151
|
Gonçalves Silva I, Gibbs BF, Bardelli M, Varani L, Sumbayev VV. Differential expression and biochemical activity of the immune receptor Tim-3 in healthy and malignant human myeloid cells. Oncotarget 2016; 6:33823-33. [PMID: 26413815 PMCID: PMC4741805 DOI: 10.18632/oncotarget.5257] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/04/2015] [Indexed: 01/21/2023] Open
Abstract
The T cell immunoglobulin and mucin domain 3 (Tim-3) is a plasma membrane-associated receptor which is involved in a variety of biological responses in human immune cells. It is highly expressed in most acute myeloid leukaemia (AML) cells and therefore may serve as a possible target for AML therapy. However, its biochemical activities in primary human AML cells remain unclear. We therefore analysed the total expression and surface presence of the Tim-3 receptor in primary human AML blasts and healthy primary human leukocytes isolated from human blood. We found that Tim-3 expression was significantly higher in primary AML cells compared to primary healthy leukocytes. Tim-3 receptor molecules were distributed largely on the surface of primary AML cells, whereas in healthy leukocytes Tim-3 protein was mainly expressed intracellularly. In primary human AML blasts, both Tim-3 agonistic antibody and galectin-9 (a Tim-3 natural ligand) significantly upregulated mTOR pathway activity. This was in line with increased accumulation of hypoxia-inducible factor 1 alpha (HIF-1α) and secretion of VEGF and TNF-α. Similar results were obtained in primary human healthy leukocytes. Importantly, in both types of primary cells, Tim-3-mediated effects were compared with those induced by lipopolysaccharide (LPS) and stem cell factor (SCF). Tim-3 induced comparatively moderate responses in both AML cells and healthy leukocytes. However, Tim-3, like LPS, mediated the release of both TNF-α and VEGF, while SCF induced mostly VEGF secretion and did not upregulate TNF-α release.
Collapse
Affiliation(s)
| | - Bernhard F Gibbs
- School of Pharmacy, University of Kent, Kent, ME4 4TB, United Kingdom
| | - Marco Bardelli
- Institute for Research in Biomedicine, Universita' della Svizzera Italiana (USI) 6500 Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Universita' della Svizzera Italiana (USI) 6500 Bellinzona, Switzerland
| | - Vadim V Sumbayev
- School of Pharmacy, University of Kent, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
152
|
Effects of Traumeel (Tr14) on Exercise-Induced Muscle Damage Response in Healthy Subjects: A Double-Blind RCT. Mediators Inflamm 2016; 2016:1693918. [PMID: 27478305 PMCID: PMC4949332 DOI: 10.1155/2016/1693918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/20/2022] Open
Abstract
The present double-blind, randomized, placebo-controlled clinical trial intended to test whether ingestion of a natural combination medicine (Tr14 tablets) affects serum muscle damage and inflammatory immune response after downhill running. 96 male subjects received Tr14 tablets, which consist of 14 diluted biological and mineral components, or a placebo for 72 h after the exercise test, respectively. Changes in postexercise levels of various serum muscle damage and immunological markers were investigated. The area under the curve with respect to the increase (AUCi) of perceived pain score and creatine kinase (CK) were defined as primary outcome measures. While for CK the p value of the difference between the two groups is borderline, the pain score and muscle strength were not statistically significant. However, a trend towards lower levels of muscle damage (CK, p = 0.05; LDH, p = 0.06) in the Tr14 group was shown. Less pronounced lymphopenia (p = 0.02), a trend towards a lower expression of CD69 count (p = 0.07), and antigen-stimulated ICAM-1 (p = 0.01) were found in the verum group. The Tr14 group showed a tendentially lower increase of neutrophils (p = 0.10), BDNF (p = 0.03), stem cell factor (p = 0.09), and GM-CSF (p = 0.09) to higher levels. The results of the current study indicate that Tr14 seems to limit exercise-induced muscle damage most likely via attenuation of both innate and adaptive immune responses. This study was registered with ClinicalTrials.gov (NCT01912469).
Collapse
|
153
|
Gonçalves Silva I, Rüegg L, Gibbs BF, Bardelli M, Fruehwirth A, Varani L, Berger SM, Fasler-Kan E, Sumbayev VV. The immune receptor Tim-3 acts as a trafficker in a Tim-3/galectin-9 autocrine loop in human myeloid leukemia cells. Oncoimmunology 2016; 5:e1195535. [PMID: 27622049 PMCID: PMC5006895 DOI: 10.1080/2162402x.2016.1195535] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/31/2023] Open
Abstract
The immune receptor Tim-3 is often highly expressed in human acute myeloid leukemia (AML) cells where it acts as a growth factor and inflammatory receptor. Recently, it has been demonstrated that Tim-3 forms an autocrine loop with its natural ligand galectin-9 in human AML cells. However, the pathophysiological functions of Tim-3 in human AML cells remain unclear. Here, we report for the first time that Tim-3 is required for galectin-9 secretion in human AML cells. However, this effect is cell-type specific and was found so far to be applicable only to myeloid (and not, for example, lymphoid) leukemia cells. We concluded that AML cells might use Tim-3 as a trafficker for the secretion of galectin-9 which can then be possibly used to impair the anticancer activities of cytotoxic T cells and natural killer (NK) cells.
Collapse
Affiliation(s)
| | - Laura Rüegg
- School of Pharmacy, University of Kent , Canterbury, United Kingdom
| | - Bernhard F Gibbs
- School of Pharmacy, University of Kent , Canterbury, United Kingdom
| | - Marco Bardelli
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI) , Bellinzona, Switzerland
| | - Alexander Fruehwirth
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI) , Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI) , Bellinzona, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery and Department of Clinical Research, Children's Hospital, Inselspital, University of Bern , Bern, Switzerland
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery and Department of Clinical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Vadim V Sumbayev
- School of Pharmacy, University of Kent , Canterbury, United Kingdom
| |
Collapse
|
154
|
Zemke D, Yamini B, Yuzbasiyan-Gurkan V. Mutations in the Juxtamembrane Domain of c-KIT Are Associated with Higher Grade Mast Cell Tumors in Dogs. Vet Pathol 2016; 39:529-35. [PMID: 12243462 DOI: 10.1354/vp.39-5-529] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cell tumors are among the most commonly seen tumors of the skin in dogs and are more highly aggressive than mast cell tumors of other species. Some breeds display a markedly higher incidence of mast cell tumor development than others and appear to have some genetic predisposition. Recently, mutations have been found in canine mast cell tumor tissues and cell lines within the juxtamembrane domain of the protooncogene c- KIT. In previous studies utilizing a small number of cases, no association between the presence of a mutation and the breed of dog or grade of the tumor could be identified. An expanded study with a larger sample set was performed to explore this possibility. The juxtamembrane domain of c- KIT was amplified using the polymerase chain reaction from genomic DNA preparations of 88 paraffin-embedded mast cell tumors from selected breeds. Mutations, consisting of duplications and deletions, were found in 12 of the tumors. A significant association was found between the presence of a mutation and a higher grade of tumor but not between breed and grade or between breed and the presence of a mutation.
Collapse
Affiliation(s)
- D Zemke
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|
155
|
Ilangumaran S, Villalobos-Hernandez A, Bobbala D, Ramanathan S. The hepatocyte growth factor (HGF)–MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions. Cytokine 2016; 82:125-39. [PMID: 26822708 DOI: 10.1016/j.cyto.2015.12.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/14/2022]
|
156
|
Khodadi E, Shahrabi S, Shahjahani M, Azandeh S, Saki N. Role of stem cell factor in the placental niche. Cell Tissue Res 2016; 366:523-531. [PMID: 27234501 DOI: 10.1007/s00441-016-2429-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/01/2016] [Indexed: 01/12/2023]
Abstract
Stem cell factor (SCF) is a cytokine found in hematopoietic stem cells (HSCs) and causes proliferation and differentiation of cells by binding to its receptor (c-kit). It is produced in the yolk sac, fetal liver and bone marrow during the development of the fetus and, together with its signaling pathway, plays an important role in the development of these cells. The placenta, an important hematopoiesis site before the entry of cells into the liver, is rich in HSCs, with definitive hematopoiesis in a variety of HSC types and embryonic stem cells. Chorionic-plate-derived mesenchymal stem cells (CP-MSCs) isolated from the placenta show stem cell markers such as CD41 and cause the self-renewal of cells under hypoxic conditions. In contrast, hypoxia can result in apoptosis and autophagy via oxidative stress in stem cells. As a hypoxia-induced factor, SCF causes a balance between cell survival and death by autophagy in CP-MSCs. Stromal cells and MSCs have a crucial function in the development of HSCs in the placenta via SCF expression in the placental vascular niche. Defects in hematopoietic growth factors (such as SCF and its signaling pathways) lead to impaired hematopoiesis, resulting in fetal death and abortion. Therefore, an awareness of the role of the SCF/c-kit pathway in the survival, apoptosis and development of stem cells can significantly contribute to the exploration of stem cell production pathways during the embryonic period and in malignancies and in the further generation of these cells to facilitate therapeutic approaches. In this review, we discuss the role of SCF in the placental niche.
Collapse
Affiliation(s)
- Elahe Khodadi
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Shahjahani
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Azandeh
- Cellular and Molecular Research Center, Department of Anatomical Science, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
157
|
McIntosh BE, Brown ME. No irradiation required: The future of humanized immune system modeling in murine hosts. CHIMERISM 2016; 6:40-5. [PMID: 27171577 DOI: 10.1080/19381956.2016.1162360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunocompromised mice are an essential tool for human xenotransplantation studies, including human haematopoietic stem cell (HSC) biology research. Over the past 35 years, there have been many advances in the development of these mouse models, offering researchers increasingly sophisticated options for creating clinically relevant mouse-human chimeras. This addendum article will focus on our recent development of the "NSGW" mouse, which, among other beneficial traits, is genetically modified to obviate the need for myeloablative irradiation of the animals. Thus, the complicating haematopoietic, gastrointestinal, and neurological side effects associated with irradiation are avoided and investigators without access to radiation sources are enabled to pursue engraftment studies with human HSCs. We will also discuss the topics of transgenics, knock-ins, and other mutants with an overarching goal of enhancing chimerism in these animal models.
