151
|
Abstract
The foundations of experimental hematology were laid by histologists, and while their contributions were enormous, they were limited in their interpretation of very dynamic processes by the static nature of the methodology. The middle of the twentieth century saw the introduction of techniques for hematopoietic cell marking and development of in vitro and in vivo assays for primitive hematopoietic cells, allowing dynamic studies of hematopoiesis. Paralleling this was an understanding of cellular immunology with the discovery of the role of the thymus and the identification of T and B lymphocyte lineages. In the 1960s a series of ontogenetic studies in birds and subsequently in mice revealed that hematopoietic and lymphoid development involved migration streams of primitive cells that colonized developing primary lymphoid organs as well as spleen, marrow, and liver. The yolk sac was proposed as the ultimate origin of these lympho-hematopoietic precursors. Subsequent studies identified a region associated with the dorsal aorta as the primary site of "definitive" stem cells. These opposing views are currently achieving a compromise that recognizes that both sites contribute stem cells involved in seeding the developing tissues. The clear distinction between the local origin of the inducing microenvironment provided by the endoderm or by stroma derived from mesenchymal stem cells of mesodermal origin, and the immigrant origin of the hematopoietic stem cells and progenitors, raises intriguing questions in the current climate of stem cell plasticity, cell fusion, and discovery of stem cells in adult marrow with the capacity to generate hematopoiesis as well as other mesodermal, ectodermal, and endodermal lineages.
Collapse
Affiliation(s)
- Malcolm A S Moore
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
152
|
Göthert JR, Gustin SE, van Eekelen JAM, Schmidt U, Hall MA, Jane SM, Green AR, Göttgens B, Izon DJ, Begley CG. Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 2004; 104:1769-77. [PMID: 15187022 DOI: 10.1182/blood-2003-11-3952] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor growth is dependent in part on "neoangiogenesis." Functional involvement of bone marrow (BM)-derived cells in this process has been demonstrated. However, it remains controversial as to whether tumor endothelium itself is BM derived. Here we sought to address this issue with an endothelial-specific, inducible transgenic model. We generated Cretransgenic mice (endothelial-SCL-Cre-ER(T)) using the tamoxifen-inducible Cre-ER(T) recombinase driven by the 5' endothelial enhancer of the stem cell leukemia (SCL) locus. These mice were intercrossed with Cre reporter strains in which beta-galactosidase (LacZ) or enhanced yellow fluorescent protein (EYFP) are expressed upon Cre-mediated recombination. After tamoxifen administration, endothelial LacZ staining was observed in embryonic and adult tissues. Cre-mediated recombination was also observed in newly generated tumor endothelium. In adult BM cells we could only detect trace amounts of recombination by flow cytometry. Subsequently, BM from endothelial-SCL-Cre-ER(T);R26R mice was transplanted into irradiated recipients. When tumors were grown in recipient mice, which received tamoxifen, no tumor LacZ staining was detected. However, when tumors were grown in endothelial-SCL-Cre-ER(T);R26R mice 3 weeks after the cessation of tamoxifen treatment, there was widespread endothelial LacZ staining present. Thus, this genetic model strongly suggests that BM cells do not contribute to tumor endothelium and demonstrates the lineage relation between pre-existing endothelium and newly generated tumor endothelial cells.
Collapse
Affiliation(s)
- Joachim R Göthert
- Division of Cancer Biology, Telethon Institute for Child Health Research, Centre for Child Health Research and Western Australian Institute for Medical Research, University of Western Australia, West Perth, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Amano K, Okigaki M, Adachi Y, Fujiyama S, Mori Y, Kosaki A, Iwasaka T, Matsubara H. Mechanism for IL-1 beta-mediated neovascularization unmasked by IL-1 beta knock-out mice. J Mol Cell Cardiol 2004; 36:469-480. [PMID: 15081307 DOI: 10.1016/j.yjmcc.2004.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 01/05/2004] [Accepted: 01/08/2004] [Indexed: 11/16/2022]
Abstract
We have reported that interleukin-1 beta (IL-1 beta) upregulates cardiac expression of vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2), raising the possibility that IL-1 beta plays an important role in VEGF-mediated neovascularization. In this study, we examined the cellular mechanism for ischemia-induced neovascularization using IL-1 beta knock-out (-/-) mice. Recovery of blood perfusion in ischemic hindlimb in IL-1 beta-/- mice was markedly (43% decrease) impaired as compared with the wild-type mice. CD31(+) vessel numbers and Ki-67(+) neo-capillaries were significantly (P < 0.01) decreased 44% and 68%, respectively. IL-1 beta expression was localized in the capillary vessels in ischemic limb muscles. Ischemia-induced expressions of hypoxia-inducible factor 1 alpha (HIF-1 alpha), VEGF, its receptor VEGFR-2 and vascular cell adhesion molecule-1 (VCAM-1) were markedly inhibited in the IL-1 beta-/- mice. Hindlimb ischemia-induced an increase (1.22% out of total nuclear cell) in CD34(-)/B220(-)/CD3(-)/Flk-1(+) hematopoietic stem cell population in peripheral blood in the wild-type mice, whereas in the IL-1 beta-/- mice such increase was only 0.09%. Injection of IL-1 beta protein into the wild-type mice markedly increased the ratio of the CD34(-)/B220(-)/CD3(-)/Flk-1(+) cell population (from 0.03% to 0.7%) in the peripheral blood associated with an increase in the number of endothelial cells. Such IL-1 beta-mediated increases in cell numbers were blocked by co-injection of anti-VEGF antibody. CD34(-)/B220(-)CD3(-)Flk-1(+) cells trans-differentiated into eNOS- and CD31-expressing endothelial cells in vivo and in vitro. This study demonstrates that IL-1 beta plays a key role in ischemia-induced neovascularization by mobilizing CD34(-)/B220(-)CD3(-)Flk-1(+) endothelial precursor cells in a VEGF-dependent manner as well as by upregulating expressions of VEGF, VEGFR-2 and adhesion molecules on endothelial cells.
Collapse
Affiliation(s)
- Katsuya Amano
- Department of Medicine II and Cardiovascular Center, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka 570 8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
Vascular endothelial growth factor (VEGF) and stem cell factor (SCF) act as growth factors for the hemangioblast, an embryonic progenitor of the hematopoietic and endothelial lineages. Because thrombopoietin (TPO) and its receptor, c-Mpl, regulate primitive hematopoietic populations, including bone marrow hematopoietic stem cells, we investigated whether TPO acts on the hemangioblasts that derive from differentiation of embryonic stem cells in vitro. Reverse transcriptase polymerase chain reaction analysis detected expression of c-Mpl beginning on day 3 of embryoid body differentiation when the hemangioblast first arises. In assays of the hemangioblast colony-forming cell (BL-CFC), TPO alone supported BL-CFC formation and nearly doubled the number of BL-CFC when added together with VEGF and SCF. When replated under the appropriate conditions, TPO-stimulated BL-CFC gave rise to secondary hematopoietic colonies, as well as endothelial cells, confirming their nature as hemangioblasts. Addition of a neutralizing anti-VEGF antibody did not block TPO enhancement of BL-CFC formation, suggesting that TPO acts independently of VEGF. These results establish that Mpl signaling plays a role in the earliest stages of hematopoietic development and that TPO represents a third growth factor influencing hemangioblast formation.
Collapse
|
155
|
Abstract
Hematopoiesis and vasculogenesis in the mammalian embryo begin in the blood islands of the yolk sac and continue, somewhat later, within the embryo proper. A subset of the first endothelial and hematopoietic cells of the yolk sac arise in close spatial and temporal association, apparently from a common mesodermal progenitor, the "hemangioblast." The mechanisms that control formation of hemangioblast and embryonic hematopoietic and endothelial (angioblastic) stem/progenitor cells are still not well understood. Formation of these cell types from nascent mesoderm requires signals from an adjacent outer layer of primitive (visceral) endoderm. Indian hedgehog (Ihh), a member of the hedgehog family of extracellular morphogens, is secreted by visceral endoderm and alone is sufficient to induce hematopoiesis and vasculogenesis in explanted embryos. While gene targeting studies in mice support a role for hedgehog signaling in these processes in vivo, they also suggest that additional molecules (perhaps, for example, Wnt proteins) are required for induction and patterning of hematopoietic and vascular mesoderm. Indian hedgehog likely functions through upregulation of genes encoding other signaling molecules, such as bone morphogenetic protein (Bmp)-4, in the target tissue. This review will focus on hematopoietic and vascular development in the early mouse embryo and will discuss potential implications of recent studies for stem cell transplantation in humans.
