151
|
Wang L, Liu S, Quarles LD, Spurney RF. Targeted overexpression of G protein-coupled receptor kinase-2 in osteoblasts promotes bone loss. Am J Physiol Endocrinol Metab 2005; 288:E826-34. [PMID: 15585587 DOI: 10.1152/ajpendo.00422.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To investigate the role of G protein-coupled receptor kinases (GRKs) in regulating bone formation in vivo, we overexpressed the potent G protein-coupled receptor (GPCR) regulator GRK2 in osteoblasts, using the osteocalcin gene-2 promoter to target expression to osteoblastic cells. Using the parathyroid hormone (PTH) receptor as a model system, we found that overexpression of GRK2 in osteoblasts attenuated PTH-induced cAMP generation by mouse calvaria ex vivo. This decrease in GPCR responsiveness was associated with a reduction in bone mineral density (BMD) in transgenic (TG) mice compared with non-TG littermate controls. The decrease in BMD was most prominent in trabecular-rich lumbar spine and was not observed in cortical bone of the femoral shaft. Quantitative computed tomography indicated that the loss of trabecular bone was due to a decrease in trabecular thickness, with little change in trabecular number. Histomorphometric analyses confirmed the decrease in trabecular bone volume and demonstrated reduced bone remodeling, as evidenced by a decrease in osteoblast numbers and osteoblast-mediated bone formation. Osteoclastic activity also appeared to be reduced because urinary excretion of the osteoclastic activity marker deoxypyridinoline was decreased in TG mice compared with control animals. Consistent with reduced coupling of osteoblast-mediated bone formation to osteoclastic bone resorption, mRNA levels of both osteoprotegrin and receptor activator of NF-kappaB ligand were altered in calvaria of TG mice in a pattern that would promote a low rate of bone remodeling. Taken together, these data suggest that enhancing GRK2 activity and consequently reducing GPCR activity in osteoblasts produces a low bone-turnover state that reduces bone mass.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
152
|
Sakamoto A, Chen M, Nakamura T, Xie T, Karsenty G, Weinstein LS. Deficiency of the G-protein alpha-subunit G(s)alpha in osteoblasts leads to differential effects on trabecular and cortical bone. J Biol Chem 2005; 280:21369-75. [PMID: 15797856 DOI: 10.1074/jbc.m500346200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G-protein alpha-subunit G(s)alpha is required for the intracellular cAMP responses to hormones and other agonists. G(s)alpha is known to mediate the cAMP response to parathyroid hormone and other hormones and cytokines in bone and cartilage. To analyze the in vivo role of G(s)alpha signaling in osteoblasts, we developed mice with osteoblast/osteocyte-specific G(s)alpha deficiency (BGsKO) by mating G(s)alpha-floxed mice with collagen Ialpha1 promoter-Cre recombinase transgenic mice. Early skeletal development was normal in BGsKO mice, because formation of the initial cartilage template and bone collar was unaffected. The chondrocytic zones of the growth plates also appeared normal in BGsKO mice. BGsKO mice had a defect in the formation of the primary spongiosa with reduced immature osteoid (new bone formation) and overall length, which led to reduced trabecular bone volume. In contrast, cortical bone was thickened with narrowing of the bone marrow cavity. This was probably due to decreased cortical bone resorption, because osteoclasts were markedly reduced on the endosteal surface of cortical bone. In addition, the expression of alkaline phosphatase, an early osteoblastic differentiation marker, was normal, whereas the expression of the late osteoblast differentiation markers osteopontin and osteocalcin was reduced, suggesting that the number of mature osteoblasts in bone is reduced. Expression of the osteoclast-stimulating factor receptor activator of NF-kappaB ligand was also reduced. Overall, our findings have similarities to parathyroid hormone null mice and confirm that the differential effects of parathyroid hormone on trabecular and cortical bone are primarily mediated via G(s)alpha in osteoblasts. Osteoblast-specific G(s)alpha deficiency leads to reduced bone turnover.
Collapse
Affiliation(s)
- Akio Sakamoto
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
153
|
Choi MG, Koh HS, Kluess D, O'Connor D, Mathur A, Truskey GA, Rubin J, Zhou DXF, Sung KLP. Effects of titanium particle size on osteoblast functions in vitro and in vivo. Proc Natl Acad Sci U S A 2005; 102:4578-83. [PMID: 15755807 PMCID: PMC555523 DOI: 10.1073/pnas.0500693102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Indexed: 11/18/2022] Open
Abstract
The formation of titanium (Ti)-wear particles during the lifetime of an implant is believed to be a major component of loosening due to debris-induced changes in bone cell function. Radiographic evidence indicates a loss of fixation at the implant-bone interface, and we believe that the accumulation of Ti particles may act on the bone-remodeling process and impact both long- and short-term implant-fixation strengths. To determine the effects of various sizes of the Ti particles on osteoblast function in vivo, we measured the loss of integration strength around Ti-pin implants inserted into a rat tibia in conjunction with Ti particles from one of four size-groups. Implant integration is mediated primarily by osteoblast adhesion/focal contact pattern, viability, proliferation and differentiation, and osteoclast recruitment at the implant site in vivo. This study demonstrates the significant attenuation of osteoblast function concurrent with increased expression of receptor activator of nuclear factor kappaB ligand (RANKL), a dominant signal for osteoclast recruitment, which is regulated differentially, depending on the size of the Ti particle. Zymography studies have also demonstrated increased activities of matrix metalloproteinases (MMP) 2 and 9 in cells exposed to larger Ti particles. In summary, all particles have adverse effects on osteoblast function, resulting in decreased bone formation and integration, but different mechanisms are elicited by particles of different sizes.
Collapse
Affiliation(s)
- Moon G Choi
- Department of Orthopedic Surgery, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Qin L, Tamasi J, Raggatt L, Li X, Feyen JHM, Lee DC, Dicicco-Bloom E, Partridge NC. Amphiregulin Is a Novel Growth Factor Involved in Normal Bone Development and in the Cellular Response to Parathyroid Hormone Stimulation. J Biol Chem 2005; 280:3974-81. [PMID: 15509566 DOI: 10.1074/jbc.m409807200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) is the major mediator of calcium homeostasis and bone remodeling and is now known to be an effective drug for osteoporosis treatment. Yet the mechanisms responsible for its functions in bone are largely unknown. Here we report that the expression of amphiregulin (AR), a member of the epidermal growth factor (EGF) family, is rapidly and highly up-regulated by PTH in several osteoblastic cell lines and bone tissues. Other osteotropic hormones (1alpha,25-dihydroxyvitamin D3 and prostaglandin E2) also strongly stimulate AR expression. We found all EGF-like ligands and their receptors are expressed in osteoblasts, but AR is the only member that is highly regulated by PTH. Functional studies demonstrated that although AR is a potent growth factor for preosteoblasts, it completely inhibits further differentiation. AR also strongly and quickly stimulated Akt and ERK phosphorylation and c-fos and c-jun expression in an EGF receptor-dependent manner. Moreover, AR null mice displayed significantly less tibial trabecular bone than wild-type mice. Taken together, we have identified a novel growth factor that is PTH-regulated and appears to have an important role in bone metabolism.
Collapse
Affiliation(s)
- Ling Qin
- Physiology and Biophysics and Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev 2005; 26:78-113. [PMID: 15689574 DOI: 10.1210/er.2003-0024] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PTH is a major systemic regulator of the concentrations of calcium, phosphate, and active vitamin D metabolites in blood and of cellular activity in bone. Intermittently administered PTH and amino-terminal PTH peptide fragments or analogs also augment bone mass and currently are being introduced into clinical practice as therapies for osteoporosis. The amino-terminal region of PTH is known to be both necessary and sufficient for full activity at PTH/PTHrP receptors (PTH1Rs), which mediate the classical biological actions of the hormone. It is well known that multiple carboxyl-terminal fragments of PTH are present in blood, where they comprise the major form(s) of circulating hormone, but these fragments have long been regarded as inert by-products of PTH metabolism because they neither bind to nor activate PTH1Rs. New in vitro and in vivo evidence, together with older observations extending over the past 20 yr, now points strongly to the existence of novel large carboxyl-terminal PTH fragments in blood and to receptors for these fragments that appear to mediate unique biological actions in bone. This review traces the development of this field in the context of the evolution of our understanding of the "classical" receptor for amino-terminal PTH and the now convincing evidence for these receptors for carboxyl-terminal PTH. The review summarizes current knowledge of the structure, secretion, and metabolism of PTH and its circulating fragments, details available information concerning the pharmacology and actions of carboxyl-terminal PTH receptors, and frames their likely biological and clinical significance. It seems likely that physiological parathyroid regulation of calcium and bone metabolism may involve receptors for circulating carboxy-terminal PTH ligands as well as the action of amino-terminal determinants within the PTH molecule on the classical PTH1R.
Collapse
Affiliation(s)
- Timothy M Murray
- Department of Medicine, University of Toronto, and the Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
156
|
Zannettino ACW, Holding CA, Diamond P, Atkins GJ, Kostakis P, Farrugia A, Gamble J, To LB, Findlay DM, Haynes DR. Osteoprotegerin (OPG) is localized to the Weibel-Palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor. J Cell Physiol 2005; 204:714-23. [PMID: 15799029 DOI: 10.1002/jcp.20354] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies demonstrate roles for osteoprotegerin (OPG) in both skeletal and extra-skeletal tissues. Although its role in preventing osteoclast (OC) formation and activity is well documented, emerging evidence suggests a role of OPG in endothelial cell survival and the prevention of arterial calcification. In this communication, we show that vascular endothelial cells in situ, and human umbilical vein endothelial cells (HUVEC) in vitro, express abundant OPG. In HUVEC, OPG co-localizes with P-selectin and von Willebrand factor (vWF), within the Weibel-Palade bodies (WPB). Treatment of HUVEC with the pro-inflammatory cytokines, tumor necrosis factor (TNF)-alpha and IL-1beta, resulted in mobilization from the WPBs and subsequent secretion of OPG protein into the culture supernatant. Furthermore, TNF-alpha treatment of HUVEC resulted in a sustained increase in OPG mRNA levels and protein secretion over the 24-h treatment period. Reciprocal immunoprecipitation experiments revealed that while not associated with P-Selectin, OPG is physically complexed with vWF both within the WPB and following secretion from endothelial cells. Interestingly, this association was also identified in human peripheral blood plasma. In addition to its interaction with vWF, we show that OPG also binds with high avidity to the vWF reductase, thrombospondin (TSP-1), raising the intriguing possibility that OPG may provide a link between TSP-1 and vWF. In summary, the intracellular localization of OPG in HUVEC, in association with vWF, together with its rapid and sustained secretory response to inflammatory stimuli, strongly support a modulatory role in vascular injury, inflammation and hemostasis.