Collapse
Affiliation(s)
| | - Matthew E Brown
- b Department of Surgery , University of Wisconsin - Madison , Madison , WI , USA
| |
Collapse
|
158
|
Eberle F, Saulich MF, Leinberger FH, Seeger W, Engenhart-Cabillic R, Dikomey E, Hänze J, Hattar K, Subtil FSB. Cancer cell motility is affected through 3D cell culturing and SCF/c-Kit pathway but not by X-irradiation. Radiother Oncol 2016; 119:537-43. [PMID: 27178146 DOI: 10.1016/j.radonc.2016.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/10/2016] [Accepted: 04/21/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE Success of radiotherapy is often limited by therapy resistance and metastasis resulting from cancer cell motility. It was tested in vitro whether this cancer cell motility is affected by growth condition, active SCF/c-Kit pathway or X-irradiation. MATERIALS AND METHODS Cell motility was measured with BioCoat™ Matrigel™ invasion chamber using four different cancer cell lines (NSCLC: H23, H520, H226 and PrCa: DU145). Cells were grown in 2D or 3D, SCF was knocked down by siRNA and cells were irradiated with 2 or 6Gy. RESULTS All cell lines except H520 showed a 2-3-fold increase in cell motility when grown in 3D. This effect was considered to result from the EMT-like change seen when cells were grown in 3D as indicated by the enhanced expression of vimentin and N-cadherin and reduction of E-cadherin. Just the opposite trends were found for H520 cells. Knockdown of SCF was found to result in reduced cell motility for both 2D and 3D. In contrast, X-irradiation did not modulate cell motility neither under 2D nor 3D. In line with this, X-irradiation did neither induce the expression of EMT-associated genes nor SCF. CONCLUSION X-irradiation affects neither the expression of important EMT genes such as vimentin, E-cadherin and N-cadherin nor SCF/c-Kit signaling and, as a consequence, does not alter cell motility.
Collapse
Affiliation(s)
- Fabian Eberle
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany
| | - Miriam F Saulich
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany
| | - Florian H Leinberger
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany
| | - Werner Seeger
- Department of Internal Medicine II, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany; Department of Radiotherapy, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany; Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jörg Hänze
- Department of Urology and Pediatric Urology, Philipps-University, Marburg, Germany
| | - Katja Hattar
- Department of Internal Medicine IV/V, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Florentine S B Subtil
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany; Department of Radiotherapy, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
159
|
Katzenback BA, Katakura F, Belosevic M. Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:68-85. [PMID: 26546240 DOI: 10.1016/j.dci.2015.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The process of myeloid cell development (myelopoiesis) in fish has mainly been studied in three cyprinid species: zebrafish (Danio rerio), ginbuna carp (Carassius auratus langsdorfii) and goldfish (C. auratus, L.). Our studies on goldfish myelopoiesis have utilized in vitro generated primary kidney macrophage (PKM) cultures and isolated primary kidney neutrophils (PKNs) cultured overnight to study the process of macrophage (monopoiesis) and neutrophil (granulopoiesis) development and the key growth factors, receptors, and transcription factors that govern this process in vitro. The PKM culture system is unique in that all three subpopulations of macrophage development, namely progenitor cells, monocytes, and mature macrophages, are simultaneously present in culture unlike mammalian systems, allowing for the elucidation of the complex mixture of cytokines that regulate progressive and selective macrophage development from progenitor cells to fully functional mature macrophages in vitro. Furthermore, we have been able to extend our investigations to include the development of erythrocytes (erythropoiesis) and thrombocytes (thrombopoiesis) through studies focusing on the progenitor cell population isolated from the goldfish kidney. Herein, we review the in vitro goldfish model systems focusing on the characteristics of cell sub-populations, growth factors and their receptors, and transcription factors that regulate goldfish myelopoiesis.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Fumihiko Katakura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
160
|
Abstract
PURPOSE OF REVIEW The human body produces and removes 10 platelets daily to maintain a normal steady-state platelet count. Platelet production must be tightly regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet removal and production in physiological and pathological conditions. This review will focus on different mechanisms of platelet clearance, with focus on the biological significance of platelet glycans. RECENT FINDINGS The Ashwell-Morrell receptor (AMR) recognizes senescent, desialylated platelets under steady state conditions. Desialylated platelets and the AMR are the physiological ligand-receptor pair regulating hepatic thrombopoietin (TPO) mRNA production, resolving the longstanding mystery of steady state TPO regulation. The AMR-mediated removal of desialylated platelets regulates TPO synthesis in the liver by recruiting JAK2 and STAT3 to increase thrombopoiesis. SUMMARY Inhibition of TPO production downstream of the hepatic AMR-JAK2 signaling cascade could additionally contribute to the thrombocytopenia associated with JAK1/2 treatment, which is clinically used in myeloproliferative neoplasms.
Collapse
|
161
|
Gao YP, Jiang JY, Liu Q. Expression and mutation of c-Kit in intracranial germ cell tumors: A single-centre retrospective study of 30 cases in China. Oncol Lett 2016; 11:2971-2976. [PMID: 27123048 PMCID: PMC4840541 DOI: 10.3892/ol.2016.4373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/27/2015] [Indexed: 01/30/2023] Open
Abstract
Although primary central nervous system (CNS) germ cell tumors (GCTs) are one of the most treatable types of malignant brain tumor, a subset of patients remain resistant to standard chemotherapy. Gain-of-function mutations of the c-Kit gene, and KIT protein expression, have been observed in a number of GCTs, including testicular seminoma, ovarian dysgerminoma and mediastinal seminoma in various ethnic groups. Although a small number of studies have reported the role of c-Kit in CNS GCTs, few have focused on Chinese patients exhibiting CNS GCTs. In the present study, the frequency and location of c-Kit mutations and KIT protein expression levels in CNS GCTs were investigated in 30 patients, between January 1994 and October 2014. Immunohistochemical assays suggested that KIT protein expression was present in 59.1% patients (66.7% in males and 42.9% in females); however, no statistically significant correlation was identified between KIT protein expression and patient clinicopathological features. By performing PCR amplification and direct sequencing, 4 mutational hot spots of the c-Kit gene (exons 9, 11, 13 and 17) were examined, and c-Kit gene mutation was identified in 1/17 (5.9%) CNS germinoma cases. This mutation was located in exon 11 at codon 557-558 WK (Tryptophan-Lysine). No c-Kit gene mutations were detected in non-germinomatous GCTs. Imatinib, a tyrosine kinase inhibitor, may be an effective treatment against standard chemotherapy-resistant CNS germinoma patients exhibiting c-Kit mutations.
Collapse
Affiliation(s)
- Yu-Ping Gao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ji-Yao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Qiang Liu
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
162
|
Cass Y, Connor TH, Tabachnik A. Safe handling of oral antineoplastic medications: Focus on targeted therapeutics in the home setting. J Oncol Pharm Pract 2016; 23:350-378. [PMID: 27009803 DOI: 10.1177/1078155216637217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction With the growing number of oral targeted therapies being approved for use in cancer therapy, the potential for long-term administration of these drugs to cancer patients is expanding. The use of these drugs in the home setting has the potential to expose family members and caregivers to them either through direct contact with the drugs or indirectly by exposure to the parent compounds and/or their active metabolites in contaminated patients' waste. Methods A systematic literature review was performed and the known adverse health effect of 32 oral targeted therapeutics is summarized. In particular, the carcinogenicity, genotoxicity, and embryo-fetal toxicity, along with the route of excretion were evaluated. Results Carcinogenicity testing has not been performed on most of the oral targeted therapeutics and the genotoxicity data are mixed. However, the majority of these drugs exhibit adverse reproductive effects, some of which are severe. Currently, available data does not permit the possibility of a health hazard from inappropriate handling of drugs and contaminated patients waste to be ignored, especially in a long-term home setting. Further research is needed to understand these issues. Conclusions With the expanding use of targeted therapies in the home setting, family members and caregivers, especially those of reproductive risk age, are, potentially at risk. Overall basic education and related precautions should be taken to protect family members and caregivers from indirect or direct exposure from these drugs. Further investigations and discussion on this subject are warranted.
Collapse
Affiliation(s)
| | - Thomas H Connor
- 2 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | |
Collapse
|
163
|
Huang Y, Elliott MJ, Yolcu ES, Miller TO, Ratajczak J, Bozulic LD, Wen Y, Xu H, Ratajczak MZ, Ildstad ST. Characterization of Human CD8(+)TCR(-) Facilitating Cells In Vitro and In Vivo in a NOD/SCID/IL2rγ(null) Mouse Model. Am J Transplant 2016; 16:440-53. [PMID: 26550777 PMCID: PMC5539919 DOI: 10.1111/ajt.13511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 01/25/2023]
Abstract
CD8(+)/TCR(-) facilitating cells (FCs) in mouse bone marrow (BM) significantly enhance engraftment of hematopoietic stem/progenitor cells (HSPCs). Human FC phenotype and mechanism of action remain to be defined. We report, for the first time, the phenotypic characterization of human FCs and correlation of phenotype with function. Approximately half of human FCs are CD8(+)/TCR(-)/CD56 negative (CD56(neg)); the remainder are CD8(+)/TCR(-)/CD56 bright (CD56(bright)). The CD56(neg) FC subpopulation significantly promotes homing of HSPCs to BM in nonobese diabetic/severe combined immunodeficiency/IL-2 receptor γ-chain knockout mouse recipients and enhances hematopoietic colony formation in vitro. The CD56(neg) FC subpopulation promotes rapid reconstitution of donor HSPCs without graft-versus-host disease (GVHD); recipients of CD56(bright) FCs plus HSPCs exhibit low donor chimerism early after transplantation, but the level of chimerism significantly increases with time. Recipients of HSPCs plus CD56(neg) or CD56(bright) FCs showed durable donor chimerism at significantly higher levels in BM. The majority of both FC subpopulations express CXCR4. Coculture of CD56(bright) FCs with HSPCs upregulates cathelicidin and β-defensin 2, factors that prime responsiveness of HSPCs to stromal cell-derived factor 1. Both FC subpopulations significantly upregulated mRNA expression of the HSPC growth factors and Flt3 ligand. These results indicate that human FCs exert a direct effect on HSPCs to enhance engraftment. Human FCs offer a potential regulatory cell-based therapy for enhancement of engraftment and prevention of GVHD.