Collapse
Affiliation(s)
- Margaret H Baron
- Department of Medicine, Molecular, Brookdale Department of Cell and Developmental Biology, Ruttenberg Cancer Center, Mount Sinai School of Medicine, 1425 Madison Avenue 11-70B, Box 1079, New York, NY 10029, USA.
| |
Collapse
|
156
|
Affiliation(s)
- Marion Kennedy
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1496, New York, New York 10029-6574, USA
| | | |
Collapse
|
157
|
Fons P, Herault JP, Delesque N, Tuyaret J, Bono F, Herbert JM. VEGF-R2 and neuropilin-1 are involved in VEGF-A-induced differentiation of human bone marrow progenitor cells. J Cell Physiol 2004; 200:351-9. [PMID: 15254962 DOI: 10.1002/jcp.20076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor growth and metastasis require the generation of new blood vessels, a process known as neo-angiogenesis. Recent studies have indicated that early tumor vascularization is characterized by the differentiation and mobilization of human bone marrow cells. Vascular endothelial growth factor-A (VEGF-A) is one of the growth factors, which enhances their differentiation into endothelial cells, but little is known about the implication of the VEGF-receptor tyrosine kinases and about the implication of the VEGF-R co-receptor, neuropilin-1, in this process. In this context, the identification of the molecular pathways that support the proliferation and differentiation of vascular stem and progenitor cells was investigated in order to define the pharmaceutical targets involved in tissue vascularization associated with this process. For this purpose, an in vitro model of differentiation of human bone marrow AC133+ (BM-AC133+) cells into vascular precursors was used. In this work, we have demonstrated for the first time that the effect of VEGF-A on BM-AC133+ cells relies on an early action of VEGF-A on the expression of its tyrosine kinase receptors followed by an activation of a VEGF-R2/neuropilin-1-dependent signaling pathway. This signaling promotes the differentiation of BM-AC133+ cells into endothelial precursor cells, followed by the proliferation of these differentiated cells. Altogether, these results strongly suggest that VEGF inhibitors, acting at the level of VEGF-R2 and/or neuropilin-1, by inhibiting differentiation and proliferation of these cells, could be potentially active compounds to prevent progenitor cells to be involved in tumor angiogenesis leading to tumor growth.
Collapse
Affiliation(s)
- Pierre Fons
- Cardiovascular-Thrombosis Research Department, Sanofi-Synthélabo Research, Toulouse, France
| | | | | | | | | | | |
Collapse
|
158
|
Licht AH, Raab S, Hofmann U, Breier G. Endothelium-specific Cre recombinase activity in flk-1-Cre transgenic mice. Dev Dyn 2004; 229:312-8. [PMID: 14745955 DOI: 10.1002/dvdy.10416] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The use of the Cre-loxP recombination system allows the conditional inactivation of genes in mice. The availability of transgenic mice in which the Cre recombinase expression is highly cell type specific is a prerequisite to successfully use this system. We previously have characterized regulatory regions of the mouse flk-1 gene sufficient for endothelial cell-specific expression of the LacZ reporter gene in transgenic mice. These regions were fused to the Cre recombinase gene, and transgenic mouse lines were generated. In the resulting flk-1-Cre transgenic mice, specificity of Cre activity was determined by cross-breeding with the reporter mouse lines Rosa26R or CAG-CAT-LacZ. We examined double-transgenic mice at different stages of embryonic development (E9.5-E16.5) and organs of adult animals by LacZ staining. Strong endothelium-specific staining of most vascular beds was observed in embryos older than E11.5 in one or E13.5 in a second line. In addition, the neovasculature of experimental BFS-1 tumors expressed the transgene. These lines will be valuable for the conditional inactivation of floxed target genes in endothelial cells of the embryonic vascular system.
Collapse
Affiliation(s)
- Alexander H Licht
- Department of Molecular Cell Biology, Max Planck Institute for Physiological and Clinical Research, Bad Nauheim, Germany
| | | | | | | |
Collapse
|
159
|
Abstract
Though a topic of medical interest for centuries, our understanding of vertebrate hematopoietic or "blood-forming" tissue development has improved greatly only in recent years and given a series of scientific and technical milestones. Key among these observations was the description of procedures that allowed the transplantation of blood-forming activity. Beyond this, other advances include the creation of a variety of knock-out animals (mice and more recently zebrafish), microdissection of embryonic and fetal blood-forming tissues, hematopoietic stem (HSC) and progenitor cell (HPC) colony-forming assays, the discovery of cytokines with defined hematopoietic activities, gene transfer technologies, and the description of lineage-specific surface antigens for the identification and purification of pluripotent and differentiated blood cells. The availability of both murine and human embryonic stem cells (ESC) and the delineation of in vitro systems to direct their differentiation have now been added to this analytical arsenal. Such tools have allowed researchers to interrogate the complex developmental processes behind both primitive (yolk sac or extraembryonic) and definitive (intraembryonic) hematopoietic tissue formation. Using ES cells, we hope to not only gain additional basic insights into hematopoietic development but also to develop platforms for therapeutic use in patients suffering from hematological disease. In this review, we will focus on points of convergence and divergence between murine and human hematopoiesis in vivo and in vitro, and use these observations to evaluate the literature regarding attempts to create hematopoietic tissue from embryonic stem cells, the pitfalls encountered therein, and what challenges remain.
Collapse
Affiliation(s)
- M William Lensch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
160
|
Cerdan C, Rouleau A, Bhatia M. VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 2003; 103:2504-12. [PMID: 14656883 DOI: 10.1182/blood-2003-07-2563] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Combinations of hematopoietic cytokines and the ventral mesoderm inducer BMP-4 have recently been shown to augment hematopoietic cell fate of human embryonic stem cells (hESCs) during embryoid body (EB) development. However, factors capable of regulating lineage commitment of hESC-derived hematopoiesis have yet to be reported. Here we show that vascular endothelial growth factor (VEGF-A165) selectively promotes erythropoietic development from hESCs. Effects of VEGF-A165 were dependent on the presence of hematopoietic cytokines and BMP-4, and could be augmented by addition of erythropoietin (EPO). Treatment of human EBs with VEGF-A165 increased the frequency of cells coexpressing CD34 and the VEGF-A165 receptor KDR, as well as cells expressing erythroid markers. Although fetal/adult globins were unaffected, VEGF-A165 induced the expression of embryonic zeta (zeta) and epsilon (epsilon) globins, and was accompanied by expression of the hematopoietic transcription factor SCL/Tal-1. In addition to promoting erythropoietic differentiation from hESCs, the presence of VEGF-A165 enhanced the in vitro self-renewal potential of primitive hematopoietic cells capable of erythroid progenitor capacity. Our study demonstrates a role for VEGF-A165 during erythropoiesis of differentiating hESCs, thereby providing the first evidence for a factor capable of regulating hematopoietic lineage development of hESCs.
Collapse
Affiliation(s)
- Chantal Cerdan
- Robarts Research Institute, Stem Cell Biology and Regenerative Medicine, The University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
161
|
Nadin BM, Goodell MA, Hirschi KK. Phenotype and hematopoietic potential of side population cells throughout embryonic development. Blood 2003; 102:2436-43. [PMID: 12805065 DOI: 10.1182/blood-2003-01-0118] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adult murine bone marrow hematopoietic stem cells (HSCs) can be purified by sorting Hoechst 33342-extruding side population (SP) cells. Herein we investigated whether SP cells reside within embryonic tissues and exhibit hematopoietic progenitor activity. We isolated yolk sac (YS) and embryonic tissues 7.5 to 11.5 days after coitus (dpc), resolved an SP in each, and demonstrated that these SP cells exhibit distinct phenotypic and functional characteristics throughout development. YS and embryonic SP isolated 8.0 dpc expressed vascular endothelial-cadherin (VE-cadherin) and vascular endothelial receptor 2 (Flk-1), markers not expressed by bone marrow SP but expressed by endothelial cells and progenitors. SP at this stage did not express CD45 or produce hematopoietic colonies in vitro. In contrast, SP isolated 9.5 to 11.5 dpc contained a significantly higher proportion of cells expressing cKit and CD45, markers highly expressed by bone marrow SP. Furthermore, YS SP isolated 9.5 to 11.5 dpc demonstrated 40- to 90-fold enrichment for hematopoietic progenitor activity over unfractionated tissue. Our data indicate that YS and embryonic SP cells detected prior to the onset of circulation express the highest levels of endothelial markers and do not generate blood cells in vitro; however, as development progresses, they acquire hematopoietic potential and phenotypic characteristics similar to those of bone marrow SP.
Collapse
Affiliation(s)
- Brian M Nadin
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
162
|
de Pooter RF, Cho SK, Carlyle JR, Zúñiga-Pflücker JC. In vitro generation of T lymphocytes from embryonic stem cell-derived prehematopoietic progenitors. Blood 2003; 102:1649-53. [PMID: 12738664 DOI: 10.1182/blood-2003-01-0224] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Embryonic stem (ES) cells can differentiate into most blood cells in vitro, providing a powerful model system to study hematopoiesis. However, ES cell-derived T lymphocytes have not been generated in vitro, and it was unresolved whether such potential is absent or merely difficult to isolate. Because the latter case might result from rapid commitment to non-T-cell fates, we isolated ES cell-derived prehematopoietic precursors for reconstitution of fetal thymic organ cultures. We found a transient Flk1+CD45- subset of these precursors generated T lymphocytes in vitro, and the use of reaggregate thymic organ cultures greatly enhanced reconstitution frequency. These findings reveal that ES cells can exhibit in vitro T-cell potential, but this is restricted to early stages of ES cell differentiation. Moreover, the results support the notion that the thymic microenvironment can induce T-cell differentiation from a subset of prehematopoietic progenitors and suggest deficient migration into intact thymi hindered previous attempts to generate T cells in vitro from ES cell-derived progenitors. These findings demonstrate that a defined subset of ES cells has the potential to generate T cells in vitro and could contribute to greater understanding of the molecular events of hematopoietic induction and T-cell lineage commitment.
