151
|
Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, Mirzaei HR, Razavi ZS, Sahebkar A, Hosseini N, Mirzaei H, Hamblin MR. Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 2020; 18:88. [PMID: 32517694 PMCID: PMC7285723 DOI: 10.1186/s12964-020-00587-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy has a crucial role in many cancers, including brain tumors. Several types of endogenous molecules (e.g. microRNAs, AKT, PTEN, p53, EGFR, and NF1) can modulate the process of autophagy. Recently miRNAs (small non-coding RNAs) have been found to play a vital role in the regulation of different cellular and molecular processes, such as autophagy. Deregulation of these molecules is associated with the development and progression of different pathological conditions, including brain tumors. It was found that miRNAs are epigenetic regulators, which influence the level of proteins coded by the targeted mRNAs with any modification of the genetic sequences. It has been revealed that various miRNAs (e.g., miR-7-1-3p, miR-340, miR-17, miR-30a, miR-224-3p, and miR-93), as epigenetic regulators, can modulate autophagy pathways within brain tumors. A deeper understanding of the underlying molecular targets of miRNAs, and their function in autophagy pathways could contribute to the development of new treatment methods for patients with brain tumors. In this review, we summarize the various miRNAs, which are involved in regulating autophagy in brain tumors. Moreover, we highlight the role of miRNAs in autophagy-related pathways in different cancers. Video abstract
Collapse
Affiliation(s)
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehsadat Hosseini
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
152
|
Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson's Disease Due to Altered Endolysosomal Biology With Variable Lewy Body Pathology: A Hypothesis. Front Neurosci 2020; 14:556. [PMID: 32581693 PMCID: PMC7287096 DOI: 10.3389/fnins.2020.00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are associated with both familial and sporadic Parkinson's disease (PD). LRRK2 encodes a large protein comprised of a GTPase and a kinase domain. All pathogenic variants converge on enhancing LRRK2 kinase substrate phosphorylation, and distinct LRRK2 kinase inhibitors are currently in various stages of clinical trials. Although the precise pathophysiological functions of LRRK2 remain largely unknown, PD-associated mutants have been shown to alter various intracellular vesicular trafficking pathways, especially those related to endolysosomal protein degradation events. In addition, biochemical studies have identified a subset of Rab proteins, small GTPases required for all vesicular trafficking steps, as substrate proteins for the LRRK2 kinase activity in vitro and in vivo. Therefore, it is crucial to evaluate the impact of such phosphorylation on neurodegenerative mechanisms underlying LRRK2-related PD, especially with respect to deregulated Rab-mediated endolysosomal membrane trafficking and protein degradation events. Surprisingly, a significant proportion of PD patients due to LRRK2 mutations display neuronal cell loss in the substantia nigra pars compacta in the absence of any apparent α-synuclein-containing Lewy body neuropathology. These findings suggest that endolysosomal alterations mediated by pathogenic LRRK2 per se are not sufficient to cause α-synuclein aggregation. Here, we will review current knowledge about the link between pathogenic LRRK2, Rab protein phosphorylation and endolysosomal trafficking alterations, and we will propose a testable working model whereby LRRK2-related PD may present with variable LB pathology.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - María Romo-Lozano
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Rachel Fasiczka
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yahaira Naaldijk
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Sabine Hilfiker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
153
|
Ochaba J, Powers AF, Tremble KA, Greenlee S, Post NM, Matson JE, MacLeod AR, Guo S, Aghajan M. A novel and translational role for autophagy in antisense oligonucleotide trafficking and activity. Nucleic Acids Res 2020; 47:11284-11303. [PMID: 31612951 PMCID: PMC6868497 DOI: 10.1093/nar/gkz901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 01/26/2023] Open
Abstract
Endocytosis is a mechanism by which cells sense their environment and internalize various nutrients, growth factors and signaling molecules. This process initiates at the plasma membrane, converges with autophagy, and terminates at the lysosome. It is well-established that cellular uptake of antisense oligonucleotides (ASOs) proceeds through the endocytic pathway; however, only a small fraction escapes endosomal trafficking while the majority are rendered inactive in the lysosome. Since these pathways converge and share common molecular machinery, it is unclear if autophagy-related trafficking participates in ASO uptake or whether modulation of autophagy affects ASO activity and localization. To address these questions, we investigated the effects of autophagy modulation on ASO activity in cells and mice. We found that enhancing autophagy through small-molecule mTOR inhibition, serum-starvation/fasting, and ketogenic diet, increased ASO-mediated target reduction in vitro and in vivo. Additionally, autophagy activation enhanced the localization of ASOs into autophagosomes without altering intracellular concentrations or trafficking to other compartments. These results support a novel role for autophagy and the autophagosome as a previously unidentified compartment that participates in and contributes to enhanced ASO activity. Further, we demonstrate non-chemical methods to enhance autophagy and subsequent ASO activity using translatable approaches such as fasting or ketogenic diet.