Collapse
Affiliation(s)
- A C W Zannettino
- Myeloma and Mesenchymal Research Laboratory, Division of Haematology, Institute of Medical and Veterinary Science, and Hanson Institute, Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Cheung R, Erclik MS, Mitchell J. 1,25-dihydroxyvitamin D3 stimulated protein kinase C phosphorylation of type VI adenylyl cyclase inhibits parathyroid hormone signal transduction in rat osteoblastic UMR 106-01 cells. J Cell Biochem 2005; 94:1017-27. [PMID: 15597341 DOI: 10.1002/jcb.20366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) treatment of osteoblastic cells was shown previously to attenuate Parathyroid hormone (PTH) response by inhibiting adenylyl cyclase (AC) activity. In this study, we have investigated the mechanism by which 1,25(OH)(2)D(3) inhibits AC in rat osteoblastic UMR 106-01 cells. 1,25(OH)(2)D(3) treatment inhibited both PTH and forskolin-stimulated AC activity by 25%-50% within 12 min in a concentration-dependent manner suggesting a direct inhibition of the AC enzyme. Treatment with 25(OH)D(3) had no effect on basal or stimulated AC activity. We determined the profile of AC subtypes expressed in UMR cells and found AC VI to be the dominant subtype accounting for 50% of AC mRNA. Since AC VI can be inhibited by protein kinase C (PKC) phosphorylation, we examined 1,25(OH)(2)D(3) activation of various PKC isoforms. 1,25(OH)(2)D(3) increased the membrane translocation of PKC-betaI, -delta, and -zeta with a concomitant increase in PKC activity. The translocation of PKC-betaI and -delta was blocked by the PLC inhibitor U73122 whereas that of PKC-zeta was abolished by the PI-3 kinase inhibitor wortmannin. The attenuation of cAMP production by 1,25(OH)(2)D(3) was antagonized by the PKC inhibitors Go6850, calphostin C, and wortmannin, but not by a calmodulin kinase II (CaMKII) inhibitor. Treatment with 1,25(OH)(2)D(3) for 20 min increased AC VI phosphorylation by 10.8-fold and this was blocked partially by Go6850 and partially by wortmannin but was unaffected by CaMKII inhibitor. These results demonstrate that 1,25(OH)(2)D(3) activation of PKC isoforms leads to phosphorylation of AC VI and inhibition of PTH-activation of this pathway in osteoblasts.
Collapse
Affiliation(s)
- Ricky Cheung
- Department of Pharmacology, University of Toronto, Medical Science Building, I King's College Circle, Toronto, Ontario, Canada
| | | | | |
Collapse
|
158
|
Gopalakrishnan R, Suttamanatwong S, Carlson AE, Franceschi RT. Role of matrix Gla protein in parathyroid hormone inhibition of osteoblast mineralization. Cells Tissues Organs 2005; 181:166-75. [PMID: 16612082 DOI: 10.1159/000091378] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Parathyroid hormone (PTH) exerts biphasic effects on bone, dependent on the frequency and dose of administration. The catabolic actions of PTH on bone have been associated with continuous treatment, an increase in osteoblast-mediated resorption of bone via osteoclast activation, and inhibition of osteoblast activity and mineralization. Downregulation of differentiation markers and inhibition of mineralization by PTH have been reported in primary calvarial explants and osteoblast cell lines. Using MC3T3-E1 osteoblast-like cells, we have shown that matrix Gla protein (MGP) can be induced by PTH, and that this induction may explain the PTH-mediated inhibition of osteoblast biomineralization. MGP is a known inhibitor of mineralization, and mice deficient in Mgp show severe vascular calcification and premature bone mineralization. This review discusses the role of MGP in mineralization, comparing bone and vascular mineralization. In addition to MGP, the regulation and possible role of osteopontin, another known regulator of osteoblast mineralization, in PTH-mediated regulation of bone and vascular mineralization is discussed.
Collapse
Affiliation(s)
- Rajaram Gopalakrishnan
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minn. 55455, USA.
| | | | | | | |
Collapse
|
159
|
Wang L, Quarles LD, Spurney RF. Unmasking the osteoinductive effects of a G-protein-coupled receptor (GPCR) kinase (GRK) inhibitor by treatment with PTH(1-34). J Bone Miner Res 2004; 19:1661-70. [PMID: 15355561 DOI: 10.1359/jbmr.040708] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 05/12/2004] [Accepted: 05/21/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED The effects of GPCR systems in bone are regulated by a family of enzymes termed GRKs. We found that (1) GRK inhibition in osteoblasts has age-dependent effects on bone mass, and (2) the anabolic actions of GRK inhibition are revealed by treatment with PTH(1-34). INTRODUCTION The effects of G-protein-coupled receptor (GPCR) systems in bone are modulated by a family of enzymes termed GPCR kinases (GRKs). These enzymes directly phosphorylate GPCR substrate and desensitize receptor signaling. We previously found that expression of a GRK inhibitor in osteoblasts using transgenic (TG) technologies enhanced bone remodeling, and in turn, increased BMD in 6-week-old TG mice compared with non-TG littermate controls, presumably because of enhanced GPCR function. The aim of this study was to determine the age-dependent effects of the transgene. MATERIALS AND METHODS BMD was monitored in TG mice and in controls at 6-week, 3-month, and 6-month time-points. To determine if the transgene enhanced responsiveness of bone to parathyroid hormone (PTH), we measured cyclic adenosine monophosphate (cAMP) generation by mouse calvaria ex vivo as well as the effects of treatment with PTH(1-34) on BMD, bone histomorphometry, and expression of the PTH-responsive gene RANKL in both TG mice and non-TG controls. RESULTS Consistent with our previous findings, we found that BMD was increased in TG mice compared with controls at 6 weeks of age. The increase in BMD was most prominent in trabecular-rich lumbar spine and was not observed in cortical bone of the femoral shaft. In contrast to younger animals, however, BMD in older TG mice was not statistically different compared with non-TG mice at 3 months of age and was similar to non-TG animals at 6 months of age. The GRK inhibitor seemed to promote GPCR activation in older mice, however, because (1) PTH-induced cAMP generation by mouse calvaria ex vivo was enhanced in TG mice compared with controls, (2) GRK inhibition increased responsiveness of lumbar spine to the osteoinductive actions of PTH(1-34), and (3) the enhanced anabolic effect of PTH(1-34) was associated with increased expression of the PTH-responsive gene RANKL in calvaria of the TG animals. Bone histomorphometry confirmed that PTH(1-34) increased trabecular bone volume in TG mice and found that this increase in bone mass was caused by enhanced bone formation, predominantly as a result of an increase in the mineral apposition rate (MAR). CONCLUSIONS These data suggest that the anabolic effects of GRK inhibition are age dependent. The osteoinductive actions of the GRK inhibitor are, however, unmasked by treatment with PTH(1-34).
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University, Durham VA Medical Centers, Durham, North Carolina, USA
| | | | | |
Collapse
|
160
|
Guo LJ, Xie H, Zhou HD, Luo XH, Peng YQ, Liao EY. Stimulation of RANKL and inhibition of membrane-type matrix metalloproteinase-1 expression by parathyroid hormone in normal human osteoblasts. Endocr Res 2004; 30:369-77. [PMID: 15554353 DOI: 10.1081/erc-200033719] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Receptor activator of NF-kappaB (RANK) ligand (RANKL), expressed by cells of the osteoblast lineage binds to RANK, induces signaling and a gene expression cascade that leads to osteoclast differentiation and activation. Recently, osteoblast-derived membrane-type matrix metalloproteinases-1 (MT1-MMP) have been implicated in the process of bone resorption by degrading bone matrix. In the present study, we investigated the effects of parathyroid hormone [PTH (1-34)] on RANKL and MT1-MMP production in cultured normal human osteoblast-like cells (hOB). In reverse transcription polymerase chain reaction studies, we observed that PTH (1-34) induced RANKL messenger ribonucleic acid (mRNA) expression. Activity assays demonstrated that PTH (1-34) simultaneously inhibited MT1-MMP protein expression in a dose- and time-dependent manner. The effect of PTH (1-34) on MT1-MMP production was parallel to that on RANKL expression, suggesting a tight inverse relationship between MT1-MMP and RANKL expression. Our findings indicated that the decreased MT1-MMP expression by PTH may be involved in RANKL signaling in osteoblasts and activation of osteoclasts.
Collapse
Affiliation(s)
- Li-Juan Guo
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | |
Collapse
|
161
|
Doi S, Yorioka N, Masaki T, Ito T, Shigemoto K, Harada S. Increased serum osteoprotegerin level in older and diabetic hemodialysis patients. Ther Apher Dial 2004; 8:335-339. [PMID: 15274686 DOI: 10.1111/j.1526-0968.2004.00159.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Osteoprotegerin is a circulating osteoclastogenesis inhibitory factor and serum osteoprotegerin levels are elevated in hemodialysis patients. This study investigated whether osteoprotegerin levels correlated with various clinical parameters in hemodialysis patients. The subjects were 45 men and 37 women aged from 27 to 94 years (mean = 60.4 +/- 13.9 years), and the duration of dialysis was 9-277 months (mean = 89.5 +/- 64.7 months). Serum osteoprotegerin levels were measured by enzyme-linked immunosorbent assay. Data were analyzed by stepwise multiple regression analysis. The mean osteoprotegerin level of the hemodialysis patients was 303 +/- 210 pg/mL, which was higher than in age-matched healthy controls. Osteoprotegerin levels increased with age, a longer duration of dialysis, and the presence of diabetes. Skeletal resistance to parathyroid hormone might be increased by aging, a long dialysis period, and diabetes, perhaps explaining why adynamic bone disease is more common in older or diabetic patients.
Collapse
Affiliation(s)
- Shigehiro Doi
- Harada Hospital, Department of Blood Purification, Graduate School of Biochemical Sciences, Hiroshima University, Hiroshima City, Japan
| | | | | | | | | | | |
Collapse
|
162
|
Buxton EC, Yao W, Lane NE. Changes in serum receptor activator of nuclear factor-kappaB ligand, osteoprotegerin, and interleukin-6 levels in patients with glucocorticoid-induced osteoporosis treated with human parathyroid hormone (1-34). J Clin Endocrinol Metab 2004; 89:3332-6. [PMID: 15240611 DOI: 10.1210/jc.2003-032066] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Changes in biochemical markers of bone turnover following intermittent injections of human (h)PTH (1-34) suggest that bone formation is initially favored over bone resorption. hPTH (1-34) is also known to influence osteoclast maturation and activity through modulation of osteoblast-derived cytokines, such as receptor activator of nuclear factor-kappaB ligand (RANKL), osteoprotegerin (OPG), IL-6, and IL-6 soluble receptor (IL-6sR). In this experiment, we investigated the changes in serum levels of soluble RANKL (sRANKL), OPG, IL-6, and IL-6sR in patients with glucocorticoid-induced osteoporosis treated with hPTH (1-34). Fifty-one postmenopausal women with glucocorticoid-induced osteoporosis were randomized to receive 12 months of 400 U hPTH (1-34) ( approximately 40 microg) daily and standard hormone replacement therapy, or hormone replacement therapy alone. Serum levels of sRANKL, OPG, IL-6, and IL-6sR were measured at baseline, 1 month, and every 3 months thereafter for a total of 24 months. hPTH (1-34) caused a rapid and significant increase in sRANKL within 1 month, and the levels remained elevated throughout the duration of therapy. IL-6 and IL-6sR increased significantly within 1 month, but returned to baseline levels more rapidly. In contrast, OPG was mildly suppressed beginning 6 months after hPTH therapy. These data support the hypothesis that hPTH (1-34) initially stimulates osteoblast maturation and function, which in turn leads to osteoclast activation and a gradual rebalancing of bone formation and resorption.