Collapse
Affiliation(s)
- Y Huang
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY
| | - M J Elliott
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY
| | - E S Yolcu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY
| | - T O Miller
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY
| | - J Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | | | - Y Wen
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY
| | - H Xu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY
| | - M Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | - S T Ildstad
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY
- Regenerex, LLC, Louisville, KY
| |
Collapse
|
164
|
Wyszynski RW, Gibbs BF, Varani L, Iannotta D, Sumbayev VV. Interleukin-1 beta induces the expression and production of stem cell factor by epithelial cells: crucial involvement of the PI-3K/mTOR pathway and HIF-1 transcription complex. Cell Mol Immunol 2016; 13:47-56. [PMID: 25418470 PMCID: PMC4711673 DOI: 10.1038/cmi.2014.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 11/09/2022] Open
Abstract
Potential crosslinks between inflammation and leukaemia have been discussed for some time, but experimental evidence to support this dogma is scarce. In particular, it is important to understand the mechanisms responsible for potential upregulation of proto-oncogenic growth factor expressions by inflammatory mediators. Here, we investigated the ability of the highly inflammatory cytokine interleukin-1 beta (IL-1β) to induce the production of stem cell factor (SCF), which is a major hematopoietic growth factor that controls the progression of acute myeloid leukaemia upon malignant transformation of haematopoietic myeloid cells. We found that human IL-1β induced the expression/secretion of SCF in MCF-7 human epithelial breast cancer cells and that this process depended on the hypoxia-inducible factor 1 (HIF-1) transcription complex. We also demonstrated a crucial role of the phosphatidylinositol-3 kinase (PI-3K)/mammalian target of rapamycin (mTOR) pathway in IL-1β-induced HIF-1α accumulation in MCF-7 cells. Importantly, mTOR was also found to play a role in IL-1β-induced SCF production. Furthermore, a tendency for a positive correlation of IL-1β and SCF levels in the plasma of healthy human donors was observed. Altogether, our results demonstrate that IL-1β, which normally bridges innate and adaptive immunity, induces the production of the major haematopoietic/proleukaemic growth factor SCF through the PI-3K/mTOR pathway and the HIF-1 transcription complex. These findings strongly support a cross-talk between inflammation and acute myeloid leukaemia.
Collapse
Affiliation(s)
| | | | - Luca Varani
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | | |
Collapse
|
165
|
Cytokines. SAFETY OF BIOLOGICS THERAPY 2016. [PMCID: PMC7123448 DOI: 10.1007/978-3-319-30472-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytokines, currently known to be more than 130 in number, are small MW (<30 kDa) key signaling proteins that modulate cellular activities in immunity, infection, inflammation, and malignancy. Key to understanding their function is recognition of their pleiotropism and often overlapping and functional redundancies. Classified here into 9 main families, most of the 23 approved cytokine preparations (19 different cytokines and 4 pegylated), all in recombinant human (rh) form, are grouped in the hematopoietic growth factor, interferon (IFN), platelet-derived growth factor (PDGF), and transforming growth factor β (TGFβ) families. In the hematopoietin family, approved cytokines are aldesleukin (rhIL-2), oprelvekin (rhIL-11), filgrastim and tbo-filgrastim (rhG-CSF), sargramostim (rhGM-CSF), metreleptin (rh-leptin), ancestim (rh-SCF), and the rh-erythropoietins, epoetin and darbepoetin alfa. Anakinra, a recombinant receptor antagonist for IL-1, is in the IL-1 family; recombinant interferons alfa-1, alfa-2, beta-1, and gamma-1 make up the interferon family; palifermin (rhKGF) and becaplermin (rhPDGF) are in the PDGF family; and rhBMP-2 and rhBMP-7 represent the TGFβ family. The main physicochemical features, FDA-approved indications, modes of action and side effects of these approved cytokines are presented. Underlying each adverse events profile is their pleiotropism, potency and capacity to release other cytokines producing cytokine “cocktails.” Side effects, some serious, occur despite cytokines being endogenous proteins, and this therefore demands caution in attempts to introduce individual members into the clinic. This caution is reflected in the relatively small number of cytokines currently approved by regulatory agencies and by the fact that 15 of the FDA-approved preparations carry warnings, with 10 being black box warnings.
Collapse
|
166
|
Ratliff ML, Mishra M, Frank MB, Guthridge JM, Webb CF. The Transcription Factor ARID3a Is Important for In Vitro Differentiation of Human Hematopoietic Progenitors. THE JOURNAL OF IMMUNOLOGY 2015; 196:614-23. [PMID: 26685208 DOI: 10.4049/jimmunol.1500355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
We recently reported that the transcription factor ARID3a is expressed in a subset of human hematopoietic progenitor stem cells in both healthy individuals and in patients with systemic lupus erythematosus. Numbers of ARID3a(+) lupus hematopoietic stem progenitor cells were associated with increased production of autoreactive Abs when those cells were introduced into humanized mouse models. Although ARID3a/Bright knockout mice died in utero, they exhibited decreased numbers of hematopoietic stem cells and erythrocytes, indicating that ARID3a is functionally important for hematopoiesis in mice. To explore the requirement for ARID3a for normal human hematopoiesis, hematopoietic stem cell progenitors from human cord blood were subjected to both inhibition and overexpression of ARID3a in vitro. Inhibition of ARID3a resulted in decreased B lineage cell production accompanied by increases in cells with myeloid lineage markers. Overexpression of ARID3a inhibited both myeloid and erythroid differentiation. Additionally, inhibition of ARID3a in hematopoietic stem cells resulted in altered expression of transcription factors associated with hematopoietic lineage decisions. These results suggest that appropriate regulation of ARID3a is critical for normal development of both myeloid and B lineage pathways.
Collapse
Affiliation(s)
| | - Meenu Mishra
- Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Mark B Frank
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | - Carol F Webb
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
167
|
Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells. Tumour Biol 2015; 37:7213-27. [PMID: 26666817 DOI: 10.1007/s13277-015-4577-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
Stem cell factor (SCF) plays an important role in tumor growth and metastasis. However, the function of SCF in regulating stemness and migration of cancer stem cells (CSCs) remains largely undefined. Here, we report that non-adhesive culture system can enrich and expand CSCs derived from Lewis lung carcinoma (LLC) cells and that the expression level of SCF in CSCs was higher than those in LLC cells. Silencing SCF via short hairpin (sh) RNA lentivirus transduction attenuated sphere formation and inhibited expressions of stemness genes, ALDH1, Sox2, and Oct4 of CSCs in vitro and in vivo. Moreover, SCF-silenced CSCs inhibited the migration and epithelial-mesenchymal transition, with decreased expression of N-cadherin, Vimentin, and increased expression of E-cadherin in vitro and in vivo. Finally, SCF-short hairpin RNA (shRNA) lentivirus transduction suppressed tumorigenicity of CSCs. Taken together, our findings unraveled an important role of SCF in CSCs derived from LLC cells. SCF might serve as a novel target for lung cancer therapy.
Collapse
|
168
|
Szöke K, Reinisch A, Østrup E, Reinholt FP, Brinchmann JE. Autologous cell sources in therapeutic vasculogenesis: In vitro and in vivo comparison of endothelial colony-forming cells from peripheral blood and endothelial cells isolated from adipose tissue. Cytotherapy 2015; 18:242-52. [PMID: 26669908 DOI: 10.1016/j.jcyt.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/22/2015] [Accepted: 10/14/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND AIMS Autologous endothelial cells are promising alternative angiogenic cell sources in trials of therapeutic vasculogenesis, in the treatment of vascular diseases and in the field of tissue engineering. A population of endothelial cells (ECs) with long-term proliferative capability, endothelial colony-forming cells (ECFCs), can be isolated from human peripheral blood. ECFCs are considered an endothelial precursor population. They can be expanded in cell factories in sufficient numbers for clinical applications, but because the number of isolated primary ECs is low, the culture period required may be long. Another EC population that is easily available in the autologous setting and may be expanded in vitro through several population doublings are ECs from adipose tissue (AT-ECs). METHODS Through extensive comparisons using whole-genome microarray analysis, morphology, phenotype and functional assays, we wanted to evaluate the potential of these EC populations for use in clinical neovascularization. RESULTS Global gene expression profiling of ECFCs, AT-ECs and the classical EC population, human umbilical vein ECs, showed that the EC populations clustered as unique populations, but very close to each other. By cell surface phenotype and vasculogenic potential in vitro and in vivo, we also found the ECFCs to be extremely similar to AT-ECs. CONCLUSIONS These properties, together with easy access in the autologous setting, suggest that both AT-ECs and ECFCs may be useful in trials of therapeutic neovascularization. However, AT-ECs may be a more practical alternative for obtaining large quantities of autologous ECs.
Collapse
Affiliation(s)
- Krisztina Szöke
- Department of Immunology and Norwegian Center for Stem Cell Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Andreas Reinisch
- Stem Cell Research Unit, Department of Hematology and Stem Cell Transplantation, University Clinic of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Esben Østrup
- Department of Immunology and Norwegian Center for Stem Cell Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Finn P Reinholt
- Institute of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jan E Brinchmann
- Department of Immunology and Norwegian Center for Stem Cell Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
169
|
Regulation of hematopoietic stem cells in the niche. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1209-15. [DOI: 10.1007/s11427-015-4960-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022]
|
170
|
Zazo Seco C, Serrão de Castro L, van Nierop J, Morín M, Jhangiani S, Verver E, Schraders M, Maiwald N, Wesdorp M, Venselaar H, Spruijt L, Oostrik J, Schoots J, van Reeuwijk J, Lelieveld S, Huygen P, Insenser M, Admiraal R, Pennings R, Hoefsloot L, Arias-Vásquez A, de Ligt J, Yntema H, Jansen J, Muzny D, Huls G, van Rossum M, Lupski J, Moreno-Pelayo M, Kunst H, Kremer H, Kremer H. Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2. Am J Hum Genet 2015; 97:647-60. [PMID: 26522471 DOI: 10.1016/j.ajhg.2015.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/24/2015] [Indexed: 01/04/2023] Open
Abstract
Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hannie Kremer
- Hearing & Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen 6525GA, the Netherlands; The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525GA, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, the Netherlands.
