151
|
Courtney M, Gjernes E, Druelle N, Ravaud C, Vieira A, Ben-Othman N, Pfeifer A, Avolio F, Leuckx G, Lacas-Gervais S, Burel-Vandenbos F, Ambrosetti D, Hecksher-Sorensen J, Ravassard P, Heimberg H, Mansouri A, Collombat P. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genet 2013; 9:e1003934. [PMID: 24204325 PMCID: PMC3814322 DOI: 10.1371/journal.pgen.1003934] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon+ cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes. Type 1 diabetes is a condition that results from the loss of insulin-producing β-cells. Despite current therapies, diabetic patients are prone to vascular complications. Using the mouse as a model, we previously found that pancreatic glucagon-expressing cells can be regenerated and converted into β-like cells by the forced expression of a single gene, Pax4. Here, we generated transgenic mice allowing both the permanent labeling of α-cells and the inactivation of Arx solely in this cell subtype. Our results indicate that, upon Arx inactivation, α-cells can be continuously regenerated from duct-lining precursors and converted into β-like cells. Importantly, the additional loss of Pax4 does not impact these processes, suggesting that Arx is the main trigger of α-cell-mediated β-like cell neogenesis. Most interestingly, upon chemical induction of diabetes/β-cell loss, while control animals die or remain severely hyperglycemic, a normalization of the glycemia, a clear regeneration of the β-like cell mass, and an extended lifespan are noted in animals with the conditional inactivation of Arx. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.
Collapse
Affiliation(s)
- Monica Courtney
- Université de Nice Sophia Antipolis, iBV, UMR 7277, Nice, France ; Inserm, iBV, U1091, Nice, France ; CNRS, iBV, UMR 7277, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Capito C, Simon MT, Aiello V, Clark A, Aigrain Y, Ravassard P, Scharfmann R. Mouse muscle as an ectopic permissive site for human pancreatic development. Diabetes 2013; 62:3479-87. [PMID: 23835344 PMCID: PMC3781474 DOI: 10.2337/db13-0554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While sporadic human genetic studies have permitted some comparisons between rodent and human pancreatic development, the lack of a robust experimental system has not permitted detailed examination of human pancreatic development. We previously developed a xenograft model of immature human fetal pancreas grafted under the kidney capsule of immune-incompetent mice, which allowed the development of human pancreatic β-cells. Here, we compared the development of human and murine fetal pancreatic grafts either under skeletal muscle epimysium or under the renal capsule. We demonstrated that human pancreatic β-cell development occurs more slowly (weeks) than murine pancreas (days) both by differentiation of pancreatic progenitors and by proliferation of developing β-cells. The superficial location of the skeletal muscle graft and its easier access permitted in vivo lentivirus-mediated gene transfer with a green fluorescent protein-labeled construct under control of the insulin or elastase gene promoter, which targeted β-cells and nonendocrine cells, respectively. This model of engraftment under the skeletal muscle epimysium is a new approach for longitudinal studies, which allows localized manipulation to determine the regulation of human pancreatic development.
Collapse
Affiliation(s)
- Carmen Capito
- INSERM U845, Research Center Growth and Signalling, Faculté de Médecine Cochin, Université Paris Descartes, Paris, France
| | - Marie-Thérèse Simon
- INSERM U845, Research Center Growth and Signalling, Faculté de Médecine Cochin, Université Paris Descartes, Paris, France
| | - Virginie Aiello
- INSERM U845, Research Center Growth and Signalling, Faculté de Médecine Cochin, Université Paris Descartes, Paris, France
| | - Anne Clark
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, U.K
| | - Yves Aigrain
- Necker Enfants Malades University Hospital, Université Paris Descartes, Paris, France
| | - Philippe Ravassard
- Biotechnology and Biotherapy Team, Université Pierre et Marie Curie-Paris 6, Biotechnology and Biotherapy Team, Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière, UMRS 975, CNRS, UMR 7225, INSERM U975, Paris, France
| | - Raphael Scharfmann
- INSERM U845, Research Center Growth and Signalling, Faculté de Médecine Cochin, Université Paris Descartes, Paris, France
- Corresponding author: Raphael Scharfmann,
| |
Collapse
|
153
|
Xiao X, Guo P, Shiota C, Prasadan K, El-Gohary Y, Wiersch J, Gaffar I, Gittes GK. Neurogenin3 activation is not sufficient to direct duct-to-beta cell transdifferentiation in the adult pancreas. J Biol Chem 2013; 288:25297-25308. [PMID: 23867457 PMCID: PMC3757194 DOI: 10.1074/jbc.m113.484022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/12/2013] [Indexed: 12/25/2022] Open
Abstract
It remains controversial whether adult pancreatic ducts harbor facultative beta cell progenitors. Because neurogenin3 (Ngn3) is a key determinant of pancreatic endocrine cell neogenesis during embryogenesis, many studies have also relied upon Ngn3 expression as evidence of beta cell neogenesis in adults. Recently, however, Ngn3 as a marker of adult beta cell neogenesis has been called into question by reports of Ngn3 expression in fully-developed beta cells. Nevertheless, direct evidence as to whether Ngn3 activation in adult pancreatic duct cells may lead to duct-to-beta cell transdifferentiation is lacking. Here we studied two models of Ngn3 activation in adult pancreatic duct cells (low-dose alloxan treatment and pancreatic duct ligation) and lineage-traced Ngn3-activated duct cells by labeling them through intraductal infusion with a cell-tagging dye, CFDA-SE No dye-labeled beta cells were found during the follow-up in either model, suggesting that activation of Ngn3 in duct cells is not sufficient to direct their transdifferentiation into beta cells. Therefore, Ngn3 activation in duct cells is not a signature for adult beta cell neogenesis.
Collapse
Affiliation(s)
- Xiangwei Xiao
- From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.
| | - Ping Guo
- From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Chiyo Shiota
- From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Krishna Prasadan
- From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Yousef El-Gohary
- From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - John Wiersch
- From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Iljana Gaffar
- From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - George K Gittes
- From the Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.
| |
Collapse
|
154
|
TNF-like weak inducer of apoptosis (TWEAK) promotes beta cell neogenesis from pancreatic ductal epithelium in adult mice. PLoS One 2013; 8:e72132. [PMID: 23991053 PMCID: PMC3753348 DOI: 10.1371/journal.pone.0072132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/05/2013] [Indexed: 12/01/2022] Open
Abstract
Aim/Hypothesis The adult mammalian pancreas has limited ability to regenerate in order to restore adequate insulin production from multipotent progenitors, the identity and function of which remain poorly understood. Here we test whether the TNF family member TWEAK (TNF-like weak inducer of apoptosis) promotes β-cell neogenesis from proliferating pancreatic ductal epithelium in adult mice. Methods C57Bl/6J mice were treated with Fc-TWEAK and pancreas harvested at different time points for analysis by histology and immunohistochemistry. For lineage tracing, 4 week old double transgenic mice CAII-CreERTM: R26R-eYFP were implanted with tamoxifen pellet, injected with Fc-TWEAK or control Ig twice weekly and analyzed at day 18 for TWEAK-induced duct cell progeny by costaining for insulin and YFP. The effect of TWEAK on pancreatic regeneration was determined by pancytokeratin immunostaining of paraffin embedded sections from wildtype and TWEAK receptor (Fn14) deficient mice after Px. Results TWEAK stimulates proliferation of ductal epithelial cells through its receptor Fn14, while it has no mitogenic effect on pancreatic α- or β-cells or acinar cells. Importantly, TWEAK induces transient expression of endogenous Ngn3, a master regulator of endocrine cell development, and induces focal ductal structures with characteristics of regeneration foci. In addition, we identify by lineage tracing TWEAK-induced pancreatic β-cells derived from pancreatic duct epithelial cells. Conversely, we show that Fn14 deficiency delays formation of regenerating foci after Px and limits their expansion. Conclusions/Interpretation We conclude that TWEAK is a novel factor mediating pancreatic β-cell neogenesis from ductal epithelium in normal adult mice.