Collapse
Affiliation(s)
- Joseph Ochaba
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | | | | | | | - Noah M Post
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - John E Matson
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | | | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | | |
Collapse
|
154
|
Pan ZN, Pan MH, Sun MH, Li XH, Zhang Y, Sun SC. RAB7 GTPase regulates actin dynamics for DRP1-mediated mitochondria function and spindle migration in mouse oocyte meiosis. FASEB J 2020; 34:9615-9627. [PMID: 32472654 DOI: 10.1096/fj.201903013r] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
RAB7 is a small GTPase that belongs to the Rab family, and as a vesicle trafficking factor it is shown to regulate the transport to late endocytic compartments, autophagosome maturation and organelle function. In present study, we showed the critical roles of RAB7 GTPase on actin dynamics and mitochondria function in oocyte meiosis. RAB7 mainly accumulated at cortex and spindle periphery during oocyte maturation. RAB7 depletion caused the failure of polar body extrusion and asymmetric division, and Rab7 exogenous mRNA supplement could rescue the defects caused by RAB7 RNAi. Based on mass spectrometry analysis, we found that RAB7 associated with several actin nucleation factors and mitochondria-related proteins in oocytes. The depletion of RAB7 caused the decrease of actin dynamics, which further affected meiotic spindle migration to the oocyte cortex. In addition, we found that RAB7 could maintain mitochondrial membrane potential and the mitochondrial distribution in mouse oocytes, and this might be due to its effects on the phosphorylation of DRP1 at Ser616 domain. Taken together, our data indicated that RAB7 transported actin nucleation factor for actin polarization, which further affected the phosphorylation of DRP1 for mitochondria dynamics and the meiotic spindle migration in mouse oocytes.
Collapse
Affiliation(s)
- Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
155
|
Birgisdottir ÅB, Johansen T. Autophagy and endocytosis – interconnections and interdependencies. J Cell Sci 2020; 133:133/10/jcs228114. [DOI: 10.1242/jcs.228114] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Autophagy and endocytosis are membrane-vesicle-based cellular pathways for degradation and recycling of intracellular and extracellular components, respectively. These pathways have a common endpoint at the lysosome, where their cargo is degraded. In addition, the two pathways intersect at different stages during vesicle formation, fusion and trafficking, and share parts of the molecular machinery. Accumulating evidence shows that autophagy is dependent upon endocytosis and vice versa. The emerging joint network of autophagy and endocytosis is of vital importance for cellular metabolism and signaling, and thus also highly relevant in disease settings. In this Review, we will discuss examples of how the autophagy machinery impacts on endocytosis and cell signaling, and highlight how endocytosis regulates the different steps in autophagy in mammalian cells. Finally, we will focus on the interplay of these pathways in the quality control of their common endpoint, the lysosome.
Collapse
Affiliation(s)
- Åsa B. Birgisdottir
- The Heart and Lung Clinic, University Hospital of North Norway, 9037 Tromsø, Norway
- Clinical Cardiovascular Research Group, Department of Clinical Medicine, University of Tromsø –The Arctic University of Norway, 9037 Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
156
|
Abstract
Neurodegenerative diseases are, at present, major socio-economic burdens without effective treatments and their increasing prevalence means that these diseases will be a challenge for future generations. Neurodegenerative diseases may differ in etiology and pathology but are often caused by the accumulation of dysfunctional and aggregation-prone proteins. Autophagy, a conserved cellular mechanism, deals with cellular stress and waste product build-up and has been shown to reduce the accumulation of dysfunctional proteins in animal models of neurodegenerative diseases. Historically, progress in understanding the precise function of lipids has traditionally been far behind other biological molecules (like proteins) but emerging works demonstrate the importance of lipids in the autophagy pathway and how the disturbance of lipid metabolism is connected to neurodegeneration. Here we review how altered autophagy and the disturbance of lipid metabolism, particularly of phosphoinositols and sphingolipids, feature in neurodegenerative diseases and address work from the field that suggests that these potentially offer an opportunity of therapeutic intervention.