Collapse
Affiliation(s)
- Renee F de Pooter
- Department of Immunology, University of Toronto, Sunnybrook & Women's College Health Sciences Centre, 2075 Bayview Ave, Rm A-331, Toronto, ON, M4N 3M5, Canada.
| | | | | | | |
Collapse
|
163
|
Johnson KD, Grass JA, Park C, Im H, Choi K, Bresnick EH. Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain. Mol Cell Biol 2003; 23:6484-93. [PMID: 12944475 PMCID: PMC193707 DOI: 10.1128/mcb.23.18.6484-6493.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II (Pol II) can associate with regulatory elements far from promoters. For the murine beta-globin locus, Pol II binds the beta-globin locus control region (LCR) far upstream of the beta-globin promoters, independent of recruitment to and activation of the betamajor promoter. We describe here an analysis of where Pol II resides within the LCR, how it is recruited to the LCR, and the functional consequences of recruitment. High-resolution analysis of the distribution of Pol II revealed that Pol II binding within the LCR is restricted to the hypersensitive sites. Blocking elongation eliminated the synthesis of genic and extragenic transcripts and eliminated Pol II from the betamajor open reading frame. However, the elongation blockade did not redistribute Pol II at the hypersensitive sites, suggesting that Pol II is recruited to these sites. The distribution of Pol II did not strictly correlate with the distributions of histone acetylation and methylation. As Pol II associates with histone-modifying enzymes, Pol II tracking might be critical for establishing and maintaining broad histone modification patterns. However, blocking elongation did not disrupt the histone modification pattern of the beta-globin locus, indicating that Pol II tracking is not required to maintain the pattern.
Collapse
Affiliation(s)
- Kirby D Johnson
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, Medical School, University of Wisconsin, 1300 University Avenue, 383 Medical Sciences Center, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
164
|
Moser M, Binder O, Wu Y, Aitsebaomo J, Ren R, Bode C, Bautch VL, Conlon FL, Patterson C. BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol 2003; 23:5664-79. [PMID: 12897139 PMCID: PMC166349 DOI: 10.1128/mcb.23.16.5664-5679.2003] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of endothelial cell precursors is essential for vasculogenesis. We screened for differentially expressed transcripts in endothelial cell precursors in developing mouse embryoid bodies. We cloned a complete cDNA encoding a protein that contains an amino-terminal signal peptide, five cysteine-rich domains, a von Willebrand D domain, and a trypsin inhibitor domain. We termed this protein BMPER (bone morphogenetic protein [BMP]-binding endothelial cell precursor-derived regulator). BMPER is specifically expressed in flk-1-positive cells and parallels the time course of flk-1 induction in these cells. In situ hybridization in mouse embryos demonstrates dorsal midline staining and staining of the aorto-gonadal-mesonephric region, which is known to host vascular precursor cells. BMPER is a secreted protein that directly interacts with BMP2, BMP4, and BMP6 and antagonizes BMP4-dependent Smad5 activation. In Xenopus embryos, ventral injection of BMPER mRNA results in axis duplication and downregulation of the expression of Xvent-1 (downstream target of Smad signaling). In an embryoid body differentiation assay, BMP4-dependent differentiation of endothelial cells in embryoid bodies is also antagonized by BMPER. Taken together, our data indicate that BMPER is a novel BMP-binding protein that is expressed by endothelial cell precursors, has BMP-antagonizing activity, and may play a role in endothelial cell differentiation by modulating local BMP activity.
Collapse
Affiliation(s)
- Martin Moser
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Bayrak-Toydemir P, Pergament E, Fiddler M. Applying a test system for discriminating fetal from maternal cells. Prenat Diagn 2003; 23:619-24. [PMID: 12913866 DOI: 10.1002/pd.656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The objectives of this study were to enhance and apply a simple system capable of testing the capacity of putative, gender-independent fetal cell markers, individually and in combination, to discriminate between fetal and maternal cells. METHODS Chorionic villi tissue obtained from 25 male pregnancies at 10 to 12 weeks' gestation served as the experimental group. Following removal of villi pieces for clinical use, unattached cells were collected by centrifugation of the CVS fluid, fixed in the tube, and used as a source of mixed fetal and maternal cells. Blood obtained from a fetus at 13 weeks' gestation served as a positive control. Peripheral blood from two adult males served as negative controls. Antibodies to three possible fetal markers were tested using immunohistochemical techniques: anti-Flk-1, anti-epsilon globin, and anti-CD71. Each antibody was used alone and in combination in conjunction with fluorescent in situ hybridization (FISH) of X and Y chromosomes to confirm that positively stained cells were in fact fetal in origin. RESULTS On CVS samples, the average predictive value for anti-Flk-1 was 35.8%, 76.2% for anti-CD71, and 90.5% for anti-epsilon. The combination of anti-epsilon and anti-CD71 antibodies identifying a fetal cell was 87.2% and the combined use of single and double antibodies gave a value of 82.7%. The combination of anti-epsilon globin and anti-CD71 increased the sensitivity of identifying pure fetal blood cells from 63%, for anti-epsilon alone, and 67%, for anti-CD71 alone, to 86%. CONCLUSION Although anti-Flk-1 has been reported to be a successful marker of fetal cells, the results in this test system did not support this finding. This work supports the use of CVS washings containing both fetal and maternal cells as a viable test system for assessing antigenic markers. The combination of anti-CD71 and anti-epsilon as fetal identifiers may increase the chances of identifying a fetal cell without compromising the predictive value.
Collapse
|
166
|
Abstract
The vasculature is one of the most important and complex organs in the mammalian body. The first functional organ to form during embryonic development, the intricately branched network of endothelial and supporting periendothelial cells is essential for the transportation of oxygen and nutrients to and the removal of waste products from the tissues. Serious disruptions in the formation of the vascular network are lethal early in post-implantation development, while the maintenance of vessel integrity and the control of vessel physiology and hemodynamics have important consequences throughout embryonic and adult life. A full understanding of the signaling pathways of vascular development is important not just for understanding normal development but because of the importance of reactivation of angiogenic pathways in disease states. Clinically there is a need to develop therapies to promote new blood vessel formation in situations of severe tissue ischemia, such as coronary heart disease. In addition, there is considerable interest in developing angiogenic inhibitors to block the new vessel growth that solid tumors promote in host tissue to enhance their own growth. Already studies on the signaling pathways of normal vascular development have provided new targets for therapeutic intervention in both situations. Further understanding of the complexities of the pathways should help refine such strategies.
Collapse
Affiliation(s)
- Janet Rossant
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Molecular and Medical Genetics, University of Toronto, 600 University Avenue, Ontario, M5G 1X5, Canada.
| | | |
Collapse
|
167
|
Im H, Park C, Feng Q, Johnson KD, Kiekhaefer CM, Choi K, Zhang Y, Bresnick EH. Dynamic regulation of histone H3 methylated at lysine 79 within a tissue-specific chromatin domain. J Biol Chem 2003; 278:18346-52. [PMID: 12604594 DOI: 10.1074/jbc.m300890200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications of individual lysine residues of core histones can exert unique functional consequences. For example, methylation of histone H3 at lysine 79 (H3-meK79) has been implicated recently in gene silencing in Saccharomyces cerevisiae. However, the distribution and function of H3-meK79 in mammalian chromatin are not known. We found that H3-meK79 has a variable distribution within the murine beta-globin locus in adult erythroid cells, being preferentially enriched at the active betamajor gene. By contrast, acetylated H3 and H4 and H3 methylated at lysine 4 were enriched both at betamajor and at the upstream locus control region. H3-meK79 was also enriched at the active cad gene, whereas the transcriptionally inactive loci necdin and MyoD1 contained very little H3-meK79. As the pattern of H3-meK79 at the beta-globin locus differed between adult and embryonic erythroid cells, establishment and/or maintenance of H3-meK79 was developmentally dynamic. Genetic complementation analysis in null cells lacking the erythroid and megakaryocyte-specific transcription factor p45/NF-E2 showed that p45/NF-E2 preferentially establishes H3-meK79 at the betamajor promoter. These results support a model in which H3-meK79 is strongly enriched in mammalian chromatin at active genes but not uniformly throughout active chromatin domains. As H3-meK79 is highly regulated at the beta-globin locus, we propose that the murine ortholog of Disruptor of Telomeric Silencing-1-like (mDOT1L) methyltransferase, which synthesizes H3-meK79, regulates beta-globin transcription.
Collapse
Affiliation(s)
- Hogune Im
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Rafii S, Avecilla S, Shmelkov S, Shido K, Tejada R, Moore MAS, Heissig B, Hattori K. Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment. Ann N Y Acad Sci 2003; 996:49-60. [PMID: 12799282 DOI: 10.1111/j.1749-6632.2003.tb03232.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanism by which angiogenic factors recruit bone marrow (BM)-derived quiescent endothelial and hematopoietic stem cells (HSCs) is not known. Here, we report that functional vascular endothelial growth factor receptor-1 (VEGFR1, Flt-1) is expressed on a subpopulation of human CD34(+) and mouse Lin-Sca-1(+)c-Kit(+) BM-repopulating stem cells, conveying signals for recruitment of HSCs and reconstitution of hematopoiesis. Inhibition of VEGFR1 signaling, but not VEGFR2 (Flk-1, KDR), blocked HSC cell cycling, differentiation and hematopoietic recovery after BM suppression, resulting in the demise of the treated mice. Plasma elevation of placental growth factor (PlGF), which signals through VEGFR1, but not VEGFR2, restored hematopoiesis during the early and late phases following BM suppression. The mechanism whereby PlGF enhanced early phases of BM recovery was mediated directly through rapid chemotaxis of readily available VEGFR1(+) BM-repopulating and progenitor cells. The late phase of hematopoietic recovery was driven by PlGF-induced upregulation of matrix metalloproteinase-9 (MMP-9) in the BM, mediating the release of soluble Kit-ligand (sKitL). sKitL increased proliferation and motility of HSCs and progenitor cells, thereby augmenting hematopoietic recovery. PlGF promotes recruitment of VEGFR1(+) HSCs from a quiescent to a proliferative microenvironment within the BM, favoring differentiation, mobilization, and reconstitution of hematopoiesis.