Collapse
|
155
|
Ejarque M, Altirriba J, Gomis R, Gasa R. Characterization of the transcriptional activity of the basic helix-loop-helix (bHLH) transcription factor Atoh8. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1175-83. [PMID: 23938248 DOI: 10.1016/j.bbagrm.2013.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022]
Abstract
The atonal-related Neurogenin/NeuroD family of basic helix-loop-helix (bHLH) transcription factors comprises potent inducers of neuronal and endocrine differentiation programs in the nervous and digestive system. Atonal homolog 8 (Atoh8) displays high similarity in the bHLH domain with NeuroD proteins. Yet, available evidences indicate that Atoh8 has distinctive features including a ubiquitous expression pattern in embryonic tissues and the ability to inhibit differentiation. To gain insights into Atoh8 function, we aimed at identifying Atoh8 targets and investigated the effects of Atoh8 on global gene expression patterns in pancreatic mPAC cells, a model of bHLH-dependent endocrine differentiation. Our data reveal that Atoh8 is a weak transcriptional activator and does not exhibit proendocrine activity. Conversely, it blocks the induction of a reduced group of gene targets of the atonal-related proendocrine factor Neurogenin3. We show that Atoh8 lacks a transactivation domain and possesses intrinsic repressor activity that depends on a conserved Proline-rich domain. Atoh8 binds the ubiquitous E protein E47 and its ability to repress transcription may partly result from its ability to inhibit E47/E47 and Neurogenin3/E47 dimer activities. These results reveal distinctive transcriptional properties of Atoh8 within the atonal-related bHLH family that may be associated with the acquisition of new biological functions.
Collapse
Affiliation(s)
- Miriam Ejarque
- Diabetes and Obesity Research Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | | | | | | |
Collapse
|
156
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
157
|
Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc Natl Acad Sci U S A 2013; 110:12691-6. [PMID: 23852729 DOI: 10.1073/pnas.1304507110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Developmental biology is challenged to reveal the function of numerous candidate genes implicated by recent genome-scale studies as regulators of organ development and diseases. Recapitulating organogenesis from purified progenitor cells that can be genetically manipulated would provide powerful opportunities to dissect such gene functions. Here we describe systems for reconstructing pancreas development, including islet β-cell and α-cell differentiation, from single fetal progenitor cells. A strict requirement for native genetic regulators of in vivo pancreas development, such as Ngn3, Arx, and Pax4, revealed the authenticity of differentiation programs in vitro. Efficient genetic screens permitted by this system revealed that Prdm16 is required for pancreatic islet development in vivo. Discovering the function of genes regulating pancreas development with our system should enrich strategies for regenerating islets for treating diabetes mellitus.
Collapse
|
158
|
Flasse LC, Pirson JL, Stern DG, Von Berg V, Manfroid I, Peers B, Voz ML. Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish. BMC Biol 2013; 11:78. [PMID: 23835295 PMCID: PMC3726459 DOI: 10.1186/1741-7007-11-78] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mouse, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state. Results We show that, in zebrafish, neurog3 is not expressed in the pancreas and null neurog3 mutant embryos do not display any apparent endocrine defects. The control of endocrine cell fate is instead fulfilled by two basic helix-loop-helix factors, Ascl1b and Neurod1, that are both repressed by Notch signaling. ascl1b is transiently expressed in the mid-trunk endoderm just after gastrulation and is required for the generation of the first pancreatic endocrine precursor cells. Neurod1 is expressed afterwards in the pancreatic anlagen and pursues the endocrine cell differentiation program initiated by Ascl1b. Their complementary role in endocrine differentiation of the dorsal bud is demonstrated by the loss of all hormone-secreting cells following their simultaneous inactivation. This defect is due to a blockage of the initiation of endocrine cell differentiation. Conclusions This study demonstrates that NEUROG3 is not the unique pancreatic endocrine cell fate determinant in vertebrates. A general survey of endocrine cell fate determinants in the whole digestive system among vertebrates indicates that they all belong to the ARP/ASCL family but not necessarily to the Neurog3 subfamily. The identity of the ARP/ASCL factor involved depends not only on the organ but also on the species. One could, therefore, consider differentiating stem cells into insulin-producing cells without the involvement of NEUROG3 but via another ARP/ASCL factor.
Collapse
Affiliation(s)
- Lydie C Flasse
- Laboratory of zebrafish development and disease models, University of Liege (ULg), Liege 4000, Belgium
| | | | | | | | | | | | | |
Collapse
|
159
|
Ben-Othman N, Courtney M, Vieira A, Pfeifer A, Druelle N, Gjernes E, Faurite B, Avolio F, Collombat P. From pancreatic islet formation to beta-cell regeneration. Diabetes Res Clin Pract 2013; 101:1-9. [PMID: 23380136 DOI: 10.1016/j.diabres.2013.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents a major healthcare burden and, due to the increasing prevalence of type I diabetes and the complications arising from current treatments, other alternative therapies must be found. Type I diabetes arises as a result of a cell-mediated autoimmune destruction of insulin producing pancreatic β-cells. Thus, a cell replacement therapy would be appropriate, using either in vitro or in vivo cell differentiation/reprogramming from different cell sources. Increasing our understanding of the molecular mechanisms controlling endocrine cell specification during pancreas morphogenesis and gaining further insight into the complex transcriptional network and signaling pathways governing β-cell development should facilitate efforts to achieve this ultimate goal, that is to regenerate insulin-producing β-cells. This review will therefore describe briefly the genetic program underlying mouse pancreas development and present new insights regarding β-cell regeneration.
Collapse
Affiliation(s)
- Nouha Ben-Othman
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Monica Courtney
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Andhira Vieira
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Anja Pfeifer
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Noémie Druelle
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Elisabet Gjernes
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Biljana Faurite
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Fabio Avolio
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Patrick Collombat
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA.
| |
Collapse
|
160
|
McDowell GS, Philpott A. Non-canonical ubiquitylation: mechanisms and consequences. Int J Biochem Cell Biol 2013; 45:1833-42. [PMID: 23732108 DOI: 10.1016/j.biocel.2013.05.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/10/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023]
Abstract
Post-translational protein modifications initiate, regulate, propagate and terminate a wide variety of processes in cells, and in particular, ubiquitylation targets substrate proteins for degradation, subcellular translocation, cell signaling and multiple other cellular events. Modification of substrate proteins is widely observed to occur via covalent linkages of ubiquitin to the amine groups of lysine side-chains. However, in recent years several new modes of ubiquitin chain attachment have emerged. For instance, covalent modification of non-lysine sites in substrate proteins is theoretically possible according to basic chemical principles underlying the ubiquitylation process, and evidence is building that sites such as the N-terminal amine group of a protein, the hydroxyl group of serine and threonine residues and even the thiol groups of cysteine residues are all employed as sites of ubiquitylation. However, the potential importance of this "non-canonical ubiquitylation" of substrate proteins on sites other than lysine residues has been largely overlooked. This review aims to highlight the unusual features of the process of non-canonical ubiquitylation and the consequences of these events on the activity and fate of a protein.
Collapse
Affiliation(s)
- Gary S McDowell
- Department of Oncology, University of Cambridge, Hutchison/Medical Research Council (MRC) Research Centre, Cambridge, UK
| | | |
Collapse
|
161
|
de Back W, Zhou JX, Brusch L. On the role of lateral stabilization during early patterning in the pancreas. J R Soc Interface 2013. [PMID: 23193107 DOI: 10.1098/rsif.2012.0766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cell fate decision of multi-potent pancreatic progenitor cells between the exocrine and endocrine lineages is regulated by Notch signalling, mediated by cell-cell interactions. However, canonical models of Notch-mediated lateral inhibition cannot explain the scattered spatial distribution of endocrine cells and the cell-type ratio in the developing pancreas. Based on evidence from acinar-to-islet cell transdifferentiation in vitro, we propose that lateral stabilization, i.e. positive feedback between adjacent progenitor cells, acts in parallel with lateral inhibition to regulate pattern formation in the pancreas. A simple mathematical model of transcriptional regulation and cell-cell interaction reveals the existence of multi-stability of spatial patterns whose simultaneous occurrence causes scattering of endocrine cells in the presence of noise. The scattering pattern allows for control of the endocrine-to-exocrine cell-type ratio by modulation of lateral stabilization strength. These theoretical results suggest a previously unrecognized role for lateral stabilization in lineage specification, spatial patterning and cell-type ratio control in organ development.
