2224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disorder with high morbidity and mortality, and is characterized by excessive growth of endothelial cells. Recently, the mammalian target of rapamycin (mTOR) has attracted increasing attention due to its potential as a therapeutic target against certain diseases associated with proliferative and metabolic abnormalities. However, the effect on mTOR on PAH has not yet been elucidated. In the present study, a marked downregulation of mTOR was observed in PAH patients. Following construction of a mouse model of PAH by chronic exposure to hypoxia, adenovirus-mediated upregulation of mTOR significantly attenuated right ventricular systolic pressure, right ventricular hypertrophy and wall thickness of pulmonary arterioles, indicating a protective effect of mTOR on PAH. Further analysis confirmed that mTOR overexpression inhibited autophagy triggered by hypoxia through blocking light chain 3 II expression and increasing p62 levels. In vitro, hypoxia enhanced the proliferation of human pulmonary artery endothelial cells (PAECs), which was markedly abrogated by mTOR overexpression. Of note, upregulation of mTOR inhibited the hypoxia-induced autophagy pathway, which contributed to cell proliferation, while silencing of autophagy by RNA interference with ATG5 significantly inhibited cell proliferation. In conclusion, the results of the present study suggested a potential protective effect of mTOR on the progression of PAH by suppressing PAEC proliferation through blocking the autophagic pathway. Therefore, the present study suggested that mTOR is a promising therapeutic agent against PAH.
Collapse
Affiliation(s)
- Lingxia Li
- The Cadre Ward, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaochuang Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lina Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Li Qu
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xinye Zhu
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Manxiang Li
- Department of Respiratory Diseases, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoyan Dang
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ping Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhuo Peng
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Li Wan
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|