151
|
Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species. Genes (Basel) 2022; 13:genes13020297. [PMID: 35205343 PMCID: PMC8872339 DOI: 10.3390/genes13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut–brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed.
Collapse
|
152
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
153
|
Fine-Tuning of Piezo1 Expression and Activity Ensures Efficient Myoblast Fusion during Skeletal Myogenesis. Cells 2022; 11:cells11030393. [PMID: 35159201 PMCID: PMC8834081 DOI: 10.3390/cells11030393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
Mechanical stimuli, such as stretch and resistance training, are essential in regulating the growth and functioning of skeletal muscles. However, the molecular mechanisms involved in sensing mechanical stress during muscle formation remain unclear. Here, we investigated the role of the mechanosensitive ion channel Piezo1 during myogenic progression of both fast and slow muscle satellite cells. We found that Piezo1 level increases during myogenic differentiation and direct manipulation of Piezo1 in muscle stem cells alters the myogenic progression. Indeed, Piezo1 knockdown suppresses myoblast fusion, leading to smaller myotubes. Such an event is accompanied by significant downregulation of the fusogenic protein Myomaker. In parallel, while Piezo1 knockdown also lowers Ca2+ influx in response to stretch, Piezo1 activation increases Ca2+ influx in response to stretch and enhances myoblasts fusion. These findings may help understand molecular defects present in some muscle diseases. Our study shows that Piezo1 is essential for terminal muscle differentiation acting on myoblast fusion, suggesting that Piezo1 deregulation may have implications in muscle aging and degenerative diseases, including muscular dystrophies and neuromuscular disorders.
Collapse
|
154
|
Sheets K, Overbey J, Ksajikian A, Bovid K, Kenter K, Li Y. The pathophysiology and treatment of musculoskeletal fibrosis. J Cell Biochem 2022; 123:843-851. [DOI: 10.1002/jcb.30217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Kelsey Sheets
- Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Juliana Overbey
- BioMedical Engineering, Department of Orthopaedic Surgery, WMed, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Andre Ksajikian
- BioMedical Engineering, Department of Orthopaedic Surgery, WMed, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Karen Bovid
- Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Keith Kenter
- Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Yong Li
- Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| |
Collapse
|
155
|
Arjona M, Goshayeshi A, Rodriguez-Mateo C, Brett JO, Both P, Ishak H, Rando TA. Tubastatin A maintains adult skeletal muscle stem cells in a quiescent state ex vivo and improves their engraftment ability in vivo. Stem Cell Reports 2022; 17:82-95. [PMID: 35021050 PMCID: PMC8758944 DOI: 10.1016/j.stemcr.2021.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Adult skeletal muscle stem cells (MuSCs) are important for muscle regeneration and constitute a potential source of cell therapy. However, upon isolation, MuSCs rapidly exit quiescence and lose transplantation potency. Maintenance of the quiescent state in vitro preserves MuSC transplantation efficiency and provides an opportunity to study the biology of quiescence. Here we show that Tubastatin A (TubA), an Hdac6 inhibitor, prevents primary cilium resorption, maintains quiescence, and enhances MuSC survival ex vivo. Phenotypic characterization and transcriptomic analysis of TubA-treated cells revealed that TubA maintains most of the biological features and molecular signatures of quiescence. Furthermore, TubA-treated MuSCs showed improved engraftment ability upon transplantation. TubA also induced a return to quiescence and improved engraftment of cycling MuSCs, revealing a potentially expanded application for MuSC therapeutics. Altogether, these studies demonstrate the ability of TubA to maintain MuSC quiescence ex vivo and to enhance the therapeutic potential of MuSCs and their progeny.
Collapse
Affiliation(s)
- Marina Arjona
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Armon Goshayeshi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Rodriguez-Mateo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter Both
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather Ishak
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
156
|
Mankowski RT, Laitano O, Darden D, Kelly L, Munley J, Loftus TJ, Mohr AM, Efron PA, Thomas RM. Sepsis-Induced Myopathy and Gut Microbiome Dysbiosis: Mechanistic Links and Therapeutic Targets. Shock 2022; 57:15-23. [PMID: 34726875 PMCID: PMC9373856 DOI: 10.1097/shk.0000000000001843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ABSTRACT Sepsis is currently defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The skeletal muscle system is among the host organ systems compromised by sepsis. The resulting neuromuscular dysfunction and impaired regenerative capacity defines sepsis-induced myopathy and manifests as atrophy, loss of strength, and hindered regeneration after injury. These outcomes delay recovery from critical illness and confer increased vulnerability to morbidity and mortality. The mechanisms underlying sepsis-induced myopathy, including the potential contribution of peripheral organs, remain largely unexplored. The gut microbiome is an immunological and homeostatic entity that interacts with and controls end-organ function, including the skeletal muscle system. Sepsis induces alterations in the gut microbiota composition, which is globally termed a state of "dysbiosis" for the host compared to baseline microbiota composition. In this review, we critically evaluate existing evidence and potential mechanisms linking sepsis-induced myopathy with gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Robert T. Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL
| | - Orlando Laitano
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL
| | - Dijoia Darden
- Department of Surgery, University of Florida, Gainesville, FL
| | - Lauren Kelly
- Department of Surgery, University of Florida, Gainesville, FL
| | - Jennifer Munley
- Department of Surgery, University of Florida, Gainesville, FL
| | - Tyler J. Loftus
- Department of Surgery, University of Florida, Gainesville, FL
| | - Alicia M. Mohr
- Department of Surgery, University of Florida, Gainesville, FL
| | - Philip A. Efron
- Department of Surgery, University of Florida, Gainesville, FL
| | - Ryan M. Thomas
- Department of Surgery, University of Florida, Gainesville, FL
- Department of Molecular Genetics and Microbiology; University of Florida College of Medicine; Gainesville, FL
- Section of General Surgery, North Florida/South Georgia Veterans Health System; Gainesville, FL
| |
Collapse
|
157
|
Dungan CM, Murach KA, Zdunek CJ, Tang ZJ, Nolt GL, Brightwell CR, Hettinger Z, Englund D, Liu Z, Fry CS, Filareto A, Franti M, Peterson CA. Deletion of SA β-Gal+ cells using senolytics improves muscle regeneration in old mice. Aging Cell 2022; 21:e13528. [PMID: 34904366 PMCID: PMC8761017 DOI: 10.1111/acel.13528] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/05/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022] Open
Abstract
Systemic deletion of senescent cells leads to robust improvements in cognitive, cardiovascular, and whole-body metabolism, but their role in tissue reparative processes is incompletely understood. We hypothesized that senolytic drugs would enhance regeneration in aged skeletal muscle. Young (3 months) and old (20 months) male C57Bl/6J mice were administered the senolytics dasatinib (5 mg/kg) and quercetin (50 mg/kg) or vehicle bi-weekly for 4 months. Tibialis anterior (TA) was then injected with 1.2% BaCl2 or PBS 7- or 28 days prior to euthanization. Senescence-associated β-Galactosidase positive (SA β-Gal+) cell abundance was low in muscle from both young and old mice and increased similarly 7 days following injury in both age groups, with no effect of D+Q. Most SA β-Gal+ cells were also CD11b+ in young and old mice 7- and 14 days following injury, suggesting they are infiltrating immune cells. By 14 days, SA β-Gal+/CD11b+ cells from old mice expressed senescence genes, whereas those from young mice expressed higher levels of genes characteristic of anti-inflammatory macrophages. SA β-Gal+ cells remained elevated in old compared to young mice 28 days following injury, which were reduced by D+Q only in the old mice. In D+Q-treated old mice, muscle regenerated following injury to a greater extent compared to vehicle-treated old mice, having larger fiber cross-sectional area after 28 days. Conversely, D+Q blunted regeneration in young mice. In vitro experiments suggested D+Q directly improve myogenic progenitor cell proliferation. Enhanced physical function and improved muscle regeneration demonstrate that senolytics have beneficial effects only in old mice.