Collapse
Affiliation(s)
- Walter de Back
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
162
|
Xiao X, Chen Z, Shiota C, Prasadan K, Guo P, El-Gohary Y, Paredes J, Welsh C, Wiersch J, Gittes GK. No evidence for β cell neogenesis in murine adult pancreas. J Clin Invest 2013; 123:2207-17. [PMID: 23619362 DOI: 10.1172/jci66323] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Whether facultative β cell progenitors exist in the adult pancreas is a major unsolved question. To date, lineage-tracing studies have provided conflicting results. To track β cell neogenesis in vivo, we generated transgenic mice that transiently coexpress mTomato and GFP in a time-sensitive, nonconditional Cre-mediated manner, so that insulin-producing cells express GFP under control of the insulin promoter, while all other cells express mTomato (INSCremTmG mice). Newly differentiated β cells were detected by flow cytometry and fluorescence microscopy, taking advantage of their transient coexpression of GFP and mTomato fluorescent proteins. We found that β cell neogenesis predominantly occurs during embryogenesis, decreases dramatically shortly after birth, and is completely absent in adults across various models of β cell loss, β cell growth and regeneration, and inflammation. Moreover, we demonstrated upregulation of neurogenin 3 (NGN3) in both proliferating ducts and preexisting β cells in the ligated pancreatic tail after pancreatic ductal ligation. These results are consistent with some recent reports, but argue against the widely held belief that NGN3 marks cells undergoing endocrine neogenesis in the pancreas. Our data suggest that β cell neogenesis in the adult pancreas occurs rarely, if ever, under either normal or pathological conditions.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Furuya F, Shimura H, Asami K, Ichijo S, Takahashi K, Kaneshige M, Oikawa Y, Aida K, Endo T, Kobayashi T. Ligand-bound thyroid hormone receptor contributes to reprogramming of pancreatic acinar cells into insulin-producing cells. J Biol Chem 2013; 288:16155-66. [PMID: 23595988 DOI: 10.1074/jbc.m112.438192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One goal of diabetic regenerative medicine is to instructively convert mature pancreatic exocrine cells into insulin-producing cells. We recently reported that ligand-bound thyroid hormone receptor α (TRα) plays a critical role in expansion of the β-cell mass during postnatal development. Here, we used an adenovirus vector that expresses TRα driven by the amylase 2 promoter (AdAmy2TRα) to induce the reprogramming of pancreatic acinar cells into insulin-producing cells. Treatment with l-3,5,3-triiodothyronine increases the association of TRα with the p85α subunit of phosphatidylinositol 3-kinase (PI3K), leading to the phosphorylation and activation of Akt and the expression of Pdx1, Ngn3, and MafA in purified acinar cells. Analyses performed with the lectin-associated cell lineage tracing system and the Cre/loxP-based direct cell lineage tracing system indicate that newly synthesized insulin-producing cells originate from elastase-expressing pancreatic acinar cells. Insulin-containing secretory granules were identified in these cells by electron microscopy. The inhibition of p85α expression by siRNA or the inhibition of PI3K by LY294002 prevents the expression of Pdx1, Ngn3, and MafA and the reprogramming to insulin-producing cells. In immunodeficient mice with streptozotocin-induced hyperglycemia, treatment with AdAmy2TRα leads to the reprogramming of pancreatic acinar cells to insulin-producing cells in vivo. Our findings suggest that ligand-bound TRα plays a critical role in β-cell regeneration during postnatal development via activation of PI3K signaling.
Collapse
Affiliation(s)
- Fumihiko Furuya
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Georgia S, Kanji M, Bhushan A. DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis. Genes Dev 2013; 27:372-7. [PMID: 23431054 DOI: 10.1101/gad.207001.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the developing pancreas, self-renewal of progenitors and patterning of cell fates are coordinated to ensure the correct size and cellular makeup of the organ. How this coordination is achieved, however, is not clear. We report that deletion of DNA methyltransferase 1 (Dnmt1) in pancreatic progenitors results in agenesis of the pancreas due to apoptosis of progenitor cells. We show that DNMT1 is bound to the p53 regulatory region and that loss of Dnmt1 results in derepression of the p53 locus. Haploinsufficiency of p53 rescues progenitor cell survival and cellular makeup of the Dnmt1-deleted pancreas.
Collapse
Affiliation(s)
- Senta Georgia
- Department of Medicine, University of California at Los Angeles, Los Angeles, California 90024, USA.
| | | | | |
Collapse
|
165
|
Li B, Zhou X, Wu J, Zhou H. From gut changes to type 2 diabetes remission after gastric bypass surgeries. Front Med 2013; 7:191-200. [PMID: 23553469 DOI: 10.1007/s11684-013-0258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
Increasing evidence suggests that the gut may influence the host's metabolism and ultimately change the outcomes of type 2 diabetes mellitus (T2DM). We review the evidence on the relationship between the gut and T2DM remission after gastric bypass surgery, and discuss the potential mechanisms underlying the above relationship: gut anatomical rearrangement, microbial composition changes, altered gut cells, and gut hormone modulation. However, the exact changes and their relative importance in the metabolic improvements after gastric bypass surgery remain to be further clarified. Elucidating the precise metabolic mechanisms of T2DM resolution after bypass surgery will help to reveal the molecular mechanisms of pathogenesis, and facilitate the development of novel diagnoses and preventative interventions for this common disease.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, CAS, Shanghai, China
| | | | | | | |
Collapse
|
166
|
Qu X, Afelik S, Jensen JN, Bukys MA, Kobberup S, Schmerr M, Xiao F, Nyeng P, Veronica Albertoni M, Grapin-Botton A, Jensen J. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment. Dev Biol 2013; 376:1-12. [DOI: 10.1016/j.ydbio.2013.01.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 01/17/2023]
|
167
|
Islet neogenesis-associated protein (INGAP)-positive cell mass, β-cell mass, and insulin secretion: their relationship during the fetal and neonatal periods. Pancreas 2013; 42:422-8. [PMID: 23303201 DOI: 10.1097/mpa.0b013e318264c7bd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To study the chronological appearance of pancreatic islet neogenesis-associated protein (INGAP)-positive cells and its correlation with the increase in β-cell mass and function in fetal and neonatal rats. METHODS Normal Wistar rat embryos (E) at gestational days 15, 17, and 19 (E15, E17, E19) and 7-day-old postnatal rats (P7) were humanely killed to determine body and pancreas weight; blood glucose; glucose and arginine-induced insulin secretion; real-time polymerase chain reaction of Pdx1 and Ngn3; quantitative immunomorphometric analysis of β-cell replication and apoptosis rate, cytokeratin and INGAP cell mass, and Pdx-1- and Ngn3-positive cells. RESULTS Body and pancreas weight increased with age (P7 > E19 > E17 > E15; P < 0.05). Neonates had higher blood glucose concentrations than embryos (P < 0.05). We recorded a simultaneous and significant age-dependent trend of increase in the number of β- and Pdx-1-positive cells, β- and cytokeratin-positive cell mass and β-cell capacity to release insulin in response to glucose and arginine, and decreased β-cell apoptotic rate. These changes closely paralleled the increase in INGAP-positive cell mass. CONCLUSIONS These findings suggest that INGAP exerts a positive modulatory effect on β-cell mass and its secretory function in fetal and neonatal rats, thus becoming a new component in the multifactorial regulation of such processes.
Collapse
|
168
|
Human embryonic stem cell differentiation into insulin secreting β-cells for diabetes. Cell Biol Int 2013; 36:1013-20. [PMID: 22897387 DOI: 10.1042/cbi20120210] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
hESC (human embryonic stem cells), when differentiated into pancreatic β ILC (islet-like clusters), have enormous potential for the cell transplantation therapy for Type 1 diabetes. We have developed a five-step protocol in which the EBs (embryoid bodies) were first differentiated into definitive endoderm and subsequently into pancreatic lineage followed by formation of functional endocrine β islets, which were finally matured efficiently under 3D conditions. The conventional cytokines activin A and RA (retinoic acid) were used initially to obtain definitive endoderm. In the last step, ILC were further matured under 3D conditions using amino acid rich media (CMRL media) supplemented with anti-hyperglycaemic hormone-Glp1 (glucagon-like peptide 1) analogue Liraglutide with prolonged t(½) and Exendin 4. The differentiated islet-like 3D clusters expressed bonafide mature and functional β-cell markers-PDX1 (pancreatic and duodenal homoeobox-1), C-peptide, insulin and MafA. Insulin synthesis de novo was confirmed by C-peptide ELISA of culture supernatant in response to varying concentrations of glucose as well as agonist and antagonist of functional 3D β islet cells in vitro. Our results indicate the presence of almost 65% of insulin producing cells in 3D clusters. The cells were also found to ameliorate hyperglycaemia in STZ (streptozotocin) induced diabetic NOD/SCID (non-obese diabetic/severe combined immunodeficiency) mouse up to 96 days of transplantation. This protocol provides a basis for 3D in vitro generation of long-term in vivo functionally viable islets from hESC.