Collapse
Affiliation(s)
- Sergio Hernandez-Diaz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | - Sandra-Fausia Soukup
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| |
Collapse
|
157
|
Picca A, Guerra F, Calvani R, Coelho-Junior HJ, Bossola M, Landi F, Bernabei R, Bucci C, Marzetti E. Generation and Release of Mitochondrial-Derived Vesicles in Health, Aging and Disease. J Clin Med 2020; 9:jcm9051440. [PMID: 32408624 PMCID: PMC7290979 DOI: 10.3390/jcm9051440] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are intracellular organelles involved in a myriad of activities. To safeguard their vital functions, mitochondrial quality control (MQC) systems are in place to support organelle plasticity as well as physical and functional connections with other cellular compartments. In particular, mitochondrial interactions with the endosomal compartment support the shuttle of ions and metabolites across organelles, while those with lysosomes ensure the recycling of obsolete materials. The extrusion of mitochondrial components via the generation and release of mitochondrial-derived vesicles (MDVs) has recently been described. MDV trafficking is now included among MQC pathways, possibly operating via mitochondrial-lysosomal contacts. Since mitochondrial dysfunction is acknowledged as a hallmark of aging and a major pathogenic factor of multiple age-associated conditions, the analysis of MDVs and, more generally, of extracellular vesicles (EVs) is recognized as a valuable research tool. The dissection of EV trafficking may help unravel new pathophysiological pathways of aging and diseases as well as novel biomarkers to be used in research and clinical settings. Here, we discuss (1) MQC pathways with a focus on mitophagy and MDV generation; (2) changes of MQC pathways during aging and their contribution to inflamm-aging and progeroid conditions; and (3) the relevance of MQC failure to several disorders, including neurodegenerative conditions (i.e., Parkinson's disease, Alzheimer's disease) and cardiovascular disease.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy;
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Correspondence: (R.C.); (C.B.); Tel.: +39-06-3015-5559 (R.C.); +39-0832-29-8900 (C.B.); Fax: +39-06-305-1911 (R.C.); +39-0832-29-8941 (C.B.)
| | - Hélio José Coelho-Junior
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Maurizio Bossola
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy;
- Correspondence: (R.C.); (C.B.); Tel.: +39-06-3015-5559 (R.C.); +39-0832-29-8900 (C.B.); Fax: +39-06-305-1911 (R.C.); +39-0832-29-8941 (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
158
|
Korecka JA, Thomas R, Christensen DP, Hinrich AJ, Ferrari EJ, Levy SA, Hastings ML, Hallett PJ, Isacson O. Mitochondrial clearance and maturation of autophagosomes are compromised in LRRK2 G2019S familial Parkinson's disease patient fibroblasts. Hum Mol Genet 2020; 28:3232-3243. [PMID: 31261377 DOI: 10.1093/hmg/ddz126] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
This study utilized human fibroblasts as a preclinical discovery and diagnostic platform for identification of cell biological signatures specific for the LRRK2 G2019S mutation producing Parkinson's disease (PD). Using live cell imaging with a pH-sensitive Rosella biosensor probe reflecting lysosomal breakdown of mitochondria, mitophagy rates were found to be decreased in fibroblasts carrying the LRRK2 G2019S mutation compared to cells isolated from healthy subject (HS) controls. The mutant LRRK2 increased kinase activity was reduced by pharmacological inhibition and targeted antisense oligonucleotide treatment, which normalized mitophagy rates in the G2019S cells and also increased mitophagy levels in HS cells. Detailed mechanistic analysis showed a reduction of mature autophagosomes in LRRK2 G2019S fibroblasts, which was rescued by LRRK2 specific kinase inhibition. These findings demonstrate an important role for LRRK2 protein in regulation of mitochondrial clearance by the lysosomes, which is hampered in PD with the G2019S mutation. The current results are relevant for cell phenotypic diagnostic approaches and potentially for stratification of PD patients for targeted therapy.
Collapse
Affiliation(s)
- Joanna A Korecka
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Ria Thomas
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Dan P Christensen
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Eliza J Ferrari
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Simon A Levy
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Penelope J Hallett
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Ole Isacson
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
159
|
Alpha-Synuclein and LRRK2 in Synaptic Autophagy: Linking Early Dysfunction to Late-Stage Pathology in Parkinson's Disease. Cells 2020; 9:cells9051115. [PMID: 32365906 PMCID: PMC7290471 DOI: 10.3390/cells9051115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
The lack of effective disease-modifying strategies is the major unmet clinical need in Parkinson’s disease. Several experimental approaches have attempted to validate cellular targets and processes. Of these, autophagy has received considerable attention in the last 20 years due to its involvement in the clearance of pathologic protein aggregates and maintenance of neuronal homeostasis. However, this strategy mainly addresses a very late stage of the disease, when neuropathology and neurodegeneration have likely “tipped over the edge” and disease modification is extremely difficult. Very recently, autophagy has been demonstrated to modulate synaptic activity, a process distinct from its catabolic function. Abnormalities in synaptic transmission are an early event in neurodegeneration with Leucine-Rich Repeat Kinase 2 (LRRK2) and alpha-synuclein strongly implicated. In this review, we analyzed these processes separately and then discussed the unification of these biomolecular fields with the aim of reconstructing a potential “molecular timeline” of disease onset and progression. We postulate that the elucidation of these pathogenic mechanisms will form a critical basis for the design of novel, effective disease-modifying therapies that could be applied early in the disease process.
Collapse
|
160
|
Cho KS, Lee JH, Cho J, Cha GH, Song GJ. Autophagy Modulators and Neuroinflammation. Curr Med Chem 2020; 27:955-982. [PMID: 30381067 DOI: 10.2174/0929867325666181031144605] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. OBJECTIVE The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. METHODS We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. RESULTS Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. CONCLUSION Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.