| |
Collapse
|
171
|
In vitro cardiomyocyte differentiation of umbilical cord blood cells: crucial role for c-kit+ cells. Cytotherapy 2015; 17:1627-37. [DOI: 10.1016/j.jcyt.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/22/2022]
|
172
|
Katakura F, Yabu T, Yamaguchi T, Miyamae J, Shirinashihama Y, Nakanishi T, Moritomo T. Exploring erythropoiesis of common carp (Cyprinus carpio) using an in vitro colony assay in the presence of recombinant carp kit ligand A and erythropoietin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:13-22. [PMID: 26111997 DOI: 10.1016/j.dci.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
The use of in vitro colony assays in mammals has contributed to identification of erythroid progenitor cells such as burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) progenitors, and serves to examine functions of erythropoietic growth factors like Erythropoietin (Epo) and Kit ligand. Here, we established an in vitro colony-forming assay capable of investigating erythropoiesis in carp (Cyprinus carpio), cloned and functionally characterized recombinant homologous molecules Epo and Kit ligand A (Kitla), and identified three distinct erythroid progenitor cells in carp. Recombinant carp Epo induced the formation of CFU-E-like and BFU-E-like erythroid colonies, expressing erythroid marker genes, β-globin, epor and gata1. Recombinant carp Kitla alone induced limited colony formation, whereas a combination of Kitla and Epo dramatically enhanced erythroid colony formation and colony cell growth, as well as stimulated the formation of thrombocytic/erythroid colonies expressing not only erythroid markers but also thrombocytic markers, cd41 and c-mpl. Utilizing this colony assay to examine the distribution of distinct erythroid progenitor cells in carp, we demonstrated that carp head and trunk kidney play a primary role in erythropoiesis, while the spleen plays a secondary. Furthermore, we showed that presumably bi-potent thrombocytic/erythroid progenitor cells localize principally in the trunk kidney. Our results indicate that teleost fish possess mechanisms of Epo- and Kitla-dependent erythropoiesis similar to those in other vertebrates, and also help to demonstrate the diversity of erythropoietic sites among vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| | - Takeshi Yabu
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Takuya Yamaguchi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Jiro Miyamae
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuki Shirinashihama
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Teruyuki Nakanishi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
173
|
Shen B, Jiang W, Fan J, Dai W, Ding X, Jiang Y. Residues 39-56 of Stem Cell Factor Protein Sequence Are Capable of Stimulating the Expansion of Cord Blood CD34+ Cells. PLoS One 2015; 10:e0141485. [PMID: 26505626 PMCID: PMC4624785 DOI: 10.1371/journal.pone.0141485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023] Open
Abstract
Background Stem cell factor (SCF) can stimulate hematopoietic stem cell (HSC) expansion; however, the specific structural region(s) of SCF protein that are critical for this function are still unknown. A novel monoclonal antibody (named 23C8) against recombinant human SCF (rhSCF) was previously found to inhibit the ability of rhSCF to enhance HSC expansion, making it possible to identify the relevant active region to HSC. Methods Eleven polypeptides were synthesized, which were designed to cover the full-length of rhSCF, with overlaps that are at least 3 amino acids long. ELISA was used to identify the polypeptide(s) that specifically react with the anti-SCF. The effects of the synthetic polypeptides on human HSC expansion, or on the ability of the full-length rhSCF to stimulate cell proliferation, were evaluated ex vivo. Total cell number was monitored using hemocytometer whereas CD34+ cell number was calculated based on the proportion determined via flow cytometry on day 6 of culture. Results Of all polypeptides analyzed, only one, named P0, corresponding to the SCF protein sequence at residues 39–56, was recognized by 23C8 mAb during ELISA. P0 stimulated the expansion of CD34+ cells derived from human umbilical cord blood (UCB). Addition of P0 increased the numbers of total mononucleated cells and CD34+ cells, by ~2 fold on day 6. P0 also showed partial competition against full-length rhSCF in the ex vivo cell expansion assay. Conclusion Residues 39–56 of rhSCF comprise a critical functional region for its ability to enhance expansion of human UCB CD34+ cells. The peptide P0 is a potential candidate for further development as a synthetic substitute for rhSCF in laboratory and clinical applications.
Collapse
Affiliation(s)
- Bin Shen
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | | | - Jie Fan
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Wei Dai
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, United States of America
| | - Xinxin Ding
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York, United States of America
- * E-mail: (YJ); (XD)
| | - Yongping Jiang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- * E-mail: (YJ); (XD)
| |
Collapse
|
174
|
Cuchiara ML, Coşkun S, Banda OA, Horter KL, Hirschi KK, West JL. Bioactive poly(ethylene glycol) hydrogels to recapitulate the HSC niche and facilitate HSC expansion in culture. Biotechnol Bioeng 2015; 113:870-81. [PMID: 26497172 DOI: 10.1002/bit.25848] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem cells (HSCs) have been used therapeutically for decades, yet their widespread clinical use is hampered by the inability to expand HSCs successfully in vitro. In culture, HSCs rapidly differentiate and lose their ability to self-renew. We hypothesize that by mimicking aspects of the bone marrow microenvironment in vitro we can better control the expansion and differentiation of these cells. In this work, derivatives of poly(ethylene glycol) diacrylate hydrogels were used as a culture substrate for hematopoietic stem and progenitor cell (HSPC) populations. Key HSC cytokines, stem cell factor (SCF) and interferon-γ (IFNγ), as well as the cell adhesion ligands RGDS and connecting segment 1 were covalently immobilized onto the surface of the hydrogels. With the use of SCF and IFNγ, we observed significant expansion of HSPCs, ∼97 and ∼104 fold respectively, while maintaining c-kit(+) lin(-) and c-kit(+) Sca1(+) lin(-) (KSL) populations and the ability to form multilineage colonies after 14 days. HSPCs were also encapsulated within degradable poly(ethylene glycol) hydrogels for three-dimensional culture. After expansion in hydrogels, ∼60% of cells were c-kit(+), demonstrating no loss in the proportion of these cells over the 14 day culture period, and ∼50% of colonies formed were multilineage, indicating that the cells retained their differentiation potential. The ability to tailor and use this system to support HSC growth could have implications on the future use of HSCs and other blood cell types in a clinical setting.
Collapse
Affiliation(s)
| | - Süleyman Coşkun
- Department of Internal Medicine, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut.,Departments of Pediatrics and Molecular and Cellular Biology, Children's Nutrition Research Center and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Omar A Banda
- Department of Bioengineering, Rice University, Houston, Texas
| | - Kelsey L Horter
- Department of Bioengineering, Rice University, Houston, Texas
| | - Karen K Hirschi
- Department of Internal Medicine, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut.,Departments of Pediatrics and Molecular and Cellular Biology, Children's Nutrition Research Center and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Jennifer L West
- Department of Bioengineering, Rice University, Houston, Texas. .,Department of Biomedical Engineering, Duke University, Room 1427, FCIEMAS, 101 Science Dr., Box 90281, Durham, North Carolina, 27708.
| |
Collapse
|
175
|
Origins of the Vertebrate Erythro/Megakaryocytic System. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632171. [PMID: 26557683 PMCID: PMC4628740 DOI: 10.1155/2015/632171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
Vertebrate erythrocytes and thrombocytes arise from the common bipotent thrombocytic-erythroid progenitors (TEPs). Even though nonmammalian erythrocytes and thrombocytes are phenotypically very similar to each other, mammalian species have developed some key evolutionary improvements in the process of erythroid and thrombocytic differentiation, such as erythroid enucleation, megakaryocyte endoreduplication, and platelet formation. This brings up a few questions that we try to address in this review. Specifically, we describe the ontology of erythro-thrombopoiesis during adult hematopoiesis with focus on the phylogenetic origin of mammalian erythrocytes and thrombocytes (also termed platelets). Although the evolutionary relationship between mammalian and nonmammalian erythroid cells is clear, the appearance of mammalian megakaryocytes is less so. Here, we discuss recent data indicating that nonmammalian thrombocytes and megakaryocytes are homologs. Finally, we hypothesize that erythroid and thrombocytic differentiation evolved from a single ancestral lineage, which would explain the striking similarities between these cells.
Collapse
|
176
|
Kim TS, Hanak M, Trampont PC, Braciale TJ. Stress-associated erythropoiesis initiation is regulated by type 1 conventional dendritic cells. J Clin Invest 2015; 125:3965-80. [PMID: 26389678 DOI: 10.1172/jci81919] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/13/2015] [Indexed: 11/17/2022] Open
Abstract
Erythropoiesis is an important response to certain types of stress, including hypoxia, hemorrhage, bone marrow suppression, and anemia, that result in inadequate tissue oxygenation. This stress-induced erythropoiesis is distinct from basal red blood cell generation; however, neither the cellular nor the molecular factors that regulate this process are fully understood. Here, we report that type 1 conventional dendritic cells (cDC1s), which are defined by expression of CD8α in the mouse and XCR1 and CLEC9 in humans, are critical for induction of erythropoiesis in response to stress. Specifically, using murine models, we determined that engagement of a stress sensor, CD24, on cDC1s upregulates expression of the Kit ligand stem cell factor on these cells. The increased expression of stem cell factor resulted in Kit-mediated proliferative expansion of early erythroid progenitors and, ultimately, transient reticulocytosis in the circulation. Moreover, this stress response was triggered in part by alarmin recognition and was blunted in CD24 sensor- and CD8α+ DC-deficient animals. The contribution of the cDC1 subset to the initiation of stress erythropoiesis was distinct from the well-recognized role of macrophages in supporting late erythroid maturation. Together, these findings offer insight into the mechanism of stress erythropoiesis and into disorders of erythrocyte generation associated with stress.
Collapse
|
177
|
Kennedy DE, Knight KL. Inhibition of B Lymphopoiesis by Adipocytes and IL-1-Producing Myeloid-Derived Suppressor Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2666-74. [PMID: 26268654 PMCID: PMC4561202 DOI: 10.4049/jimmunol.1500957] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/20/2015] [Indexed: 12/12/2022]
Abstract
B lymphopoiesis declines with age, and this decline correlates with increased adipose tissue in the bone marrow (BM). Also, adipocyte-derived factors are known to inhibit B lymphopoiesis. Using cocultures of mouse BM cells with OP9 stromal cells, we found that adipocyte-conditioned medium induces the generation of CD11b(+)Gr1(+) myeloid cells, which inhibit B cell development in vitro. Adipocyte-conditioned medium-induced CD11b(+)Gr1(+) cells express Arg1 (arginase) and Nos2 (inducible NO synthase) and suppress CD4(+) T cell proliferation, indicating that these cells are myeloid-derived suppressor cells (MDSCs). Blocking arginase and inducible NO synthase did not restore B lymphopoiesis, indicating that inhibition is not mediated by these molecules. Transwell and conditioned-medium experiments showed that MDSCs inhibit B lymphopoiesis via soluble factors, and by cytokine array we identified IL-1 as an important factor. Addition of anti-IL-1 Abs restored B lymphopoiesis in BM cultures containing MDSCs, showing that MDSC inhibition of B lymphopoiesis is mediated by IL-1. By treating hematopoietic precursors with IL-1, we found that multipotent progenitors are targets of IL-1. This study uncovers a novel function for MDSCs to inhibit B lymphopoiesis through IL-1. We suggest that inflammaging contributes to a decline of B lymphopoiesis in aged individuals, and furthermore, that MDSCs and IL-1 provide therapeutic targets for restoration of B lymphopoiesis in aged and obese individuals.