Collapse
Affiliation(s)
- Shahin Rafii
- Cornell University Medical College, New York, New York 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Glade-Bender J, Kandel JJ, Yamashiro DJ. VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 2003; 3:263-76. [PMID: 12662141 DOI: 10.1517/14712598.3.2.263] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is widely accepted that tumour growth beyond a few cubic millimetres cannot occur without the induction of a new vascular supply. Inhibiting the development of new blood vessels (antiangiogenesis) is a potential approach to cancer therapy that has attracted interest in recent years. In theory, this approach should be relatively selective for tumour cells. The endothelial cells which form new vascular networks in tumours are responding to angiogenic stimuli produced by the tumour, but are themselves genetically normal. Endothelium in normal tissue, by contrast, is usually quiescent. Vascular endothelial growth factor (VEGF) is the best-characterised pro-angiogenic factor. It is virtually ubiquitous in human tumours, and higher levels have been correlated with more aggressive disease. Effective blockade of the VEGF pathway has been demonstrated with multiple agents: neutralising antibody, receptor tyrosine kinase inhibitors, and ribozyme or antisense molecules targeting expression. Promising preclinical data document the potential of these agents for tumour growth inhibition and even tumour regression, yet translation of novel therapeutics targeting the VEGF pathway to the clinic has proved a substantial challenge in itself. While showing clear evidence of antitumour activity over a broad spectrum of experimental tumours, the proper selection, dose, timing and sequence of anti-VEGF treatment in human cancer is not at all obvious. Classic Phase I dose escalation trial design may need to be modified, as higher doses may not be optimal in all patients or for all tumours. In addition, alternate or secondary biological end points (e.g., non-progression) may be needed for early phase studies to document true activity, so as not to abandon effective agents. Recent studies of the neutralising antibody bevacizumab, and small molecule tyrosine kinase inhibitor SU5416, demonstrate that, while unlikely to be effective as monotherapy, incorporation of VEGF blockade into cytotoxic regimens may increase overall response rates. However, incorporation may also produce new toxicities, including thromboembolic complications and bleeding. Newer oral agents, such as SU6668, SU11248, PTK787/ZK222584 and ZD6474, are particularly interesting for their potential for chronic therapy. Future clinical trials are likely to build on past experience with stricter entry criteria, supportive care guidelines and the use of surrogate markers.
Collapse
Affiliation(s)
- Julia Glade-Bender
- Division of Pediatric Surgery, College of Physicians and Surgeons at Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
170
|
Wada M, Ebihara Y, Ma F, Yagasaki H, Ito M, Takahashi T, Mugishima H, Takahashi S, Tsuji K. Tunica interna endothelial cell kinase expression and hematopoietic and angiogenic potentials in cord blood CD34+ cells. Int J Hematol 2003; 77:245-52. [PMID: 12731667 DOI: 10.1007/bf02983781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tunica interna endothelial cell kinase (TEK) is expressed in both hematopoietic and endothelial cells and plays a crucial role in hematopoiesis and angiogenesis in mouse development. In humans, however, little is known about the hematopoietic and angiogenic potentials of TEK-expressing cells in umbilical cord blood (CB) cells, which originate during the human fetal period. We therefore compared the hematopoietic and angiogenic abilities of CB CD34+TEK+ and CD34+TEK- cells by using a clonogenic assay and xenotransplantation into immunodeficient NOD/SCID mice. The results showed that colony-forming cells and cells capable of repopulating in NOD/SCID mice were present in both CD34+TEK+ and CD34+TEK- cells and that the hematopoietic activities of the cell types were similar. In contrast, the potential to differentiate into endothelial cells in vivo was greater in the CD34+TEK+ cells. All NOD/SCID mice engrafted with CD34+TEK+ cells had human CD31-expressing and VE-cadherin-expressing endothelial cells in the vessels of the ischemic muscles and/ or human endothelial cells expressing CD31, kinase-insert domain-containing receptor, and endothelial nitric oxide synthase in liver sinusoidal cells, whereas such endothelial cells were detected in only 3 of the 7 recipients engrafted with CD34+TEK- cells. This result has important implications in cell therapy using CB cells for treating hematopoietic disorders and vascular diseases.
Collapse
Affiliation(s)
- Mika Wada
- Department of Pediatrics, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Hirai H, Ogawa M, Suzuki N, Yamamoto M, Breier G, Mazda O, Imanishi J, Nishikawa SI. Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)-1 promoter/enhancer during mouse embryogenesis. Blood 2003; 101:886-93. [PMID: 12393724 DOI: 10.1182/blood-2002-02-0655] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence in various species has suggested that the origin of definitive hematopoiesis is associated with a special subset of endothelial cells (ECs) that maintain the potential to give rise to hematopoietic cells (HPCs). In this study, we demonstrated that a combination of 5'-flanking region and 3' portion of the first intron of the Flk-1 gene (Flk-1 p/e) that has been implicated in endothelium-specific gene expression distinguishes prospectively the EC that has lost hemogenic activity. We assessed the activity of this Flk-1 p/e by embryonic stem (ES) cell differentiation culture and transgenic mice by using the GFP gene conjugated to this unit. The expression of GFP differed from that of the endogenous Flk-1 gene in that it is active in undifferentiated ES cells and inactive in Flk-1(+) lateral mesoderm. Flk-1 p/e becomes active after generation of vascular endothelial (VE)-cadherin(+) ECs. Emergence of GFP(-) ECs preceded that of GFP(+) ECs, and, finally, most ECs expressed GFP both in vitro and in vivo. Cell sorting experiments demonstrated that only GFP(-) ECs could give rise to HPCs and preferentially expressed Runx1 and c-Myb genes that are required for the definitive hematopoiesis. Integration of both GFP(+) and GFP(-) ECs was observed in the dorsal aorta, but cell clusters appeared associated only to GFP(-) ECs. These results indicate that activation of Flk-1 p/e is associated with a process that excludes HPC potential from the EC differentiation pathway and will be useful for investigating molecular mechanisms underlying the divergence of endothelial and hematopoietic lineages.
Collapse
Affiliation(s)
- Hideyo Hirai
- Department of Microbiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Affiliation(s)
- Hajime Kubo
- Molecular/Cancer Biology Laboratory, Haartman Institute, Helsinki University Central Hospital and Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
173
|
Gerber HP, Ferrara N. The role of VEGF in normal and neoplastic hematopoiesis. J Mol Med (Berl) 2003; 81:20-31. [PMID: 12545246 DOI: 10.1007/s00109-002-0397-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 10/15/2002] [Indexed: 02/07/2023]
Abstract
VEGF is a secreted growth factor that mediates its biological effects by binding to two transmembrane tyrosine kinase receptors, VEGFR-1 and VEGFR-2. The VEGF/receptor signaling system is involved in the regulation of two fundamental processes in vertebrates: the formation of blood vessels (angiogenesis) and of blood cells (hematopoiesis). Hematopoietic stem cells, capable of giving rise to all blood cell lineages, are often found in clusters with endothelial cells, the key cell type involved in the formation of blood vessels. Despite such proximity of VEGF-responsive cells, hematopoiesis occurs independently of neoangiogenesis in the adult bone marrow, suggesting that VEGF regulates the two processes by different mechanisms. In support of this hypothesis, the recently identified autocrine loop by which VEGF may control hematopoietic stem cell survival and repopulation, is fundamentally different from its paracrine effects regulating angiogenesis. Furthermore, coexpression of VEGF and its receptors, the prerequisite for autocrine loops, is frequently found in lymphomas and myelomas, suggesting that autocrine loops also play a role in hematological malignancies. Several therapeutic strategies blocking VEGF or VEGF-induced signaling are currently being investigated for the treatment of neoplastic diseases. They differ in their potential to interfere with the autocrine or paracrine effector functions of VEGF during angiogenesis, hematopoiesis, and tumor cell proliferation, properties which may ultimately determine their therapeutic potential.
Collapse
Affiliation(s)
- Hans-Peter Gerber
- Department of Molecular Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
174
|
Fraser ST, Yamashita J, Jakt LM, Okada M, Ogawa M, Nishikawa S, Nishikawa SI. In vitro differentiation of mouse embryonic stem cells: hematopoietic and vascular cell types. Methods Enzymol 2003; 365:59-72. [PMID: 14696337 DOI: 10.1016/s0076-6879(03)65004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Stuart T Fraser
- Laboratory of Molecular Mouse Genetics, Institute for Toxicology, Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Mainz 55131, Germany
| | | | | | | | | | | | | |
Collapse
|
175
|
Miyagi T, Takeno M, Nagafuchi H, Takahashi M, Suzuki N. Flk1+ cells derived from mouse embryonic stem cells reconstitute hematopoiesis in vivo in SCID mice. Exp Hematol 2002; 30:1444-53. [PMID: 12482507 DOI: 10.1016/s0301-472x(02)00961-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Embryonic stem (ES) cells are pluripotent and can differentiate into any cell type, including the hematopoietic lineage. We examined whether hematopoietic progenitor cells derived from ES cells reconstitute hematopoiesis in irradiated SCID mice. MATERIALS AND METHODS ES cells (E14.1, H2K(b)) were cultured for 4 days in semisolid medium containing methylcellulose. Irradiated SCID mice were used as recipients of hematopoietic progenitor cells. Cell surface antigen expression was analyzed by flow cytometry. The spleens of the recipient mice were studied by hematoxylin and eosin staining and immunohistochemical staining. RESULTS After cell culture of ES cells in methylcellulose for 4 days, the cells expressing Flk1 (VEGF receptor 2), a tentative marker of hemangioblasts, were increased, whereas cells expressing CD31 (PECAM-1) and E-cadherin (nonmesodermal adhesion molecule) were dramatically reduced. Flk1+ cells expressed c-kit predominantly. Circulating leukocytes and thrombocytes were increased in irradiated SCID (H2K(d)) mice transplanted with ES cell-derived Flk1+ cells compared with vehicle-injected control mice. H2K(b+) and VE-cadherin(+) vascular endothelial cells were prominent in spleens of the recipient mice. Flow cytometric analysis demonstrated that H2K(b+) cells were increased in the bone marrow of recipient mice. In addition, Flk1+ cells accompanying enhanced c-kit expression preferentially repopulated in the bone marrow, and leukopoiesis and thrombopoiesis of the recipient mice were evident. CONCLUSION The Flk1+ hematopoietic cells derived from ES cells reconstitute hematopoiesis in vivo and may become an alternative donor source for bone marrow transplantation.