Collapse
Affiliation(s)
- Cory M. Dungan
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Kevin A. Murach
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
Department of Health, Human Performance, and Recreation, and Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | | | - Zuo Jian Tang
- Computational BiologyGCBDSBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Georgia L. Nolt
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Camille R. Brightwell
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic Training and Clinical NutritionCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Zachary Hettinger
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Davis A. Englund
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Zheng Liu
- Computational BiologyGCBDSBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Christopher S. Fry
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic Training and Clinical NutritionCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Antonio Filareto
- Regenerative MedicineBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Michael Franti
- Regenerative MedicineBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Charlotte A. Peterson
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
158
|
Saliu TP, Kumrungsee T, Miyata K, Tominaga H, Yazawa N, Hashimoto K, Kamesawa M, Yanaka N. Comparative study on molecular mechanism of diabetic myopathy in two different types of streptozotocin-induced diabetic models. Life Sci 2022; 288:120183. [PMID: 34848193 DOI: 10.1016/j.lfs.2021.120183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
AIMS Streptozotocin (STZ)-induced diabetic animal models have been widely used to study diabetic myopathy; however, non-specific cytotoxic effects of high-dose STZ have been discussed. The purpose of this study was to compare diabetic myopathy in a high-STZ model with another well-established STZ model with reduced cytotoxicity (high-fat diet (HFD) and low-dose STZ) and to identify mechanistic insights underlying diabetic myopathy in STZ models that can mimic perturbations observed in human patients with diabetic myopathy. MAIN METHODS Male C57BL6 mice were injected with a single high dose of STZ (180 mg/kg, High-STZ) or were given HFD plus low-dose STZ injection (STZ, 55 mg/kg/day, five consecutive days, HFD/STZ). We characterized diabetic myopathy by histological and immunochemical analyses and conducted gene expression analysis. KEY FINDINGS The high-STZ model showed a significant reduction in tibialis anterior myofiber size along with decreased satellite cell content and downregulation of inflammation response and collagen gene expression. Interestingly, blood corticosteroid levels were significantly increased in the high-STZ model, which was possibly related to lowered inflammation response-related gene expression. Further analyses using the HFD/STZ model showed downregulation of gene expression related to mitochondrial functions accompanied by a significant decrease in ATP levels in the muscles. SIGNIFICANCE The high-STZ model is suitable for studies regarding not only severe diabetic myopathy with excessive blood glucose but also negative impact of glucocorticoids on skeletal muscles. In contrast, the HFD/STZ model is characterized by higher immune responses and lower ATP production, which also reflects the pathologies observed in human diabetic patients.
Collapse
Affiliation(s)
- Tolulope Peter Saliu
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan.
| | - Kenshu Miyata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Hikaru Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Nao Yazawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Kotaro Hashimoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Mion Kamesawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
159
|
Grassi A, Dal Fabbro G, Zaffagnini S. Orthobiologics for the Treatment of Muscle Lesions. ORTHOBIOLOGICS 2022:287-299. [DOI: 10.1007/978-3-030-84744-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
160
|
Moyle LA, Davoudi S, Gilbert PM. Innovation in culture systems to study muscle complexity. Exp Cell Res 2021; 411:112966. [PMID: 34906582 DOI: 10.1016/j.yexcr.2021.112966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/31/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Endogenous skeletal muscle development, regeneration, and pathology are extremely complex processes, influenced by local and systemic factors. Unpinning how these mechanisms function is crucial for fundamental biology and to develop therapeutic interventions for genetic disorders, but also conditions like sarcopenia and volumetric muscle loss. Ex vivo skeletal muscle models range from two- and three-dimensional primary cultures of satellite stem cell-derived myoblasts grown alone or in co-culture, to single muscle myofibers, myobundles, and whole tissues. Together, these systems provide the opportunity to gain mechanistic insights of stem cell behavior, cell-cell interactions, and mature muscle function in simplified systems, without confounding variables. Here, we highlight recent advances (published in the last 5 years) using in vitro primary cells and ex vivo skeletal muscle models, and summarize the new insights, tools, datasets, and screening methods they have provided. Finally, we highlight the opportunity for exponential advance of skeletal muscle knowledge, with spatiotemporal resolution, that is offered by guiding the study of muscle biology and physiology with in silico modelling and implementing high-content cell biology systems and ex vivo physiology platforms.
Collapse
Affiliation(s)
- Louise A Moyle
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Sadegh Davoudi
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
161
|
Konuk Tokak E, Çetin Altındal D, Akdere ÖE, Gümüşderelioğlu M. In-vitro effectiveness of poly-β-alanine reinforced poly(3-hydroxybutyrate) fibrous scaffolds for skeletal muscle regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112528. [PMID: 34857307 DOI: 10.1016/j.msec.2021.112528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
In skeletal muscle tissue engineering, success has not been achieved yet, since the properties of the tissue cannot be fully mimicked. The aim of this study is to investigate the potential use of poly-3-hydroxybutyrate (P3HB)/poly-β-alanine (PBA) fibrous tissue scaffolds with piezoelectric properties for skeletal muscle regeneration. Random and aligned P3HB/PBA (5:1) fibrous matrices were prepared by electrospinning with average diameters of 951 ± 153 nm and 891 ± 247 nm, respectively. X-ray diffraction (XRD) analysis showed that PBA reinforcement and aligned orientation of fibers reduced the crystallinity and brittleness of P3HB matrix. While tensile strength and elastic modulus of random fibrous matrices were determined as 3.9 ± 1.0 MPa and 86.2 ± 10.6 MPa, respectively, in the case of aligned fibers they increased to 8.5 ± 1.8 MPa and 378.2 ± 4.2 MPa, respectively. Aligned matrices exhibited a soft and an elastic behaviour with ~70% elongation in similar to the natural tissue. For the first time, d33 piezoelectric modulus of P3HB/PBA matrices were measured as 5 pC/N and 5.3 pC/N, for random and aligned matrices, respectively. Cell culture studies were performed with C2C12 myoblastic cell line. Both of random and aligned P3HB/PBA fibrous matrices supported attachment and proliferation of myoblasts, but cells cultured on aligned fibers formed regular and thick myofibril structures similar to the native muscle tissue. Reverse transcription polymerase chain reaction (RT-qPCR) analysis indicated that MyoD gene was expressed in the cells cultured on both fiber orientation, however, on the aligned fibers significant increase was determined in Myogenin and Myosin Heavy Chain (MHC) gene expressions, which indicate functional tubular structures. The results of RT-qPCR analysis were also supported with immunohistochemistry for myogenic markers. These in vitro studies have shown that piezoelectric P3HB/PBA aligned fibrous scaffolds can successfully mimic skeletal muscle tissue with its superior chemical, morphological, mechanical, and electroactive properties.
Collapse
Affiliation(s)
- Elvan Konuk Tokak
- Nanotechnology and Nanomedicine Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Damla Çetin Altındal
- Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Özge Ekin Akdere
- Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Nanotechnology and Nanomedicine Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey; Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey.
| |
Collapse
|
162
|
Orchard P, Manickam N, Ventresca C, Vadlamudi S, Varshney A, Rai V, Kaplan J, Lalancette C, Mohlke KL, Gallagher K, Burant CF, Parker SCJ. Human and rat skeletal muscle single-nuclei multi-omic integrative analyses nominate causal cell types, regulatory elements, and SNPs for complex traits. Genome Res 2021; 31:2258-2275. [PMID: 34815310 PMCID: PMC8647829 DOI: 10.1101/gr.268482.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.
Collapse
Affiliation(s)
- Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nandini Manickam
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christa Ventresca
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Swarooparani Vadlamudi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vivek Rai
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeremy Kaplan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Claudia Lalancette
- Epigenomics Core, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Katherine Gallagher
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
163
|
Meyer P, Notarnicola C, Meli AC, Matecki S, Hugon G, Salvador J, Khalil M, Féasson L, Cances C, Cottalorda J, Desguerre I, Cuisset JM, Sabouraud P, Lacampagne A, Chevassus H, Rivier F, Carnac G. Skeletal Ryanodine Receptors Are Involved in Impaired Myogenic Differentiation in Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2021; 22:12985. [PMID: 34884796 PMCID: PMC8657486 DOI: 10.3390/ijms222312985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting following repeated muscle damage and inadequate regeneration. Impaired myogenesis and differentiation play a major role in DMD as well as intracellular calcium (Ca2+) mishandling. Ca2+ release from the sarcoplasmic reticulum is mostly mediated by the type 1 ryanodine receptor (RYR1) that is required for skeletal muscle differentiation in animals. The study objective was to determine whether altered RYR1-mediated Ca2+ release contributes to myogenic differentiation impairment in DMD patients. The comparison of primary cultured myoblasts from six boys with DMD and five healthy controls highlighted delayed myoblast differentiation in DMD. Silencing RYR1 expression using specific si-RNA in a healthy control induced a similar delayed differentiation. In DMD myotubes, resting intracellular Ca2+ concentration was increased, but RYR1-mediated Ca2+ release was not changed compared with control myotubes. Incubation with the RYR-calstabin interaction stabilizer S107 decreased resting Ca2+ concentration in DMD myotubes to control values and improved calstabin1 binding to the RYR1 complex. S107 also improved myogenic differentiation in DMD. Furthermore, intracellular Ca2+ concentration was correlated with endomysial fibrosis, which is the only myopathologic parameter associated with poor motor outcome in patients with DMD. This suggested a potential relationship between RYR1 dysfunction and motor impairment. Our study highlights RYR1-mediated Ca2+ leakage in human DMD myotubes and its key role in myogenic differentiation impairment. RYR1 stabilization may be an interesting adjunctive therapeutic strategy in DMD.