Collapse
Affiliation(s)
- Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Jang Ho Lee
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea
| | - Jeiwon Cho
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| | - Guang-Ho Cha
- Department of Medical Science, College of Medicine, Chungnam National University, 35015 Daejeon, Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| |
Collapse
|
161
|
SIRT1 enhances hepatitis virus B transcription independent of hepatic autophagy. Biochem Biophys Res Commun 2020; 527:64-70. [PMID: 32446392 DOI: 10.1016/j.bbrc.2020.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/02/2023]
Abstract
Autophagy is an intracellular process that can lead to the degradation of malfunctioned proteins and damaged organelles to maintain homeostasis during cellular stress. Here, we evaluated the change in hepatitis B virus (HBV) production by regulating hepatic autophagy in HBV-producing cells. We examined focusing on a relation with a positive autophagy regulator, sirtuin1 (SIRT1). Starvation and rapamycin treatment induced autophagy with increasing SIRT1 protein, HBc protein and pregenomic RNA (pgRNA) levels in HBV- producing cells. Knockdown of Atg7 or Atg13 suppressed hepatic autophagy, and it did not change SIRT1 protein, HBc protein or pgRNA levels in HBV- producing cells. Resveratrol, which increases SIRT1 expression and activity, promoted autophagy and increased HBc protein and pgRNA levels. siRNA-mediated knockdown of SIRT1 inhibited autophagy and decreased HBc protein and pgRNA levels. In SIRT1-knockdown cells, starvation promoted autophagy but did not increase HBc protein and pgRNA levels. In conclusion, HBc protein and pgRNA levels are upregulated not by the autophagic process itself but by the SIRT1 expression level.
Collapse
|
162
|
Takáts S, Lévay L, Boda A, Tóth S, Simon-Vecsei Z, Rubics A, Varga Á, Lippai M, Lőrincz P, Glatz G, Juhász G. The Warburg Micro Syndrome-associated Rab3GAP-Rab18 module promotes autolysosome maturation through the Vps34 Complex I. FEBS J 2020; 288:190-211. [PMID: 32248620 DOI: 10.1111/febs.15313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/10/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
Warburg micro syndrome (WMS) is a hereditary autosomal neuromuscular disorder in humans caused by mutations in Rab18, Rab3GAP1, or Rab3GAP2 genes. Rab3GAP1/2 forms a heterodimeric complex, which acts as a guanosine nucleotide exchange factor and activates Rab18. Although the genetic causes of WMS are known, it is still unclear whether loss of the Rab3GAP-Rab18 module affects neuronal or muscle cell physiology or both, and how. In this work, we characterize a Rab3GAP2 mutant Drosophila line to establish a novel animal model for WMS. Similarly to symptoms of WMS, loss of Rab3GAP2 leads to highly decreased motility in Drosophila that becomes more serious with age. We demonstrate that these mutant flies are defective for autophagic degradation in multiple tissues including fat cells and muscles. Loss of Rab3GAP-Rab18 module members leads to perturbed autolysosome morphology due to destabilization of Rab7-positive autophagosomal and late endosomal compartments and perturbation of lysosomal biosynthetic transport. Importantly, overexpression of UVRAG or loss of Atg14, two alternative subunits of the Vps34/PI3K (vacuole protein sorting 34/phosphatidylinositol 3-kinase) complexes in fat cells, mimics the autophagic phenotype of Rab3GAP-Rab18 module loss. We find that GTP-bound Rab18 binds to Atg6/Beclin1, a permanent subunit of Vps34 complexes. Finally, we show that Rab3GAP2 and Rab18 are present on autophagosomal and autolysosomal membranes and colocalize with Vps34 Complex I subunits. Our data suggest that the Rab3GAP-Rab18 module regulates autolysosomal maturation through its interaction with the Vps34 Complex I, and perturbed autophagy due to loss of the Rab3GAP-Rab18 module may contribute to the development of WMS.