Collapse
Affiliation(s)
- Eric C Buxton
- Division of Rheumatology, Box 0868, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
163
|
Stilgren LS, Rettmer E, Eriksen EF, Hegedüs L, Beck-Nielsen H, Abrahamsen B. Skeletal changes in osteoprotegerin and receptor activator of nuclear factor-kappab ligand mRNA levels in primary hyperparathyroidism: effect of parathyroidectomy and association with bone metabolism. Bone 2004; 35:256-65. [PMID: 15207766 DOI: 10.1016/j.bone.2004.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2003] [Revised: 03/04/2004] [Accepted: 03/12/2004] [Indexed: 11/24/2022]
Abstract
The effect of parathyroid hormone (PTH) on the production of osteoprotegerin (OPG) and ligand of receptor activator of NF-kappaB (RANKL) in human bone is incompletely understood. Most in vitro studies indicate that PTH decreases OPG and increases RANKL production. In primary hyperparathyroidism (PHPT), hypersecretion of PTH leads to enhanced bone resorption and formation with increased risk of fracture. Decreasing PTH levels by surgery normalizes bone metabolism, but the effects on skeletal OPG and RANKL production are unknown. In this study, 24 patients referred to our clinic for evaluation, and treatment of PHPT were included. A transiliac bone biopsy was done before (n = 24) and 12 months after parathyroidectomy (PTX) (n = 21). Biopsies were frozen in liquid nitrogen and RNA extracted using Trizol. A competitive RT-PCR assay for RANKL and OPG mRNA using artificial cDNA standards was developed and used for quantification. Results were normalized for GAPDH mRNA content. Before surgery, the RANKL/GAPDH gene expression ratio showed positive correlations with serum osteocalcin (r = 0.42, P < 0.05) and urinary NTX (r = 0.43, P < 0.05). The OPG/GAPDH mRNA levels in iliac bone before surgery correlated with serum osteocalcin (r = 0.52, P < 0.01), but not with bone resorption markers. The mRNA ratio of RANKL/OPG decreased significantly (P < 0.05) after surgery. In conclusion, RANKL and OPG gene expression within the human bone microenvironment are influenced by PTH, as the ratio RANKL/OPG decreased upon PTX. In addition, locally produced RANKL appears to affect bone turnover in the hyperparathyroid state.
Collapse
Affiliation(s)
- L S Stilgren
- Department of Endocrinology and Metabolism, Odense University Hospital, DK-5000 C, Denmark.
| | | | | | | | | | | |
Collapse
|
164
|
Brown JM, Zhang J, Keller ET. Opg, RANKl, and RANK in cancer metastasis: expression and regulation. Cancer Treat Res 2004; 118:149-72. [PMID: 15043192 DOI: 10.1007/978-1-4419-9129-4_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Julie M Brown
- Oncology Research Centre, UNSW Department of Clinical Medicine, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | | | | |
Collapse
|
165
|
Rucci N, Ricevuto E, Ficorella C, Longo M, Perez M, Di Giacinto C, Funari A, Teti A, Migliaccio S. In vivo bone metastases, osteoclastogenic ability, and phenotypic characterization of human breast cancer cells. Bone 2004; 34:697-709. [PMID: 15050901 DOI: 10.1016/j.bone.2003.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Revised: 05/27/2003] [Accepted: 07/14/2003] [Indexed: 10/26/2022]
Abstract
Mouse bone marrow cells cultured with human breast cancer MCF-7 cell-conditioned media showed osteoclastogenesis with an increment of bone resorption, although conditioned media from an adriamycin-selected MCF-7 clone (MCF-7ADR) had no effect. Consistently, MCF-7 cells induced 5-fold more in vivo experimental osteolytic bone metastases, with no soft tissue lesions, compared to MCF-7ADR cells. Paracrine factors stimulating (interleukin (IL)-6, IL-1beta, tumor necrosis factor-alpha (TNF-alpha)) or inhibiting (IL-12, IL-18, granulocyte macrophage-colony stimulating factor (GM-CSF)) osteoclastogenesis were significantly increased in MCF-7ADR relative to MCF-7 cells, suggesting that the inhibitory cytokines could selectively overwhelm the effects of the stimulatory ones. Treatment of osteoblast primary cultures with MCF-7-conditioned medium induced a selective upregulation of IL-6 expression, suggesting an indirect stimulation of osteoclastogenesis via the osteoblasts. MCF-7 and MCF-7ADR showed no difference in proliferation rate. However, a higher ability to migrate and invade gelatin and matrigel was observed in MCF-7ADR. Enhanced invasiveness might result from increased metalloproteinase (MMP) activity and cytoskeleton rearrangement. MCF-7ADR cells expressed higher levels of c-Src, focal adhesion kinase (FAK), and protein tyrosine kinase 2 (PYK2) involved in cell adhesion and motility. MCF-7 and MCF-7ADR expressed high and faint levels of functional estrogen receptor alpha (ERalpha), respectively. MCF-7ADR also showed significantly higher levels of the protein kinase C (PKC) alpha and beta2 and a selective activation of PKC compared to MCF-7, where the most abundant isoforms were beta1 and delta. Heat shock protein 27 (Hsp27) was more abundant in MCF-7 cells, but failed to translocate to the nucleus in response to heat shock. In conclusion, we have demonstrated that despite the fact that MCF-7ADR cells showed a more invasive phenotype relative to MCF-7, they have low potential to induce osteolytic bone lesions and stimulate osteoclastogenesis and osteoclast activity. Therefore, we believe that reduced aggressiveness of breast carcinomas could correlate with a greater osteolytic activity featuring their bone metastases.
Collapse
Affiliation(s)
- Nadia Rucci
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Durán A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT. The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 2004; 6:303-9. [PMID: 14960283 DOI: 10.1016/s1534-5807(03)00403-9] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 12/04/2003] [Accepted: 12/11/2003] [Indexed: 11/16/2022]
Abstract
The atypical PKCs (aPKCs) have been implicated genetically in at least two independent signaling cascades that control NF-kappa B and cell polarity, through the interaction with the adapters p62 and Par-6, respectively. P62 binds TRAF6, which plays an essential role in osteoclastogenesis and bone remodeling. Recently, p62 mutations have been shown to be the cause of the 5q35-linked Paget's disease of bone, a genetic disorder characterized by aberrant osteoclastic activity. Here we show that p62, like TRAF6, is upregulated during RANK-L-induced osteoclastogenesis and that the genetic inactivation of p62 in mice leads to impaired osteoclastogenesis in vitro and in vivo, as well as inhibition of IKK activation and NF-kappa B nuclear translocation. In addition, RANK-L stimulation leads to the inducible formation of a ternary complex involving TRAF6, p62, and the aPKCs. These observations demonstrate that p62 is an important mediator during osteoclastogenesis and induced bone remodeling.
Collapse
Affiliation(s)
- Angeles Durán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Fan X, Roy E, Zhu L, Murphy TC, Ackert-Bicknell C, Hart CM, Rosen C, Nanes MS, Rubin J. Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 2004; 145:751-9. [PMID: 14563699 DOI: 10.1210/en.2003-0726] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone remodeling reflects an equilibrium between bone resorption and formation. The local expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) in bone determines the entry of monoblastic precursors into the osteoclast lineage and subsequent bone resorption. Nitric oxide (NO) inhibits osteoclastic bone resorption in vitro and regulates bone remodeling in vivo. An interaction of NO with RANKL and OPG has not been studied. Here, we show that treatment of ST-2 murine stromal cells with the NO donor sodium nitroprusside (100 microm) for 24 h inhibited 1,25 dihydroxyvitamin D(3)-induced RANKL mRNA to less than 33 +/- 7% of control level, whereas OPG mRNA increased to 204 +/- 19% of control. NOR-4 replicated these NO effects. The effects of NO were dose dependent and associated with changes in protein levels: RANKL protein decreased and OPG protein increased after treatment with NO. PTH-induced RANKL expression in primary stromal cells was inhibited by sodium nitroprusside, indicating that the NO effect did not require vitamin D. NO donor did not change the stability of RANKL or OPG mRNAs, suggesting that NO affected transcription. Finally, cGMP, which can function as a second messenger for NO, did not reproduce the NO effect, nor did inhibition of endogenous guanylate cyclase prevent the NO effect on these osteoactive genes. The effect of NO to decrease the RANKL/OPG equilibrium should lead to decreased recruitment of osteoclasts and positive bone formation. Thus, drugs and conditions that cause local increase in NO formation in bone may have positive effects on bone remodeling.
Collapse
Affiliation(s)
- Xian Fan
- Department of Medicine, Veterans Affairs Medical Center, VAMC-151, 1670 Clairmont Road, Decatur, GA 30033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD, Nissenson RA. PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res 2004; 19:235-44. [PMID: 14969393 DOI: 10.1359/jbmr.0301226] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Revised: 08/24/2003] [Accepted: 09/24/2003] [Indexed: 12/18/2022]
Abstract
UNLABELLED RANKL and OPG gene expressions were measured with and without PTH at different stages of osteoblast development. Mouse stromal cells were cultured in osteoblast differentiating conditions, and RANKL, OPG, COLI, ALP, OC, and PTHRec genes were measured using qRT-PCR. OPG:RANKL ratios indicate that PTH may induce a possible switch in the regulatory mechanism of osteoclastogenesis where OPG is inhibited early and RANKL is increased at late stages of osteoblast differentiation. INTRODUCTION RANKL is essential for osteoclastogenesis, and its decoy receptor osteoprotegerin (OPG) negatively regulates this process. Both genes are expressed in cells of the osteoblast lineage, but the precise relationship between the state of osteoblast differentiation and RANKL and OPG expression is not clearly defined. The goal of this project was to quantify changes in RANKL and OPG gene expression in response to parathyroid hormone (PTH) at different stages of osteoblast differentiation. In this study, mouse primary bone marrow stromal cells (BMSCs) were cultured for up to 28 days. At specific time-points of cell culture, cells were stimulated with bovine PTH peptide [bPTH (1-34)] for 2 h. Levels of RANKL, OPG, alpha-1 (type I) collagen (COL1), alkaline phosphatase (ALP), osteocalcin (OC), and PTH receptor (PTHRec) mRNA were assayed using quantitative real-time reverse-transcriptase-polymerase chain reaction (qRT-PCR). MATERIALS AND METHODS In control cells, there was a gradual increase of RANKL gene expression with murine osteoblastic stromal cell maturation to a 3-fold level at day 28. In contrast, OPG mRNA levels were maximal at day 14 of cell culture and decreased through the latter stages of osteoblast differentiation. Exposing the cells to 100 ng/ml of bPTH (1-34) induced minimal increases in RANKL mRNA levels from days 7 to 14 but elevated expression significantly at days 21 (2-fold) and 28 (3-fold). PTH inhibited OPG gene expression maximally at day 14, but continued to have inhibitory effects on cultured cells at days 21 and 28. Alterations of RANKL and OPG mRNA levels by PTH in day 14 osteoblasts were sufficient to sustain a 5.6-fold increase in the number of TRACP+ cells when cocultured with osteoclast precursor cells. Cells in culture after 28 days showed a 1.9-fold increase in TRACP+ cells after PTH treatment. RESULTS AND CONCLUSIONS We conclude that (1) PTH significantly upregulates RANKL mRNA in primary bone marrow stromal osteoblasts with maximal sensitivity occurring late in osteoblast differentiation; (2) PTH inhibits OPG gene expression at all stages of osteoblast differentiation; and (3) changes in RANKL and OPG mRNA levels after exposure to PTH are associated with increased osteoclastogenesis as demonstrated by increased numbers of TRACP+ cells in cocultures. The results further suggest that the osteoclastogenic activity of PTH occurs primarily by suppression of OPG gene expression in early osteoblasts and elevation of RANKL gene expression in mature osteoblasts.