Collapse
Affiliation(s)
- Pierre Meyer
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
- Reference Centre for Neuromuscular Diseases AOC, Clinical Investigation Centre, Pediatric Neurology Department, Montpellier University Hospital, 34000 Montpellier, France
| | - Cécile Notarnicola
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Stefan Matecki
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Gérald Hugon
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Jérémy Salvador
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Mirna Khalil
- Clinical Investigation Center, Montpellier University Hospital, 34000 Montpellier, France; (M.K.); (H.C.)
| | - Léonard Féasson
- Myology Unit, Reference Center for Neuromuscular Diseases Euro-NmD, Inter-University Laboratory of Human Movement Sciences—EA7424, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Claude Cances
- Reference Center for Neuromuscular Diseases AOC, Pediatric Neurology Department, Toulouse University Hospital, 3100 Toulouse, France;
- Pediatric Clinical Research Unit, Pediatric Multi-thematic Module CIC 1436, Toulouse Children’s Hospital, 31300 Toulouse, France
| | - Jérôme Cottalorda
- Pediatric Orthopedic and Plastic Surgery Department, Montpellier University Hospital, 34295 Montpellier, France;
| | - Isabelle Desguerre
- Reference Center for Neuromuscular Diseases Paris Nord-Ile-de-France-Est, Pediatric Neurology Department, Necker Enfant Malades University Hospital, Assistance Publique des Hôpitaux de Paris Centre, Paris University, 75019 Paris, France;
| | - Jean-Marie Cuisset
- Reference Center for Neuromuscular Diseases Nord-Ile-de-France-Est, Pediatric Neurology Department, Lille University Hospital, 59000 Lille, France;
| | - Pascal Sabouraud
- Reference Center for Neuromuscular Diseases Nord-Ile-de-France-Est, Pediatric Neurology Department, Reims University Hospital, 51100 Reims, France;
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Hugues Chevassus
- Clinical Investigation Center, Montpellier University Hospital, 34000 Montpellier, France; (M.K.); (H.C.)
| | - François Rivier
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
- Reference Centre for Neuromuscular Diseases AOC, Clinical Investigation Centre, Pediatric Neurology Department, Montpellier University Hospital, 34000 Montpellier, France
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| |
Collapse
|
164
|
Mocciaro E, Runfola V, Ghezzi P, Pannese M, Gabellini D. DUX4 Role in Normal Physiology and in FSHD Muscular Dystrophy. Cells 2021; 10:3322. [PMID: 34943834 PMCID: PMC8699294 DOI: 10.3390/cells10123322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the sequence-specific transcription factor double homeobox 4 (DUX4) has gone from being an obscure entity to being a key factor in important physiological and pathological processes. We now know that expression of DUX4 is highly regulated and restricted to the early steps of embryonic development, where DUX4 is involved in transcriptional activation of the zygotic genome. While DUX4 is epigenetically silenced in most somatic tissues of healthy humans, its aberrant reactivation is associated with several diseases, including cancer, viral infection and facioscapulohumeral muscular dystrophy (FSHD). DUX4 is also translocated, giving rise to chimeric oncogenic proteins at the basis of sarcoma and leukemia forms. Hence, understanding how DUX4 is regulated and performs its activity could provide relevant information, not only to further our knowledge of human embryonic development regulation, but also to develop therapeutic approaches for the diseases associated with DUX4. Here, we summarize current knowledge on the cellular and molecular processes regulated by DUX4 with a special emphasis on FSHD muscular dystrophy.
Collapse
Affiliation(s)
| | | | | | | | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (E.M.); (V.R.); (P.G.); (M.P.)
| |
Collapse
|
165
|
Scalzo RL, Foright RM, Hull SE, Knaub LA, Johnson-Murguia S, Kinanee F, Kaplan J, Houck JA, Johnson G, Sharp RR, Gillen AE, Jones KL, Zhang AMY, Johnson JD, MacLean PS, Reusch JEB, Wright-Hobart S, Wellberg EA. Breast Cancer Endocrine Therapy Promotes Weight Gain With Distinct Adipose Tissue Effects in Lean and Obese Female Mice. Endocrinology 2021; 162:bqab174. [PMID: 34410380 PMCID: PMC8455348 DOI: 10.1210/endocr/bqab174] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer survivors treated with tamoxifen and aromatase inhibitors report weight gain and have an elevated risk of type 2 diabetes, especially if they have obesity. These patient experiences are inconsistent with, preclinical studies using high doses of tamoxifen which reported acute weight loss. We investigated the impact of breast cancer endocrine therapies in a preclinical model of obesity and in a small group of breast adipose tissue samples from women taking tamoxifen to understand the clinical findings. Mature female mice were housed at thermoneutrality and fed either a low-fat/low-sucrose (LFLS) or a high-fat/high-sucrose (HFHS) diet. Consistent with the high expression of Esr1 observed in mesenchymal stem cells from adipose tissue, endocrine therapy was associated with adipose accumulation and more preadipocytes compared with estrogen-treated control mice but resulted in fewer adipocyte progenitors only in the context of HFHS. Analysis of subcutaneous adipose stromal cells revealed diet- and treatment-dependent effects of endocrine therapies on various cell types and genes, illustrating the complexity of adipose tissue estrogen receptor signaling. Breast cancer therapies supported adipocyte hypertrophy and associated with hepatic steatosis, hyperinsulinemia, and glucose intolerance, particularly in obese females. Current tamoxifen use associated with larger breast adipocyte diameter only in women with obesity. Our translational studies suggest that endocrine therapies may disrupt adipocyte progenitors and support adipocyte hypertrophy, potentially leading to ectopic lipid deposition that may be linked to a greater type 2 diabetes risk. Monitoring glucose tolerance and potential interventions that target insulin action should be considered for some women receiving life-saving endocrine therapies for breast cancer.
Collapse
Affiliation(s)
- Rebecca L Scalzo
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sara E Hull
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leslie A Knaub
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stevi Johnson-Murguia
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Fotobari Kinanee
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jeffrey Kaplan
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Houck
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ginger Johnson
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel R Sharp
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Austin E Gillen
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Anni M Y Zhang
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul S MacLean
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jane E B Reusch
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Sabrina Wright-Hobart
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth A Wellberg
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
166
|
Yan L, Rodríguez-delaRosa A, Pourquié O. Human muscle production in vitro from pluripotent stem cells: Basic and clinical applications. Semin Cell Dev Biol 2021; 119:39-48. [PMID: 33941447 PMCID: PMC8530835 DOI: 10.1016/j.semcdb.2021.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Human pluripotent stem cells (PSCs), which have the capacity to self-renew and differentiate into multiple cell types, offer tremendous therapeutic potential and invaluable flexibility as research tools. Recently, remarkable progress has been made in directing myogenic differentiation of human PSCs. The differentiation strategies, which were inspired by our knowledge of myogenesis in vivo, have provided an important platform for the study of human muscle development and modeling of muscular diseases, as well as a promising source of cells for cell therapy to treat muscular dystrophies. In this review, we summarize the current state of skeletal muscle generation from human PSCs, including transgene-based and transgene-free differentiation protocols, and 3D muscle tissue production through bioengineering approaches. We also highlight their basic and clinical applications, which facilitate the study of human muscle biology and deliver new hope for muscular disease treatment.
Collapse
Affiliation(s)
- Lu Yan
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Boston, MA, USA
| | - Alejandra Rodríguez-delaRosa
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Boston, MA, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
167
|
Collins BC, Kardon G. It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration. Development 2021; 148:dev199861. [PMID: 34739030 PMCID: PMC8602941 DOI: 10.1242/dev.199861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vertebrate skeletal muscle is composed of multinucleate myofibers that are surrounded by muscle connective tissue. Following injury, muscle is able to robustly regenerate because of tissue-resident muscle stem cells, called satellite cells. In addition, efficient and complete regeneration depends on other cells resident in muscle - including fibro-adipogenic progenitors (FAPs). Increasing evidence from single-cell analyses and genetic and transplantation experiments suggests that satellite cells and FAPs are heterogeneous cell populations. Here, we review our current understanding of the heterogeneity of satellite cells, their myogenic derivatives and FAPs in terms of gene expression, anatomical location, age and timing during the regenerative process - each of which have potentially important functional consequences.