Collapse
|
169
|
Ejarque M, Cervantes S, Pujadas G, Tutusaus A, Sanchez L, Gasa R. Neurogenin3 cooperates with Foxa2 to autoactivate its own expression. J Biol Chem 2013; 288:11705-17. [PMID: 23471965 DOI: 10.1074/jbc.m112.388173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor Neurogenin3 functions as a master regulator of endocrine pancreas formation, and its deficiency leads to the development of diabetes in humans and mice. In the embryonic pancreas, Neurogenin3 is transiently expressed at high levels for a narrow time window to initiate endocrine differentiation in scattered progenitor cells. The mechanisms controlling these rapid and robust changes in Neurogenin3 expression are poorly understood. In this study, we characterize a Neurogenin3 positive autoregulatory loop whereby this factor may rapidly induce its own levels. We show that Neurogenin3 binds to a conserved upstream fragment of its own gene, inducing deposition of active chromatin marks and the activation of Neurog3 transcription. Additionally, we show that the broadly expressed endodermal forkhead factors Foxa1 and Foxa2 can cooperate synergistically to amplify Neurogenin3 autoregulation in vitro. However, only Foxa2 colocalizes with Neurogenin3 in pancreatic progenitors, thus indicating a primary role for this factor in regulating Neurogenin3 expression in vivo. Furthermore, in addition to decreasing Neurog3 autoregulation, inhibition of Foxa2 by RNA interference attenuates Neurogenin3-dependent activation of the endocrine developmental program in cultured duct mPAC cells. Hence, these data uncover the potential functional cooperation between the endocrine lineage-determining factor Neurogenin3 and the widespread endoderm progenitor factor Foxa2 in the implementation of the endocrine developmental program in the pancreas.
Collapse
Affiliation(s)
- Miriam Ejarque
- Diabetes and Obesity Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clínic, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
170
|
Novel pancreatic endocrine maturation pathways identified by genomic profiling and causal reasoning. PLoS One 2013; 8:e56024. [PMID: 23418498 PMCID: PMC3572136 DOI: 10.1371/journal.pone.0056024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/04/2013] [Indexed: 12/18/2022] Open
Abstract
We have used a previously unavailable model of pancreatic development, derived in vitro from human embryonic stem cells, to capture a time-course of gene, miRNA and histone modification levels in pancreatic endocrine cells. We investigated whether it is possible to better understand, and hence control, the biological pathways leading to pancreatic endocrine formation by analysing this information and combining it with the available scientific literature to generate models using a casual reasoning approach. We show that the embryonic stem cell differentiation protocol is highly reproducible in producing endocrine precursor cells and generates cells that recapitulate many aspects of human embryonic pancreas development, including maturation into functional endocrine cells when transplanted into recipient animals. The availability of whole genome gene and miRNA expression data from the early stages of human pancreatic development will be of great benefit to those in the fields of developmental biology and diabetes research. Our causal reasoning algorithm suggested the involvement of novel gene networks, such as NEUROG3/E2F1/KDM5B and SOCS3/STAT3/IL-6, in endocrine cell development We experimentally investigated the role of the top-ranked prediction by showing that addition of exogenous IL-6 could affect the expression of the endocrine progenitor genes NEUROG3 and NKX2.2.
Collapse
|
171
|
Simon-Areces J, Acaz-Fonseca E, Ruiz-Palmero I, Garcia-Segura LM, Arevalo MA. A CRM1-mediated nuclear export signal is essential for cytoplasmic localization of neurogenin 3 in neurons. PLoS One 2013; 8:e55237. [PMID: 23383123 PMCID: PMC3559332 DOI: 10.1371/journal.pone.0055237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 12/27/2012] [Indexed: 01/13/2023] Open
Abstract
Neurogenin 3 (Ngn3), a proneural gene, regulates dendritogenesis and synaptogenesis in mouse hippocampal neurons. Ngn3 is transiently exported from the cell nucleus to the cytoplasm when neuronal polarity is initiated, suggesting that the nucleo-cytoplasmic transport of the protein is important for its action on neuronal development. In this study, we identified for the first time a functional nuclear export sequence (NES2; ¹³¹YIWALTQTLRIA¹⁴²) in Ngn3. The green fluorescent protein (EGFP)-NES2 fusion protein was localized in the cytoplasm and its nucleo-cytoplasmic shuttling was blocked by the CRM1 specific export inhibitor leptomycin B. Mutation of a leucine residue to alanine (L135A) in the NES2 motif resulted in both cytoplasmic and nuclear localization of the EGFP-NES2 fusion protein and in the nuclear accumulation of ectopic full-length myc-Ngn3. In addition, point mutation of the leucine 135 counteracted the effects of Ngn3 on neuronal morphology and synaptic inputs indicating that the cytoplasmic localization of Ngn3 is important for neuronal development. Pharmacological perturbation of the cytoskeleton revealed that cytoplasmic Ngn3 is associated with microtubules.
Collapse
|
172
|
Flasse LC, Stern DG, Pirson JL, Manfroid I, Peers B, Voz ML. The bHLH transcription factor Ascl1a is essential for the specification of the intestinal secretory cells and mediates Notch signaling in the zebrafish intestine. Dev Biol 2013; 376:187-97. [PMID: 23352790 DOI: 10.1016/j.ydbio.2013.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
Abstract
Notch signaling has a fundamental role in stem cell maintenance and in cell fate choice in the intestine of different species. Canonically, Notch signaling represses the expression of transcription factors of the achaete-scute like (ASCL) or atonal related protein (ARP) families. Identifying the ARP/ASCL genes expressed in the gastrointestinal tract is essential to build the regulatory cascade controlling the differentiation of gastrointestinal progenitors into the different intestinal cell types. The expression of the ARP/ASCL factors was analyzed in zebrafish to identify, among all the ARP/ASCL factors found in the zebrafish genome, those expressed in the gastrointestinal tract. ascl1a was found to be the earliest factor detected in the intestine. Loss-of-function analyses using the pia/ascl1a mutant, revealed that ascl1a is crucial for the differentiation of all secretory cells. Furthermore, we identify a battery of transcription factors expressed during secretory cell differentiation and downstream of ascl1a. Finally, we show that the repression of secretory cell fate by Notch signaling is mediated by the inhibition of ascl1a expression. In conclusion, this work identifies Ascl1a as a key regulator of the secretory cell lineage in the zebrafish intestine, playing the same role as Atoh1 in the mouse intestine. This highlights the diversity in the ARP/ASCL family members acting as cell fate determinants downstream from Notch signaling.
Collapse
Affiliation(s)
- Lydie C Flasse
- Unit of Molecular Biology and Genetic Engineering, Giga-Research, University of Liège, 1 avenue de l'Hôpital B34, B-4000 Sart-Tilman (Liège), Belgium
| | | | | | | | | | | |
Collapse
|
173
|
Mansouri A. Development and regeneration in the endocrine pancreas. ISRN ENDOCRINOLOGY 2012; 2012:640956. [PMID: 23326678 PMCID: PMC3544272 DOI: 10.5402/2012/640956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
Abstract
The pancreas is composed of two compartments that deliver digestive enzymes and endocrine hormones to control the blood sugar level. The endocrine pancreas consists of functional units organized into cell clusters called islets of Langerhans where insulin-producing cells are found in the core and surrounded by glucagon-, somatostatin-, pancreatic polypeptide-, and ghrelin-producing cells. Diabetes is a devastating disease provoked by the depletion or malfunction of insulin-producing beta-cells in the endocrine pancreas. The side effects of diabetes are multiple, including cardiovascular, neuropathological, and kidney diseases. The analyses of transgenic and knockout mice gave major insights into the molecular mechanisms controlling endocrine pancreas genesis. Moreover, the study of animal models of pancreas injury revealed that the pancreas has the propensity to undergo regeneration and opened new avenues to develop novel therapeutic approaches for the treatment of diabetes. Thus, beside self-replication of preexisting insulin-producing cells, several potential cell sources in the adult pancreas were suggested to contribute to beta-cell regeneration, including acinar, intraislet, and duct epithelia. However, regeneration in the adult endocrine pancreas is still under controversial debate.