Collapse
Affiliation(s)
- Domenick E Kennedy
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
178
|
Le Gall M, Crépin R, Neiveyans M, Auclair C, Fan Y, Zhou Y, Marks JD, Pèlegrin A, Poul MA. Neutralization of KIT Oncogenic Signaling in Leukemia with Antibodies Targeting KIT Membrane Proximal Domain 5. Mol Cancer Ther 2015; 14:2595-605. [PMID: 26358753 DOI: 10.1158/1535-7163.mct-15-0321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023]
Abstract
KIT is a cell surface tyrosine kinase receptor whose ligand stem cell factor (SCF) triggers homodimerization and activation of downstream effector pathways involved in cell survival, proliferation, homing, or differentiation. KIT-activating mutations are major oncogenic drivers in subsets of acute myeloid leukemia (AML), in mast cell leukemia, and in gastrointestinal stromal tumors (GIST). The overexpression of SCF and/or wild-type (WT) KIT is also observed in a number of cancers, including 50% of AML and small cell lung cancer. The use of tyrosine kinase inhibitors (TKI) in these pathologies is, however, hampered by initial or acquired resistance following treatment. Using antibody phage display, we obtained two antibodies (2D1 and 3G1) specific for the most membrane proximal extracellular immunoglobulin domain (D5) of KIT, which is implicated in KIT homodimerization. Produced as single chain variable antibody fragments fused to the Fc fragment of a human IgG1, bivalent 2D1-Fc and 3G1-Fc inhibited KIT-dependent growth of leukemic cell lines expressing WT KIT (UT7/Epo) or constitutively active KIT mutants, including the TKI imatinib-resistant KIT D816V mutant (HMC1.2 cell line). In all models, either expressing WT KIT or mutated KIT, 2D1 and 3G1-Fc induced KIT internalization and sustained surface downregulation. However, interestingly, KIT degradation was only observed in leukemic cell lines with oncogenic KIT, a property likely to limit the toxicity of these antibodies in patients. These fully human antibody formats may represent therapeutic tools to target KIT signaling in leukemia or GIST, and to bypass TKI resistance of certain KIT mutants.
Collapse
Affiliation(s)
- Marianne Le Gall
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France. Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure de Cachan, Cachan, France
| | - Ronan Crépin
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure de Cachan, Cachan, France
| | - Madeline Neiveyans
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Christian Auclair
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure de Cachan, Cachan, France
| | - Yongfeng Fan
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Yu Zhou
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - James D Marks
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Marie-Alix Poul
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
179
|
Promotion of Cancer Stem-Like Cell Properties in Hepatitis C Virus-Infected Hepatocytes. J Virol 2015; 89:11549-56. [PMID: 26355082 DOI: 10.1128/jvi.01946-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED We have previously reported that hepatitis C virus (HCV) infection of primary human hepatocytes (PHH) induces the epithelial mesenchymal transition (EMT) state and extends hepatocyte life span (S. K. Bose, K. Meyer, A. M. Di Bisceglie, R. B. Ray, and R. Ray, J Virol 86:13621-13628, 2012, http://dx.doi.org/10.1128/JVI.02016-12). These hepatocytes displayed sphere formation on ultralow binding plates and survived for more than 12 weeks. The sphere-forming hepatocytes expressed a number of cancer stem-like cell (CSC) markers, including high levels of the stem cell factor receptor c-Kit. The c-Kit receptor is regarded as one of the CSC markers in hepatocellular carcinoma (HCC). Analysis of c-Kit mRNA displayed a significant increase in the liver biopsy specimens of chronically HCV-infected patients. We also found c-Kit is highly expressed in transformed human hepatocytes (THH) infected in vitro with cell culture-grown HCV genotype 2a. Further studies suggested that HCV core protein significantly upregulates c-Kit expression at the transcriptional level. HCV infection of THH led to a significant increase in the number of spheres displayed on ultralow binding plates and in enhanced EMT and CSC markers and tumor growth in immunodeficient mice. The use of imatinib or dasatinib as a c-Kit inhibitor reduced the level of sphere-forming cells in culture. The sphere-forming cells were sensitive to treatment with sorafenib, a multikinase inhibitor, that is used for HCC treatment. Further, stattic, an inhibitor of the Stat3 molecule, induced sphere-forming cell death. A combination of sorafenib and stattic had a significantly stronger effect, leading to cell death. These results suggested that HCV infection potentiates CSC generation, and selected drugs can be targeted to efficiently inhibit cell growth. IMPORTANCE HCV infection may develop into HCC as an end-stage liver disease. We focused on understanding the mechanism for the risk of HCC from chronic HCV infection and identified targets for treatment. HCV-infected primary and transformed human hepatocytes (PHH or THH) generated CSC. HCV-induced spheres were highly sensitive to cell death from sorafenib and stattic treatment. Thus, our study is highly significant for HCV-associated HCC, with the potential for developing a target-specific strategy for improved therapies.
Collapse
|
180
|
PA401, a novel CXCL8-based biologic therapeutic with increased glycosaminoglycan binding, reduces bronchoalveolar lavage neutrophils and systemic inflammatory markers in a murine model of LPS-induced lung inflammation. Cytokine 2015; 76:433-441. [PMID: 26303011 DOI: 10.1016/j.cyto.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
RATIONALE Neutrophils play a fundamental role in a number of chronic lung diseases. Among the mediators of their recruitment to the lung, CXCL8 (IL-8) is considered to be one of the major players. CXCL8 exerts its chemotactic activity by binding to its GPCR receptors (CXCR1/R2) located on neutrophils, as well as through interactions with glycosaminoglycans (GAGs) on cell surfaces including those of the microvascular endothelium. Binding to GAG co-receptors is required to generate a solid-phase haptotactic gradient and to present IL-8/CXCL8 in a proper conformation to its receptors on circulating neutrophils. METHODS We have engineered increased GAG-binding affinity into human CXCL8, thereby obtaining a competitive inhibitor that displaces wild-type IL-8/CXCL8 from GAGs. By additionally knocking-out the GPCR binding domain of the chemokine, we generated a dominant negative protein (dnCXCL8; PA401) with potent anti-inflammatory characteristics proven in vivo in a murine model of LPS-induced lung inflammation (Adage et al., 2015). Here we have further investigated PA401 activity in this pulmonary model by evaluating plasma changes induced by LPS on white blood cells (WBC) and a broad range of inflammatory markers, especially chemokines, by addressing immediate effects of PA401 on these parameters in healthy and LPS exposed mice. RESULTS Aerosolized LPS induced a significant increase in bronchoalveolar lavage (BAL) neutrophils after 3 and 7h, as well as an increase in total WBC and changes in 21 of the 59 measured plasma markers, mostly belonging to the chemokine family. PA401 treatment in saline exposed mice didn't induce major changes in any of the measured parameters. When administered to LPS aerosolized mice, PA401 caused a significant normalization of KC/mCXCL1 and other inflammatory markers, as well as of blood WBC count. In addition, BAL neutrophils were significantly reduced, confirming the previously observed lung anti-inflammatory activity of PA401 in this experiment. CONCLUSIONS PA401 is a new promising biologic therapeutic with a novel and unique mechanism of action for interfering with neutrophilic lung inflammation, that also normalizes plasma inflammatory markers.
Collapse
|
181
|
Kobayashi M, Chen S, Gao R, Bai Y, Zhang ZY, Liu Y. Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies. Cell Cycle 2015; 13:2827-35. [PMID: 25486470 DOI: 10.4161/15384101.2014.954448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The phosphatases of regenerating liver (PRLs), consisting PRL1, PRL2 and PRL3, are dual-specificity protein phosphatases that have been implicated as biomarkers and therapeutic targets in several solid tumors. However, their roles in hematological malignancies are largely unknown. Recent findings demonstrate that PRL2 is important for hematopoietic stem cell self-renewal and proliferation. In addition, both PRL2 and PRL3 are highly expressed in some hematological malignancies, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Moreover, PRL deficiency impairs the proliferation and survival of leukemia cells through regulating oncogenic signaling pathways. While PRLs are potential novel therapeutic targets in hematological malignancies, their exact biological function and cellular substrates remain unclear. This review will discuss how PRLs regulate hematopoietic stem cell behavior, what signaling pathways are regulated by PRLs, and how to target PRLs in hematological malignancies. An improved understanding of how PRLs function and how they are regulated may facilitate the development of PRL inhibitors that are effective in cancer treatment.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- a Department of Pediatrics, Herman B Wells Center for Pediatric Research; Department of Biochemistry and Molecular Biology , Indiana University School of Medicine ; Indianapolis , IN USA
| | | | | | | | | | | |
Collapse
|
182
|
Politikos I, Kim HT, Nikiforow S, Li L, Brown J, Antin JH, Cutler C, Ballen K, Ritz J, Boussiotis VA. IL-7 and SCF Levels Inversely Correlate with T Cell Reconstitution and Clinical Outcomes after Cord Blood Transplantation in Adults. PLoS One 2015; 10:e0132564. [PMID: 26177551 PMCID: PMC4503696 DOI: 10.1371/journal.pone.0132564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Recovery of thymopoiesis is critical for immune reconstitution after HSCT. IL-7 and SCF are two major thymotropic cytokines. We investigated whether the kinetics of circulating levels of these cytokines might provide insight into the prolonged immunodeficiency after double umbilical cord blood transplantation (dUCBT) in adults. We examined plasma levels of IL-7 and SCF, T-cell receptor rearrangement excision circle (TREC) levels and T cell subsets in 60 adult patients undergoing dUCBT. Median levels of IL-7 increased by more than 3-fold at 4 weeks and remained elevated through 100 days after dUCBT. SCF showed a less than 2-fold increase and more protracted elevation than IL-7. IL-7 levels inversely correlated with the reconstitution of various T cell subsets but not with TRECs. SCF levels inversely correlated with reconstitution of CD4+T cells, especially the naïve CD4+CD45RA+ subset, and with TRECs suggesting that SCF but not IL-7 had an effect on thymic regeneration. In Cox models, elevated levels of IL-7 and SCF were associated with higher non-relapse mortality (p = 0.03 and p = 0.01) and worse overall survival (p = 0.002 and p = 0.001). Elevated IL-7 but not SCF was also associated with development of GvHD (p = 0.03). Thus, IL-7 and SCF are elevated for a prolonged period after dUCBT and persistently high levels of these cytokines may correlate with worse clinical outcomes.