Collapse
Affiliation(s)
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
168
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
169
|
Isolation and Characterization of Tissue Resident CD29-Positive Progenitor Cells in Livestock to Generate a Three-Dimensional Meat Bud. Cells 2021; 10:cells10092499. [PMID: 34572147 PMCID: PMC8466368 DOI: 10.3390/cells10092499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
The current process of meat production using livestock has significant effects on the global environment, including high emissions of greenhouse gases. In recent years, cultured meat has attracted attention as a way to acquire animal proteins. However, the lack of markers that isolate proliferating cells from bovine tissues and the complex structure of the meat make it difficult to culture meat in a dish. In this study, we screened 246 cell-surface antibodies by fluorescence-activated cell sorting for their capacity to form colonies and their suitability to construct spheroid “meat buds”. CD29+ cells (Ha2/5 clone) have a high potency to form colonies and efficiently proliferate on fibronectin-coated dishes. Furthermore, the meat buds created from CD29+ cells could differentiate into muscle and adipose cells in a three-dimensional structure. The meat buds embedded in the collagen gel proliferated in the matrix and formed large aggregates. Approximately 10 trillion cells can theoretically be obtained from 100 g of bovine tissue by culturing and amplifying them using these methods. The CD29+ cell characteristics of bovine tissue provide insights into the production of meat alternatives in vitro.
Collapse
|
170
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
171
|
Ganassi M, Zammit PS, Hughes SM. Isolation of Myofibres and Culture of Muscle Stem Cells from Adult Zebrafish. Bio Protoc 2021; 11:e4149. [PMID: 34604454 PMCID: PMC8443456 DOI: 10.21769/bioprotoc.4149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/02/2022] Open
Abstract
Skeletal muscles generate force throughout life and require maintenance and repair to ensure efficiency. The population of resident muscle stem cells (MuSCs), termed satellite cells, dwells beneath the basal lamina of adult myofibres and contributes to both muscle growth and regeneration. Upon exposure to activating signals, MuSCs proliferate to generate myoblasts that differentiate and fuse to grow or regenerate myofibres. This myogenic progression resembles aspects of muscle formation and development during embryogenesis. Therefore, the study of MuSCs and their associated myofibres permits the exploration of muscle stem cell biology, including the cellular and molecular mechanisms underlying muscle formation, maintenance and repair. As most aspects of MuSC biology have been described in rodents, their relevance to other species, including humans, is unclear and would benefit from comparison to an alternative vertebrate system. Here, we describe a procedure for the isolation and immunolabelling or culture of adult zebrafish myofibres that allows examination of both myofibre characteristics and MuSC biology ex vivo. Isolated myofibres can be analysed for morphometric characteristics such as the myofibre volume and myonuclear domain to assess the dynamics of muscle growth. Immunolabelling for canonical stemness markers or reporter transgenes identifies MuSCs on isolated myofibres for cellular/molecular studies. Furthermore, viable myofibres can be plated, allowing MuSC myogenesis and analysis of proliferative and differentiative dynamics in primary progenitor cells. In conclusion, we provide a comparative system to amniote models for the study of vertebrate myogenesis, which will reveal fundamental genetic and cellular mechanisms of MuSC biology and inform aquaculture. Graphic abstract: Schematic of Myofibre Isolation and Culture of Muscle Stem Cells from Adult Zebrafish.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL, UK
| | - Simon M. Hughes
- Randall Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL, UK
| |
Collapse
|
172
|
Florkowska A, Meszka I, Nowacka J, Granica M, Jablonska Z, Zawada M, Truszkowski L, Ciemerych MA, Grabowska I. PAX7 Balances the Cell Cycle Progression via Regulating Expression of Dnmt3b and Apobec2 in Differentiating PSCs. Cells 2021; 10:2205. [PMID: 34571854 PMCID: PMC8472244 DOI: 10.3390/cells10092205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
PAX7 transcription factor plays a crucial role in embryonic myogenesis and in adult muscles in which it secures proper function of satellite cells, including regulation of their self renewal. PAX7 downregulation is necessary for the myogenic differentiation of satellite cells induced after muscle damage, what is prerequisite step for regeneration. Using differentiating pluripotent stem cells we documented that the absence of functional PAX7 facilitates proliferation. Such action is executed by the modulation of the expression of two proteins involved in the DNA methylation, i.e., Dnmt3b and Apobec2. Increase in Dnmt3b expression led to the downregulation of the CDK inhibitors and facilitated cell cycle progression. Changes in Apobec2 expression, on the other hand, differently impacted proliferation/differentiation balance, depending on the experimental model used.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.F.); (I.M.); (J.N.); (M.G.); (Z.J.); (M.Z.); (L.T.); (M.A.C.)
| |
Collapse
|
173
|
Kondratyev SA, Skiteva EN, Zabrodskaya YM, Ryzhkova DV, Kondratyeva ЕА, Kondratyev AN. Structural and Metabolic Changes in Skeletal Muscles of Patients with Chronic Disorders of Consciousness—To the Issue of Critical Illness Polyneuromyopathies (a PET/CT Pathomorphological Study). J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
174
|
Translational control by DHX36 binding to 5'UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nat Commun 2021; 12:5043. [PMID: 34413292 PMCID: PMC8377060 DOI: 10.1038/s41467-021-25170-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/06/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle has a remarkable ability to regenerate owing to its resident stem cells (also called satellite cells, SCs). SCs are normally quiescent; when stimulated by damage, they activate and expand to form new fibers. The mechanisms underlying SC proliferative progression remain poorly understood. Here we show that DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, is essential for muscle regeneration by regulating SC expansion. DHX36 (initially named RHAU) is barely expressed at quiescence but is highly induced during SC activation and proliferation. Inducible deletion of Dhx36 in adult SCs causes defective proliferation and muscle regeneration after damage. System-wide mapping in proliferating SCs reveals DHX36 binding predominantly to rG4 structures at various regions of mRNAs, while integrated polysome profiling shows that DHX36 promotes mRNA translation via 5′-untranslated region (UTR) rG4 binding. Furthermore, we demonstrate that DHX36 specifically regulates the translation of Gnai2 mRNA by unwinding its 5′ UTR rG4 structures and identify GNAI2 as a downstream effector of DHX36 for SC expansion. Altogether, our findings uncover DHX36 as an indispensable post-transcriptional regulator of SC function and muscle regeneration acting through binding and unwinding rG4 structures at 5′ UTR of target mRNAs. Skeletal muscle stem cells (or satellite cells, SCs) are normally quiescent but activate and expand in response to injury. Here the authors show that induction of DHX36 helicase during SC activation promotes mRNA translation by binding to 5′UTR mRNA G-quadruplexes (rG4) in targets including Gnai2 and unwinding them.
Collapse
|
175
|
Banerji CRS, Panamarova M, Zammit PS. DUX4 expressing immortalized FSHD lymphoblastoid cells express genes elevated in FSHD muscle biopsies, correlating with the early stages of inflammation. Hum Mol Genet 2021; 29:2285-2299. [PMID: 32242220 PMCID: PMC7424723 DOI: 10.1093/hmg/ddaa053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/04/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disorder linked to ectopic expression of DUX4. However, DUX4 is notoriously difficult to detect in FSHD muscle cells, while DUX4 target gene expression is an inconsistent biomarker for FSHD skeletal muscle biopsies, displaying efficacy only on pathologically inflamed samples. Immune gene misregulation occurs in FSHD muscle, with DUX4 target genes enriched for those associated with inflammatory processes. However, there lacks an assessment of the FSHD immune cell transcriptome, and its contribution to gene expression in FSHD muscle biopsies. Here, we show that EBV-immortalized FSHD lymphoblastoid cell lines express DUX4 and both early and late DUX4 target genes. Moreover, a biomarker of 237 up-regulated genes derived from FSHD lymphoblastoid cell lines is elevated in FSHD muscle biopsies compared to controls. The FSHD Lymphoblast score is unaltered between FSHD myoblasts/myotubes and their controls however, implying a non-myogenic cell source in muscle biopsies. Indeed, the FSHD Lymphoblast score correlates with the early stages of muscle inflammation identified by histological analysis on muscle biopsies, while our two late DUX4 target gene expression biomarkers associate with macroscopic inflammation detectable via MRI. Thus, FSHD lymphoblastoid cell lines express DUX4 and early and late DUX4 target genes, therefore, muscle-infiltrated immune cells may contribute the molecular landscape of FSHD muscle biopsies.