Collapse
Affiliation(s)
- Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Premium Postdoctorate Research Program, Hungarian Academy of Sciences, Budapest, Hungary
| | - Luca Lévay
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Boda
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sarolta Tóth
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Simon-Vecsei
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Rubics
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ágnes Varga
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mónika Lippai
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Premium Postdoctorate Research Program, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Glatz
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
163
|
Romano R, Rivellini C, De Luca M, Tonlorenzi R, Beli R, Manganelli F, Nolano M, Santoro L, Eskelinen EL, Previtali SC, Bucci C. Alteration of the late endocytic pathway in Charcot-Marie-Tooth type 2B disease. Cell Mol Life Sci 2020; 78:351-372. [PMID: 32280996 PMCID: PMC7867545 DOI: 10.1007/s00018-020-03510-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cristina Rivellini
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Rossana Tonlorenzi
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Beli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
- Salvatore Maugeri Foundation, Institute of Telese Terme, Benevento, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Eeva-Liisa Eskelinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Stefano C Previtali
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
164
|
Lőrincz P, Juhász G. Autophagosome-Lysosome Fusion. J Mol Biol 2020; 432:2462-2482. [DOI: 10.1016/j.jmb.2019.10.028] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
|
165
|
Ke PY. Mitophagy in the Pathogenesis of Liver Diseases. Cells 2020; 9:cells9040831. [PMID: 32235615 PMCID: PMC7226805 DOI: 10.3390/cells9040831] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic process involving vacuolar sequestration of intracellular components and their targeting to lysosomes for degradation, thus supporting nutrient recycling and energy regeneration. Accumulating evidence indicates that in addition to being a bulk, nonselective degradation mechanism, autophagy may selectively eliminate damaged mitochondria to promote mitochondrial turnover, a process termed “mitophagy”. Mitophagy sequesters dysfunctional mitochondria via ubiquitination and cargo receptor recognition and has emerged as an important event in the regulation of liver physiology. Recent studies have shown that mitophagy may participate in the pathogenesis of various liver diseases, such as liver injury, liver steatosis/fatty liver disease, hepatocellular carcinoma, viral hepatitis, and hepatic fibrosis. This review summarizes the current knowledge on the molecular regulations and functions of mitophagy in liver physiology and the roles of mitophagy in the development of liver-related diseases. Furthermore, the therapeutic implications of targeting hepatic mitophagy to design a new strategy to cure liver diseases are discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
166
|
Stefaniak S, Wojtyla Ł, Pietrowska-Borek M, Borek S. Completing Autophagy: Formation and Degradation of the Autophagic Body and Metabolite Salvage in Plants. Int J Mol Sci 2020; 21:E2205. [PMID: 32210003 PMCID: PMC7139740 DOI: 10.3390/ijms21062205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that occurs in yeast, plants, and animals. Despite many years of research, some aspects of autophagy are still not fully explained. This mostly concerns the final stages of autophagy, which have not received as much interest from the scientific community as the initial stages of this process. The final stages of autophagy that we take into consideration in this review include the formation and degradation of the autophagic bodies as well as the efflux of metabolites from the vacuole to the cytoplasm. The autophagic bodies are formed through the fusion of an autophagosome and vacuole during macroautophagy and by vacuolar membrane invagination or protrusion during microautophagy. Then they are rapidly degraded by vacuolar lytic enzymes, and products of the degradation are reused. In this paper, we summarize the available information on the trafficking of the autophagosome towards the vacuole, the fusion of the autophagosome with the vacuole, the formation and decomposition of autophagic bodies inside the vacuole, and the efflux of metabolites to the cytoplasm. Special attention is given to the formation and degradation of autophagic bodies and metabolite salvage in plant cells.
Collapse
Affiliation(s)
- Szymon Stefaniak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| |
Collapse
|
167
|
Drizyte-Miller K, Schott MB, McNiven MA. Lipid Droplet Contacts With Autophagosomes, Lysosomes, and Other Degradative Vesicles. ACTA ACUST UNITED AC 2020; 3:1-13. [PMID: 34113777 PMCID: PMC8188833 DOI: 10.1177/2515256420910892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipid droplets (LDs) are dynamic fat-storage organelles that interact readily with numerous cellular structures and organelles. A prominent LD contact site is with degradative vesicles such as autophagosomes, lysosomes, autolysosomes, and late endosomes. These contacts support lipid catabolism through the selective autophagy of LDs (i.e., lipophagy) or the recruitment of cytosolic lipases to the LD surface (i.e., lipolysis). However, LD-autophagosome contacts serve additional functions beyond lipid catabolism, including the supply of lipids for autophagosome biogenesis. In this review, we discuss the molecular mediators of LD contacts with autophagosomes and other degradative organelles as well as the diverse cellular functions of these contact sites in health and disease.
Collapse
Affiliation(s)
- Kristina Drizyte-Miller
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, United States
| | - Micah B Schott
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Mark A McNiven
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
168
|
Kargbo-Hill SE, Colón-Ramos DA. The Journey of the Synaptic Autophagosome: A Cell Biological Perspective. Neuron 2020; 105:961-973. [PMID: 32191859 DOI: 10.1016/j.neuron.2020.01.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023]
Abstract
Autophagy is a key cellular degradative pathway, important for neuronal homeostasis and function. Disruption of autophagy is associated with neuronal dysfunction and neurodegeneration. Autophagy is compartmentalized in neurons, with specific stages of the pathway occurring in distinct subcellular compartments. Coordination of these stages drives progression of autophagy and enables clearance of substrates. Yet, we are only now learning how these distributed processes are integrated across the neuron. In this review, we focus on the cell biological course of autophagy in neurons, from biogenesis at the synapse to degradation in the soma. We describe how the steps of autophagy are distributed across neuronal subcellular compartments, how local machinery regulates autophagy, and the impact of coordinated regulation on neuronal physiology and disease. We also discuss how recent advances in our understanding of neuronal autophagic mechanisms have reframed how we think about the role of local regulation of autophagy in all tissues.