Collapse
Affiliation(s)
- Ioannis Politikos
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Haesook T. Kim
- Department of Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Sarah Nikiforow
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Lequn Li
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Julia Brown
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Joseph H. Antin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Karen Ballen
- Bone Marrow Transplantation Unit, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Vassiliki A. Boussiotis
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
183
|
Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. Role of angiogenesis in endodontics: contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration. J Endod 2015; 41:797-803. [PMID: 25649306 PMCID: PMC5223201 DOI: 10.1016/j.joen.2014.12.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Dental pulp regeneration is a part of regenerative endodontics, which includes isolation, propagation, and re-transplantation of stem cells inside the prepared root canal space. The formation of new blood vessels through angiogenesis is mandatory to increase the survival rate of re-transplanted tissues. Angiogenesis is defined as the formation of new blood vessels from preexisting capillaries, which has great importance in pulp regeneration and homeostasis. Here the contribution of human dental pulp stem cells and proangiogenic and antiangiogenic factors to angiogenesis process and regeneration of dental pulp is reviewed. METHODS A search was performed on the role of angiogenesis in dental pulp regeneration from January 2005 through April 2014. The recent aspects of the relationship between angiogenesis, human dental pulp stem cells, and proangiogenic and antiangiogenic factors in regeneration of dental pulp were assessed. RESULTS Many studies have indicated an intimate relationship between angiogenesis and dental pulp regeneration. The contribution of stem cells and mechanical and chemical factors to dental pulp regeneration has been previously discussed. CONCLUSIONS Angiogenesis is an indispensable process during dental pulp regeneration. The survival of inflamed vital pulp and engineered transplanted pulp tissue are closely linked to the process of angiogenesis at sites of application. However, the detailed regulatory mechanisms involved in initiation and progression of angiogenesis in pulp tissue require investigation.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | | | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
184
|
Hsiao CH, Ji ATQ, Chang CC, Cheng CJ, Lee LM, Ho JHC. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther 2015; 6:113. [PMID: 26025454 PMCID: PMC4449584 DOI: 10.1186/s13287-015-0079-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/22/2014] [Accepted: 04/10/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction Testicular torsion is a urological emergency and infertility is a common complication due to ischemic injury. Surgical reduction and orchiopexy is indicated, but to date there is no effective method for restoration of spermatogenesis. The effects of mesenchymal stem cells (MSCs) on acute tissue injury have been demonstrated, and the abilities of paracrine support, differentiation and immune-modulation may benefit to testicular torsion-induced infertility. We investigate the therapeutic efficacy and the mechanisms of MSCs in testicular torsion-induced germ cell injury when injected locally. Methods Six to eight-week-old Sprague–Dawley rats received surgical 720 degree torsion for 3 hours, followed by detorsion on the left testis. 20 μl of phosphate-buffered saline (PBS) without or with 3 x 104 MSCs from human orbital fat tissues (OFSCs) were given for 10 rats, respectively, via local injection into the left testis 30 minutes before detorsion. 20 μl of PBS injection for 6 rats with surgical exposure without torsion served as sham control. Histopathology with Johnsen’s score analysis, Western blot analysis for superoxide dismutase 2, Bax, Caspase-3, human insulin growth factor-1 and human stem cell factor, malondialdehyde (MDA) assay in testis and plasma, hormones level including testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) by ELISA Kits, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and fluorescence staining for P450, Sox-9 and VASA were performed. Results Animals were sacrificed and bilateral orchiectomy was performed 7 days after torsion-detorsion. Local injections of OFSCs prevented torsion-induced infertility judging from Johnsen's score. TUNEL assay and Western blot analysis on caspase 3 and Bax demonstrated that OFSCs prevented ischemic/reperfusion induced intrinsic apoptosis. MDA assay revealed that OFSCs significantly reduced the oxidative stress in the damaged testicular tissues. After the OFSC injection, serum testosterone secretion was increased, while the elevation of FSH triggered by testicular injury was balanced. OFSCs also produced stem cell factor in the damaged testis. Immunofluorescence staining revealed that most transplanted cells surrounded the Leydig cells. Some of transplanted cells differentiated into p450 expressing cells within 7 days. Conclusions Local injection of allogenic MSCs before surgical detorsion is a simple, clinical friendly procedure to rescue torsion-induced infertility.
Collapse
Affiliation(s)
- Chi-Hao Hsiao
- Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan. .,Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Andrea Tung-Qian Ji
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.
| | - Chih-Cheng Chang
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Department of Pulmonary Medicine, Shuang Ho Hospital, Taipei Medical University, #291, Zhongzheng Road, Zhonghe District, New Taipei, 235, Taiwan.
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, #250, Wu-Hsing Street, Taipei, Taiwan. .,Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, #250, Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.
| | - Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.
| |
Collapse
|
185
|
Forster L, McCooke J, Bellgard M, Joske D, Finlayson J, Ghassemifar R. Differential gene expression analysis in early and late erythroid progenitor cells in β-thalassaemia. Br J Haematol 2015; 170:257-67. [DOI: 10.1111/bjh.13432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Luke Forster
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
| | - John McCooke
- Centre for Comparative Genomics; Murdoch University; Murdoch WA Australia
| | - Matthew Bellgard
- Centre for Comparative Genomics; Murdoch University; Murdoch WA Australia
| | - David Joske
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| | - Jill Finlayson
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| | - Reza Ghassemifar
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| |
Collapse
|
186
|
Hu W, Jing P, Wang L, Zhang Y, Yong J, Wang Y. The positive effects of Ginsenoside Rg1 upon the hematopoietic microenvironment in a D-Galactose-induced aged rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:119. [PMID: 25881060 PMCID: PMC4417299 DOI: 10.1186/s12906-015-0642-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/07/2015] [Indexed: 01/08/2023]
Abstract
Background Ginsenoside Rg1 (Rg1) is one of the most active ingredients in Panax ginseng and has been proven to have anti-oxidative and anti-aging properties. However, there have been few reports concerning the anti-aging effects of Rg1 on the hematopoietic microenvironment and bone marrow stromal cells (BMSCs). Methods Thirty Sprague-Dawley rats were randomly divided into four groups (control, D-galactose (D-gal)-administration, Rg1-treatment, and D-gal-administration + Rg1-treatment groups). After D-gal and Rg1 treatment, BMSCs were extracted from femoral bone marrow for culture. After three passages, BMSCs were tested by senescence-associated β-galactosidase (SA-β-gal) staining, flow cytometric cell cycle phase distribution assay, CCK-8 cell proliferation assay, oxidative stress (reactive oxygen species [ROS], superoxide dismutase [SOD], and malondialdehyde [MDA]) assays, inflammatory marker (interleukin (IL)-2, IL-6, and tumor necrosis factor (TNF)-α) enzyme-linked immunosorbent assay (ELISA), stem cell factor (SCF) ELISA, and senescence-associated protein (p16, p21, and p53) Western blotting. Results Compared to the D-gal-administration group, the D-gal-administration + Rg1-treatment group showed significantly decreased levels of SA-β-gal + cell %, ROS, MDA, inflammatory marker expression, and senescence-associated protein expression as well as significantly increased levels of S-phase %, cell proliferation, SOD activity, and SCF expression. Compared to controls, the Rg-1-treatment group displayed significantly reduced levels of SA-β-gal + cell %, G1 phase %, ROS, MDA, inflammatory marker expression, senescence-associated protein expression, and SCF expression as well as significantly increased levels of S-phase %, cell proliferation, and SOD activity. Conclusions Rg1 improves the anti-aging ability of hematopoietic microenvironment through enhancing the anti-oxidant and anti-inflammatory capacities of BMSCs.
Collapse
|
187
|
Choe N, Kwon JS, Kim YS, Eom GH, Ahn YK, Baik YH, Park HY, Kook H. The microRNA miR-34c inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by targeting stem cell factor. Cell Signal 2015; 27:1056-65. [PMID: 25683915 DOI: 10.1016/j.cellsig.2014.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/09/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
The fine balance between proliferation and differentiation of vascular smooth muscle cells (VSMCs) is indispensable for the maintenance of healthy blood vessels, whereas an increase in proliferation participates in pathologic cardiovascular events such as atherosclerosis and restenosis. Here we report that microRNA-34c (miR-34c) targets stem cell factor (SCF) to inhibit VSMC proliferation and neointimal hyperplasia. In an animal model, miR-34c was significantly increased in the rat carotid artery after catheter injury. Transient transfection of miR-34c to either VSMCs or A10 cells inhibited cell survival by inducing apoptosis, which was accompanied by an increase in expression of p21, p27, and Bax. Transfection of miR-34c also attenuated VSMC migration. Bioinformatics showed that SCF is a target candidate of miR-34c. miR-34c down-regulated luciferase activity driven by a vector containing the 3'-untranslated region of SCF in a sequence-specific manner. Forced expression of SCF in A10 cells induced proliferation and migration, whereas knocking-down of SCF reduced cell survival and migration. miR-34c antagomir-induced VSMC proliferation was blocked by SCF siRNA. Delivery of miR-34c to rat carotid artery attenuated the expression of SCF and blocked neointimal hyperplasia. These results suggest that miR-34c is a new modulator of VSMC proliferation and that it inhibits neointima formation by regulating SCF.