Collapse
Affiliation(s)
- John C Huang
- Department of Growth and Development, Division of Orthodontics, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Hirotani H, Tuohy NA, Woo JT, Stern PH, Clipstone NA. The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 2004; 279:13984-92. [PMID: 14722106 DOI: 10.1074/jbc.m213067200] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although best known for its role in T lymphocyte activation, the calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway is also known to be involved in a wide range of other biological responses in a variety of different cell types. Here we have investigated the role of the calcineurin/NFAT signaling pathway in the regulation of osteoclast differentiation. Osteoclasts are bone-resorbing multinucleated cells that are derived from the monocyte/macrophage cell lineage after stimulation with a member of the tumor necrosis factor family of ligands known as receptor activator of nuclear factor-kappaB ligand (RANKL). We now report that inhibition of calcineurin with either the immunosuppressant drugs cyclosporin A and FK506, or the retrovirally mediated ectopic expression of a specific calcineurin inhibitory peptide, all potently inhibit the RANKL-induced differentiation of the RAW264.7 monocyte/macrophage cell line into mature multinucleated osteoclasts. In addition, we find that NFAT family members are expressed in RAW264.7 cells and that their expression is up-regulated in response to RANKL stimulation. Most importantly, we find that ectopic expression of a constitutively active, calcineurin-independent NFATc1 mutant in RAW264.7 cells is sufficient to induce these cells to express an osteoclast-specific pattern of gene expression and differentiate into morphologically distinct, multinucleated osteoclasts capable of inducing the resorption of a physiological mineralized matrix substrate. Taken together, these data define calcineurin as an essential downstream effector of the RANKL-induced signal transduction pathway leading toward the induction of osteoclast differentiation and furthermore, indicate that the activation of the NFATc1 transcription factor is sufficient to initiate a genetic program that results in the specification of the mature functional osteoclast cell phenotype.
Collapse
Affiliation(s)
- Hiroaki Hirotani
- Department of Molecular Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
170
|
Rubin J, Chung LWK, Fan X, Zhu L, Murphy TC, Nanes MS, Rosen CJ. Prostate carcinoma cells that have resided in bone have an upregulated IGF-I axis. Prostate 2004; 58:41-9. [PMID: 14673951 DOI: 10.1002/pros.10299] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Prostate cancer (PC) has a propensity to metastasize to the skeleton, inducing an osteoblastic response in the host. Recent epidemiological studies have suggested that circulating IGF-I may be important for both the pathogenesis and dissemination of PC. We have postulated that tumor secreted IGF-I in conjunction with endogenous IGF-I contributes to the osteoblastic phenotype characteristic of metastatic PC. METHODS To test this thesis we studied the established LNCaP PC progression model consisting of three genetically related human PC cell lines. RESULTS Using RIA, we found serum-free conditioned media (CM) of LNCaP and C4-2 had no measurable IGF-I, whereas IGF-I was easily detected in CM from C4-2B cells at 24 hr (i.e., 1.8 +/- 0.53 ng/mg cell protein). Real-time PCR of IGF-I mRNA showed that C4-2B expressed 100-fold more IGF-I mRNA than LNCaP cells. In addition, C4-2B expression of IGF-I mRNA was substantially increased in the presence of exogenous IGF-I to nearly twofold. While IGFBP-3 and IGFBP-1 were not detectable in the CM of any PC line, all cells secreted IGFBP-2. C4-2B cells produced 40% more IGFBP-2 than LNCaP or C4-2 cells (C4-2B at 167 +/- 43 ng/mg cell protein). RANKL, a product of bone stromal cells, was also differentially expressed: LNCaP had threefold higher RANKL mRNA compared to C4-2 and C4-2B and at least equivalent protein expression. CONCLUSIONS Our results suggest that PC cells that have metastasized to bone have an upregulated IGF-I regulatory system. This suggests an activated IGF-I axis contributes to the host-PC interaction in promoting osteoblastic metastases.
Collapse
Affiliation(s)
- J Rubin
- Department of Medicine, VAMC and Emory University, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | | | |
Collapse
|
171
|
Nagata N, Kitaura H, Yoshida N, Nakayama K. Inhibition of RANKL-induced osteoclast formation in mouse bone marrow cells by IL-12: involvement of IFN-gamma possibly induced from non-T cell population. Bone 2003; 33:721-32. [PMID: 14555278 DOI: 10.1016/s8756-3282(03)00213-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IL-12 was shown to have the potential to inhibit osteoclast formation in mouse bone marrow cells treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL). When bone marrow macrophages (BMM) were used as osteoclast precursors, IL-12 failed to inhibit M-CSF/RANKL-induced osteoclast formation from BMM. In coculture experiments using transwells, IL-12 did inhibit osteoclast formation from BMM cocultured with whole bone marrow cells. These results indicated that IL-12 indirectly affected M-CSF/RANKL-induced osteoclastogenesis in bone marrow cells and that the inhibition of IL-12 on osteoclast formation was caused by a humoral factor from bone marrow cells treated with IL-12. Experiments with anti-interferon (IFN)-gamma antibody and bone marrow cells from IFN-gamma receptor knockout mice revealed that IFN-gamma might be involved in the inhibition of osteoclast formation in this system. The expression of osteoprotegerin mRNA in bone marrow cells was not affected by treatment with IL-12. The inhibitory effect of IL-12 on osteoclast formation was also seen in the T cell-depleted bone marrow cells of normal mice and the whole bone marrow cells of athymic nude mice, while the inhibitory effect of IL-12 was partially suppressed in the B cell-depleted bone marrow cells. The inhibitory effect of IL-12 on M-CSF/RANKL-induced osteoclastogenesis was not accompanied with cell death, in contrast with our previous finding that the inhibitory effect of IL-12 on M-CSF/TNF-alpha-induced osteoclastogenesis is attributable to Fas and FasL-mediated apoptosis.
Collapse
Affiliation(s)
- Noriko Nagata
- Division of Orthodontic and Biomedical Engineering, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | |
Collapse
|
172
|
Rubin J, Murphy TC, Zhu L, Roy E, Nanes MS, Fan X. Mechanical strain differentially regulates endothelial nitric-oxide synthase and receptor activator of nuclear kappa B ligand expression via ERK1/2 MAPK. J Biol Chem 2003; 278:34018-25. [PMID: 12824189 DOI: 10.1074/jbc.m302822200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exercise promotes positive bone remodeling through controlling cellular processes in bone. Nitric oxide (NO), generated from endothelial nitric-oxide synthase (eNOS), prevents resorption, whereas receptor activator of nuclear kappa B ligand (RANKL) promotes resorption through regulating osteoclast activity. Here we show that mechanical strain differentially regulates eNOS and RANKL expression from osteoprogenitor stromal cells in a magnitude-dependent fashion. Strain (0.25-2%) induction of eNOS expression was magnitude-dependent, reaching a plateau at 218 +/- 36% of control eNOS. This was accompanied by increases in eNOS protein and a doubling of NO production. Concurrently, 0.25% strain inhibited RANKL expression with increasing response up to 1% strain (44 +/- 3% of control RANKL). These differential responses to mechanical input were blocked when an ERK1/2 inhibitor was present during strain application. Inhibition of NO generation did not prevent strain-activated ERK1/2. To confirm the role of ERK1/2, cells were treated with an adenovirus encoding a constitutively activated MEK; Ad.caMEK significantly increased eNOS expression and NO production by more than 4-fold and decreased RANKL expression by half. In contrast, inhibition of strain-activated c-Jun kinase failed to prevent strain effects on either eNOS or RANKL. Our data suggest that physiologic levels of mechanical strain utilize ERK1/2 kinase to coordinately regulate eNOS and RANKL in a manner leading to positive bone remodeling.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, Veterans Affairs Medical Center and Emory University School of Medicine, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | |
Collapse
|
173
|
Yamagami H, Nishioka T, Ochiai E, Fukushima K, Nomura M, Kasugai S, Moritani S, Yokogawa K, Miyamoto KI. Inhibition of osteoclastogenesis by a phosphodiesterase 4 inhibitor XT-611 through synergistic action with endogenous prostaglandin E2. Biochem Pharmacol 2003; 66:801-7. [PMID: 12948861 DOI: 10.1016/s0006-2952(03)00409-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We examined the effect of a phosphodiesterase 4 (PDE4) inhibitor, 3,4-dipropyl-4,5,7,8-tetrahydro-3H-imidazo[1,2-i]-purin-5-one (XT-611) on osteoclast formation in three different mouse bone-marrow cell (BMC) culture systems. We confirmed that selective inhibitors of PDE4, including XT-611, among several PDE inhibitors decreased osteoclast formation in the BMC culture system. XT-611 also inhibited osteoclast formation in co-culture of mouse bone-marrow stromal cell line ST2 and adherent cell-depleted (ACD)-BMCs. However, it did not inhibit osteoclastogenesis in culture of ACD-BMCs alone in the presence of macrophage-colony stimulating factor (M-CSF) and soluble receptor activator of NF-kappaB ligand (sRANKL). XT-611 significantly increased prostaglandin E(2) (PGE(2)) production from ST2 cells and, in combination with PGE(2), synergistically increased cAMP concentration in osteoclast progenitors. In the ST2 co-culture system, XT-611 did not influence the expression of RANKL, osteoprotegerin and RANK mRNAs. By combined treatment with XT-611 and PGE(2) of ACD-BMCs, osteoclast multinucleation was clearly inhibited with decrease in the expression of calcitonin receptor mRNA, while the expression of RANK and c-fms (an M-CSF receptor) mRNAs was unchanged. These results indicate that the PDE4 inhibitor inhibits osteoclastogenesis by acting on osteoclast progenitors synergistically with PGE(2) secreted from stromal cells, but not by influencing the cell-to-cell interaction between stromal cells and osteoclast progenitors.
Collapse
Affiliation(s)
- Hideomi Yamagami
- Department of Hospital Pharmacy, School of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Lane NE, Kelman A. A review of anabolic therapies for osteoporosis. Arthritis Res Ther 2003; 5:214-22. [PMID: 12932280 PMCID: PMC193734 DOI: 10.1186/ar797] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 07/10/2003] [Indexed: 11/19/2022] Open
Abstract
Osteoporosis results from a loss of bone mass and bone structure such that the bone becomes weak and fractures with very little trauma. Until recently, the approved osteoporosis therapies prevented more bone loss by altering osteoclast activity and lifespan. Recently, attention has turned away from osteoclast inhibition to agents that can stimulate the osteoblast to form new bone, or anabolic agents. This article reviews both approved and experimental anabolic agents that improve bone mass by improving osteoblast activity, or increasing osteoblast number. The use of the anabolic agents to improve bone mass and strength followed by agents that prevent the new bone mass from being lost may offer the ability to cure osteoporosis and reduce bone fracture healing time.
Collapse
Affiliation(s)
- Nancy E Lane
- Division of Rheumatology, University of California, San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
175
|
Lee SK, Kalinowski JF, Jastrzebski SL, Puddington L, Lorenzo JA. Interleukin-7 is a direct inhibitor of in vitro osteoclastogenesis. Endocrinology 2003; 144:3524-31. [PMID: 12865334 DOI: 10.1210/en.2002-221057] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We examined the direct effects of IL-7 on osteoclastogenesis in murine bone marrow cultures, using cells from wild-type and IL-7- and IL-7 receptor (IL-7R)-deficient mice. IL-7 inhibited osteoclast-like cells (OCL) formation in macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappaB ligand (RANKL)-stimulated (both at 30 ng/ml) murine bone marrow cultures. Significant inhibitory effects were seen at 1 ng/ml (57%) and 10 ng/ml (86%). IL-7 also inhibited (P < 0.05) OCL formation in bone marrow cultures that were stimulated with vitamin D(3) (10(-8) M, 60%), bovine PTH (bPTH) (100 ng/ml, 54%), or RANKL alone (30 ng/ml, 50%). IL-7 (10 ng/ml) increased expression of the B lymphocyte marker B220 from 40-86% of total nonadherent cells in cultures treated with M-CSF and RANKL. Bone marrow cells from IL-7-deficient [IL-7 knockout (KO)] mice showed a significant (P < 0.05) increase in tartrate-resistant acid phosphatase(+) OCL numbers in cultures that were stimulated with vitamin D(3) (136 +/- 13.3%), bPTH (196 +/- 18.8%), or M-CSF and RANKL (160 +/- 7.2%). In contrast, in vitro osteoclast formation in bone marrow from IL-7R-deficient (IL-7R KO) mice showed a significant decrease in tartrate-resistant acid phosphatase(+) OCL numbers in cultures that were stimulated with vitamin D(3), PTH, RANKL, or M-CSF and RANKL. These results demonstrate that there are differences in the mechanisms regulating OCL formation between IL-7 KO and IL-7R KO cells. It seems that IL-7 is a direct inhibitor of OCL formation in vitro, based on results of adding IL-7 to wild-type cultures and the responses of IL-7 KO cells. It is unknown why IL-7R KO cells behave differently from IL-7 KO cells in vitro. However, it is possible that additional cytokines interact with IL-7R and that loss of these signals contributes to the responses of IL-7R KO cells. Alternatively, IL-7 may interact with multiple receptors.