Collapse
Affiliation(s)
- Sarah E Kargbo-Hill
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Instituto de Neurobiología José del Castillo, Universidad de Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
169
|
Resveratrol and Diabetic Cardiomyopathy: Focusing on the Protective Signaling Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7051845. [PMID: 32256959 PMCID: PMC7094200 DOI: 10.1155/2020/7051845] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/01/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetic mellitus that is characterized by diastolic disorder in the early stage and clinical heart failure in the later stage. Presently, DCM is considered one of the major causes of death in diabetic patients. Resveratrol (RSV), a naturally occurring stilbene, is widely reported as a cardioprotective substance in many heart diseases. Thus far, the specific roles of RSV in DCM prevention and treatment have attracted great attention. Here, we discuss the roles of RSV in DCM by focusing its downstream targets from both in vivo and in vitro studies. Among such targets, Sirtuins 1/3 and AMP-activated kinase have been identified as key mediators that induce cardioprotection during hyperglycemia. In addition, many other signaling molecules (e.g., forkhead box-O3a and extracellular regulated protein kinases) are also regulated in the presence of RSV and exert beneficial effects such as opposing oxidative stress, inflammation, and apoptosis in cardiomyocytes exposed to high-glucose conditions. The beneficial potential of an RSV/stem cell cotherapy is also reviewed as a promising therapeutic strategy for preventing the development of DCM.
Collapse
|
170
|
Abstract
Autophagy is a conserved and fundamental cellular process mainly to recycle or eliminate dysfunctional cellular organelles or proteins. As a response to cellular stress, autophagy is used as a defense mechanism to combat the infection with pathogenic bacteria. However, many intracellular bacteria have developed diverse mechanisms to evade recognition, to manipulate the autophagic pathway, and to hijack the autophagosomal compartment for replication. In this review, we discuss recent understandings on how bacteria interact with host autophagy.
Collapse
Affiliation(s)
- Yao-Wen Wu
- a Department of Chemistry, Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden.,b Chemical Genomics Centre of the Max Planck Society , Dortmund , Germany.,c Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Fu Li
- a Department of Chemistry, Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden.,b Chemical Genomics Centre of the Max Planck Society , Dortmund , Germany.,c Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
171
|
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Inter-Organelle Membrane Contact Sites and Mitochondrial Quality Control during Aging: A Geroscience View. Cells 2020; 9:cells9030598. [PMID: 32138154 PMCID: PMC7140483 DOI: 10.3390/cells9030598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction and failing mitochondrial quality control (MQC) are major determinants of aging. Far from being standalone organelles, mitochondria are intricately related with cellular other compartments, including lysosomes. The intimate relationship between mitochondria and lysosomes is reflected by the fact that lysosomal degradation of dysfunctional mitochondria is the final step of mitophagy. Inter-organelle membrane contact sites also allow bidirectional communication between mitochondria and lysosomes as part of nondegradative pathways. This interaction establishes a functional unit that regulates metabolic signaling, mitochondrial dynamics, and, hence, MQC. Contacts of mitochondria with the endoplasmic reticulum (ER) have also been described. ER-mitochondrial interactions are relevant to Ca2+ homeostasis, transfer of phospholipid precursors to mitochondria, and integration of apoptotic signaling. Many proteins involved in mitochondrial contact sites with other organelles also participate to degradative MQC pathways. Hence, a comprehensive assessment of mitochondrial dysfunction during aging requires a thorough evaluation of degradative and nondegradative inter-organelle pathways. Here, we present a geroscience overview on (1) degradative MQC pathways, (2) nondegradative processes involving inter-organelle tethering, (3) age-related changes in inter-organelle degradative and nondegradative pathways, and (4) relevance of MQC failure to inflammaging and age-related conditions, with a focus on Parkinson’s disease as a prototypical geroscience condition.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Correspondence: (R.C.); (R.B.); Tel.: +39-(06)-3015-5559 (R.C. & R.B.); Fax: +39-(06)-3051-911 (R.C. & R.B.)