Collapse
Affiliation(s)
- Nakwon Choe
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Jin-Sook Kwon
- Division of Cardiovascular and Rare Disease, Korea National Institute of Health, Osong, Cheongju, Chungbuk 363-951, Republic of Korea
| | - Yong Sook Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Gwang Hyeon Eom
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Young Keun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Yung Hong Baik
- Department of Pharmacology, College of Medicine, Seonam University, Namwon 590-711, Republic of Korea
| | - Hyun-Young Park
- Division of Cardiovascular and Rare Disease, Korea National Institute of Health, Osong, Cheongju, Chungbuk 363-951, Republic of Korea
| | - Hyun Kook
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea.
| |
Collapse
|
188
|
Kobayashi M, Bai Y, Dong Y, Yu H, Chen S, Gao R, Zhang L, Yoder MC, Kapur R, Zhang ZY, Liu Y. PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal. Stem Cells 2015; 32:1956-67. [PMID: 24753135 DOI: 10.1002/stem.1672] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/20/2013] [Accepted: 01/18/2014] [Indexed: 01/19/2023]
Abstract
Hematopoietic stem cell (HSC) self-renewal is tightly controlled by cytokines and other signals in the microenvironment. While stem cell factor (SCF) is an early acting cytokine that activates the receptor tyrosine kinase KIT and promotes HSC maintenance, how SCF/KIT signaling is regulated in HSCs is poorly understood. The protein tyrosine phosphatase 4A (PTP4A) family (aka PRL [phosphatase of regenerating liver] phosphatases), consisting of PTP4A1/PRL1, PTP4A2/PRL2, and PTP4A3/PRL3, represents an intriguing group of phosphatases implicated in cell proliferation and tumorigenesis. However, the role of PTP4A in hematopoiesis remains elusive. To define the role of PTP4A in hematopoiesis, we analyzed HSC behavior in Ptp4a2 (Prl2) deficient mice. We found that Ptp4a2 deficiency impairs HSC self-renewal as revealed by serial bone marrow transplantation assays. Moreover, we observed that Ptp4a2 null hematopoietic stem and progenitor cells (HSPCs) are more quiescent and show reduced activation of the AKT and ERK signaling. Importantly, we discovered that the ability of PTP4A2 to enhance HSPC proliferation and activation of AKT and ERK signaling depends on its phosphatase activity. Furthermore, we found that PTP4A2 is important for SCF-mediated HSPC proliferation and loss of Ptp4a2 decreased the ability of oncogenic KIT/D814V mutant in promoting hematopoietic progenitor cell proliferation. Thus, PTP4A2 plays critical roles in regulating HSC self-renewal and mediating SCF/KIT signaling.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research and Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
McIntosh BE, Brown ME, Duffin BM, Maufort JP, Vereide DT, Slukvin II, Thomson JA. Nonirradiated NOD,B6.SCID Il2rγ-/- Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports 2015; 4:171-80. [PMID: 25601207 PMCID: PMC4325197 DOI: 10.1016/j.stemcr.2014.12.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/06/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022] Open
Abstract
In this study, we demonstrate a newly derived mouse model that supports engraftment of human hematopoietic stem cells (HSCs) in the absence of irradiation. We cross the NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) strain with the C57BL/6J-KitW-41J/J (C57BL/6.KitW41) strain and engraft, without irradiation, the resulting NBSGW strain with human cord blood CD34+ cells. At 12-weeks postengraftment in NBSGW mice, we observe human cell chimerism in marrow (97% ± 0.4%), peripheral blood (61% ± 2%), and spleen (94% ± 2%) at levels observed with irradiation in NSG mice. We also detected a significant number of glycophorin-A-positive expressing cells in the developing NBSGW marrow. Further, the observed levels of human hematopoietic chimerism mimic those reported for both irradiated NSG and NSG-transgenic strains. This mouse model permits HSC engraftment while avoiding the complicating hematopoietic, gastrointestinal, and neurological side effects associated with irradiation and allows investigators without access to radiation to pursue engraftment studies with human HSCs. In engraftment experiments, nonirradiated NBSGW mice show enhanced humanization Similar levels of human chimerism are observed between both irNSG and NBSGW mice NBSGW mice are conducive to serial transplantation without irradiation NBSGW mice harbor a mutant KitW41 allele, aiding Gly-A+ development in the marrow
Collapse
Affiliation(s)
| | - Matthew E Brown
- Department of Surgery, University of Wisconsin, Madison, WI 53715, USA
| | - Bret M Duffin
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - John P Maufort
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - David T Vereide
- Morgridge Institute for Research, Madison, WI 53715, USA; Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
190
|
Bulmer JN, Lash GE. The Role of Uterine NK Cells in Normal Reproduction and Reproductive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:95-126. [PMID: 26178847 DOI: 10.1007/978-3-319-18881-2_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human endometrium contains a substantial population of leucocytes which vary in distribution during the menstrual cycle and pregnancy. An unusual population of natural killer (NK) cells, termed uterine NK (uNK) cells, are the most abundant of these cells in early pregnancy. The increase in number of uNK cells in the mid-secretory phase of the cycle with further increases in early pregnancy has focused attention on the role of uNK cells in early pregnancy. Despite many studies, the in vivo role of these cells is uncertain. This chapter reviews current information regarding the role of uNK cells in healthy human pregnancy and evidence indicating their importance in various reproductive and pregnancy problems. Studies in humans are limited by the availability of suitable tissues and the limitations of extrapolation from animal models.
Collapse
Affiliation(s)
- Judith N Bulmer
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK,
| | | |
Collapse
|
191
|
Reshetnyak AV, Opatowsky Y, Boggon TJ, Folta-Stogniew E, Tome F, Lax I, Schlessinger J. The strength and cooperativity of KIT ectodomain contacts determine normal ligand-dependent stimulation or oncogenic activation in cancer. Mol Cell 2014; 57:191-201. [PMID: 25544564 DOI: 10.1016/j.molcel.2014.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/14/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022]
Abstract
The receptor tyrosine kinase KIT plays an important role in development of germ cells, hematopoietic cells, and interstitial pacemaker cells. Oncogenic KIT mutations play an important "driver" role in gastrointestinal stromal tumors, acute myeloid leukemias, and melanoma, among other cancers. Here we describe the crystal structure of a recurring somatic oncogenic mutation located in the C-terminal Ig-like domain (D5) of the ectodomain, rendering KIT tyrosine kinase activity constitutively activated. The structural analysis, together with biochemical and biophysical experiments and detailed analyses of the activities of a variety of oncogenic KIT mutations, reveals that the strength of homotypic contacts and the cooperativity in the action of D4D5 regions determines whether KIT is normally regulated or constitutively activated in cancers. We propose that cooperative interactions mediated by multiple weak homotypic contacts between receptor molecules are responsible for regulating normal ligand-dependent or oncogenic RTK activation via a "zipper-like" mechanism for receptor activation.
Collapse
Affiliation(s)
- Andrey V Reshetnyak
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yarden Opatowsky
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ewa Folta-Stogniew
- The Biophysical Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Francisco Tome
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Irit Lax
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
192
|
Moser VC, Stewart N, Freeborn DL, Crooks J, MacMillan DK, Hedge JM, Wood CE, McMahen RL, Strynar MJ, Herr DW. Assessment of serum biomarkers in rats after exposure to pesticides of different chemical classes. Toxicol Appl Pharmacol 2014; 282:161-74. [PMID: 25497286 DOI: 10.1016/j.taap.2014.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 11/25/2022]
Abstract
There is increasing emphasis on the use of biomarkers of adverse outcomes in safety assessment and translational research. We evaluated serum biomarkers and targeted metabolite profiles after exposure to pesticides (permethrin, deltamethrin, imidacloprid, carbaryl, triadimefon, fipronil) with different neurotoxic actions. Adult male Long-Evans rats were evaluated after single exposure to vehicle or one of two doses of each pesticide at the time of peak effect. The doses were selected to produce similar magnitude of behavioral effects across chemicals. Serum or plasma was analyzed using commercial cytokine/protein panels and targeted metabolomics. Additional studies of fipronil used lower doses (lacking behavioral effects), singly or for 14 days, and included additional markers of exposure and biological activity. Biomarker profiles varied in the number of altered analytes and patterns of change across pesticide classes, and discriminant analysis could separate treatment groups from control. Low doses of fipronil produced greater effects when given for 14 days compared to a single dose. Changes in thyroid hormones and relative amounts of fipronil and its sulfone metabolite also differed between the dosing regimens. Most cytokine changes reflected alterations in inflammatory responses, hormone levels, and products of phospholipid, fatty acid, and amino acid metabolism. These findings demonstrate distinct blood-based analyte profiles across pesticide classes, dose levels, and exposure duration. These results show promise for detailed analyses of these biomarkers and their linkages to biological pathways.
Collapse
Affiliation(s)
- Virginia C Moser
- Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Nicholas Stewart
- Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Danielle L Freeborn
- Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - James Crooks
- Analytical Chemistry Research Core/Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Denise K MacMillan
- Analytical Chemistry Research Core/Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Joan M Hedge
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Charles E Wood
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Rebecca L McMahen
- ORISE fellow, Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mark J Strynar
- Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - David W Herr
- Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
193
|
Prokhorov A, Gibbs BF, Bardelli M, Rüegg L, Fasler-Kan E, Varani L, Sumbayev VV. The immune receptor Tim-3 mediates activation of PI3 kinase/mTOR and HIF-1 pathways in human myeloid leukaemia cells. Int J Biochem Cell Biol 2014; 59:11-20. [PMID: 25483439 DOI: 10.1016/j.biocel.2014.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/10/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022]
Abstract
The T-cell immunoglobulin and mucin domain 3 (Tim-3) is a plasma membrane-associated protein that is highly expressed in human acute myeloid leukaemia cells. As an acute myeloid leukaemia antigen, it could therefore be considered as a potential target for immune therapy and highly-specific drug delivery. However, a conceptual understanding of its biological role is required before consideration of this protein for therapeutic settings. Here, we reveal the detailed mechanism of action underlying the biological responses mediated by the Tim-3 receptor in myeloid cells. Our studies demonstrate that Tim-3 triggers growth factor type responses in acute myeloid leukaemia cells by activating a phosphatidylinositol-3 kinase (PI-3K)/mammalian target of rapamycin (mTOR) pathway. In addition, the receptor activates hypoxic signalling pathways upregulating glycolysis and pro-angiogenic responses. These findings suggest that Tim-3 could be used as a potential therapeutic target for immune therapy and drug delivery in human acute myeloid leukaemia cells.