Collapse
Affiliation(s)
- Ahmed Mansouri
- Research Group Molecular Cell Differentiation, Department Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany ; Department of Clinical Neurophysiology, University of Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
174
|
Abstract
Type 1 and some forms of type 2 diabetes mellitus are caused by deficiency of insulin-secretory islet β cells. An ideal treatment for these diseases would therefore be to replace β cells, either by transplanting donated islets or via endogenous regeneration (and controlling the autoimmunity in type 1 diabetes). Unfortunately, the poor availability of donor islets has severely restricted the broad clinical use of islet transplantation. The ability to differentiate embryonic stem cells into insulin-expressing cells initially showed great promise, but the generation of functional β cells has proven extremely difficult and far slower than originally hoped. Pancreatic stem cells (PSC) or transdifferentiation of other cell types in the pancreas may hence provide an alternative renewable source of surrogate β cells. However, the existence of PSC has been hotly debated for many years. In this review, we will discuss the latest development and future perspectives of PSC research, giving readers an overview of this controversial but important area.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- Centre for Diabetes Research, Western Australian Institute for Medical Research, The University of Western Australia, 50 Murray St (Rear), Perth, WA 6000, Australia.
| | | |
Collapse
|
175
|
Ghrelin expression in the mouse pancreas defines a unique multipotent progenitor population. PLoS One 2012; 7:e52026. [PMID: 23251675 PMCID: PMC3520898 DOI: 10.1371/journal.pone.0052026] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/13/2012] [Indexed: 01/01/2023] Open
Abstract
Pancreatic islet cells provide the major source of counteractive endocrine hormones required for maintaining glucose homeostasis; severe health problems result when these cell types are insufficiently active or reduced in number. Therefore, the process of islet endocrine cell lineage allocation is critical to ensure there is a correct balance of islet cell types. There are four endocrine cell types within the adult islet, including the glucagon-producing alpha cells, insulin-producing beta cells, somatostatin-producing delta cells and pancreatic polypeptide-producing PP cells. A fifth islet cell type, the ghrelin-producing epsilon cells, is primarily found during gestational development. Although hormone expression is generally assumed to mark the final entry to a determined cell state, we demonstrate in this study that ghrelin-expressing epsilon cells within the mouse pancreas do not represent a terminally differentiated endocrine population. Ghrelin cells give rise to significant numbers of alpha and PP cells and rare beta cells in the adult islet. Furthermore, pancreatic ghrelin-producing cells are maintained in pancreata lacking the essential endocrine lineage regulator Neurogenin3, and retain the ability to contribute to cells within the pancreatic ductal and exocrine lineages. These results demonstrate that the islet ghrelin-expressing epsilon cells represent a multi-potent progenitor cell population that delineates a major subgrouping of the islet endocrine cell populations. These studies also provide evidence that many of hormone-producing cells within the adult islet represent heterogeneous populations based on their ontogeny, which could have broader implications on the regulation of islet cell ratios and their ability to effectively respond to fluctuations in the metabolic environment during development.
Collapse
|
176
|
Afelik S, Jensen J. Notch signaling in the pancreas: patterning and cell fate specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:531-44. [DOI: 10.1002/wdev.99] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
177
|
Chun SY, Mack DL, Moorefield E, Oh SH, Kwon TG, Pettenati MJ, Yoo JJ, Coppi PD, Atala A, Soker S. Pdx1 and controlled culture conditions induced differentiation of human amniotic fluid-derived stem cells to insulin-producing clusters. J Tissue Eng Regen Med 2012; 9:540-9. [PMID: 23147868 DOI: 10.1002/term.1631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/01/2012] [Accepted: 09/16/2012] [Indexed: 12/21/2022]
Abstract
This study investigated the differentiation of human amniotic fluid-derived stem cells (hAFSCs) into insulin-producing clusters in vitro. Adenovirally-delivered mouse Pdx1 (Ad-Pdx1) induced human Pdx1 expression in hAFSCs and enhanced the coordinated expression of downstream β-cell markers. When Ad-Pdx1-transduced hAFSCs were sequentially treated with activin A, bFGF and nicotinamide and the culture plate surface coated with poly-l-ornithine, the expression of islet-associated human mRNAs for Pdx1, Pax6, Ngn3 and insulin was increased. C-peptide ELISA confirmed that Ad-Pdx1-transduced hAFSCs processed and secreted insulin in a manner consistent with that pathway in pancreatic β-cells. To sustain the β-cell-like phenotype and investigate the effect of three-dimensional (3D) conformation on the differentiation of hAFSCs, Pdx1-transduced cells were encapsulated in alginate and cultured long-term under serum-free conditions. Over 2 weeks, partially differentiated hAFSC clusters increased in size and increased insulin secretion. Taken together, these data demonstrate that ectopic Pdx1 expression initiates pancreatic differentiation in hAFSCs and that a β-cell-like phenotype can be augmented by culture conditions that mimic the stromal components and 3D geometry associated with pancreatic islets.
Collapse
Affiliation(s)
- So Young Chun
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Roark R, Itzhaki L, Philpott A. Complex regulation controls Neurogenin3 proteolysis. Biol Open 2012; 1:1264-72. [PMID: 23259061 PMCID: PMC3522888 DOI: 10.1242/bio.20121750] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/01/2012] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is known to be responsible for the rapid turnover of many transcription factors, where half-life is held to be critical for regulation of transcriptional activity. However, the stability of key transcriptional regulators of development is often very poorly characterised. Neurogenin 3 (Ngn3) is a basic helix–loop–helix transcription factor that plays a central role in specification and differentiation of endocrine cells of the pancreas and gut, as well as spermatogonia and regions of the brain. Here we demonstrate that Ngn3 protein stability is regulated by the ubiquitin proteasome system and that Ngn3 can be ubiquitylated on lysines, the N-terminus and, highly unusually, on non-canonical residues including cysteines and serines/threonines. Rapid turnover of Ngn3 is regulated both by binding to its heterodimeric partner E protein and by the presence of cdk inhibitors. We show that protein half-life does appear to regulate the activity of Ngn3 in vivo, but, unlike the related transcription factor c-myc, ubiquitylation on canonical sites is not a requirement for transcriptional activity of Ngn3. Hence, we characterise an important new level of Ngn3 post-translational control, which may regulate its transcriptional activity.
Collapse
Affiliation(s)
- Ryan Roark
- Department of Oncology, University of Cambridge, Hutchison/Medical Research Council (MRC) Research Centre , Cambridge CB2 0XZ , UK
| | | | | |
Collapse
|
179
|
Abstract
Diabetes mellitus type 1 (T1DM) and type 2 (T2DM) are common diseases. To date, it is widely accepted that all forms of DM lead to the loss of beta cells. Therefore, to avoid the debilitating comorbidities when glycemic control cannot be fully achieved, some would argue that beta cell replacement is the only way to cure the disease. Due to organ donor shortage, other cell sources for beta cell replacement strategies have to be employed. Pluripotent stem cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells offer a valuable alternative to provide the necessary cells to substitute organ transplants but also to serve as a model to study the onset and progression of the disease, resulting in better treatment regimens. This review will summarize recent progress in the establishment of pluripotent stem cells, their differentiation into the pancreatic lineage with a focus on two-dimensional (2D) and three-dimensional (3D) differentiation settings, the special role of iPS cells in the analysis of genetic predispositions to diabetes, and techniques that help to move current approaches to clinical applications. Particular attention, however, is also given to the long-term challenges that have to be addressed before ES or iPS cell-based therapies will become a broadly accepted treatment option.
Collapse
Affiliation(s)
- Insa S Schroeder
- JRG Stem Cell Research, Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, D-06108, Halle/Saale, Germany.
| |
Collapse
|
180
|
Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, Macdonald RJ, Sussel L. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Invest 2012; 122:3516-28. [PMID: 23006325 DOI: 10.1172/jci63352] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022] Open
Abstract
Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis.
Collapse
Affiliation(s)
- Shouhong Xuan
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Chen S, Shimoda M, Chen J, Matsumoto S, Grayburn PA. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration. Cell Cycle 2012; 11:695-705. [PMID: 22373529 DOI: 10.4161/cc.11.4.19120] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G(0)-phase islet cells into G(1)/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells.
Collapse
Affiliation(s)
- Shuyuan Chen
- Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
182
|
Characterization of myelomonocytoid progenitor cells with mesenchymal differentiation potential obtained by outgrowth from pancreas explants. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2012; 2012:429868. [PMID: 22953065 PMCID: PMC3431127 DOI: 10.1155/2012/429868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023]
Abstract
Progenitor cells can be obtained by outgrowth from tissue explants during primary ex vivo tissue culture. We have isolated and characterized cells outgrown from neonatal mouse pancreatic explants. A relatively uniform population of cells showing a distinctive morphology emerged over time in culture. This population expressed monocyte/macrophage and hematopoietic markers (CD11b(+) and CD45(+)), and some stromal-related markers (CD44(+) and CD29(+)), but not mesenchymal stem cell (MSC)-defining markers (CD90(-) and CD105(-)) nor endothelial (CD31(-)) or stem cell-associated markers (CD133(-) and stem cell antigen-1; Sca-1(-)). Cells could be maintained in culture as a plastic-adherent monolayer in culture medium (MesenCult MSC) for more than 1 year. Cells spontaneously formed sphere clusters "pancreatospheres" which, however, were nonclonal. When cultured in appropriate media, cells differentiated into multiple mesenchymal lineages (fat, cartilage, and bone). Positive dithizone staining suggested that a subset of cells differentiated into insulin-producing cells. However, further studies are needed to characterize the endocrine potential of these cells. These findings indicate that a myelomonocytoid population from pancreatic explant outgrowths has mesenchymal differentiation potential. These results are in line with recent data onmonocyte-derivedmesenchymal progenitors (MOMPs).