Collapse
Affiliation(s)
- Christopher R S Banerji
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Maryna Panamarova
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
176
|
Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med 2021; 13:e13695. [PMID: 34151531 PMCID: PMC8350899 DOI: 10.15252/emmm.202013695] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by progressive skeletal muscle weakness and wasting. FSHD is linked to epigenetic derepression of the subtelomeric D4Z4 macrosatellite at chromosome 4q35. Epigenetic derepression permits the distal-most D4Z4 unit to transcribe DUX4, with transcripts stabilised by splicing to a poly(A) signal on permissive 4qA haplotypes. The pioneer transcription factor DUX4 activates target genes that are proposed to drive FSHD pathology. While this toxic gain-of-function model is a satisfying "bottom-up" genotype-to-phenotype link, DUX4 is rarely detectable in muscle and DUX4 target gene expression is inconsistent in patients. A reliable biomarker for FSHD is suppression of a target gene score of PAX7, a master regulator of myogenesis. However, it is unclear how this "top-down" finding links to genomic changes that characterise FSHD and to DUX4. Here, we explore the roles and interactions of DUX4 and PAX7 in FSHD pathology and how the relationship between these two transcription factors deepens understanding via the immune system and muscle regeneration. Considering how FSHD pathomechanisms are represented by "DUX4opathy" models has implications for developing therapies and current clinical trials.
Collapse
Affiliation(s)
| | - Peter S Zammit
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|
177
|
Archacka K, Grabowska I, Mierzejewski B, Graffstein J, Górzyńska A, Krawczyk M, Różycka AM, Kalaszczyńska I, Muras G, Stremińska W, Jańczyk-Ilach K, Walczak P, Janowski M, Ciemerych MA, Brzoska E. Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Res Ther 2021; 12:448. [PMID: 34372911 PMCID: PMC8351116 DOI: 10.1186/s13287-021-02530-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. Methods In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. Results We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. Conclusions We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02530-3.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Joanna Graffstein
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Alicja Górzyńska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Krawczyk
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Anna M Różycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004, Warsaw, Poland.,Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Gabriela Muras
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Piotr Walczak
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Warszawska 30 St, 10-082, Olsztyn, Poland.,Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mirosław Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, 21201, USA.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
178
|
Lahmann I, Griger J, Chen JS, Zhang Y, Schuelke M, Birchmeier C. Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration. eLife 2021; 10:57356. [PMID: 34350830 PMCID: PMC8370772 DOI: 10.7554/elife.57356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species, as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.
Collapse
Affiliation(s)
- Ines Lahmann
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Jie-Shin Chen
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Yao Zhang
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
179
|
Battey E, Furrer R, Ross J, Handschin C, Ochala J, Stroud MJ. PGC-1α regulates myonuclear accretion after moderate endurance training. J Cell Physiol 2021; 237:696-705. [PMID: 34322871 DOI: 10.1002/jcp.30539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022]
Abstract
The transcriptional demands of skeletal muscle fibres are high and require hundreds of nuclei (myonuclei) to produce specialised contractile machinery and multiple mitochondria along their length. Each myonucleus spatially regulates gene expression in a finite volume of cytoplasm, termed the myonuclear domain (MND), which positively correlates with fibre cross-sectional area (CSA). Endurance training triggers adaptive responses in skeletal muscle, including myonuclear accretion, decreased MND sizes and increased expression of the transcription co-activator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Previous work has shown that overexpression of PGC-1α in skeletal muscle regulates mitochondrial biogenesis, myonuclear accretion and MND volume. However, whether PGC-1α is critical for these processes in adaptation to endurance training remained unclear. To test this, we evaluated myonuclear distribution and organisation in endurance-trained wild-type mice and mice lacking PGC-1α in skeletal muscle (PGC-1α mKO). Here, we show a differential myonuclear accretion response to endurance training that is governed by PGC-1α and is dependent on muscle fibre size. The positive relationship of MND size and muscle fibre CSA trended towards a stronger correlation in PGC-1a mKO versus control after endurance training, suggesting that myonuclear accretion was slightly affected with increasing fibre CSA in PGC-1α mKO. However, in larger fibres, the relationship between MND and CSA was significantly altered in trained versus sedentary PGC-1α mKO, suggesting that PGC-1α is critical for myonuclear accretion in these fibres. Accordingly, there was a negative correlation between the nuclear number and CSA, suggesting that in larger fibres myonuclear numbers fail to scale with CSA. Our findings suggest that PGC-1α is an important contributor to myonuclear accretion following moderate-intensity endurance training. This may contribute to the adaptive response to endurance training by enabling a sufficient rate of transcription of genes required for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Edmund Battey
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Jacob Ross
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Julien Ochala
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, UK.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Stroud
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
180
|
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021; 184:3852-3872. [PMID: 34297930 PMCID: PMC8566693 DOI: 10.1016/j.cell.2021.06.024] [Citation(s) in RCA: 538] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts are diverse mesenchymal cells that participate in tissue homeostasis and disease by producing complex extracellular matrix and creating signaling niches through biophysical and biochemical cues. Transcriptionally and functionally heterogeneous across and within organs, fibroblasts encode regional positional information and maintain distinct cellular progeny. We summarize their development, lineages, functions, and contributions to fibrosis in four fibroblast-rich organs: skin, lung, skeletal muscle, and heart. We propose that fibroblasts are uniquely poised for tissue repair by easily reentering the cell cycle and exhibiting a reversible plasticity in phenotype and cell fate. These properties, when activated aberrantly, drive fibrotic disorders in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Erica L Herzog
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
181
|
He S, Fu T, Yu Y, Liang Q, Li L, Liu J, Zhang X, Zhou Q, Guo Q, Xu D, Chen Y, Wang X, Chen Y, Liu J, Gan Z, Liu Y. IRE1α regulates skeletal muscle regeneration through Myostatin mRNA decay. J Clin Invest 2021; 131:143737. [PMID: 34283807 PMCID: PMC8409588 DOI: 10.1172/jci143737] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle can undergo a regenerative process from injury or disease to preserve muscle mass and function, which is critically influenced by cellular stress responses. Inositol-requiring enzyme 1 (IRE1) is an ancient endoplasmic reticulum (ER) stress sensor and mediates a key branch of the unfolded protein response (UPR). In mammals, IRE1α is implicated in the homeostatic control of stress responses during tissue injury and regeneration. Here, we show that IRE1α serves as a myogenic regulator in skeletal muscle regeneration in response to injury and muscular dystrophy. We found in mice that IRE1α was activated during injury-induced muscle regeneration, and muscle-specific IRE1α ablation resulted in impaired regeneration upon cardiotoxin-induced injury. Gain- and loss-of-function studies in myocytes demonstrated that IRE1αacts to sustain both differentiation in myoblasts and hypertrophy in myotubes through regulated IRE1-dependent decay (RIDD) of mRNA encoding Myostatin, a key negative regulator of muscle repair and growth. Furthermore, in the mouse model of Duchenne muscular dystrophy (DMD), loss of muscle IRE1α resulted in augmented Myostatin signaling and exacerbated the dystrophic phenotypes. Thus, these results reveal a pivotal role for the RIDD output of IRE1α in muscle regeneration, offering new insight into potential therapeutic strategies for muscle loss diseases.