| | - Hélio José Coelho-Junior
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: (R.C.); (R.B.); Tel.: +39-(06)-3015-5559 (R.C. & R.B.); Fax: +39-(06)-3051-911 (R.C. & R.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
172
|
Finkbeiner S. The Autophagy Lysosomal Pathway and Neurodegeneration. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033993. [PMID: 30936119 DOI: 10.1101/cshperspect.a033993] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The autophagy lysosomal pathway (ALP) is a major mechanism for degrading intracellular macromolecules. The catabolic products can then be used by the cell for energy or as building blocks to make other macromolecules. Since its discovery, a variety of cellular pathways have emerged that target components with varying specificity for lysosomal degradation. Under some circumstances, lysosomes may release their contents into the extracellular space where they may serve signaling or pathogenic functions. The ALP is active in healthy cells, and the level of activity can be regulated by nutrient-sensing and metabolic signaling pathways. The ALP is the primary pathway by which lipids and damaged organelles are degraded and may be the only pathway capable of degrading aggregated proteins. As such, there has been intense interest in understanding the role of the ALP in the accumulation of aggregated misfolded proteins characteristic of many of the major adult-onset neurodegenerative diseases. This review focuses on recent advances in our understanding of the ALP and its potential relationship to the pathogenesis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Gladstone Institutes, San Francisco, California 94158.,Departments of Neurology and Physiology, University of California, San Francisco, California 94158
| |
Collapse
|
173
|
Jadli AS, Ballasy N, Edalat P, Patel VB. Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Mol Cell Biochem 2020; 467:77-94. [PMID: 32088833 DOI: 10.1007/s11010-020-03703-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/14/2020] [Indexed: 01/07/2023]
Abstract
Discovered in the late 1980s as an extracellular vesicle of endosomal origin secreted from reticulocytes, exosomes recently gained scientific attention due to its role in intercellular communication. Exosomes have now been identified to carry cell-specific cargo of nucleic acids, proteins, lipids, and other biologically active molecules. Exosomes can be selectively taken up by neighboring or distant cells, which has shown to result in structural and functional responses in the recipient cells. Recent advances indicate the regulation of exosomes at various steps, including their biogenesis, selection of their cargo, as well as cell-specific uptake. This review will shed light on the differences between the type of extracellular vesicles. In this review, we discuss the recent progress in our understanding of the regulation of exosome biogenesis, secretion, and uptake.
Collapse
Affiliation(s)
- Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Noura Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
174
|
Seranova E, Palhegyi AM, Verma S, Dimova S, Lasry R, Naama M, Sun C, Barrett T, Rosenstock TR, Kumar D, Cohen MA, Buganim Y, Sarkar S. Human Induced Pluripotent Stem Cell Models of Neurodegenerative Disorders for Studying the Biomedical Implications of Autophagy. J Mol Biol 2020; 432:2754-2798. [PMID: 32044344 DOI: 10.1016/j.jmb.2020.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular degradation process that is essential for cellular survival, tissue homeostasis, and human health. The housekeeping functions of autophagy in mediating the clearance of aggregation-prone proteins and damaged organelles are vital for post-mitotic neurons. Improper functioning of this process contributes to the pathology of myriad human diseases, including neurodegeneration. Impairment in autophagy has been reported in several neurodegenerative diseases where pharmacological induction of autophagy has therapeutic benefits in cellular and transgenic animal models. However, emerging studies suggest that the efficacy of autophagy inducers, as well as the nature of the autophagy defects, may be context-dependent, and therefore, studies in disease-relevant experimental systems may provide more insights for clinical translation to patients. With the advancements in human stem cell technology, it is now possible to establish disease-affected cellular platforms from patients for investigating disease mechanisms and identifying candidate drugs in the appropriate cell types, such as neurons that are otherwise not accessible. Towards this, patient-derived human induced pluripotent stem cells (hiPSCs) have demonstrated considerable promise in constituting a platform for effective disease modeling and drug discovery. Multiple studies have utilized hiPSC models of neurodegenerative diseases to study autophagy and evaluate the therapeutic efficacy of autophagy inducers in neuronal cells. This review provides an overview of the regulation of autophagy, generation of hiPSCs via cellular reprogramming, and neuronal differentiation. It outlines the findings in various neurodegenerative disorders where autophagy has been studied using hiPSC models.
Collapse
Affiliation(s)
- Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Adina Maria Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Surbhi Verma
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Simona Dimova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rachel Lasry
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Moriyah Naama
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Tatiana Rosado Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP, 01221-020, Brazil
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
175
|
Germain K, Kim PK. Pexophagy: A Model for Selective Autophagy. Int J Mol Sci 2020; 21:ijms21020578. [PMID: 31963200 PMCID: PMC7013971 DOI: 10.3390/ijms21020578] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/03/2023] Open
Abstract
The removal of damaged or superfluous organelles from the cytosol by selective autophagy is required to maintain organelle function, quality control and overall cellular homeostasis. Precisely how substrate selectivity is achieved, and how individual substrates are degraded during selective autophagy in response to both extracellular and intracellular cues is not well understood. The aim of this review is to highlight pexophagy, the autophagic degradation of peroxisomes, as a model for selective autophagy. Peroxisomes are dynamic organelles whose abundance is rapidly modulated in response to metabolic demands. Peroxisomes are routinely turned over by pexophagy for organelle quality control yet can also be degraded by pexophagy in response to external stimuli such as amino acid starvation or hypoxia. This review discusses the molecular machinery and regulatory mechanisms governing substrate selectivity during both quality-control pexophagy and pexophagy in response to external stimuli, in yeast and mammalian systems. We draw lessons from pexophagy to infer how the cell may coordinate the degradation of individual substrates by selective autophagy across different cellular cues.