Collapse
Affiliation(s)
- Tsukasa Miyagi
- Departments of Immunology and Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | | | | | | | | |
Collapse
|
176
|
Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002; 2:826-35. [PMID: 12415253 DOI: 10.1038/nrc925] [Citation(s) in RCA: 488] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shahin Rafii
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
177
|
Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MAS, Werb Z, Lyden D, Rafii S. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 2002; 8:841-9. [PMID: 12091880 PMCID: PMC2779715 DOI: 10.1038/nm740] [Citation(s) in RCA: 450] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism by which angiogenic factors recruit bone marrow (BM)-derived quiescent endothelial and hematopoietic stem cells (HSCs) is not known. Here, we report that functional vascular endothelial growth factor receptor-1 (VEGFR1) is expressed on human CD34(+) and mouse Lin(-)Sca-1(+)c-Kit(+) BM-repopulating stem cells, conveying signals for recruitment of HSCs and reconstitution of hematopoiesis. Inhibition of VEGFR1, but not VEGFR2, blocked HSC cell cycling, differentiation and hematopoietic recovery after BM suppression, resulting in the demise of the treated mice. Placental growth factor (PlGF), which signals through VEGFR1, restored early and late phases of hematopoiesis following BM suppression. PlGF enhanced early phases of BM recovery directly through rapid chemotaxis of VEGFR1(+) BM-repopulating and progenitor cells. The late phase of hematopoietic recovery was driven by PlGF-induced upregulation of matrix metalloproteinase-9, mediating the release of soluble Kit ligand. Thus, PlGF promotes recruitment of VEGFR1(+) HSCs from a quiescent to a proliferative BM microenvironment, favoring differentiation, mobilization and reconstitution of hematopoiesis.
Collapse
Affiliation(s)
- Koichi Hattori
- Department of Medicine, Cornell University Medical College, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Montfort MJ, Olivares CR, Mulcahy JM, Fleming WH. Adult blood vessels restore host hematopoiesis following lethal irradiation. Exp Hematol 2002; 30:950-6. [PMID: 12160847 DOI: 10.1016/s0301-472x(02)00813-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Accumulating evidence indicates a common stem cell may be responsible for both vasculogenesis and blood cell production during early embryologic development, yet little is known about the fate of these cells during ontogeny. We sought to determine whether hematopoietic potential is associated with normal blood vessels in the adult. MATERIALS AND METHODS Segments of adult thoracic aorta or inferior vena cava were transplanted under the kidney capsule of lethally irradiated recipients (1100 cGy). Radioprotection, colony-forming units (CFUs), and the extent of donor-derived hematopoietic constitution were evaluated using both Ly5 congenic and ROSA26 donor mice. RESULTS As little as 10 mg of transplanted vascular tissue radioprotected 80% of recipients, gave rise to similar numbers of CFUs as 10(5) bone marrow cells and prevented the development of severe anemia. Bromodeoxyuridine labeling studies revealed cell proliferation within the intima of donor vascular tissue within 48 hours of transplantation. ROSA26 donor-derived vascular cells migrated to the recipient spleen; however, CFUs were of host origin, a finding confirmed using sex-mismatched transplants. Although donor-derived cells were readily detected in the peripheral blood 2 to 3 weeks after transplant, they rapidly declined in frequency to approximately 1.0% by 4 weeks and persisted at these levels for more than 1 year. Bone marrow from rescued primary recipients provided radioprotection after transplantation into secondary recipients; however, only CD3(+) donor-derived cells were detected. CONCLUSION These findings demonstrate the presence of a population of cells within normal adult vascular tissue that has the capacity to protect host hematopoietic stem cells from radiation-induced death.
Collapse
Affiliation(s)
- Megan J Montfort
- Division of Hematology and Medical Oncology, BMT Program, Oregon Health & Science University, Portland 97201-3098, USA
| | | | | | | |
Collapse
|
179
|
Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, Hong K, Marsters JC, Ferrara N. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002; 417:954-8. [PMID: 12087404 DOI: 10.1038/nature00821] [Citation(s) in RCA: 521] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a principal regulator of blood vessel formation and haematopoiesis, but the mechanisms by which VEGF differentially regulates these processes have been elusive. Here we describe a regulatory loop by which VEGF controls survival of haematopoietic stem cells (HSCs). We observed a reduction in survival, colony formation and in vivo repopulation rates of HSCs after ablation of the VEGF gene in mice. Intracellularly acting small-molecule inhibitors of VEGF receptor (VEGFR) tyrosine kinase dramatically reduced colony formation of HSCs, thus mimicking deletion of the VEGF gene. However, blocking VEGF by administering a soluble VEGFR-1, which acts extracellularly, induced only minor effects. These findings support the involvement in HSC survival of a VEGF-dependent internal autocrine loop mechanism (that is, the mechanism is resistant to inhibitors that fail to penetrate the intracellular compartment). Not only ligands selective for VEGF and VEGFR-2 but also VEGFR-1 agonists rescued survival and repopulation of VEGF-deficient HSCs, revealing a function for VEGFR-1 signalling during haematopoiesis.
Collapse
MESH Headings
- Animals
- Autocrine Communication/drug effects
- Cell Division/drug effects
- Cell Membrane Permeability
- Cell Survival/drug effects
- Cells, Cultured
- Clone Cells/cytology
- Clone Cells/drug effects
- Clone Cells/metabolism
- Endothelial Growth Factors/antagonists & inhibitors
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Flow Cytometry
- Gene Deletion
- Hematopoiesis/drug effects
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Lymphokines/antagonists & inhibitors
- Lymphokines/genetics
- Lymphokines/metabolism
- Mice
- Mice, Knockout
- Paracrine Communication
- Proto-Oncogene Proteins/agonists
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases/pharmacology
- Receptors, Growth Factor/agonists
- Receptors, Growth Factor/antagonists & inhibitors
- Receptors, Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor
- Reverse Transcriptase Polymerase Chain Reaction
- Solubility
- Transduction, Genetic
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factor Receptor-1
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- Hans-Peter Gerber
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng 2002; 78:442-53. [PMID: 11948451 DOI: 10.1002/bit.10220] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Embryonic stem (ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decisions and to develop scalable methods of cell production. We compared four standard ES cell differentiation culture systems by measuring aspects of embryoid body (EB) formation efficiency and cell proliferation, and by tracking development of a specific differentiated tissue type-blood-using functional (colony-forming cell) and phenotypic (Flk-1 and CD34 expression) assays. We report that individual murine ES cells form EBs with an efficiency of 42 +/- 9%, but this value is rarely obtained because of EB aggregation-a process whereby two or more individual ES cells or EBs fuse to form a single, larger cell aggregate. Regardless of whether EBs were generated from a single ES cell in methylcellulose or liquid suspension culture, or aggregates of ES cells in hanging drop culture, they grew to a similar maximum cell number of 28,000 +/- 9,000 cells per EB. Among the three methods for EB generation in suspension culture there were no differences in the kinetics or frequency of hematopoietic development. Thus, initiating EBs with a single ES cell and preventing EB aggregation should allow for maximum yield of differentiated cells in the EB system. EB differentiation cultures were also compared to attached differentiation culture using the same outputs. Attached colonies were not similarly limited in cell number; however, hematopoietic development in attached culture was impaired. The percentage of early Flk-1 and CD34 expressing cells was dramatically lower than in EBs cultured in suspension, whereas hematopoietic colony formation was almost completely inhibited. These results provide a foundation for development of efficient, scalable bioprocesses for ES cell differentiation, and inform novel methods for the production of hematopoietic tissues.
Collapse
Affiliation(s)
- Stephen M Dang
- Institute of Biomaterials and Biomedical Engineering, 4 Taddle Creek Road, Rm 407, Rosebrugh Building, Toronto ON, Canada, M5S 3G9
| | | | | | | | | |
Collapse
|
181
|
Choi K. The hemangioblast: a common progenitor of hematopoietic and endothelial cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:91-101. [PMID: 11847006 DOI: 10.1089/152581602753448568] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the developing embryo, the initial hematopoietic and vascular structure can be identified as the blood islands of the yolk sac. Blood islands are formed from mesodermal aggregates that have migrated from the primitive streak. The outer cells differentiate into endothelial cells and the inner to primitive blood. The close developmental association between hematopoietic and endothelial cell lineages has led to a hypothesis that they share a common progenitor, the hemangioblast. This review will examine emerging studies supporting the existence of such cells in order to further understand how the hematopoietic and vascular systems are established during mouse development.