Collapse
Affiliation(s)
- Shengqi He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yue Yu
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Qinhao Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Luyao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xuan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
182
|
Pikatza-Menoio O, Elicegui A, Bengoetxea X, Naldaiz-Gastesi N, López de Munain A, Gerenu G, Gil-Bea FJ, Alonso-Martín S. The Skeletal Muscle Emerges as a New Disease Target in Amyotrophic Lateral Sclerosis. J Pers Med 2021; 11:671. [PMID: 34357138 PMCID: PMC8307751 DOI: 10.3390/jpm11070671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Oihane Pikatza-Menoio
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Amaia Elicegui
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Xabier Bengoetxea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Gorka Gerenu
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Physiology, University of the Basque Country UPV-EHU, 48940 Leioa, Spain
| | - Francisco Javier Gil-Bea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Sonia Alonso-Martín
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| |
Collapse
|
183
|
Bohaud C, Johansen MD, Jorgensen C, Kremer L, Ipseiz N, Djouad F. The Role of Macrophages During Mammalian Tissue Remodeling and Regeneration Under Infectious and Non-Infectious Conditions. Front Immunol 2021; 12:707856. [PMID: 34335621 PMCID: PMC8317995 DOI: 10.3389/fimmu.2021.707856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Several infectious pathologies in humans, such as tuberculosis or SARS-CoV-2, are responsible for tissue or lung damage, requiring regeneration. The regenerative capacity of adult mammals is limited to few organs. Critical injuries of non-regenerative organs trigger a repair process that leads to a definitive architectural and functional disruption, while superficial wounds result in scar formation. Tissue lesions in mammals, commonly studied under non-infectious conditions, trigger cell death at the site of the injury, as well as the production of danger signals favouring the massive recruitment of immune cells, particularly macrophages. Macrophages are also of paramount importance in infected injuries, characterized by the presence of pathogenic microorganisms, where they must respond to both infection and tissue damage. In this review, we compare the processes implicated in the tissue repair of non-infected versus infected injuries of two organs, the skeletal muscles and the lungs, focusing on the primary role of macrophages. We discuss also the negative impact of infection on the macrophage responses and the possible routes of investigation for new regenerative therapies to improve the recovery state as seen with COVID-19 patients.
Collapse
Affiliation(s)
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
184
|
Liu C, Li L, Ge M, Gu L, Zhang K, Su Y, Zhang Y, Liu C, Lan M, Yu Y, Wang T, Zhang B, Zhou G, Meng Q. MiR-29ab1 Cluster Resists Muscle Atrophy Through Inhibiting MuRF1. DNA Cell Biol 2021; 40:1167-1176. [PMID: 34255539 DOI: 10.1089/dna.2021.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle has great plasticity. An increase in protein degradation can cause muscle atrophy. Atrogin-1 and muscle ring finger-1 (MuRF1) are dramatically upregulated in various muscle atrophy. Inhibition of Atrogin-1 and MuRF1 protects against muscle atrophy. MiR-29 plays an important regulatory role in skeletal muscle development. However, the function of miR-29 in skeletal muscle protein metabolism is not clear. To investigate the function of miR-29, we generated miR-29 knockout mice and the miR-29ab1 cluster overexpression mice. The disruption of miR-29 led to severe atrophy of skeletal muscle during puberty, and the muscle-specific overexpression of the miR-29ab1 cluster protected against denervation-induced and fasting-induced muscle atrophy. Furthermore, the overexpression of miR-29a, b mimics in myotubes resisted the muscle atrophy. MuRF1 was the direct target gene of miR-29a, b. These results demonstrate that miR-29ab1 cluster plays a critical role in the maintenance of skeletal muscle. MiR-29ab1 cluster is the excellent inhibitor of MuRF1, ultimately indicating that miR-29ab1 cluster is good therapeutic molecule candidate for adulthood.
Collapse
Affiliation(s)
- Chuncheng Liu
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lei Li
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengxu Ge
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lijie Gu
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kuo Zhang
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yang Su
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuying Zhang
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Liu
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Miaomiao Lan
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingying Yu
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tongtong Wang
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Guangbin Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingyong Meng
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
185
|
Margolis LM, Wilson MA, Whitney CC, Carrigan CT, Murphy NE, Hatch-McChesney A, Pasiakos SM. Initiating aerobic exercise with low glycogen content reduces markers of myogenesis but not mTORC1 signaling. J Int Soc Sports Nutr 2021; 18:56. [PMID: 34246303 PMCID: PMC8272266 DOI: 10.1186/s12970-021-00455-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background The effects of low muscle glycogen on molecular markers of protein synthesis and myogenesis before and during aerobic exercise with carbohydrate ingestion is unclear. The purpose of this study was to determine the effects of initiating aerobic exercise with low muscle glycogen on mTORC1 signaling and markers of myogenesis. Methods Eleven men completed two cycle ergometry glycogen depletion trials separated by 7-d, followed by randomized isocaloric refeeding for 24-h to elicit low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) glycogen. Participants then performed 80-min of cycle ergometry (64 ± 3% VO2peak) while ingesting 146 g carbohydrate. mTORC1 signaling (Western blotting) and gene transcription (RT-qPCR) were determined from vastus lateralis biopsies before glycogen depletion (baseline, BASE), and before (PRE) and after (POST) exercise. Results Regardless of treatment, p-mTORC1Ser2448, p-p70S6KSer424/421, and p-rpS6Ser235/236 were higher (P < 0.05) POST compared to PRE and BASE. PAX7 and MYOGENIN were lower (P < 0.05) in LOW compared to AD, regardless of time, while MYOD was lower (P < 0.05) in LOW compared to AD at PRE, but not different at POST. Conclusion Initiating aerobic exercise with low muscle glycogen does not affect mTORC1 signaling, yet reductions in gene expression of myogenic regulatory factors suggest that muscle recovery from exercise may be reduced.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA.
| | - Marques A Wilson
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Claire C Whitney
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Christopher T Carrigan
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Nancy E Murphy
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Adrienne Hatch-McChesney
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| |
Collapse
|
186
|
Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors-time for new definitions. Skelet Muscle 2021; 11:16. [PMID: 34210364 PMCID: PMC8247239 DOI: 10.1186/s13395-021-00265-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Striated muscle is a highly plastic and regenerative organ that regulates body movement, temperature, and metabolism-all the functions needed for an individual's health and well-being. The muscle connective tissue's main components are the extracellular matrix and its resident stromal cells, which continuously reshape it in embryonic development, homeostasis, and regeneration. Fibro-adipogenic progenitors are enigmatic and transformative muscle-resident interstitial cells with mesenchymal stem/stromal cell properties. They act as cellular sentinels and physiological hubs for adult muscle homeostasis and regeneration by shaping the microenvironment by secreting a complex cocktail of extracellular matrix components, diffusible cytokines, ligands, and immune-modulatory factors. Fibro-adipogenic progenitors are the lineage precursors of specialized cells, including activated fibroblasts, adipocytes, and osteogenic cells after injury. Here, we discuss current research gaps, potential druggable developments, and outstanding questions about fibro-adipogenic progenitor origins, potency, and heterogeneity. Finally, we took advantage of recent advances in single-cell technologies combined with lineage tracing to unify the diversity of stromal fibro-adipogenic progenitors. Thus, this compelling review provides new cellular and molecular insights in comprehending the origins, definitions, markers, fate, and plasticity of murine and human fibro-adipogenic progenitors in muscle development, homeostasis, regeneration, and repair.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, 2052, Australia.
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Fabio M V Rossi
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
187
|
Norizadeh Abbariki T, Gonda Z, Kemler D, Urbanek P, Wagner T, Litfin M, Wang ZQ, Herrlich P, Kassel O. The LIM domain protein nTRIP6 modulates the dynamics of myogenic differentiation. Sci Rep 2021; 11:12904. [PMID: 34145356 PMCID: PMC8213751 DOI: 10.1038/s41598-021-92331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
The process of myogenesis which operates during skeletal muscle regeneration involves the activation of muscle stem cells, the so-called satellite cells. These then give rise to proliferating progenitors, the myoblasts which subsequently exit the cell cycle and differentiate into committed precursors, the myocytes. Ultimately, the fusion of myocytes leads to myofiber formation. Here we reveal a role for the transcriptional co-regulator nTRIP6, the nuclear isoform of the LIM-domain protein TRIP6, in the temporal control of myogenesis. In an in vitro model of myogenesis, the expression of nTRIP6 is transiently up-regulated at the transition between proliferation and differentiation, whereas that of the cytosolic isoform TRIP6 is not altered. Selectively blocking nTRIP6 function results in accelerated early differentiation followed by deregulated late differentiation and fusion. Thus, the transient increase in nTRIP6 expression appears to prevent premature differentiation. Accordingly, knocking out the Trip6 gene in satellite cells leads to deregulated skeletal muscle regeneration dynamics in the mouse. Thus, dynamic changes in nTRIP6 expression contributes to the temporal control of myogenesis.