Collapse
|
183
|
Signaling pathways regulating murine pancreatic development. Semin Cell Dev Biol 2012; 23:663-72. [DOI: 10.1016/j.semcdb.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/13/2012] [Indexed: 12/24/2022]
|
184
|
Kim YS, Kang HS, Takeda Y, Hom L, Song HY, Jensen J, Jetten AM. Glis3 regulates neurogenin 3 expression in pancreatic β-cells and interacts with its activator, Hnf6. Mol Cells 2012; 34:193-200. [PMID: 22820919 PMCID: PMC3465161 DOI: 10.1007/s10059-012-0109-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 02/06/2023] Open
Abstract
The Krüppel-like zinc finger transcription factor, Glis3, has been associated with neonatal diabetes in humans and mice, and implicated in the regulation of pancreatic β-cell generation. However, its precise function in the development of pancreatic β-cells has not yet been elucidated. In this study, we provide evidence that Glis3 regulates Neurogenin 3 (Ngn3) through its distal promoter region. Previous studies showed that the distal region and proximal region of Ngn3 promoter contains various transcription binding sites, including binding sites for pancreatic and duodenal homeobox 1 (Pdx1), Hnf1β and Hnf6. Interestingly, putative Glis3 binding sites (Glis3BS) were found in the distal region of Ngn3 promoter close to the Hnf6 binding sites. This suggested that along with Hnf6, Glis3 may also be involved in the regulation of Ngn3 expression. This hypothesis is supported by data showing that Glis3 can bind to the Ngn3 promoter directly and activate Ngn3 transcriptional activity. Additionally, Glis3 can interact directly with Hnf6 in vitro and in vivo. The amino-terminus in Glis3 and the homeodomain of Hnf6 are critical for this interaction. These data suggest that crosstalk between Glis3 and Hnf6 may play an important role in the regulation of Ngn3 during pancreatic endocrine progenitor cell specification and development.
Collapse
Affiliation(s)
- Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 314-864,
Korea
- Laboratory of Respiratory Biology, Cell Biology Section, National Institute Environmental Health Sciences/NIH,
USA
- Diabetes Program in the Dept. of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute/Cleveland Clinic, Cleveland, OH 44195,
USA
| | - Hong Soon Kang
- Laboratory of Respiratory Biology, Cell Biology Section, National Institute Environmental Health Sciences/NIH,
USA
| | - Yukimasa Takeda
- Laboratory of Respiratory Biology, Cell Biology Section, National Institute Environmental Health Sciences/NIH,
USA
| | - Lisa Hom
- Diabetes Program in the Dept. of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute/Cleveland Clinic, Cleveland, OH 44195,
USA
| | - Ho-Yeon Song
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 314-864,
Korea
| | - Jan Jensen
- Diabetes Program in the Dept. of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute/Cleveland Clinic, Cleveland, OH 44195,
USA
| | - Anton M. Jetten
- Laboratory of Respiratory Biology, Cell Biology Section, National Institute Environmental Health Sciences/NIH,
USA
| |
Collapse
|
185
|
Rieck S, Bankaitis ED, Wright CVE. Lineage determinants in early endocrine development. Semin Cell Dev Biol 2012; 23:673-84. [PMID: 22728667 DOI: 10.1016/j.semcdb.2012.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations.
Collapse
Affiliation(s)
- Sebastian Rieck
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
186
|
Swales N, Martens GA, Bonné S, Heremans Y, Borup R, Van de Casteele M, Ling Z, Pipeleers D, Ravassard P, Nielsen F, Ferrer J, Heimberg H. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming. PLoS One 2012; 7:e37055. [PMID: 22606327 PMCID: PMC3351393 DOI: 10.1371/journal.pone.0037055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 04/16/2012] [Indexed: 12/01/2022] Open
Abstract
Aims/Hypothesis Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. Methods The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. Results Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. Conclusions/Interpretation The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.
Collapse
Affiliation(s)
- Nathalie Swales
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert A. Martens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Bonné
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rehannah Borup
- Microarray Facility, Rigshospitalet, Copenhagen, Denmark
| | | | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philippe Ravassard
- Centre de Recherche Institut du Cerveau et de la Moelle, CNRS UMR7225, Université Pierre et Marie Curie, Paris, France
| | - Finn Nielsen
- Microarray Facility, Rigshospitalet, Copenhagen, Denmark
| | - Jorge Ferrer
- Genomic Programming of Beta Cells Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
187
|
Lima MJ, Docherty HM, Chen Y, Vallier L, Docherty K. Pancreatic transcription factors containing protein transduction domains drive mouse embryonic stem cells towards endocrine pancreas. PLoS One 2012; 7:e36481. [PMID: 22563503 PMCID: PMC3341374 DOI: 10.1371/journal.pone.0036481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/05/2012] [Indexed: 12/31/2022] Open
Abstract
Protein transduction domains (PTDs), such as the HIV1-TAT peptide, have been previously used to promote the uptake of proteins into a range of cell types, including stem cells. Here we generated pancreatic transcription factors containing PTD sequences and administered these to endoderm enriched mouse embryonic stem (ES) cells under conditions that were designed to mimic the pattern of expression of these factors in the developing pancreas. The ES cells were first cultured as embryoid bodies and treated with Activin A and Bone morphogenetic protein 4 (BMP4) to promote formation of definitive endoderm. Cells were subsequently plated as a monolayer and treated with different combinations of the modified recombinant transcription factors Pdx1 and MafA. The results demonstrate that each transcription factor was efficiently taken up by the cells, where they were localized in the nuclei. RT-qPCR was used to measure the expression levels of pancreatic markers. After the addition of Pdx1 alone for a period of five days, followed by the combination of Pdx1 and TAT-MafA in a second phase, up-regulation of insulin 1, insulin 2, Pdx1, Glut2, Pax4 and Nkx6.1 was observed. As assessed by immunocytochemistry, double positive insulin and Pdx1 cells were detected in the differentiated cultures. Although the pattern of pancreatic markers expression in these cultures was comparable to that of a mouse transformed β-cell line (MIN-6) and human islets, the expression levels of insulin observed in the differentiated ES cell cultures were several orders of magnitude lower. This suggests that, although PTD-TFs may prove useful in studying the role of exogenous TFs in the differentiation of ES cells towards islets and other pancreatic lineages, the amount of insulin generated is well below that required for therapeutically useful cells.
Collapse
Affiliation(s)
- Maria João Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Hilary M. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Yuanxiao Chen
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Ludovic Vallier
- The Anne McLaren Laboratory for Regenerative Medicine, Cambridge, United Kingdom
| | - Kevin Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
188
|
Abstract
This review considers the role of α-cells in β-cell generation and regeneration. We present recent evidence obtained from lineage-tracing studies showing that α-cells can serve as progenitors of β-cells and present a hypothetical model how injured β-cells might activate α-cells in adult islets to promote β-cell regeneration. β-cells appear to arise by way of their trans-differentiation from undifferentiated α progenitor cells, pro-α-cells, both during embryonic development of the islets and in the adult pancreas in response to β-cell injuries. Plasticity of α-cells is endowed by the expression of the gene encoding proglucagon, a prohormone that can give rise to glucagon and glucagon-like peptides (GLPs). The production of glucagon from proglucagon is characteristic of fully-differentiated α-cells whereas GLP-1 is a product of undifferentiated α-cells. GLP-1, a cell growth and survival factor, is proposed to promote the expansion of neurogenin3-expressing, undifferentiated pro-α-cells during development. β-cells arise from pro-α-cells by a change in the relative amounts of the transcription factors Arx and Pax4, master regulators of the α- and β-cell lineages, respectively. A paracrine/autocrine model is proposed whereby injuries of β-cells in adult islets induce the production and release of factors, such as stromal cell-derived factor-1, that cause the de-differentiation of adjacent α-cells into pro-α-cells. Pro-α-cells produce GLP-1 and its receptor that renders them competent to trans-differentiate into β-cells. The trans-differentiation of pro-α-cells into β-cells provides a potentially exploitable mechanism for the regeneration of β-cells in individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
189
|
Liu J, Walp ER, May CL. Elevation of transcription factor Islet-1 levels in vivo increases β-cell function but not β-cell mass. Islets 2012; 4:199-206. [PMID: 22595886 PMCID: PMC3442817 DOI: 10.4161/isl.19982] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A decrease in the expression of Islet-1 (Isl-1), an islet transcription factor, has been reported in several physiological settings of reduced β-cell function. Here, we investigate whether an increased level of Isl-1 in islet cells can enhance β-cell function and/or mass. We demonstrate that transgenic mice with Isl-1 overexpression display improved glucose tolerance and enhanced insulin secretion without significant changes in β cell mass. From our microarray study, we identify approximately 135 differentially expressed genes in the islets of Isl-1 overexpressing mice that have been implicated to function in numerous biological processes including protein trafficking, metabolism and differentiation. Using real-time PCR we have confirmed upregulation of Caps2, Sec14l4, Slc2a10, P2rx7, Afamin, and Neurogenin 3 that may in part mediate the observed improved insulin secretion in Isl-1 overexpressing mice. These findings show for the first time that Isl-1 is a key factor in regulating adult β cell function in vivo, and suggest that Isl-1 elevation could be beneficial to improve glucose homeostasis.