Collapse
Affiliation(s)
- Kyunghee Choi
- School of Medicine, Department of Pathology and Immunology, Washington University, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
182
|
Ramírez-Bergeron DL, Simon MC. Hypoxia-inducible factor and the development of stem cells of the cardiovascular system. Stem Cells 2002; 19:279-86. [PMID: 11463947 DOI: 10.1634/stemcells.19-4-279] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decreased oxygen (O2) levels activate hypoxia-inducible factor (HIF-1) to induce genes involved in glycolysis, glucose transport, erythropoiesis, and angiogenesis. Mutations in various HIF-1 subunits have contributed to our understanding of the role hypoxia plays during early embryonic development in general and the cardiovascular system in particular. We propose that HIF-1 is important for the generation, proliferation, maintenance, and differentiation of the early cardiovascular system. Understanding aberrations in these hypoxic responses is important since they contribute to serious human disease such as ischemia and tumorigenesis. In this review we will focus on the critical role of O2 in regulating cardiovascular events during early embryonic development.
Collapse
Affiliation(s)
- D L Ramírez-Bergeron
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
183
|
Lu SJ, Li F, Vida L, Honig GR. Comparative gene expression in hematopoietic progenitor cells derived from embryonic stem cells. Exp Hematol 2002; 30:58-66. [PMID: 11823038 DOI: 10.1016/s0301-472x(01)00767-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The aim of this study was to characterize at the molecular level the hematopoietic progenitor cells derived from rhesus monkey embryonic stem (ES) cell differentiation. MATERIALS AND METHODS We purified CD34(+) and CD34(+)CD38(-) cells from rhesus monkey ES cell cultures and examined the expression of a variety of genes associated with hematopoietic development, by semiquantitative polymerase chain reaction analysis. For comparison, we examined cell preparations from fresh or cultured rhesus monkey bone marrow (BM) and from mouse ES cells and BM. RESULTS We observed a high degree of similarity in the expression patterns of these genes, with only a few exceptions. Most notably, the message of the flt3 gene was undetectable in rhesus monkey ES cell-derived CD34(+) and CD34(+)CD38(-) cells, whereas substantial flt3 expression was observed in the corresponding cells from fresh BM and in CD34(+) cells from cultured BM. The integrin alphaL and interleukin-6 (IL-6) receptor genes also were expressed in CD34(+)CD38(-) cells from BM, but there was little or no expression of these genes in CD34(+)CD38(-) cells derived from ES cells. Parallel analyses, using CD34(+)Lin(-) cells derived from murine ES cell cultures, showed no apparent expression of flt3, integrin alphaL, or IL-6 receptor, whereas corresponding cell preparations isolated from mouse BM expressed high levels of all of these genes. CONCLUSIONS ES cell-derived hematopoietic progenitors, both from the rhesus monkey and from the mouse, exhibited the same alterations in gene expression compared with BM-derived cells from these animals. These observations could reflect the presence of different subpopulations in the cell fractions that were compared, or they may represent altered biologic properties of ES cell-derived hematopoietic stem cells.
Collapse
Affiliation(s)
- Shi-Jiang Lu
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, 60612, USA
| | | | | | | |
Collapse
|
184
|
Cho SK, Bourdeau A, Letarte M, Zúñiga-Pflücker JC. Expression and function of CD105 during the onset of hematopoiesis from Flk1(+) precursors. Blood 2001; 98:3635-42. [PMID: 11739167 DOI: 10.1182/blood.v98.13.3635] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During ontogeny, the hematopoietic system is established from mesoderm-derived precursors; however, molecular events regulating the onset of hematopoiesis are not well characterized. Several members of the transforming growth factor beta (TGF-beta) superfamily have been implicated as playing a role during mesoderm specification and hematopoiesis. CD105 (endoglin) is an accessory receptor for members of the TGF-beta superfamily. Here it is reported that during the differentiation of murine embryonic stem (ES) cells in vitro, hematopoietic commitment within Flk1(+) mesodermal precursor populations is characterized by CD105 expression. In particular, CD105 is expressed during the progression from the Flk1(+)CD45(-) to Flk1(-)CD45(+) stage. The developmentally regulated expression of CD105 suggests that it may play a role during early hematopoiesis from Flk1(+) precursors. To determine whether CD105 plays a functional role during early hematopoietic development, the potential of CD105-deficient ES cells to differentiate into various hematopoietic lineages in vitro was assessed. In the absence of CD105, myelopoiesis and definitive erythropoiesis were severely impaired. In contrast, lymphopoiesis appeared to be only mildly affected. Thus, these findings suggest that the regulated expression of CD105 functions to support lineage-specific hematopoietic development from Flk1(+) precursors.
Collapse
Affiliation(s)
- S K Cho
- Department of Immunology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
185
|
Fujimoto T, Ogawa M, Minegishi N, Yoshida H, Yokomizo T, Yamamoto M, Nishikawa S. Step-wise divergence of primitive and definitive haematopoietic and endothelial cell lineages during embryonic stem cell differentiation. Genes Cells 2001; 6:1113-27. [PMID: 11737271 DOI: 10.1046/j.1365-2443.2001.00490.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The developmental processes leading from the mesoderm to primitive and definitive haematopoietic and endothelial lineages, although of great importance, are still poorly defined. Recent studies have suggested a model in which common precursors give rise to endothelial progenitors and haematopoietic progenitors, the latter subsequently generating both primitive and definitive haematopoietic lineages. However, this model is contradicted by findings that suggest the emergence of haematopoietic cells from the endothelial lineage. RESULTS We found sequential steps in the differentiation of FLK1+ mesoderm into haematopoietic and endothelial lineages in an in vitro differentiation system of embryonic stem (ES) cells: (i) the GATA-1+ subset of FLK1+ mesodermal cells loses the capacity to give rise to endothelial cells and is restricted to primitive erythroid, macrophage and definitive erythroid progenitors; (ii) the remaining GATA-1- cells give rise to VE-cadherin+ endothelial cells; and subsequently (iii) multiple definitive haematopoietic progenitors and endothelial cells branch off from a subset of VE-cadherin+ cells. CONCLUSIONS These observations strongly suggest that the divergence of primitive and multilineage definitive haematopoietic/endothelial lineages occurs first, and then multilineage definitive haematopoietic progenitors arise from VE-cadherin+ endothelial cells in the development of haematopoietic and endothelial cells.
Collapse
Affiliation(s)
- T Fujimoto
- Department of Molecular Genetics, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
It was reported that human hematopoietic stem cells in bone marrow were restricted to the CD34(+)KDR(+) cell fraction. We found that expression levels of Flk-1, a mouse homologue of KDR, were low or undetectable in mouse Lin(-)c-Kit(+)Sca-1(+)CD34(low/-) cells as well as Hoechst33342(-) cells (side population), which have long-term reconstitution capacity. Furthermore, neither Flk-1(+)CD34(low/-) cells nor Flk-1(+)CD34(+) cells had long-term reconstitution capacity in mouse. Taken together with other observations using Flk-1-deficient mice, these results indicate that Flk-1 is essential for the development of hematopoietic stem cells in embryo but not for the function of hematopoietic stem cells in adult mouse bone marrow.
Collapse
Affiliation(s)
- H Haruta
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1 Koyadai, Ibaraki 305-0074, Tsukuba, Japan
| | | | | |
Collapse
|
187
|
Baron MH. Molecular regulation of embryonic hematopoiesis and vascular development: a novel pathway. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:587-94. [PMID: 11672504 DOI: 10.1089/152581601753193797] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In all vertebrate animals, the first blood and vascular endothelial cells are formed during gastrulation, a process in which the mesoderm of the embryo is induced and then patterned by molecules whose identity is still largely unknown. Clusters of developing blood cells surrounded by a layer of endothelial cells comprise the "blood islands" and form in the visceral yolk sac, external to the developing embryo proper. Despite the identification of genes, such as Flk1, SCL/tal-1, Cbfa2/Runx1/AML1, and CD34, that are expressed during the induction of primitive hematopoiesis and vasculogenesis, the early molecular and cellular events involved in these processes are not well understood. Recent work has demonstrated that extracellular signals secreted by a layer of visceral endoderm surrounding the embryo are essential for the initiation of these events. A member of the Hedgehog family of signaling molecules is produced by visceral endoderm and is required for formation of blood and endothelial cells in explant cultures. Hedgehog proteins also stimulate proliferation of definitive hematopoietic stem/progenitor cells. Therefore, these findings may have important medical implications for regulating hematopoiesis and vascular development for therapeutic purposes and for the development of new sources of hematopoietic stem cells for transplantation and as targets for gene therapy.
Collapse
Affiliation(s)
- M H Baron
- Department of Medicine, Ruttenberg Cancer Center, and Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
188
|
Baron M. Induction of embryonic hematopoietic and endothelial stem/progenitor cells by hedgehog-mediated signals. Differentiation 2001; 68:175-85. [PMID: 11776470 DOI: 10.1046/j.1432-0436.2001.680405.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blood and vascular endothelial cells form in all vertebrates during gastrulation, a process in which the mesoderm of the embryo is induced and then patterned by molecules whose identity is still largely unknown. Blood islands' of primitive hematopoietic cell clusters surrounded by a layer of endothelial cells form in the yolk sac, external to the developing embryo proper. These lineages arise from a layer of extraembryonic mesoderm that is closely apposed with a layer of primitive (visceral) endoderm. Despite the identification of genes such as Flk1, SCL/tal-1, Cbfa2/Runx1/AML1 and CD34 that are expressed during the induction of primitive hematopoiesis and vasculogenesis, the early molecular and cellular events involved in these processes are not well understood. Recent work has demonstrated that extracellular signals secreted by visceral endoderm surrounding the embryo are essential for the initiation of these events. A member of the Hedgehog family of signaling molecules (Indian hedgehog) is produced by visceral endoderm, can induce formation of blood and endothelial cells in explant cultures and can reprogram prospective neurectoderm along hematopoietic and endothelial cell lineages. Hedgehog proteins also stimulate proliferation of definitive hematopoietic stem/progenitor cells. These findings may have important implications for regulating hematopoiesis and vascular development for therapeutic purposes in humans and for the development of new sources of stem cells for transplantation and gene therapy.