Collapse
Affiliation(s)
- Tannaz Norizadeh Abbariki
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Zita Gonda
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Denise Kemler
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Pavel Urbanek
- Leibniz Institute for Age Research (Fritz Lipmann Institute, FLI), Jena, Germany
| | - Tabea Wagner
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Margarethe Litfin
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research (Fritz Lipmann Institute, FLI), Jena, Germany
| | - Peter Herrlich
- Leibniz Institute for Age Research (Fritz Lipmann Institute, FLI), Jena, Germany
| | - Olivier Kassel
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
188
|
Waisman A, Norris AM, Elías Costa M, Kopinke D. Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle. Sci Rep 2021; 11:11793. [PMID: 34083673 PMCID: PMC8175575 DOI: 10.1038/s41598-021-91191-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/24/2021] [Indexed: 12/05/2022] Open
Abstract
Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.
Collapse
Affiliation(s)
- Ariel Waisman
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina.
| | - Alessandra Marie Norris
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, 32610, FL, USA.,Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, 32610, FL, USA. .,Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
189
|
Alarcin E, Bal-Öztürk A, Avci H, Ghorbanpoor H, Dogan Guzel F, Akpek A, Yesiltas G, Canak-Ipek T, Avci-Adali M. Current Strategies for the Regeneration of Skeletal Muscle Tissue. Int J Mol Sci 2021; 22:5929. [PMID: 34072959 PMCID: PMC8198586 DOI: 10.3390/ijms22115929] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic injuries, tumor resections, and degenerative diseases can damage skeletal muscle and lead to functional impairment and severe disability. Skeletal muscle regeneration is a complex process that depends on various cell types, signaling molecules, architectural cues, and physicochemical properties to be successful. To promote muscle repair and regeneration, various strategies for skeletal muscle tissue engineering have been developed in the last decades. However, there is still a high demand for the development of new methods and materials that promote skeletal muscle repair and functional regeneration to bring approaches closer to therapies in the clinic that structurally and functionally repair muscle. The combination of stem cells, biomaterials, and biomolecules is used to induce skeletal muscle regeneration. In this review, we provide an overview of different cell types used to treat skeletal muscle injury, highlight current strategies in biomaterial-based approaches, the importance of topography for the successful creation of functional striated muscle fibers, and discuss novel methods for muscle regeneration and challenges for their future clinical implementation.
Collapse
Affiliation(s)
- Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34854 Istanbul, Turkey;
| | - Ayca Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Hüseyin Avci
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Translational Medicine Research and Clinical Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Hamed Ghorbanpoor
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
- Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
| | - Ali Akpek
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Gözde Yesiltas
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Tuba Canak-Ipek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| |
Collapse
|
190
|
Kurosaka M, Ogura Y, Sato S, Kohda K, Funabashi T. Transcription factor signal transducer and activator of transcription 6 (STAT6) is an inhibitory factor for adult myogenesis. Skelet Muscle 2021; 11:14. [PMID: 34051858 PMCID: PMC8164270 DOI: 10.1186/s13395-021-00271-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 01/25/2023] Open
Abstract
Background The signal transducer and activator of transcription 6 (STAT6) transcription factor plays a vitally important role in immune cells, where it is activated mainly by interleukin-4 (IL-4). Because IL-4 is an essential cytokine for myotube formation, STAT6 might also be involved in myogenesis as part of IL-4 signaling. This study was conducted to elucidate the role of STAT6 in adult myogenesis in vitro and in vivo. Methods Myoblasts were isolated from male mice and were differentiated on a culture dish to evaluate the change in STAT6 during myotube formation. Then, the effects of STAT6 overexpression and inhibition on proliferation, differentiation, and fusion in those cells were studied. Additionally, to elucidate the myogenic role of STAT6 in vivo, muscle regeneration after injury was evaluated in STAT6 knockout mice. Results IL-4 can increase STAT6 phosphorylation, but STAT6 phosphorylation decreased during myotube formation in culture. STAT6 overexpression decreased, but STAT6 knockdown increased the differentiation index and the fusion index. Results indicate that STAT6 inhibited myogenin protein expression. Results of in vivo experiments show that STAT6 knockout mice exhibited better regeneration than wild-type mice 5 days after cardiotoxin-induced injury. It is particularly interesting that results obtained using cells from STAT6 knockout mice suggest that this STAT6 inhibitory action for myogenesis was not mediated by IL-4 but might instead be associated with p38 mitogen-activated protein kinase phosphorylation. However, STAT6 was not involved in the proliferation of myogenic cells in vitro and in vivo. Conclusion Results suggest that STAT6 functions as an inhibitor of adult myogenesis. Moreover, results suggest that the IL-4-STAT6 signaling axis is unlikely to be responsible for myotube formation. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00271-8.
Collapse
Affiliation(s)
- Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Shuichi Sato
- School of Kinesiology, The University of Louisiana at Lafayette, Lafayette, LA, USA.,New Iberia Research Center, The University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Kazuhisa Kohda
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
191
|
Sreenivasan K, Ianni A, Künne C, Strilic B, Günther S, Perdiguero E, Krüger M, Spuler S, Offermanns S, Gómez-Del Arco P, Redondo JM, Munoz-Canoves P, Kim J, Braun T. Attenuated Epigenetic Suppression of Muscle Stem Cell Necroptosis Is Required for Efficient Regeneration of Dystrophic Muscles. Cell Rep 2021; 31:107652. [PMID: 32433961 PMCID: PMC7242912 DOI: 10.1016/j.celrep.2020.107652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration. Necroptotic cell death of MuSCs is essential for efficient muscle regeneration Inhibition of necroptosis exacerbates adverse crosstalk among mdx muscle stem cells The CHD4/NuRD complex directly represses Ripk3-dependent necroptosis Attenuated recruitment of CHD4 to Ripk3 locus lowers necroptosis threshold in dystrophy
Collapse
Affiliation(s)
- Krishnamoorthy Sreenivasan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Künne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Eusebio Perdiguero
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain
| | - Marcus Krüger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; CECAD Research Center, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Simone Spuler
- Experimental and Clinical Research Center (ECRC), University Clinic Charité Berlin, Berlin, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK)
| | - Pablo Gómez-Del Arco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain; Institute of Rare Diseases Research, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling & Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Pura Munoz-Canoves
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK).
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK); German Center for Lung Research (DZL).
| |
Collapse
|
192
|
Zhu Q, Liang F, Cai S, Luo X, Duo T, Liang Z, He Z, Chen Y, Mo D. KDM4A regulates myogenesis by demethylating H3K9me3 of myogenic regulatory factors. Cell Death Dis 2021; 12:514. [PMID: 34011940 PMCID: PMC8134519 DOI: 10.1038/s41419-021-03799-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Histone lysine demethylase 4A (KDM4A) plays a crucial role in regulating cell proliferation, cell differentiation, development and tumorigenesis. However, little is known about the function of KDM4A in muscle development and regeneration. Here, we found that the conditional ablation of KDM4A in skeletal muscle caused impairment of embryonic and postnatal muscle formation. The loss of KDM4A in satellite cells led to defective muscle regeneration and blocked the proliferation and differentiation of satellite cells. Myogenic differentiation and myotube formation in KDM4A-deficient myoblasts were inhibited. Chromatin immunoprecipitation assay revealed that KDM4A promoted myogenesis by removing the histone methylation mark H3K9me3 at MyoD, MyoG and Myf5 locus. Furthermore, inactivation of KDM4A in myoblasts suppressed myoblast differentiation and accelerated H3K9me3 level. Knockdown of KDM4A in vitro reduced myoblast proliferation through enhancing the expression of the cyclin-dependent kinase inhibitor P21 and decreasing the expression of cell cycle regulator Cyclin D1. Together, our findings identify KDM4A as an important regulator for skeletal muscle development and regeneration, orchestrating myogenic cell proliferation and differentiation.
Collapse
Affiliation(s)
- Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Feng Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Xiaorong Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China.
| |
Collapse
|
193
|
Chaiyasing R, Ishikawa T, Warita K, Hosaka YZ. Absence of estrogen receptors delays myoregeneration and leads to intermuscular adipogenesis in a low estrogen status: Morphological comparisons in estrogen receptor alpha and beta knock out mice. J Vet Med Sci 2021; 83:1022-1030. [PMID: 33967186 PMCID: PMC8349812 DOI: 10.1292/jvms.20-0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the function of estrogen receptors (ERs) in myoregeneration and intermuscular adipogenesis. Ovariectomized (OVX) ERα knockout
(KO) mice and ERβ KO mice were used to assess the effect of estrogen on the myoregenerative process. Tibialis anterior muscle was collected on days 7, 10, and
14 after cardiotoxin injection to assess myotube morphology and adipogenesis area. Regenerated myotubes from OVX-ERβ KO mice were consistently smaller in
diameter than those from OVX-ERα KO and OVX-wild-type mice, whereas the adipogenesis area of OVX-ERβ KO mice was consistently greater than that of the other
types. Therefore, ERβ may be an influential factor in promoting myoregeneration and adipogenesis inhibition compared to ERα.