Collapse
Affiliation(s)
- Alexandr Prokhorov
- School of Pharmacy, University of Kent, Anson Building, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Bernhard F Gibbs
- School of Pharmacy, University of Kent, Anson Building, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Marco Bardelli
- Institute for Research in Biomedicine, Via Vela 6, 6500 Bellinzona, Switzerland
| | - Laura Rüegg
- School of Pharmacy, University of Kent, Anson Building, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; High School of Life Sciences, University of Applied Sciences North-Western Switzerland, Muttenz, Switzerland
| | - Elizaveta Fasler-Kan
- High School of Life Sciences, University of Applied Sciences North-Western Switzerland, Muttenz, Switzerland; Department of Biomedicine, University of Basel and University Hospital Basel, CH-4031 Basel, Switzerland.
| | - Luca Varani
- Institute for Research in Biomedicine, Via Vela 6, 6500 Bellinzona, Switzerland.
| | - Vadim V Sumbayev
- School of Pharmacy, University of Kent, Anson Building, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
194
|
Misener R, Fuentes Garí M, Rende M, Velliou E, Panoskaltsis N, Pistikopoulos EN, Mantalaris A. Global superstructure optimisation of red blood cell production in a parallelised hollow fibre bioreactor. Comput Chem Eng 2014. [DOI: 10.1016/j.compchemeng.2014.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
195
|
Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol 2014; 5:570. [PMID: 25426119 PMCID: PMC4225839 DOI: 10.3389/fimmu.2014.00570] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/24/2014] [Indexed: 12/30/2022] Open
Abstract
Eosinophils derive from the bone marrow and circulate at low levels in the blood in healthy individuals. These granulated cells preferentially leave the circulation and marginate to tissues, where they are implicated in the regulation of innate and adaptive immunity. In diseases such as allergic inflammation, eosinophil numbers escalate markedly in the blood and tissues where inflammatory foci are located. Eosinophils possess a range of immunomodulatory factors that are released upon cell activation, including over 35 cytokines, growth factors, and chemokines. Unlike T and B cells, eosinophils can rapidly release cytokines within minutes in response to stimulation. While some cytokines are stored as pre-formed mediators in crystalloid granules and secretory vesicles, eosinophils are also capable of undergoing de novo synthesis and secretion of these immunological factors. Some of the molecular mechanisms that coordinate the final steps of cytokine secretion are hypothesized to involve binding of membrane fusion complexes comprised of soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). These intracellular receptors regulate the release of granules and vesicles containing a range of secreted proteins, among which are cytokines and chemokines. Emerging evidence from both human and animal model-based research has suggested an active participation of eosinophils in several physiological/pathological processes such as immunomodulation and tissue remodeling. The observed eosinophil effector functions in health and disease implicate eosinophil cytokine secretion as a fundamental immunoregulatory process. The focus of this review is to describe the cytokines, growth factors, and chemokines that are elaborated by eosinophils, and to illustrate some of the intracellular events leading to the release of eosinophil-derived cytokines.
Collapse
Affiliation(s)
- Francis Davoine
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
196
|
Abstract
The production of platelets is a complex process that involves hematopoietic stem cells (HSCs), their differentiated progeny, the marrow microenvironment and hematopoietic cytokines. Much has been learned in the 110 years since James Homer Wright postulated that marrow megakaryocytes were responsible for blood platelet production, at a time when platelets were termed the "dust of the blood". In the 1980s a number of in vitro culture systems were developed that could produce megakaryocytes, followed by the identification of several cytokines that could stimulate the process in vitro. However, none of these cytokines produced a substantial thrombocytosis when injected into animals or people, nor were blood levels inversely related to platelet count, the sine qua non of a physiological regulator. A major milestone in our understanding of thrombopoiesis occurred in 1994 when thrombopoietin, the primary regulator of platelet production was cloned and initially characterized. Since that time many of the molecular mechanisms of thrombopoiesis have been identified, including the effects of thrombopoietin on the survival, proliferation, and differentiation of hematopoietic stem and progenitor cells, the development of polyploidy and proplatelet formation, the final fragmentation of megakaryocyte cytoplasm to yield blood platelets, and the regulation of this process. While much progress has been made, several outstanding questions remain, such as the nature of the signals for final platelet formation, the molecular nature of the regulation of marrow stromal thrombopoietin production, and the role of these physiological processes in malignant hematopoiesis.
Collapse
|
197
|
Montelatici E, Baluce B, Ragni E, Lavazza C, Parazzi V, Mazzola R, Cantarella G, Brambilla M, Giordano R, Lazzari L. Defining the identity of human adipose-derived mesenchymal stem cells. Biochem Cell Biol 2014; 93:74-82. [PMID: 25472894 DOI: 10.1139/bcb-2014-0094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) are an ideal population for regenerative medical application. Both the isolation procedure and the culturing conditions are crucial steps, since low yield can limit further cell therapies, especially when minimal adipose tissue harvests are available for cell expansion. To date, a standardized procedure encompassing both isolation sites and expansion methods is missing, thus making the choice of the most appropriate conditions for the preparation of ADMSCs controversial, especially in view of the different applications needed. In this study, we compared the effects of three different commercial media (DMEM, aMEM, and EGM2), routinely used for ADMSCs expansion, and two supplements, FBS and human platelet lysate, recently proven to be an effective alternative to prevent xenogeneic antibody transfer and immune alloresponse in the host. Notably, all the conditions resulted in being safe for ADMSCs isolation and expansion with platelet lysate supplementation giving the highest isolation and proliferation rates, together with a commitment for osteogenic lineage. Then, we proved that the high ADMSC hematopoietic supportive potential is performed through a constant and abundant secretion of both GCSF and SCF. In conclusion, this study further expands the knowledge on ADMSCs, defining their identity definition and offers potential options for in vitro protocols for clinical production, especially related to HSC expansion without use of exogenous cytokines or genetic modifications.
Collapse
Affiliation(s)
- Elisa Montelatici
- a Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Expression of bioactive soluble human stem cell factor (SCF) from recombinant Escherichia coli by coproduction of thioredoxin and efficient purification using arginine in affinity chromatography. Protein Expr Purif 2014; 105:1-7. [PMID: 25286400 DOI: 10.1016/j.pep.2014.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 11/20/2022]
Abstract
Stem cell factor (SCF) known as the c-kit ligand is a two disulfide bridge-containing cytokine in the regulation of the development and function of hematopoietic cell lineages and other cells such as mast cells, germ cells, and melanocytes. The secreted soluble form of SCF exists as noncovalently associated homodimer and exerts its activity by signaling through the c-Kit receptor. In this report, we present the high level expression of a soluble recombinant human SCF (rhSCF) in Escherichia coli. A codon-optimized Profinity eXact™-tagged hSCF cDNA was cloned into pET3b vector, and transformed into E. coli BL21(DE3) harboring a bacterial thioredoxin coexpression vector. The recombinant protein was purified via an affinity chromatography processed by cleavage with sodium fluoride, resulting in the complete proteolytic removal the N-terminal tag. Although almost none of the soluble fusion protein bound to the resin in standard protocol using 0.1M sodium phosphate buffer (pH 7.2), the use of binding buffer containing 0.5M l-arginine for protein stabilization dramatically enhanced binding to resin and recovery of the protein beyond expectation. Also pretreatment by Triton X-114 for removing endotoxin was effective for affinity chromatography. In chromatography performance, l-arginine was more effective than Triton X-114 treatment. Following Mono Q anion exchange chromatography, the target protein was isolated in high purity. The rhSCF protein specifically enhanced the viability of human myeloid leukemia cell line TF-1 and the proliferation and maturation of human mast cell line LAD2 cell. This novel protocol for the production of rhSCF is a simple, suitable, and efficient method.
Collapse
|
199
|
Fauzi I, Panoskaltsis N, Mantalaris A. Early exposure of murine embryonic stem cells to hematopoietic cytokines differentially directs definitive erythropoiesis and cardiomyogenesis in alginate hydrogel three-dimensional cultures. Stem Cells Dev 2014; 23:2720-9. [PMID: 24926614 DOI: 10.1089/scd.2014.0105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
HepG2-conditioned medium (CM) facilitates early differentiation of murine embryonic stem cells (mESCs) into hematopoietic cells in two-dimensional cultures through formation of embryoid-like colonies (ELCs), bypassing embryoid body (EB) formation. We now demonstrate that three-dimensional (3D) cultures of alginate-encapsulated mESCs cultured in a rotating wall vessel bioreactor can be differentially driven toward definitive erythropoiesis and cardiomyogenesis in the absence of ELC formation. Three groups were evaluated: mESCs in maintenance medium with leukemia inhibitory factor (LIF, control) and mESCs cultured with HepG2 CM (CM1 and CM2). Control and CM1 groups were cultivated for 8 days in early differentiation medium with murine stem cell factor (mSCF) followed by 10 days in hematopoietic differentiation medium (HDM) containing human erythropoietin, m-interleukin (mIL)-3, and mSCF. CM2 cells were cultured for 18 days in HDM, bypassing early differentiation. In CM1, a fivefold expansion of hematopoietic colonies was observed at day 14, with enhancement of erythroid progenitors, hematopoietic genes (Gata-2 and SCL), erythroid genes (EKLF and β-major globin), and proteins (Gata-1 and β-globin), although ζ-globin was not expressed. In contrast, CM2 primarily produced beating colonies in standard hematopoietic colony assay and expressed early cardiomyogenic markers, anti-sarcomeric α-actinin and Gata-4. In conclusion, a scalable, automatable, integrated, 3D bioprocess for the differentiation of mESC toward definitive erythroblasts has been established. Interestingly, cardiomyogenesis was also directed in a specific protocol with HepG2 CM and hematopoietic cytokines making this platform a useful tool for the study of erythroid and cardiomyogenic development.
Collapse
Affiliation(s)
- Iliana Fauzi
- 1 Biological Systems Engineering Laboratory , Department of Chemical Engineering and Chemical Technology, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
200
|
Al-Hussaini M, DiPersio JF. Small molecule inhibitors in acute myeloid leukemia: from the bench to the clinic. Expert Rev Hematol 2014; 7:439-64. [PMID: 25025370 PMCID: PMC4283573 DOI: 10.1586/17474086.2014.932687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many patients with acute myeloid leukemia will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in acute myeloid leukemia. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials.
Collapse
Affiliation(s)
- Muneera Al-Hussaini
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis Missouri
| | - John F. DiPersio
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis Missouri
- Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St Louis Missouri
| |
Collapse
|