Collapse
Affiliation(s)
- Jingxuan Liu
- Department of Pathology and Laboratory Medicine; Children’s Hospital of Philadelphia; Philadelphia, PA USA
| | - Erik R. Walp
- Department of Pathology and Laboratory Medicine; Children’s Hospital of Philadelphia; Philadelphia, PA USA
| | - Catherine Lee May
- Department of Pathology and Laboratory Medicine; Children’s Hospital of Philadelphia; Philadelphia, PA USA
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
- Institute for Diabetes, Obesity and Metabolism; Philadelphia, PA USA
- Correspondence to: Catherine Lee May,
| |
Collapse
|
190
|
Transdifferentiation: a cell and molecular reprogramming process. Cell Tissue Res 2012; 348:379-96. [PMID: 22526624 DOI: 10.1007/s00441-012-1403-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
Abstract
Evidence has emerged recently indicating that differentiation is not entirely a one-way process, and that it is possible to convert one cell type to another, both in vitro and in vivo. This phenomenon is called transdifferentiation, and is generally defined as the stable switch of one cell type to another. Transdifferentiation plays critical roles during development and in regeneration pathways in nature. Although this phenomenon occurs rarely in nature, recent studies have been focused on transdifferentiation and the reprogramming ability of cells to produce specific cells with new phenotypes for use in cell therapy and regenerative medicine. Thus, understanding the principles and the mechanism of this process is important for producing desired cell types. Here some well-documented examples of transdifferentiation, and their significance in development and regeneration are reviewed. In addition, transdifferentiation pathways are considered and their potential molecular mechanisms, especially the role of master switch genes, are considered. Finally, the significance of transdifferentiation in regenerative medicine is discussed.
Collapse
|
191
|
Zhang T, Saunee NA, Breslin MB, Song K, Lan MS. Functional role of an islet transcription factor, INSM1/IA-1, on pancreatic acinar cell trans-differentiation. J Cell Physiol 2012; 227:2470-9. [PMID: 21830214 DOI: 10.1002/jcp.22982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, the functional role of INSM1 is examined with an AR42J acinar cell model for trans-differentiation into insulin-positive cells. Islet transcription factors (ITFs: INSM1, Pdx-1, and NeuroD1) are over-expressed in AR42J cells using adenoviral vectors. Addition of Ad-INSM1 alone or the combination of three ITFs to the AR42J cells triggers cellular trans-differentiation. Ectopic expression of INSM1 directly induces insulin, Pax6, and Nkx6.1 expression, whereas Pdx-1 and NeuroD1 were slightly suppressed by INSM1. Addition of Pdx-1 and NeuroD1 with INSM1 further enhances endocrine trans-differentiation by increasing both the numbers and intensity of the insulin-positive cells with simultaneous activation of ITFs, Ngn3 and MafA. INSM1 expression alone partially inhibits dexamethasone-induced exocrine amylase expression. The combination of the three ITFs completely inhibits amylase expression and concomitantly induces greater acinar cell trans-differentiation into endocrine cells. Also, addition of the three ITFs promotes EGF and TGFβ receptors expression. Stimulation by the three ITFs along with the EGF/TGFβ growth factors strongly promotes insulin gene expression. The combination of the three ITFs and EGF/TGFβ growth factors with the primary cultured pancreatic acini also facilitates exocrine to endocrine cell differentiation. Taken together, both the AR42J cell line and the primary cultured mouse acinar cells support INSM1 induced acini trans-differentiation model.
Collapse
Affiliation(s)
- Tao Zhang
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
192
|
Chen S, Shimoda M, Chen J, Matsumoto S, Grayburn PA. Ectopic transgenic expression of NKX2.2 induces differentiation of adult pancreatic progenitors and mediates islet regeneration. Cell Cycle 2012; 11:1544-53. [PMID: 22433950 DOI: 10.4161/cc.19928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To pursue islet regeneration in situ in adult pancreas with a diabetic animal model, we used ultrasound targeted microbubble destruction (UTMD) to deliver islet transcription factor genes to the pancreas of STZ-treated rats, specifically using a piggyBac transposon gene delivery system for long-term transgene expression of Nkx2.2 in STZ rat pancreas. Our results show that Nkx2.2 gene induced robust proliferation and differentiation of adult pancreatic progenitors. Our high-resolution confocal images precisely displayed how one single pancreatic progenitor cell differentiated into islets-like clusters and, further, into mature islets with normal morphology in situ in postnatal pancreas. Nkx2.2 targeted to the pancreas by UTMD induces pancreatic progenitor cell proliferation and differentiation with subsequent islet regeneration and cure of STZ-induced diabetes for three months.
Collapse
|
193
|
Norrman K, Strömbeck A, Semb H, Ståhlberg A. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level. Methods 2012; 59:59-70. [PMID: 22503774 DOI: 10.1016/j.ymeth.2012.03.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/12/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022] Open
Abstract
Characterization of directed differentiation of pluripotent stem cells towards therapeutically relevant cell types, including pancreatic beta-cells and hepatocytes, depends on molecular markers and assays that resolve the signature of individual cells. Pancreas and liver both have a common origin of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study DE formation. Final DE differentiation was also analyzed with immunocytochemistry and single-cell gene expression profiling. We found that cells treated with activin A in combination with sodium butyrate and B27 serum-free supplement medium generated the most mature DE cells. Cell population studies were useful to monitor the temporal expression of genes involved in primitive streak formation and endoderm formation, while single-cell analysis allowed us to study cell culture heterogeneity and fingerprint individual cells. In addition, single-cell analysis revealed distinct gene expression patterns for the three activin A based protocols applied. Our data provide novel insights in DE gene expression at the cellular level of in vitro differentiated human embryonic stem cells, and illustrate the power of using single-cell gene expression profiling to study differentiation heterogeneity and to characterize cell types and subpopulations.
Collapse
Affiliation(s)
- Karin Norrman
- Stem Cell and Pancreas Developmental Biology, Stem Cell Center, Department of Laboratory Medicine, Lund University, BMC B10, Klinikgatan 26, SE-22184 Lund, Sweden.
| | | | | | | |
Collapse
|
194
|
Yuan Y, Zhang J, Liang G, Yang X. Rapid fluorescent detection of neurogenin3 by CdTe quantum dot aggregation. Analyst 2012; 137:1775-8. [PMID: 22407238 DOI: 10.1039/c2an16166d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we report a facile immunoassay for detecting a synthetic peptide fragment of neurogenin3 (amino acid sequence: SKQRRSRRKKANDRERNRMH) by harnessing the aggregation-dependent fluorescence property of antibody-conjugated CdTe quantum dots in the presence of the target.
Collapse
Affiliation(s)
- Yue Yuan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | | | | | | |
Collapse
|
195
|
Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet 2012; 44:406-12, S1. [PMID: 22406641 PMCID: PMC3315609 DOI: 10.1038/ng.2215] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/07/2012] [Indexed: 12/31/2022]
Abstract
Restoration of regulated insulin secretion is the ultimate goal of therapy for type 1 diabetes. Here, we show that, unexpectedly, somatic ablation of Foxo1 in Neurog3(+) enteroendocrine progenitor cells gives rise to gut insulin-positive (Ins(+)) cells that express markers of mature β cells and secrete bioactive insulin as well as C-peptide in response to glucose and sulfonylureas. Lineage tracing experiments showed that gut Ins(+) cells arise cell autonomously from Foxo1-deficient cells. Inducible Foxo1 ablation in adult mice also resulted in the generation of gut Ins(+) cells. Following ablation by the β-cell toxin streptozotocin, gut Ins(+) cells regenerate and produce insulin, reversing hyperglycemia in mice. The data indicate that Neurog3(+) enteroendocrine progenitors require active Foxo1 to prevent differentiation into Ins(+) cells. Foxo1 ablation in gut epithelium may provide an approach to restore insulin production in type 1 diabetes.