Collapse
Affiliation(s)
- Sun-Kyeong Lee
- Department of Medicine, The University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | | | |
Collapse
|
176
|
Nitta K, Akiba T, Uchida K, Kawashima A, Yumura W, Kabaya T, Nihei H. The progression of vascular calcification and serum osteoprotegerin levels in patients on long-term hemodialysis. Am J Kidney Dis 2003; 42:303-9. [PMID: 12900812 DOI: 10.1016/s0272-6386(03)00655-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The aortic calcification index (ACI), estimated on abdominal computed tomographic scans, has been associated with the extent of arteriosclerosis in hemodialysis patients. However, the contribution of biochemical markers to the progression of vascular calcification in patients undergoing hemodialysis is not fully understood. METHODS We examined the relationship between coronary risk factors; metabolic factors, including serum osteoprotegerin (OPG) concentration; and progression of vascular calcification in 26 dialysis patients. RESULTS Mean patient age was 52.6 +/- 8.7 (SD) years, and mean duration of dialysis therapy was 7.7 +/- 5.8 years. ACI was measured twice in each patient, and the mean interscan period was 4.9 +/- 0.3 years. Mean ACI changed from 22.2 +/- 24.2 to 33.9 +/- 28.8 overall, and mean change in ACI (DeltaACI) was 12.0 +/- 9.9. Patients were divided into 2 groups: slow progressors, with DeltaACI of 4.1 +/- 3.2 (n = 13), and rapid progressors, with DeltaACI of 19.8 +/- 7.9 (n = 13). Serum fasting glucose and CRP levels of rapid progressors were high, and their serum albumin and intact parathyroid hormone levels were low. Multiple regression analyses showed that serum OPG levels were independently associated with vascular calcification in the hemodialysis patients studied. CONCLUSION Rapid progression of vascular calcification was associated with dose of calcium carbonate prescribed and serum OPG concentration. The clinical significance of these observations remains to be determined.
Collapse
Affiliation(s)
- Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
177
|
Okada Y, Montero A, Zhang X, Sobue T, Lorenzo J, Doetschman T, Coffin JD, Hurley MM. Impaired osteoclast formation in bone marrow cultures of Fgf2 null mice in response to parathyroid hormone. J Biol Chem 2003; 278:21258-66. [PMID: 12665515 DOI: 10.1074/jbc.m302113200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor (FGF)-2 and parathyroid hormone (PTH) are potent inducers of osteoclast (OCL) formation, and PTH increases FGF-2 mRNA and protein expression in osteoblasts. To elucidate the role of endogenous FGF-2 in PTH responses, we examined PTH-induced OCL formation in bone marrow cultures from wild type and mice with a disruption of the Fgf2 gene. FGF-2-induced OCL formation was similar in marrow culture from both genotypes. In contrast, PTH-stimulated OCL formation in bone marrow cultures or co-cultures of osteoblast-spleen cells from Fgf2-/mice was significantly impaired. PTH increased RANKL mRNA expression in osteoblasts cultures from both genotypes. After 6 days of treatment, osteoprotegerin protein in cell supernatants was 40-fold higher in vehicle-treated and 30-fold higher in PTH-treated co-cultures of osteoblast and spleen cells from Fgf2-/mice compared with Fgf2+/+ mice. However, a neutralizing antibody to osteoprotegerin did not rescue reduced OCL formation in response to PTH. Injection of PTH caused hypercalcemia in Fgf2+/+ but not Fgf2-/mice. We conclude that PTH stimulates OCL formation and bone resorption in mice in part by endogenous FGF-2 synthesis by osteoblasts. Because RANKL- and interleukin-11-induced OCL formation was also reduced in bone marrow cultures from Fgf2-/mice, we further conclude that endogenous FGF-2 is necessary for maximal OCL formation by multiple bone resorbing factors.
Collapse
Affiliation(s)
- Yosuke Okada
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030-1850, USA
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Ransjö M, Sahli J, Lie A. Expression of connexin 43 mRNA in microisolated murine osteoclasts and regulation of bone resorption in vitro by gap junction inhibitors. Biochem Biophys Res Commun 2003; 303:1179-85. [PMID: 12684060 DOI: 10.1016/s0006-291x(03)00502-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several studies have demonstrated that connexin 43 (Cx43) mediates signals important for osteoblast function and osteogenesis. The role of gap junctional communication in bone resorption is less clear. We have investigated the expression of Cx43 mRNA in osteoclasts and bone resorption cultures and furthermore, the functional importance of gap junctional communication in bone resorption. RT-PCR analysis demonstrated Cx43 mRNA expression in mouse bone marrow cultures and in osteoclasts microisolated from the marrow cultures. Cx43 mRNA was also expressed in bone resorption cultures with osteoclasts and osteoblasts/stromal cells incubated for 48h on devitalized bone slices. An up-regulation of Cx43 mRNA was detected in parathyroid (PTH)-stimulated (0.1 nM) bone resorption. Two inhibitors of gap junction communication, 18alpha-glycyrrhetinic acid (30 microM) and oleamide (100 microM), significantly inhibited PTH- and 1,25-(OH)(2)D(3)-stimulated osteoclastic pit formation. In conclusion, our data indicate a functional role for gap junction communication in bone resorption.
Collapse
Affiliation(s)
- Maria Ransjö
- Department of Odontology, Division of Oral Cell Biology, Umeå University, Sweden.
| | | | | |
Collapse
|
179
|
Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di Paola R, Ruggeri Z, Vegeto E, Caputi AP, Van De Loo FAJ, Puzzolo D, Maggi A. Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 2003; 144:1098-107. [PMID: 12586786 DOI: 10.1210/en.2002-220597] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several clinical studies have shown that bone loss may be attributed to osteoclast recruitment induced by mediators of inflammation. In different experimental paradigms we have recently demonstrated that estrogen exhibits antiinflammatory activity by preventing the induction of inducible nitric oxide synthase (iNOS) and other components of the inflammatory reaction. To verify whether this could explain the estrogen-dependent blockade of osteoporosis, we investigated the effect of ovariectomy in mice in which iNOS activity had been blunted by genetic or pharmacological manipulation. The consequences of iNOS blockade were evaluated initially on bone formation and resorption by histomorphometric analysis. The proximal tibiae of mice with iNOS genotypes revealed that 32 d after ovariectomy bone volume and bone formation rate were significantly decreased, and osteoclast surface was increased. Conversely, in iNOS knockout (iNOSKO) and wild-type (WT) mice treated with a specific inhibitor of iNOS, N-iminoethyl-L-lysine, ovariectomy did not result in bone depletion. In WT mice, ovariectomy also affected bone formation, as shown by a decreased mineral apposition rate. Also in this case, iNOS inactivation prevented the effect of ovariectomy. Immunocytochemical analysis showed that after ovariectomy iNOS protein accumulates in chondrocytes, and a significant increase in nitrotyrosine and poly(ADP-ribose) synthetase staining was observed in the femur metaphyses. The increase in nitrotyrosine and poly(ADP-ribose) synthetase formation induced by ovariectomy was significantly reduced in sections from iNOSKO mice. These data indicate that in WT mice the observed induction of iNOS has functional relevance, because it leads to overproduction of nitric oxide and accumulation of highly reactive molecules, triggering a local inflammatory reaction. These inflammatory foci attract cytokines, well known actors in the mechanism of osteoclastogenesis. In iNOSKO mice the measurements of IL-1 beta, IL-6, and TNFalpha plasma levels showed that ovariectomy fails to elicit the increase observed in WT animals and suggests that iNOS plays a primary role in the protective effects of estrogens. To further support this hypothesis, we show that estradiol-dependent activation of estrogen receptor-alpha blocks phorbol 12-acetate 13-myristate-induced transcription of iNOS promoter in transfected cells, thus demonstrating that the promoter of iNOS is under estrogen negative control. Our findings point to a key role of iNOS in mediating the negative effects of estrogen depletion on bones and provide a novel mechanistic explanation for the effects of menopause in osteoporosis and possibly also in other diseases in which the inflammatory component is elevated.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Institute of Pharmacology, School of Medicine, University of Messina, 98100 Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
Osteolytic and osteoblastic metastases are often the cause of considerable morbidity in patients with advanced prostate and breast carcinoma. Breast carcinoma metastasis to bone occurs because bone provides a favorable site for aggressive behavior of metastatic cancer cells. A vicious cycle arises between cancer cells and the bone microenvironment, which is mediated by the production of growth factors such as transforming growth factor beta and insulin growth factor from bone and parathyroid hormone-related protein (PTHrP) produced by tumor cells. Osteolysis and tumor cell accumulation can be interrupted by inhibiting any of these limbs of the vicious cycle. For example, bisphosphonates (e.g., pamidronate, ibandronate, risedronate, clodronate, and zoledronate) inhibit both bone lesions and tumor cell burden in bone in experimental models of breast carcinomametastasis. Neutralizing antibodies to PTHrP, which inhibit PTHrP effects on osteoclastic bone resorption, also reduce osteolytic bone lesions and tumor burden in bone. Other pharmacologic approaches to inhibit PTHrP produced by breast carcinoma cells in the bone microenvironment also produce similar beneficial effects. Identification of the molecular mechanisms responsible for osteolytic metastases is crucial in designing effective therapy for this devastating complication.
Collapse
Affiliation(s)
- Sanna-Maria Käkönen
- University of Texas Health Science Center, Department of Molecular Medicine, Institute for Drug Development, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
181
|
Cao J, Venton L, Sakata T, Halloran BP. Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 2003; 18:270-7. [PMID: 12568404 DOI: 10.1359/jbmr.2003.18.2.270] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Osteoblasts regulate the recruitment and activity of osteoclasts through expression of RANKL and osteoprotegerin (OPG). To determine whether expression of RANKL and OPG change with age and how these changes relate to the bone loss of aging, we measured bone mass and cancellous volume, and expression of RANKL, OPG, alkaline phosphatase (AP), osteocalcin (OC), and alpha I collagen (COLL) in whole bone and osteoblast-like cells in culture using 6-week- (young), 6-month- (adult), and 24-month-old (old) mice. Cancellous volume decreased by 20% from young to adult and by 52% from adult to old. RANKL mRNA levels in whole bone were 2.1-fold and 4.4-fold higher in adult and old mice, respectively, compared with young mice, whereas OPG mRNA levels decreased with age slightly. RANKL expression was negatively (r = -0.99) and OPG was positively (r = 0.92) correlated with cancellous bone volume. Expression of RANKL was higher and OPG lower in cells from older animals early in culture (day 7). With cell maturation, RANKL mRNA levels in cells from young and adult mice increased, whereas levels in cells from old animals decreased. By 21 and 28 days of culture, no differences were found in RANKL mRNA in osteoblast-like cells among different age groups. We conclude that expression of RANKL and OPG change with age in whole bone and in cultured osteoblast-like cells. These changes favor increased osteoclast over osteoblast activity, and may explain, in part, the imbalance in bone formation and resorption associated with aging.