Collapse
Affiliation(s)
- M Baron
- Department of Medicine, Ruttenberg Cancer Center, and Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
189
|
Lacaud G, Robertson S, Palis J, Kennedy M, Keller G. Regulation of hemangioblast development. Ann N Y Acad Sci 2001; 938:96-107; discussion 108. [PMID: 11458531 DOI: 10.1111/j.1749-6632.2001.tb03578.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The in vitro differentiation of embryonic stem (ES) cells provides a powerful approach for studying the earliest events involved in the commitment of the hematopoietic and endothelial lineages. Using this model system, we have identified a precursor with the potential to generate both primitive and definitive hematopoietic cells as well as cells with endothelial characteristics. The developmental potential of this precursor suggests that it represents the in vitro equivalent of the hemangioblast, a common stem cell for both lineages. ES cells deficient for the transcription factor scl/tal-1 are unable to generate hemangioblasts, while those deficient for Runx1 generate reduced numbers of these precursors. These findings indicate that both genes play pivotal roles at the earliest stages of hematopoietic and endothelial development. In addition, they highlight the strength of this model system in studying the function of genes in embryonic development.
Collapse
Affiliation(s)
- G Lacaud
- Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, Box 1496, 1425 Madison Avenue, New York, New York 10029-6514, USA
| | | | | | | | | |
Collapse
|
190
|
Böldicke T, Tesar M, Griesel C, Rohde M, Gröne HJ, Waltenberger J, Kollet O, Lapidot T, Yayon A, Weich H. Anti-VEGFR-2 scFvs for cell isolation. Single-chain antibodies recognizing the human vascular endothelial growth factor receptor-2 (VEGFR-2/flk-1) on the surface of primary endothelial cells and preselected CD34+ cells from cord blood. Stem Cells 2001; 19:24-36. [PMID: 11209088 DOI: 10.1634/stemcells.19-1-24] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Five specific single-chain antibodies recognizing the human vascular endothelial growth factor receptor-2 (VEGFR-2/KDR) were selected from a V-gene phage display library constructed from mice immunized with the extracellular domain of VEGFR-2 (Ig-like domain 1-7). All five scFv antibodies (A2, A7, B11, G3, and H1) bound to the purified native antigen in enzyme-linked immunosorbent assay and Dot Blot, and showed no crossreactivity to the human VEGF-receptor 1 (VEGFR-1). The selected antibodies recognize a conformation-dependent epitope of the native receptor and do not recognize denatured antigen in Western blots, as well as linear overlapping peptides comprising the sequence of the human VEGFR-2. The five scFv antibodies bind to the surface of endothelial cells overexpressing human VEGFR-2 c-DNA (PAE/VEGFR-2 cells) as detected by surface immunofluorescence using confocal microscopy. In addition scFv A7 specifically detected VEGFR-2 expressing endothelial cells in the glomerulus of frozen human kidney tissue sections. Therefore, A7 has potential clinical application as a marker for angiogenesis in cryosections of different human tissues. Additionally, two recombinant scFvs (A2 and A7) very efficiently recognize VEGFR-2 on PAE/VEGFR-2 cells and freshly prepared human umbilical vein endothelial cells by fluorescence-activated cell sorter (FACS) analysis. The scFv fragment A7, which was the most sensitive antibody in FACS analysis, recognizes human CD34+VEGFR-2+ hematopoietic immature cells within the population of enriched CD34+ cells isolated from human cord blood. The dissociation constant of A7 was determined to be K(d) = 3.8 x 10(-9) M by BIAcore analysis. In conclusion, scFv fragment A7 seems to be an important tool for FACS analysis and cell sorting of vascular endothelial cells, progenitor cells and hematopoitic stem cells, which are positive for VEGFR-2 gene expression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibody Specificity
- Antigens, CD34/analysis
- Antigens, CD34/physiology
- Antigens, Surface/analysis
- Antigens, Surface/immunology
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/physiology
- Fetal Blood/cytology
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Expression/immunology
- Humans
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Insecta
- Leukocytes, Mononuclear/chemistry
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Library
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/immunology
- Receptors, Growth Factor/analysis
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/immunology
- Receptors, Vascular Endothelial Growth Factor
- Recombinant Proteins/immunology
- Solubility
Collapse
Affiliation(s)
- T Böldicke
- German Research Centre for Biotechnology, Department of Applied Genetics, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Nguyen LL, D'Amore PA. Cellular interactions in vascular growth and differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 204:1-48. [PMID: 11243594 DOI: 10.1016/s0074-7696(01)04002-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nature, mammalian cells do not exist in isolation, but rather are involved in interactions with other cells and matrix. In this review, several aspects of cellular interactions that are important in vascular growth and development will be highlighted. The cardiovascular system is the earliest to develop in the embryo. A number of growth factors and their receptors mediate the complex stages of migration, assembly, organization, and stabilization of developing vessels. In the adult organism, normal angiogenesis is restricted primarily to tissue growth (such as muscle and fat), the wound healing process and the female reproductive system. However, pathological angiogenesis, such as with tumor growth, diabetic retinopathy, and arthritis, is of great concern. The identification and/or development of exogenous and endogenous angiogenesis inhibitors has added to the understanding of these pathological processes. In addition to cellular interactions via ligands and receptors, cells also interact directly through physical contacts. These interactions facilitate anchorage, communication, and permeability. Since vessels serve as non-leaky conduits for blood flow as well as interfaces for molecular diffusion, the physical interactions between the cells that make up vessels must be specific for the function at hand. Permeability is a specialized function of vessels and is mediated by intracellular mechanisms and intercellular interactions. Cells also interact with the surrounding extracellular matrix. Integrin-matrix interaction is a two-way exchange critical for angiogenesis. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases play major roles in embryonic remodeling, adult injury, and pathological conditions. Several experimental model systems have been useful in our understanding of cellular interactions. These in vitro models incorporate heterotypic cell-cell interactions and/or allow cell-matrix interactions to occur.
Collapse
Affiliation(s)
- L L Nguyen
- Schepens Eye Research Institute and Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
192
|
Peschle C, Botta R, Müller R, Valtieri M, Ziegler BL. Purification and functional assay of pluripotent hematopoietic stem cells. REVIEWS IN CLINICAL AND EXPERIMENTAL HEMATOLOGY 2001; 5:3-14. [PMID: 11486731 DOI: 10.1046/j.1468-0734.2001.00029.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematolymphopoietic stem cells (HSC) have the capacity for extensive self-renewal and pluripotent myelolymphoid differentiation. Recent studies have emphasized the heterogeneity of human HSC subsets in terms of proliferative and self-renewal capacity. In the NOD-SCID (nonobese diabetic-severe combined immunodeficient) mouse xenograft assay, most CD34+38- stem cell clones proliferate at early times, but then disappear, whereas only few clones persist: possibly, the latter ones consist of long-term engrafting CD34+38- HSC expressing the KDR receptor (i.e. the vascular endothelial growth factor receptor II). In this regard, isolation of the small KDR+ subset from the CD34+ hematopoietic progenitors (and possibly from the CD34-lin- population) may provide a novel and effective approach for the purification of long-term proliferating HSC. More importantly, KDR+ HSC isolation will pave the way to cellular/molecular characterization and improved functional manipulation of HSC/HSC subsets, as well as to innovative approaches for HSC clinical utilization, specifically transplantation, transfusion medicine and gene therapy.
Collapse
Affiliation(s)
- C Peschle
- T. Jefferson University, Kimmel Cancer Center, Bluemle Life Science Building, Room 609, 233 South 10th Street, Philadelphia, PA 19107-5541, USA.
| | | | | | | | | |
Collapse
|
193
|
Abstract
It is generally accepted that vasculogenesis is limited to early embryogenesis and is believed not to occur in adult, whereas angiogenesis occurs in both the developing embryo and postnatal life. However, the distinction between them is not absolute, because both require endothelial cell proliferation and migration and three-dimensional reorganization of newly formed blood vessels, nor are they mutually exclusive, inasmuch as angioblasts can be incorporated into expanding pre-existing blood vessels. Recent observations indicate that vasculogenesis may not be restricted to early embryogenesis, but may also have a physiological role or contribute to the pathology of vascular diseases in adults. The major evidence in favor of this new view comes from: (i) demonstration of the presence of circulating endothelial cells and endothelial precursor cells; (ii) newly described mechanisms of blood vessel formation in tumor growth. The potential biomedical applications of endothelial precursor cells and the new opportunities for the development of new forms of tumor-targeted treatments are discussed.
Collapse
Affiliation(s)
- D Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico, I-70124, Bari, Italy.
| | | | | | | | | |
Collapse
|
194
|
Ogawa M, Fraser S, Fujimoto T, Endoh M, Nishikawa S, Nishikawa SI. Origin of hematopoietic progenitors during embryogenesis. Int Rev Immunol 2001; 20:21-44. [PMID: 11342296 DOI: 10.3109/08830180109056721] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has been widely accepted that hematopoietic and endothelial cell lineages diverge from a common progenitor referred to as the hemangioblast. Recently, analyses of the potential of progenitor cells purified from mouse embryos as well as embryonic stem cells differentiating in vitro resolved intermediate stages between mesodermal cells and committed precursors for hematopoietic and endothelial cell lineages. There are two distinct hematopoietic cell lineages which have different origins, i.e., primitive hematopoietic lineage derived from mesoderm or hemangioblasts and definitive hematopoietic lineage derived from endothelial cells. The endothelium is suggested to provide a milieu in which the definitive hematopoietic lineage acquires multiple potentials.