Collapse
Affiliation(s)
- Rattanatrai Chaiyasing
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Faculty of Veterinary Sciences, Office of Academic Affairs, Maha Sarakham University, Maha Sarakham 44000, Thailand
| | - Takuro Ishikawa
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
194
|
Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell Signal 2021; 84:110036. [PMID: 33971280 DOI: 10.1016/j.cellsig.2021.110036] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington 2052, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; Fundación Ciencia & Vida, 7780272 Santiago, Chile
| |
Collapse
|
195
|
Pruller J, Hofer I, Ganassi M, Heher P, Ma MT, Zammit PS. A human Myogenin promoter modified to be highly active in alveolar rhabdomyosarcoma drives an effective suicide gene therapy. Cancer Gene Ther 2021; 28:427-441. [PMID: 32973362 PMCID: PMC8119243 DOI: 10.1038/s41417-020-00225-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022]
Abstract
Rhabdomyosarcoma is a rare childhood soft tissue cancer whose cells resemble poorly differentiated skeletal muscle, expressing myogenic proteins including MYOGENIN. Alveolar rhabdomyosarcoma (ARMS) accounts for ~40% of cases and is associated with a poorer prognosis than other rhabdomyosarcoma variants, especially if containing the chromosomal translocation generating the PAX3-FOXO1 hybrid transcription factor. Metastasis is commonly present at diagnosis, with a five-year survival rate of <30%, highlighting the need for novel therapeutic approaches. We designed a suicide gene therapy by generating an ARMS-targeted promoter to drive the herpes simplex virus thymidine kinase (HSV-TK) suicide gene. We modified the minimal human MYOGENIN promoter by deleting both the NF1 and MEF3 transcription factor binding motifs to produce a promoter that is highly active in ARMS cells. Our bespoke ARMS promoter driving HSV-TK efficiently killed ARMS cells in vitro, but not skeletal myoblasts. Using a xenograft mouse model, we also demonstrated that ARMS promoter-HSV-TK causes apoptosis of ARMS cells in vivo. Importantly, combining our suicide gene therapy with standard chemotherapy agents used in the treatment of rhabdomyosarcoma, reduced the effective drug dose, diminishing deleterious side effects/patient burden. This modified, highly ARMS-specific promoter could provide a new therapy option for this difficult-to-treat cancer.
Collapse
Affiliation(s)
- Johanna Pruller
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| | - Isabella Hofer
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Massimo Ganassi
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Philipp Heher
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Michelle T Ma
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, SE1 7EH, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
196
|
Rahman FA, Quadrilatero J. Mitochondrial network remodeling: an important feature of myogenesis and skeletal muscle regeneration. Cell Mol Life Sci 2021; 78:4653-4675. [PMID: 33751143 PMCID: PMC11072563 DOI: 10.1007/s00018-021-03807-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The remodeling of the mitochondrial network is a critical process in maintaining cellular homeostasis and is intimately related to mitochondrial function. The interplay between the formation of new mitochondria (biogenesis) and the removal of damaged mitochondria (mitophagy) provide a means for the repopulation of the mitochondrial network. Additionally, mitochondrial fission and fusion serve as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been characterised in multiple tissue- and cell-types, and under various conditions. In skeletal muscle, the robust remodeling of the mitochondrial network is observed, particularly after injury where large portions of the tissue/cell structures are damaged. The significance of mitochondrial remodeling in regulating skeletal muscle regeneration has been widely studied, with alterations in mitochondrial remodeling processes leading to incomplete regeneration and impaired skeletal muscle function. Needless to say, important questions related to mitochondrial remodeling and skeletal muscle regeneration still remain unanswered and require further investigation. Therefore, this review will discuss the known molecular mechanisms of mitochondrial network remodeling, as well as integrate these mechanisms and discuss their relevance in myogenesis and regenerating skeletal muscle.
Collapse
Affiliation(s)
- Fasih Ahmad Rahman
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
197
|
Mankowski RT, Laitano O, Clanton TL, Brakenridge SC. Pathophysiology and Treatment Strategies of Acute Myopathy and Muscle Wasting after Sepsis. J Clin Med 2021; 10:1874. [PMID: 33926035 PMCID: PMC8123669 DOI: 10.3390/jcm10091874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis survivors experience a persistent myopathy characterized by skeletal muscle weakness, atrophy, and an inability to repair/regenerate damaged or dysfunctional myofibers. The origins and mechanisms of this persistent sepsis-induced myopathy are likely complex and multifactorial. Nevertheless, the pathobiology is thought to be triggered by the interaction between circulating pathogens and impaired muscle metabolic status. In addition, while in the hospital, septic patients often experience prolonged periods of physical inactivity due to bed rest, which may exacerbate the myopathy. Physical rehabilitation emerges as a potential tool to prevent the decline in physical function in septic patients. Currently, there is no consensus regarding effective rehabilitation strategies for sepsis-induced myopathy. The optimal timing to initiate the rehabilitation intervention currently lacks consensus as well. In this review, we summarize the evidence on the fundamental pathobiological mechanisms of sepsis-induced myopathy and discuss the recent evidence on in-hospital and post-discharge rehabilitation as well as other potential interventions that may prevent physical disability and death of sepsis survivors.
Collapse
Affiliation(s)
- Robert T. Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32603, USA
| | - Orlando Laitano
- Department of Nutrition and Integrated Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA;
| | | |
Collapse
|
198
|
Vieira WF, Kenzo-Kagawa B, Alvares LE, Cogo JC, Baranauskas V, da Cruz-Höfling MA. Exploring the ability of low-level laser irradiation to reduce myonecrosis and increase Myogenin transcription after Bothrops jararacussu envenomation. Photochem Photobiol Sci 2021; 20:571-583. [PMID: 33895984 DOI: 10.1007/s43630-021-00041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Envenoming caused by snakebites is a very important neglected tropical disease worldwide. The myotoxic phospholipases present in the bothropic venom disrupt the sarcolemma and compromise the mechanisms of energy production, leading to myonecrosis. Photobiomodulation therapy (PBMT) has been used as an effective tool to treat diverse cases of injuries, such as snake venom-induced myonecrosis. Based on that, the aim of this study was to analyze the effects of PBMT through low-level laser irradiation (904 nm) on the muscle regeneration after the myonecrosis induced by Bothrops jararacussu snake venom (Bjssu) injection, focusing on myogenic regulatory factors expression, such as Pax7, MyoD, and Myogenin (MyoG). Male Swiss mice (Mus musculus), 6-8-week-old, weighing 22 ± 3 g were used. Single sub-lethal Bjssu dose or saline was injected into the right mice gastrocnemius muscle. At 3, 24, 48, and 72 h after injections, mice were submitted to PBMT treatment. When finished the periods of 48 and 72 h, mice were euthanized and the right gastrocnemius were collected for analyses. We observed extensive inflammatory infiltrate in all the groups submitted to Bjssu injections. PBMT was able to reduce the myonecrotic area at 48 and 72 h after envenomation. There was a significant increase of MyoG mRNA expression at 72 h after venom injection. The data suggest that beyond the protective effect promoted by PBMT against Bjssu-induced myonecrosis, the low-level laser irradiation was able to stimulate the satellite cells, thus enhancing the muscle repair by improving myogenic differentiation.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil.,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bruno Kenzo-Kagawa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Carlos Cogo
- Faculty of Biomedical Engineering, Brazil University, Itaquera - São Paulo, SP, Brazil
| | - Vitor Baranauskas
- Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil. .,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
199
|
Davegårdh C, Säll J, Benrick A, Broholm C, Volkov P, Perfilyev A, Henriksen TI, Wu Y, Hjort L, Brøns C, Hansson O, Pedersen M, Würthner JU, Pfeffer K, Nilsson E, Vaag A, Stener-Victorin E, Pircs K, Scheele C, Ling C. VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun 2021; 12:2431. [PMID: 33893273 PMCID: PMC8065135 DOI: 10.1038/s41467-021-22068-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39+/- mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Johanna Säll
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Christa Broholm
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tora Ida Henriksen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yanling Wu
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Line Hjort
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Brøns
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Ola Hansson
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
200
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|