Collapse
Affiliation(s)
- Jay Cao
- Division of Endocrinology, Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
182
|
Fu Q, Jilka RL, Manolagas SC, O'Brien CA. Parathyroid hormone stimulates receptor activator of NFkappa B ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein. J Biol Chem 2002; 277:48868-75. [PMID: 12364326 DOI: 10.1074/jbc.m208494200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) stimulates osteoclast formation by binding to its receptor on stromal/osteoblastic cells and stimulating the production of receptor activator of NFkappaB ligand (RANKL) and inhibiting the expression of osteoprotegerin (OPG). However, the mechanisms through which PTH regulates these genes remain unknown. Here we report that PTH stimulated RANKL gene transcription and increased RANKL mRNA stability in murine stromal/osteoblastic cells stably expressing human PTH/PTH-related protein receptor 1. PTH also potently suppressed OPG mRNA in these cells. Cycloheximide did not block the effects of PTH on RANKL but did inhibit the suppression of OPG mRNA. Activation of protein kinase A (PKA) was necessary and sufficient for the effect of PTH on both genes. Conditional expression of a dominant-negative form of the transcription factor CREB, but not c-fos or Runx2, significantly reduced PTH stimulation of RANKL. CREB activity was also required for full stimulation of RANKL by oncostatin M or 1,25-dihydroxyvitamin D(3). Dominant-negative forms of CREB and c-fos reduced the suppression of OPG by PTH. These results demonstrate that PTH directly stimulates RANKL expression via a PKA-CREB pathway and that CREB may be a central regulator of RANKL expression. Furthermore, they suggest that PTH suppression of OPG involves CREB and c-fos.
Collapse
Affiliation(s)
- Qiang Fu
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | |
Collapse
|
183
|
Bolon B, Shalhoub V, Kostenuik PJ, Campagnuolo G, Morony S, Boyle WJ, Zack D, Feige U. Osteoprotegerin, an endogenous antiosteoclast factor for protecting bone in rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 2002; 46:3121-35. [PMID: 12483715 DOI: 10.1002/art.10680] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Brad Bolon
- Amgen, Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Disthabanchong S, Martin KJ, McConkey CL, Gonzalez EA. Metabolic acidosis up-regulates PTH/PTHrP receptors in UMR 106-01 osteoblast-like cells. Kidney Int 2002; 62:1171-7. [PMID: 12234287 DOI: 10.1111/j.1523-1755.2002.kid568.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Metabolic acidosis results in skeletal demineralization by multiple mechanisms. One of these involves the inorganic phase of bone by which hydrogen ion is buffered by bone carbonate. In addition, the cellular components of bone participate by the induction and repression of several skeletal genes. Previous studies have suggested that the action of parathyroid hormone (PTH), a major regulator of bone turnover, might be altered by acidosis. The present studies were designed to test directly, in vitro, whether acidosis altered the effects of PTH in UMR 106-01 osteoblast-like cells. METHODS Studies were conducted in confluent cultures of UMR 106-01 cells in modified Eagle's medium (MEM) with 5% fetal bovine serum (FBS) at pH values varying from 7.4 to 7.1 by addition of HCl. After time periods of 4 to 48 hours, cells were tested for cyclic AMP generation in response to PTH. PTH binding and PTH/PTHrP receptor mRNA levels were determined by radioligand binding assay and Northern analysis respectively. RESULTS After 48 hours, decreases in pH from 7.4 to 7.1 resulted in a progressive increase in PTH-stimulated cyclic-AMP generation from 1978 +/- 294 to 4968 +/- 929 pmol/culture/5 min (P < 0.05). Basal cyclic AMP concentrations were unchanged. PTH binding increased 1.5- to twofold. Competitive inhibition binding revealed an increase in receptor number supported by up-regulation of PTH/PTHrP receptor mRNA up to twofold from control levels. CONCLUSIONS These findings demonstrate that metabolic acidosis stimulates the response to PTH in UMR 106-01 osteoblast-like cells by a mechanism that involves an increase in the levels of PTH/PTHrP receptor mRNA. Thus, the skeletal response to acidosis that includes an increase in bone resorption may result, at least in part, from an increase in PTH/PTHrP receptors leading to an enhanced effect of PTH on bone.
Collapse
Affiliation(s)
- Sinee Disthabanchong
- Division of Nephrology, Saint Louis University, 3635 Vista Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
185
|
Bonucci E. Physiopathology of cancer metastases in bone and of the changes they induce in bone remodeling. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/bf02904492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
186
|
Kondo H, Guo J, Bringhurst FR. Cyclic adenosine monophosphate/protein kinase A mediates parathyroid hormone/parathyroid hormone-related protein receptor regulation of osteoclastogenesis and expression of RANKL and osteoprotegerin mRNAs by marrow stromal cells. J Bone Miner Res 2002; 17:1667-79. [PMID: 12211438 DOI: 10.1359/jbmr.2002.17.9.1667] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parathyroid hormone (PTH) is a major regulator of osteoclast formation and activation, effects that are associated with reciprocal up- and down-regulation of RANKL and osteoprotegerin (OPG), respectively. The roles of specific downstream signals generated by the activated PTH/PTH-related protein (PTHrP) receptor (PTH1R), such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) and phospholipase C/protein kinase C (PLC/PKC), in controlling RANKL and OPG expression and osteoclastogenesis remain uncertain. In MS1 conditionally transformed clonal murine marrow stromal cells, which support PTH-induced osteoclast formation from cocultured normal spleen cells, PTH(1-34) increased RANKL and macrophage colony-stimulating factor (M-CSF) mRNA expression and decreased that of OPG when present continuously for 7-20 days at 37 degrees C in the presence of dexamethasone (Dex). In cells precultured for 7 days and then treated with PTH(1-34), similar reciprocal regulation of RANKL and OPG occurred, maximally at 6-24 h, that was of greater amplitude than the changes induced by chronic (7-10 days) PTH exposure. These acute effects of PTH(1-34) were mimicked by PKA stimulators (8-bromoadenosine [8Br]-cAMP or forskolin [FSK]), blocked by the PKA inhibitor Rp-cAMPs but unaffected by the PKC inhibitor GF109203X. Amino-truncated PTH(1-34) analogs PTH(5-34) and PTH(7-34) neither increased cAMP production in MS1 cells nor regulated RANKL or OPG mRNA. Reciprocal RANKL/OPG mRNA regulation was induced in MS1 cells by PTH(3-34) but only at high concentrations that also increased cAMP. The highly PKA-selective PTH analog [Gly1,Arg19]human PTH(1-28) exerted effects similar to PTH(1-34) on RANKL and OPG mRNAs and on osteoclast formation, both in MS1/spleen cell cocultures and in normal murine bone marrow cultures. The direct PKC stimulator 12-O-tetradecanoylphorbol-13-acetate (PMA) did not induce RANKL mRNA in MS1 cells, but it did up-regulate OPG mRNA and also antagonized osteoclast formation induced by PTH(1-34) in both MS1/spleen cocultures and normal bone marrow cultures. Thus, cAMP/PKA signaling via the PTH1R is the primary mechanism for controlling RANKL-dependent osteoclastogenesis, although direct PKC activation may negatively regulate this effect of PTH by inducing expression of OPG.
Collapse
Affiliation(s)
- Hisatomo Kondo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | | | |
Collapse
|
187
|
Rubin J, Murphy TC, Fan X, Goldschmidt M, Taylor WR. Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J Bone Miner Res 2002; 17:1452-60. [PMID: 12162499 DOI: 10.1359/jbmr.2002.17.8.1452] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mechanical input is known to regulate skeletal mass. In vitro, application of strain inhibits osteoclast formation by decreasing expression of the ligand RANKL in bone stromal cells, but the mechanism responsible for this down-regulation is unknown. In experiments here, application of 1.8% equibiaxial strain for 6 h reduced vitamin D-stimulated RANKL mRNA expression by nearly one-half in primary bone stromal cells. Application of strain caused a rapid activation of ERK1/2, which returned to baseline by 60 minutes. Adding the ERK1/2 inhibitor PD98059 30 minutes before strain delivery prevented the strain effect on RANKL mRNA expression, suggesting that activation of ERK1/2 was required for transduction of the mechanical force. Mechanical strain also activated N-terminal Jun kinase (JNK) that, in contrast, did not return to baseline during 24 h of continuous strain. This suggests that JNK may represent an accessory pathway for mechanical transduction in bone cells. Our data indicate that strain modulation of RANKL expression involves activation of MAPK pathways.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
188
|
Lee SK, Lorenzo JA. Regulation of receptor activator of nuclear factor-kappa B ligand and osteoprotegerin mRNA expression by parathyroid hormone is predominantly mediated by the protein kinase a pathway in murine bone marrow cultures. Bone 2002; 31:252-9. [PMID: 12110442 DOI: 10.1016/s8756-3282(02)00804-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parathyroid hormone (PTH) stimulates receptor activator of nuclear factor-kappaB ligand (RANKL) mRNA and inhibits osteoprotegerin (OPG) mRNA expression in murine bone marrow cultures. To understand the mechanisms influencing these responses, we investigated the role of the protein kinase A (PKA) and protein kinase C (PKC) pathways in the regulation of RANKL and OPG mRNA expression in murine bone marrow cultures. Murine bone marrow cells were stimulated with bovine PTH(1-34) and (1-34) amide, which activate both pathways; PTH(3-34), which more selectively activates the PKC and calcium pathways; and human PTH (1-31), which stimulates adenylyl cyclase, but not protein kinase C. We also examined agents that more directly activate either the PKA pathway (forskolin [FSK] and 8-bromo cAMP [8-Br-cAMP]) or the PKC pathway (phorbol 12-myristate 13-acetate [PMA]) in murine bone marrow cultures. After 1 h, RANKL mRNA expression was stimulated to a similar degree by agents that activate either or both the PKA and PKC pathways. However, this effect was sustained for 24 h only with agents that stimulated PKA. OPG mRNA expression was inhibited by all agents that stimulated PKA at 6 h. In contrast, PKC-specific stimulators [PMA and bPTH(3-34)] had no effect on OPG regulation in this culture system. To determine the involvement of the PKC signaling pathway in responses of RANKL, bone marrow cells were pretreated with PMA for 24 h and then treated with PTH(1-34) or FSK for 2 h. PMA pretreatment did not alter the ability of PTH or FSK to stimulate RANKL or inhibit OPG mRNA expression. Treatment of cells with H-89, a PKA inhibitor, significantly reduced the ability of PTH and FSK to induce RANKL and inhibit OPG mRNA expression. Calphostin C, a PKC inhibitor, significantly reduced PMA-stimulated RANKL mRNA expression without altering PTH- or FSK-mediated effects on RANKL or OPG mRNA. Cycloheximide, an inhibitor for protein synthesis, inhibited PTH-stimulated RANKL mRNA expression by 60% without altering the effect of PTH on OPG mRNA expression. To examine the involvement of prostaglandin in PMA-mediated responses, cells were treated with indomethacin, a nonspecific prostaglandin G/H synthase (PGHS) inhibitor, or NS-398, a selective inhibitor of PGHS-2. Neither PGHS inhibitor altered PMA-induced effects on RANKL and OPG mRNA expression. These results demonstrate that the PKA pathway is predominantly involved in the effects of PTH on RANKL mRNA expression in murine bone marrow cultures, but there is also a PKC-mediated response, which is not sustained. Inhibition of OPG by PTH appears to be a selective PKA response.