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- Antigens, CD34/metabolism
- Antigens, Differentiation/metabolism
- Biomarkers
- Cadherins/physiology
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/physiology
- Endothelium, Vascular/cytology
- Fetal Blood/cytology
- Gene Expression Regulation, Developmental
- Hematopoiesis
- Hematopoietic Stem Cells/cytology
- Hematopoietic System/cytology
- Hematopoietic System/embryology
- Humans
- Integrin alpha4
- Mesoderm/cytology
- Mice
- Mice, Knockout
- Models, Biological
- Organ Specificity
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Proto-Oncogene Proteins
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor
- Transcription Factors/physiology
- Yolk Sac/cytology
Collapse
Affiliation(s)
- M Ogawa
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
195
|
Robertson SM, Kennedy M, Shannon JM, Keller G. A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development 2000; 127:2447-59. [PMID: 10804185 DOI: 10.1242/dev.127.11.2447] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this report, we describe the identification and characterization of an early embryoid body-derived colony, termed the transitional colony, which contains cell populations undergoing the commitment of mesoderm to the hematopoietic and endothelial lineages. Analysis of individual transitional colonies indicated that they express Brachyury as well as flk-1, SCL/tal-1, GATA-1, (beta)H1 and (beta)major reflecting the combination of mesodermal, hematopoietic and endothelial populations. This pattern differs from that found in the previously described hemangioblast-derived blast cell colonies in that they typically lacked Brachyury expression, consistent with their post-mesodermal stage of development (Kennedy, M., Firpo, M., Choi, K., Wall, C., Robertson, S., Kabrun, N. and Keller, G. (1997) Nature 386, 488–493). Replating studies demonstrated that transitional colonies contain low numbers of primitive erythroid precursors as well as a subset of precursors associated with early stage definitive hematopoiesis. Blast cell colonies contain higher numbers and a broader spectrum of definitive precursors than found in the transitional colonies. ES cells homozygous null for the SCL/tal-1 gene, a transcription factor known to be essential for development of the primitive and definitive hematopoietic systems, were not able to form blast colonies but did form transitional colonies. Together these findings suggest that the transitional colony represents a stage of development earlier than the blast cell colony and one that uniquely defines the requirement for a functional SCL/tal-1 gene for the progression to hematopoietic commitment.
Collapse
Affiliation(s)
- S M Robertson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
196
|
Nakagawa M, Kaneda T, Arakawa T, Morita S, Sato T, Yomada T, Hanada K, Kumegawa M, Hakeda Y. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett 2000; 473:161-4. [PMID: 10812066 DOI: 10.1016/s0014-5793(00)01520-9] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In bone development and regeneration, angiogenesis and bone/cartilage resorption are essential processes and are closely associated with each other, suggesting a common mediator for these two biological events. To address this interrelationship, we examined the effect of vascular endothelial growth factor (VEGF), the most critical growth factor for angiogenesis, on osteoclastic bone-resorbing activity in a culture of highly purified rabbit mature osteoclasts. VEGF caused a dose- and time-dependent increase in the area of bone resorption pits excavated by the isolated osteoclasts, partially by enhancing the survival of the cells. Two distinct VEGF receptors, KDR/Flk-1 and Flt-1, were detectable in osteoclasts at the gene and protein levels, and VEGF induced tyrosine phosphorylation of proteins in osteoclasts. Thus, osteoclastic function and angiogenesis are up-regulated by a common mediator such as VEGF.
Collapse
Affiliation(s)
- M Nakagawa
- Department of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Faloon P, Arentson E, Kazarov A, Deng CX, Porcher C, Orkin S, Choi K. Basic fibroblast growth factor positively regulates hematopoietic development. Development 2000; 127:1931-41. [PMID: 10751181 DOI: 10.1242/dev.127.9.1931] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently identified BLast Colony Forming Cells (BL-CFCs) from in vitro differentiated embryonic stem (ES) cells represent the common progenitor of hematopoietic and endothelial cells, the hemangioblast. Access to this initial cell population committed to the hematopoietic lineage provides a unique opportunity to characterize hematopoietic commitment events. Here, we show that BL-CFC expresses the receptor tyrosine kinase, Flk1, and thus we took advantage of the BL-CFC assay, as well as fluorescent activated cell sorter (FACS) analysis for Flk1(+) cells to determine quantitatively if mesoderm-inducing factors promote hematopoietic lineage development. Moreover, we have analyzed ES lines carrying targeted mutations for fibroblast growth factor receptor-1 (fgfr1), a receptor for basic fibroblast growth factor (bFGF), as well as scl, a transcription factor, for their potential to generate BL-CFCs and Flk1(+) cells, to further define events leading to hemangioblast development. Our data suggest that bFGF-mediated signaling is critical for the proliferation of the hemangioblast and that cells expressing both Flk1 and SCL may represent the hemangioblast.
Collapse
Affiliation(s)
- P Faloon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Guo DQ, Wu LW, Dunbar JD, Ozes ON, Mayo LD, Kessler KM, Gustin JA, Baerwald MR, Jaffe EA, Warren RS, Donner DB. Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 2000; 275:11216-21. [PMID: 10753929 DOI: 10.1074/jbc.275.15.11216] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial cell growth factor (VEGF) binds to and promotes the activation of one of its receptors, KDR. Once activated, KDR induces the tyrosine phosphorylation of cytoplasmic signaling proteins that are important to endothelial cell proliferation. In human umbilical vein endothelial cells (HUVECs), tumor necrosis factor (TNF) inhibits the phosphorylation and activation of KDR. The ability of TNF to diminish VEGF-stimulated KDR activity was impaired by sodium orthovanadate, suggesting that the inhibitory activity of TNF was mediated by a protein-tyrosine phosphatase. KDR-initiated responses specifically associated with endothelial cell proliferation, mitogen-activated protein kinase activation and DNA synthesis, were also inhibited by TNF, and this was reversed by sodium orthovanadate. Stimulation of HUVECs with TNF induced association of the SHP-1 protein-tyrosine phosphatase with KDR, identifying this phosphatase as a candidate negative regulator of VEGF signal transduction. Heterologous receptor inactivation mediated by a protein-tyrosine phosphatase provides insight into how TNF may inhibit endothelial cell proliferative responses and modulate angiogenesis in pathological settings.
Collapse
Affiliation(s)
- D Q Guo
- Department of Microbiology & Immunology, Indiana University School of Medicine and the Walther Oncology Center, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Vascular endothelial growth factor synergistically enhances bone morphogenetic protein-4-dependent lymphohematopoietic cell generation from embryonic stem cells in vitro. Blood 2000. [DOI: 10.1182/blood.v95.7.2275.007k30_2275_2283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The totipotent mouse embryonic stem (ES) cell is known to differentiate into cells expressing the β-globin gene when stimulated with bone morphogenetic protein (BMP)-4. Here, we demonstrate that BMP-4 is essential for generating both erythro-myeloid colony-forming cells (CFCs) and lymphoid (B and NK) progenitor cells from ES cells and that vascular endothelial growth factor (VEGF) synergizes with BMP-4. The CD45+ myelomonocytic progenitors and Ter119+ erythroid cells began to be detected with 0.5 ng/mL BMP-4, and their levels plateaued at approximately 2 ng/mL. VEGF alone weakly elevated the CD34+ cell population though no lymphohematopoietic progenitors were induced. However, when combined with BMP-4, 2 to 20 ng/mL VEGF synergistically augmented the BMP-4-dependent generation of erythro-myeloid CFCs and lymphoid progenitors from ES cells, which were enriched in CD34+ CD31lo and CD34+CD45− cell populations, respectively, in a dose-dependent manner. Furthermore, during the 7 days of in vitro differentiation, BMP-4 was required within the first 4 days, whereas VEGF was functional after the action of BMP-4 (in the last 3 days). Thus, VEGF is a synergistic enhancer for the BMP-4-dependent differentiation processes, and it seems to be achieved by the ordered action of the 2 factors.
Collapse
|
200
|
Vascular endothelial growth factor synergistically enhances bone morphogenetic protein-4-dependent lymphohematopoietic cell generation from embryonic stem cells in vitro. Blood 2000. [DOI: 10.1182/blood.v95.7.2275] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The totipotent mouse embryonic stem (ES) cell is known to differentiate into cells expressing the β-globin gene when stimulated with bone morphogenetic protein (BMP)-4. Here, we demonstrate that BMP-4 is essential for generating both erythro-myeloid colony-forming cells (CFCs) and lymphoid (B and NK) progenitor cells from ES cells and that vascular endothelial growth factor (VEGF) synergizes with BMP-4. The CD45+ myelomonocytic progenitors and Ter119+ erythroid cells began to be detected with 0.5 ng/mL BMP-4, and their levels plateaued at approximately 2 ng/mL. VEGF alone weakly elevated the CD34+ cell population though no lymphohematopoietic progenitors were induced. However, when combined with BMP-4, 2 to 20 ng/mL VEGF synergistically augmented the BMP-4-dependent generation of erythro-myeloid CFCs and lymphoid progenitors from ES cells, which were enriched in CD34+ CD31lo and CD34+CD45− cell populations, respectively, in a dose-dependent manner. Furthermore, during the 7 days of in vitro differentiation, BMP-4 was required within the first 4 days, whereas VEGF was functional after the action of BMP-4 (in the last 3 days). Thus, VEGF is a synergistic enhancer for the BMP-4-dependent differentiation processes, and it seems to be achieved by the ordered action of the 2 factors.
Collapse
|