Collapse
|
196
|
Arkhipova V, Wendik B, Devos N, Ek O, Peers B, Meyer D. Characterization and regulation of the hb9/mnx1 beta-cell progenitor specific enhancer in zebrafish. Dev Biol 2012; 365:290-302. [PMID: 22426004 PMCID: PMC3327876 DOI: 10.1016/j.ydbio.2012.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 11/06/2022]
Abstract
Differentiation of insulin producing beta-cells is a genetically well defined process that involves functions of various conserved transcription factors. Still, the transcriptional mechanisms underlying specification and determination of beta-cell fate are poorly defined. Here we provide the description of a beta-cell progenitor specific enhancer as a model to study initial steps of beta-cell differentiation. We show that evolutionary non-conserved upstream sequences of the zebrafish hb9 gene are required and sufficient for regulating expression in beta-cells prior to the onset of insulin expression. This enhancer contains binding sites for paired-box transcription factors and two E-boxes that in EMSA studies show interaction with Pax6b and NeuroD, respectively. We show that Pax6b is a potent activator of endodermal hb9 expression and that this activation depends on the beta-cell enhancer. Using genetic approaches we show that pax6b is crucial for maintenance but not induction of pancreatic hb9 transcription. As loss of Pax6b or Hb9 independently results in the loss of insulin expression, the data reveal a novel cross-talk between the two essential regulators of early beta-cell differentiation. While we find that the known pancreatic E-box binding proteins NeuroD and Ngn3 are not required for hb9 expression we also show that removal of both E-boxes selectively eliminates pancreatic specific reporter expression. The data provide evidence for an Ngn3 independent pathway of beta-cell specification that requires function of currently not specified E-box binding factors.
Collapse
Affiliation(s)
- Valeriya Arkhipova
- Institute for Molecular Biology/CMBI, Technikerstr. 25, University of Innsbruck, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
197
|
Kobayashi M, Kikuchi O, Sasaki T, Kim HJ, Yokota-Hashimoto H, Lee YS, Amano K, Kitazumi T, Susanti VY, Kitamura YI, Kitamura T. FoxO1 as a double-edged sword in the pancreas: analysis of pancreas- and β-cell-specific FoxO1 knockout mice. Am J Physiol Endocrinol Metab 2012; 302:E603-13. [PMID: 22215655 DOI: 10.1152/ajpendo.00469.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes is characterized by an absolute or relative deficiency of pancreatic β-cells. New strategies to accelerate β-cell neogenesis or maintain existing β-cells are desired for future therapies against diabetes. We previously reported that forkhead box O1 (FoxO1) inhibits β-cell growth through a Pdx1-mediated mechanism. However, we also reported that FoxO1 protects against β-cell failure via the induction of NeuroD and MafA. Here, we investigate the physiological roles of FoxO1 in the pancreas by generating the mice with deletion of FoxO1 in the domains of the Pdx1 promoter (P-FoxO1-KO) or the insulin 2 promoter (β-FoxO1-KO) and analyzing the metabolic parameters and pancreatic morphology under two different conditions of increased metabolic demand: high-fat high-sucrose diet (HFHSD) and db/db background. P-FoxO1-KO, but not β-FoxO1-KO, showed improved glucose tolerance with HFHSD. Immunohistochemical analysis revealed that P-FoxO1-KO had increased β-cell mass due to increased islet number rather than islet size, indicating accelerated β-cell neogenesis. Furthermore, insulin-positive pancreatic duct cells were increased in P-FoxO1-KO but not β-FoxO1-KO. In contrast, db/db mice crossed with P-FoxO1-KO or β-FoxO1-KO showed more severe glucose intolerance than control db/db mice due to decreased glucose-responsive insulin secretion. Electron microscope analysis revealed fewer insulin granules in FoxO1 knockout db/db mice. We conclude that FoxO1 functions as a double-edged sword in the pancreas; FoxO1 essentially inhibits β-cell neogenesis from pancreatic duct cells but is required for the maintenance of insulin secretion under metabolic stress.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Oropeza D, Horb M. Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells. Genesis 2012; 50:271-85. [PMID: 22121111 DOI: 10.1002/dvg.20828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 01/18/2023]
Abstract
Promoting ectopic development of pancreatic beta cells from other cell types is one of the strategies being pursued for the treatment of diabetes. To achieve this, a detailed outline of the molecular lineage that operates in pancreatic progenitor cells to generate beta cells over other endocrine cell types is necessary. Here, we demonstrate that early transient expression of the endocrine progenitor bHLH protein Neurogenin 3 (Ngn3) favors the promotion of pancreatic beta and delta cell fates over an alpha cell fate, while later transient expression promotes ectopic development of all three endocrine cell fates. We found that short-term activation of Ngn3 in Xenopus laevis endoderm just after gastrulation was sufficient to promote both early and ectopic development of beta and delta cells. By examining gene expression changes 4 h after Ngn3 activation we identified several new downstream targets of Ngn3. We show that several of these are required for the promotion of ectopic beta cells by Ngn3 as well as for normal beta cell development. These results provide new detail regarding the Ngn3 transcriptional network operating in endocrine progenitor cells to specify a beta cell phenotype and should help define new approaches to promote ectopic development of beta cells for diabetes therapy.
Collapse
Affiliation(s)
- Daniel Oropeza
- Laboratory of Molecular Organogenesis, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
199
|
Lu CK, Lai YC, Lin YF, Chen HR, Chiang MK. CCAR1 is required for Ngn3-mediated endocrine differentiation. Biochem Biophys Res Commun 2012; 418:307-12. [PMID: 22266316 DOI: 10.1016/j.bbrc.2012.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 01/05/2012] [Indexed: 11/20/2022]
Abstract
Neurogenin3 (Ngn3) is a basic helix-loop-helix transcription factor that specifies pancreatic endocrine cell fates during pancreas development. It can also initiate a transdifferentiation program when expressed in pancreatic exocrine and ductal cells. However, how Ngn3 initiates a transcriptional cascade to achieve endocrine differentiation is still poorly understood. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1), which is a transcriptional coactivator for nuclear receptors, also interacts with Ngn3. The association between Ngn3 and CCAR1 was verified by pull-down assays and co-immunoprecipitation analyses. Using gene reporter assays, we found that CCAR1 is essential for Ngn3 to activate the expression of the reporter genes containing the NeuroD promoter. Moreover, down-regulation of endogenous CCAR1 in the PANC-1 pancreatic ductal cell line inhibits the transdifferentiation program initiated by Ngn3. CCAR1 is, therefore, a novel partner of Ngn3 in mediating endocrine differentiation.
Collapse
Affiliation(s)
- Chung-Kuang Lu
- Department of Life Science, National Chung Cheng University, Chia-Yi, Taiwan, ROC
| | | | | | | | | |
Collapse
|
200
|
A small molecule differentiation inducer increases insulin production by pancreatic β cells. Proc Natl Acad Sci U S A 2011; 108:20713-8. [PMID: 22143803 DOI: 10.1073/pnas.1118526109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
New drugs for preserving and restoring pancreatic β-cell function are critically needed for the worldwide epidemic of type 2 diabetes and the cure for type 1 diabetes. We previously identified a family of neurogenic 3,5-disubstituted isoxazoles (Isx) that increased expression of neurogenic differentiation 1 (NeuroD1, also known as BETA2); this transcription factor functions in neuronal and pancreatic β-cell differentiation and is essential for insulin gene transcription. Here, we probed effects of Isx on human cadaveric islets and MIN6 pancreatic β cells. Isx increased the expression and secretion of insulin in islets that made little insulin after prolonged ex vivo culture and increased expression of neurogenic differentiation 1 and other regulators of islet differentiation and insulin gene transcription. Within the first few hours of exposure, Isx caused biphasic activation of ERK1/2 and increased bulk histone acetylation. Although there was little effect on histone deacetylase activity, Isx increased histone acetyl transferase activity in nuclear extracts. Reconstitution assays indicated that Isx increased the activity of the histone acetyl transferase p300 through an ERK1/2-dependent mechanism. In summary, we have identified a small molecule with antidiabetic activity, providing a tool for exploring islet function and a possible lead for therapeutic intervention in diabetes.
Collapse
|