Collapse
Affiliation(s)
- S-K Lee
- Division of Endocrinology, Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1850, USA.
| | | |
Collapse
|
189
|
Langdahl BL, Carstens M, Stenkjaer L, Eriksen EF. Polymorphisms in the osteoprotegerin gene are associated with osteoporotic fractures. J Bone Miner Res 2002; 17:1245-55. [PMID: 12096838 DOI: 10.1359/jbmr.2002.17.7.1245] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteoprotegerin (OPG) is a soluble receptor for RANKL and therefore a competitive inhibitor of osteoclast differentiation and activity. With this key role in the control of resorptive activity, we found that OPG is a candidate gene for genetic control of bone mass. We examined the promoter and the five exons with surrounding intron sequences of the OPG gene for polymorphisms in 50 normal patients and 50 patients with osteoporosis. We found 12 polymorphisms. Two sets of four and five polymorphisms, respectively, were in complete linkage. Subsequently, we examined the effect of the informative polymorphisms A163-G (promoter), T245-G (promoter), T950-C (promoter), G1181-C (exon 1), and A6890-C (intron 4) on the prevalence of osteoporotic fractures, bone mass, and bone turnover in 268 osteoporotic patients and 327 normal controls. In A163-G the variant allele G was more common among fracture patients: 34.0% versus 26.3% in normal controls (p < 0.05) and the odds ratio (OR) for a vertebral fracture, if an individual has the G allele, was 1.44 (1.00-2.08). In T245-G the variant allele G was more common in osteoporotic patients: 12.4% versus 6.5% (p < 0.02) and the OR for vertebral fracture, if an individual has the G-allele, was 2.00 (1.10-3.62). G1181-C is located in the first exon and causes a shift in the third amino acid from lysine to asparagine. The CC genotype was less common among fracture patients: 26.3% versus 36.7% in the normal controls (p < 0.01). T950-C and A6890-C were not distributed differently among patients with osteoporosis and normal controls. None of the polymorphisms affected bone mineral density (BMD) or biochemical markers of bone turnover in the normal controls. In conclusion, we have examined the human OPG gene for polymorphisms and found 12. The rare alleles of the A163-G and T245-G were significantly more common among patients with vertebral fractures.
Collapse
Affiliation(s)
- Bente L Langdahl
- Department of Endocrinology and Metabolism, Aarhus University Hospital, Aarhus Amtssygehus, Denmark
| | | | | | | |
Collapse
|
190
|
Abstract
Bone is regulated by evolutionarily conserved signals that balance continuous differentiation of bone matrix-producing cells against apoptosis and matrix removal. This is continued from embryogenesis, where the skeleton differentiates as a solid mass and is shaped into separate bones by cell death and proteolysis. The two major tissues of the skeleton are avascular cartilage, with an extracellular matrix based on type II collagen and hydrophilic proteoglycans, and bone, a stronger and lighter material based on oriented type I collagen and hydroxyapatite. Both differentiate from the same mesenchymal stem cells. This differentiation is regulated by a family of related signals centred on bone morphogenic proteins. Fibroblast growth factors, Indian hedgehog and parathyroid hormone-related protein are important in determining the type of matrix and the relation of skeletal and non-skeletal structures. Removal of mineralized matrix involves apoptosis of matrix cells and differentiation of acid-secreting cells (osteoclasts) from macrophage precursors. Key regulators of matrix removal are signals in the tumour-necrosis-factor family. Osteoclasts dissolve bone by isolating a region of the matrix and secreting HCl and proteinases at that site. Successive cycles of removal and replacement allow growth, repair and remodelling. The signals for bone turnover are predominantly cell-membrane-associated, allowing very specific spatial regulation. In addition to its support function, bone is a reservoir of Ca2+, PO3-(4) and OH-. Secondary modulation of mineral secretion and bone degradation are mediated by humoral signals, including parathyroid hormone and vitamin D, as well as the cytokines that also regulate the underlying cell differentiation.
Collapse
Affiliation(s)
- Harry C Blair
- Department of Pathology, University of Pittsburgh and Veteran's Affairs Health System, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
191
|
Jiang Y, Mehta CK, Hsu TY, Alsulaimani FFH. Bacteria induce osteoclastogenesis via an osteoblast-independent pathway. Infect Immun 2002; 70:3143-8. [PMID: 12011008 PMCID: PMC127969 DOI: 10.1128/iai.70.6.3143-3148.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria or their products may cause chronic inflammation and subsequent bone loss. This inflammation and bone loss may be associated with significant morbidity in chronic otitis media, periodontitis, endodontic lesions, and loosening of orthopedic implants caused by lipopolysaccharide (LPS)-contaminated implant particles. Currently, it is not clear how bacteria or endotoxin-induced bone resorption occurs and what cell types are involved. Here we report that Porphyromonas gingivalis, a periodontal pathogen, and Escherichia coli LPS induce osteoclastic cell formation from murine leukocytes in the absence of osteoblasts. In contrast, stimulation with parathyroid hormone had no effect. These multinucleated, tartrate-resistant acid phosphatase-positive cells were positive for receptor activator of NF-kappaB (RANK), the receptor for osteoprotegerin ligand (OPGL), also known as RANK ligand (RANKL). Blocking antibodies demonstrated that their formation was dependent upon expression of OPGL and, to a lesser extent, on tumor necrosis factor alpha. Mononuclear cells represented a significant source of OPGL production. In vivo, P. gingivalis injection stimulated OPGL expression in both mononuclear leukocytes and osteoblastic cells. Thus, these findings describe a pathway by which bacteria could enhance osteolysis independently of osteoblasts and suggest that the mix of cells that participate in inflammatory and physiologic bone resorption may be different. This may give insight into new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Yanling Jiang
- Department of Endodontics, Boston University School of Dental Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
192
|
Spurney RF, Flannery PJ, Garner SC, Athirakul K, Liu S, Guilak F, Quarles LD. Anabolic effects of a G protein-coupled receptor kinase inhibitor expressed in osteoblasts. J Clin Invest 2002; 109:1361-71. [PMID: 12021252 PMCID: PMC150976 DOI: 10.1172/jci14663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play a key role in regulating bone remodeling. Whether GPCRs exert anabolic or catabolic osseous effects may be determined by the rate of receptor desensitization in osteoblasts. Receptor desensitization is largely mediated by direct phosphorylation of GPCR proteins by a family of enzymes termed GPCR kinases (GRKs). We have selectively manipulated GRK activity in osteoblasts in vitro and in vivo by overexpressing a GRK inhibitor. We found that expression of a GRK inhibitor enhanced parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor-stimulated cAMP generation and inhibited agonist-induced phosphorylation of this receptor in cell culture systems, consistent with attenuation of receptor desensitization. To determine the effect of GRK inhibition on bone formation in vivo, we targeted the expression of a GRK inhibitor to mature osteoblasts using the mouse osteocalcin gene 2 (OG2) promoter. Transgenic mice demonstrated enhanced bone remodeling as well as enhanced urinary excretion of the osteoclastic activity marker dexoypyridinoline. Both osteoprotegrin and OPG ligand mRNA levels were altered in calvaria of transgenic mice in a pattern that would promote osteoclast activation. The predominant effect of the transgene, however, was anabolic, as evidenced by an increase in bone density and trabecular bone volume in the transgenic mice compared with nontransgenic littermate controls.
Collapse
Affiliation(s)
- Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Administration Medical Centers, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
193
|
Halladay DL, Miles RR, Thirunavukkarasu K, Chandrasekhar S, Martin TJ, Onyia JE. Identification of signal transduction pathways and promoter sequences that mediate parathyroid hormone 1-38 inhibition of osteoprotegerin gene expression. J Cell Biochem 2002; 84:1-11. [PMID: 11746511 DOI: 10.1002/jcb.1273] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoprotegerin (OPG), a secreted member of the tumor necrosis receptor superfamily, is a potent inhibitor of osteoclast formation and bone resorption. Parathyroid hormone (PTH), a potent inducer of osteoclast formation, suppresses OPG mRNA expression in vitro and in vivo. To determine the molecular basis of this inhibition, we analyzed the effects of PTH on the human OPG promoter (-5917 to +19) fused with beta-galactosidase reporter gene in stable and transient transfections into rat osteoblast-like UMR106 cells. The effect of PTH on OPG promoter expression was biphasic and concentration-dependent. PTH (1-100 nM) induced the transcriptional activity of the OPG promoter (1.7-fold) at 8 h followed by a gradual decrease with maximal inhibition (6.6-fold) at 24-48 h. To ascertain the signal transduction pathways mediating PTH (1-38) effects on OPG gene expression, we compared the effects of PTH with PTH analogs, parathyroid hormone-related protein 1-34 (PTHrP 1-34), forskolin, 3-isobutyl-1-methylxanthine (IBMX), dibutyryl cAMP, phorbol-12-myristate-13-acetate (PMA), thapsigargin and calcium ionophore A23187. PTH 1-31 and PTHrP 1-34, which stimulate the cAMP/PKA pathway, and other activators of cAMP/PKA, forskolin, IBMX, N(6), O(2')-dibityryl adenosine 3',5'-cyclic monophosphate (dibutyryl cAMP), all elicited a similar biphasic response on OPG promoter expression. PTH analogs PTH 3-34 and PTH 7-34, that do not stimulate cAMP production, had no effect on OPG expression. In contrast, phorbol-12-myristate-13-acetate (PMA), an activator of PKC, stimulated OPG promoter expression, while thapsigargin and calcium ionophore A23187, which increase intracellular Ca(2+), showed a dose-dependent inhibition of OPG promoter expression. To delineate the promoter sequences that mediate the inhibitory effects of PTH on OPG transcription, we analyzed systematic deletions of the OPG promoter for responsiveness in transient transfection assays. The major inhibitory effects of PTH were localized to 391 bp (-372 to +19) of the proximal promoter. Deletions of the promoter region led to a complete loss of responsiveness. Taken together, these results demonstrate that the inhibitory effects of PTH on OPG are mediated at the transcriptional level through cis elements in the proximal promoter. The similar biphasic response of OPG to PTH, PTH 1-31, PTHrP 1-34, forskolin, IBMX and dibutyryl cAMP suggests that PTH regulates OPG transcription via activation of the cAMP/PKA signal transduction pathway.
Collapse
Affiliation(s)
- D L Halladay
- Gene Regulation, Bone and Inflammation Research Division, Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
194
|
Kazama JJ, Shigematsu T, Yano K, Tsuda E, Miura M, Iwasaki Y, Kawaguchi Y, Gejyo F, Kurokawa K, Fukagawa M. Increased circulating levels of osteoclastogenesis inhibitory factor (osteoprotegerin) in patients with chronic renal failure. Am J Kidney Dis 2002; 39:525-32. [PMID: 11877571 DOI: 10.1053/ajkd.2002.31402] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Skeletal resistance to parathyroid hormone (PTH) is one of the major abnormalities underlying bone diseases in uremia, the mechanism of which has not yet been fully elucidated. Osteoclastogenesis inhibitory factor (OCIF), or osteoprotegerin, is a natural decoy receptor for osteoclast differentiation factor (ODF), produced by osteoblasts in response to PTH. To elucidate the kinetics and roles of OCIF in chronic renal failure, serum OCIF levels were measured in 46 predialysis patients and 21 dialysis patients by means of enzyme-linked immunosorbent assay (ELISA). Serum OCIF levels in predialysis patients increased as renal function declined (OCIF = 1.178 + 0.233 x creatinine; r2 = 0.413; P < 0.0001). Twenty-four-hour creatinine clearance and 1/OCIF in predialysis patients showed a clear positive correlation and a straight line regression (1/OCIF = 0.443 + 0.004 x creatinine clearance; r2 = 0.425; P < 0.0001). In dialysis patients, serum OCIF levels were significantly elevated (5.18 +/- 1.48 ng/mL) to a level that would inhibit 50% osteoclast formation in vitro. These findings suggest that OCIF accumulates in serum of patients with renal dysfunction. Because serum levels of OCIF with the ability to bind ODF in vitro (active OCIF) correlated well with those of OCIF detected by standard ELISA (active OCIF = 0.251 + 0.877 x OCIF; r2 = 0.829; P < 0.0001), OCIF accumulated in serum may be a candidate uremic toxin responsible for the skeletal resistance to PTH seen in chronic renal failure. Further studies with serum parameters and bone histological evaluation are needed to assess this possibility.
Collapse
|
195
|
Haas M, Leko-Mohr Z, Roschger P, Kletzmayr J, Schwarz C, Domenig C, Zsontsich T, Klaushofer K, Delling G, Oberbauer R. Osteoprotegerin and parathyroid hormone as markers of high-turnover osteodystrophy and decreased bone mineralization in hemodialysis patients. Am J Kidney Dis 2002; 39:580-6. [PMID: 11877577 DOI: 10.1053/ajkd.2002.31409] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Osteoprotegerin (OPG) has a profound inhibitory effect on osteoclast differentiation and bone resorption. Because high-turnover renal osteodystrophy (ROD) is characterized by increased osteoclast activity, serum OPG concentrations might be used to distinguish between forms of ROD. Twenty-six patients on maintenance hemodialysis therapy underwent a transiliac crest biopsy for evaluation of histopathologic characteristics and histomorphometric studies. ROD was diagnosed as type II (normal or low turnover) or type III (high turnover plus osteoidosis) disease. Bone mineralization density distribution (BMDD) was characterized by measuring the mean trabecular calcium concentration in the biopsy specimen with quantitative backscattered electron imaging. Patients underwent additional dual-energy x-ray absorptiometry (DEXA) of the spine and hip and measurement of such biochemical markers of bone turnover as OPG, intact parathyroid hormone (iPTH), osteocalcin, calcitonin, bone alkaline phosphatase, and cross-laps. OPG levels were significantly reduced in patients with ROD III compared with ROD II (118 +/- 38 versus 204 +/- 130 pg/mL; P < 0.05) and correlated with BMDD (r = 0.43; P < 0.05). Patients with ROD III showed significantly lower BMDD compared with healthy controls (21.42% +/- 0.12% versus 22.17% +/- 0.81% weight; P < 0.01). Besides iPTH, which showed significantly greater levels in patients with ROD III than ROD II (382 +/- 322 versus 136 +/- 156 pg/mL; P < 0.05), none of the serological markers or DEXA was useful in separation of the groups. Discriminant function analysis showed that a combination of OPG and iPTH correctly classifies ROD II in 72% and ROD III in 88% of patients. We conclude that OPG in combination with iPTH can be used as a marker for noninvasive diagnosis of ROD in hemodialysis patients. Furthermore, OPG serum levels might be used to estimate trabecular bone mineralization in these subjects.
Collapse
Affiliation(s)
- Martin Haas
- Department of Internal Medicine III, Division of Nephrology, University Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Coen G, Ballanti P, Balducci A, Calabria S, Fischer MS, Jankovic L, Manni M, Morosetti M, Moscaritolo E, Sardella D, Bonucci E. Serum osteoprotegerin and renal osteodystrophy. Nephrol Dial Transplant 2002; 17:233-8. [PMID: 11812872 DOI: 10.1093/ndt/17.2.233] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Numerous growth factors and cytokines are known to modulate bone turnover. An important, recently discovered complex involved in osteoclastogenesis is the osteoprotegerin/osteoprotegerin-ligand (OPG/OPGL) cytokine complex, which is produced by osteoblasts. Many factors, including parathyroid hormone (PTH), appear to affect bone turnover through this pathway. In this disorder, the role of the OPG/OPGL system in the pathogenesis of renal osteodystrophy, a disease with either low or high bone turnover, has not been investigated so far. METHODS Thirty-nine chronic haemodialysis patients had bone biopsies, including histomorphometric and histodynamic examinations. In addition, the following serum biochemistry parameters were measured: serum OPG, intact PTH, PTH 1-84, total PTH, osteocalcin, total and bone alkaline phosphatases, 25-hydroxycholecalciferol and 1,25-dihydroxycholecalciferol. RESULTS On average, serum OPG levels were above the normal range. They were lower in adynamic bone disease (ABD) patients, than in patients with predominant hyperparathyroidism (HP) or mixed osteodystrophy (MO). Significant negative correlations were found between serum OPG and PTH levels, and between serum OPG and parameters of bone resorption (ES/BS) and bone formation (ObS/BS and BFR/BS) in HP and MO patients with PTH values < or =1000 pg/ml. For intact PTH levels < or =300 pg/ml, serum OPG was significantly lower in the group with ABD than in those with HP or MO (P<0.05). CONCLUSION In renal osteodystrophy the OPG/OPGL system is involved in the regulation of bone turnover induced by PTH. The determination of serum OPG levels could be of use in the diagnosis of low turnover bone disease, at least in association with PTH levels < or =300 pg/ml.
Collapse
Affiliation(s)
- Giorgio Coen
- Department of Nephrology, Second Medical Faculty, La Sapienza University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 2002; 282:1-17. [PMID: 11814673 DOI: 10.1016/s0378-1119(01)00798-3] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. PTH and PTH-related protein (PTHrP) indirectly activate osteoclasts resulting in increased bone resorption. During this process, PTH changes the phenotype of the osteoblast from a cell involved in bone formation to one directing bone resorption. In addition to these catabolic effects, PTH has been demonstrated to be an anabolic factor in skeletal tissue and in vitro. As a result, PTH has potential medical application to the treatment of osteoporosis, since intermittent administration of PTH stimulates bone formation. Activation of osteoblasts by PTH results in expression of genes important for the degradation of the extracellular matrix, production of growth factors, and stimulation and recruitment of osteoclasts. The ability of PTH to drive changes in gene expression is dependent upon activation of transcription factors such as the activator protein-1 family, RUNX2, and cAMP response element binding protein (CREB). Much of the regulation of these processes by PTH is protein kinase A (PKA)-dependent. However, while PKA is linked to many of the changes in gene expression directed by PTH, PKA activation has been shown to inhibit mitogen-activated protein kinase (MAPK) and proliferation of osteoblasts. It is now known that stimulation of MAPK and proliferation by PTH at low concentrations is protein kinase C (PKC)-dependent in both osteoblastic and kidney cells. Furthermore, PTH has been demonstrated to regulate components of the cell cycle. However, whether this regulation requires PKC and/or extracellular signal-regulated kinases or whether PTH is able to stimulate other components of the cell cycle is unknown. It is possible that stimulation of this signaling pathway by PTH mediates a unique pattern of gene expression resulting in proliferation in osteoblastic and kidney cells; however, specific examples of this are still unknown. This review will focus on what is known about PTH-mediated cell signaling, and discuss the established or putative PTH-regulated pattern of gene expression in osteoblastic cells following treatment with catabolic (high) or anabolic (low) concentrations of the hormone.
Collapse
Affiliation(s)
- John T Swarthout
- Cell and Molecular Biology Program, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
198
|
Affiliation(s)
- U Feige
- Department of Pharmacology/Pathology, Amgen Inc, Thousand Oaks, California 91320-1799, USA.
| |
Collapse
|
199
|
Kostenuik PJ, Capparelli C, Morony S, Adamu S, Shimamoto G, Shen V, Lacey DL, Dunstan CR. OPG and PTH-(1-34) have additive effects on bone density and mechanical strength in osteopenic ovariectomized rats. Endocrinology 2001; 142:4295-304. [PMID: 11564687 DOI: 10.1210/endo.142.10.8437] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PTH is a potent bone anabolic factor, and its combination with antiresorptive agents has been proposed as a therapy for osteoporosis. We tested the effects of PTH, alone and in combination with the novel antiresorptive agent OPG, in a rat model of severe osteopenia. Sprague Dawley rats were sham-operated or ovariectomized at 3 months of age. Rats were untreated for 15 months, at which time ovariectomy had caused significant decreases in bone mineral density in the lumbar vertebrae and femur. Rats were then treated for 5.5 months with vehicle (PBS), human PTH-(1-34) (80 microg/kg), rat OPG (10 mg/kg), or OPG plus PTH (all three times per wk, sc). Treatment of ovariectomized rats with OPG or PTH alone increased bone mineral density in the lumbar vertebrae and femur, whereas PTH plus OPG caused significantly greater and more rapid increases than either therapy alone (P < 0.05). OPG significantly reduced osteoclast surface in the lumbar vertebrae and femur (P < 0.05 vs. sham or ovariectomized), but had no effect on osteoblast surface at either site. Ovariectomy significantly decreased the mechanical strength of the lumbar vertebrae and femur. In the lumbar vertebrae, OPG plus PTH was significantly more effective than PTH alone at reversing ovariectomy-induced deficits in stiffness and elastic modulus. These data suggest that OPG plus PTH represent a potentially useful therapeutic option for patients with severe osteoporosis.
Collapse
Affiliation(s)
- P J Kostenuik
- Department of Pharmacology/Pathology, Amgen, Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Gopalakrishnan R, Ouyang H, Somerman MJ, McCauley LK, Franceschi RT. Matrix gamma-carboxyglutamic acid protein is a key regulator of PTH-mediated inhibition of mineralization in MC3T3-E1 osteoblast-like cells. Endocrinology 2001; 142:4379-88. [PMID: 11564701 DOI: 10.1210/endo.142.10.8413] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As part of its overall function as a major regulator of calcium homeostasis, PTH stimulates bone resorption and inhibits osteoblast-mediated biomineralization. To determine the basis for the inhibitory actions of this hormone, we compared the time course of PTH-dependent inhibition of mineralization in MC3T3-E1 osteoblast-like cells with changes in mRNA levels for several extracellular matrix proteins previously associated either with induction or inhibition of mineralization. Mineralizing activity was rapidly lost in PTH-treated cells ( approximately 30% inhibition after 3 h, 50% inhibition at 6 h). Of the proteins examined, changes in matrix gamma-carboxyglutamic acid protein were best correlated with PTH-dependent inhibition of mineralization. Matrix gamma-carboxyglutamic acid protein mRNA was rapidly induced 3 h after PTH treatment, with a 6- to 8-fold induction seen after 6 h. Local in vivo injection of PTH over the calvaria of mice also induced a 2-fold increase in matrix gamma-carboxyglutamic acid protein mRNA. Warfarin, an inhibitor of matrix gamma-carboxyglutamic acid protein gamma-carboxylation, reversed the effects of PTH on mineralization in MC3T3-E1 cells, whereas vitamin K enhanced PTH activity, as would be expected if a gamma-carboxyglutamic acid-containing protein were required for PTH activity. Levels of the other mRNAs examined were not well correlated with the observed changes in mineralization. Osteopontin, an in vitro inhibitor of mineralization, was induced approximately 4-fold 12 h after PTH addition. Bone sialoprotein mRNA, which encodes an extracellular matrix component most frequently associated with mineral induction, was inhibited by 50% after 12 h of PTH treatment. Osteocalcin mRNA, encoding the other known gamma-carboxyglutamic acid protein in bone, was also inhibited by PTH, but, again, with a significantly slower time course than was seen for mineral inhibition. Taken together, these results show that the rapid inhibition of osteoblast mineralization induced by in vitro PTH treatment is at least in part explained by induction of matrix gamma-carboxyglutamic acid protein.
Collapse
Affiliation(s)
- R Gopalakrishnan
- Department of Periodontics/Prevention/Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | |
Collapse
|