Collapse
Affiliation(s)
- Kyla Germain
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter K. Kim
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-813-5983
| |
Collapse
|
176
|
Yu Y, Sun B. Autophagy-mediated regulation of neutrophils and clinical applications. BURNS & TRAUMA 2020; 8:tkz001. [PMID: 32341923 PMCID: PMC7175771 DOI: 10.1093/burnst/tkz001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Autophagy, an adaptive catabolic process, plays a cytoprotective role in enabling cellular homeostasis in the innate and adaptive immune systems. Neutrophils, the most abundant immune cells in circulation, are professional killers that orchestrate a series of events during acute inflammation. The recent literature indicates that autophagy has important roles in regulating neutrophil functions, including differentiation, degranulation, metabolism and neutrophil extracellular trap formation, that dictate neutrophil fate. It is also becoming increasingly clear that autophagy regulation is critical for neutrophils to exert their immunological activity. However, evidence regarding the systematic communication between neutrophils and autophagy is insufficient. Here, we provide an updated overview of the function of autophagy as a regulator of neutrophils and discuss its clinical relevance to provide novel insight into potentially relevant treatment strategies.
Collapse
Affiliation(s)
- Yao Yu
- Department of Burns and Plastic Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| |
Collapse
|
177
|
Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K. Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. Cells 2020; 9:cells9010214. [PMID: 31952189 PMCID: PMC7016592 DOI: 10.3390/cells9010214] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The current standard of care for acute myocardial infarction or 'heart attack' is timely restoration of blood flow to the ischemic region of the heart. While reperfusion is essential for the salvage of ischemic myocardium, re-introduction of blood flow paradoxically kills (rather than rescues) a population of previously ischemic cardiomyocytes-a phenomenon referred to as 'lethal myocardial ischemia-reperfusion (IR) injury'. There is long-standing and exhaustive evidence that mitochondria are at the nexus of lethal IR injury. However, during the past decade, the paradigm of mitochondria as mediators of IR-induced cardiomyocyte death has been expanded to include the highly orchestrated process of mitochondrial quality control. Our aims in this review are to: (1) briefly summarize the current understanding of the pathogenesis of IR injury, and (2) incorporating landmark data from a broad spectrum of models (including immortalized cells, primary cardiomyocytes and intact hearts), provide a critical discussion of the emerging concept that mitochondrial dynamics and mitophagy (the components of mitochondrial quality control) may contribute to the pathogenesis of cardiomyocyte death in the setting of ischemia-reperfusion.
Collapse
Affiliation(s)
- Andrew R. Kulek
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anthony Anzell
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Joseph M. Wider
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-9047
| |
Collapse
|
178
|
Role of autophagy in alcohol and drug-induced liver injury. Food Chem Toxicol 2019; 136:111075. [PMID: 31877367 DOI: 10.1016/j.fct.2019.111075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ALD) and drug-induced liver injury (DILI) are common causes of severe liver disease, and successful treatments are lacking. Autophagy plays a protective role in both ALD and DILI by selectively removing damaged mitochondria (mitophagy), lipid droplets (lipophagy), protein aggregates and adducts in hepatocytes. Autophagy also protects against ALD by degrading interferon regulatory factor 1 (IRF1) and damaged mitochondria in hepatic macrophages. Specifically, we will discuss selective autophagy for removal of damaged mitochondria and lipid droplets in hepatocytes and autophagy-mediated degradation of IRF1 in hepatic macrophages as protective mechanisms against alcohol-induced liver injury and steatosis. In addition, selective autophagy for removal of damaged mitochondria and protein adducts for protection against DILI is discussed in this review. Development of new therapeutics for ALD and DILI is greatly needed, and selective autophagy pathways may provide promising targets. Drug and alcohol effects on autophagy regulation as well as protective mechanisms of autophagy against DILI and ALD are highlighted in this review.
Collapse
|
179
|
The Synaptic Autophagy Cycle. J Mol Biol 2019; 432:2589-2604. [PMID: 31866297 DOI: 10.1016/j.jmb.2019.12.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved pathway in which proteins and organelles are delivered to the lysosome for degradation. In neurons, autophagy was originally described as associated with disease states and neuronal survival. Over the last decade, however, evidence has accumulated that autophagy controls synaptic function in both the axon and dendrite. Here, we review this literature, highlighting the role of autophagy in the pre- and postsynapse, synaptic plasticity, and behavior. We end by discussing open questions in the field of synaptic autophagy.
Collapse
|
180
|
An HK, Chung KM, Park H, Hong J, Gim JE, Choi H, Lee YW, Choi J, Mun JY, Yu SW. CASP9 (caspase 9) is essential for autophagosome maturation through regulation of mitochondrial homeostasis. Autophagy 2019; 16:1598-1617. [DOI: 10.1080/15548627.2019.1695398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hyun-Kyu An
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kyung Min Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyunhee Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jihyun Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Ji-Eun Gim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyosun Choi
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, Republic of Korea
| | - Ye Won Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jieun Choi
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
181
|
Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, Lv Q, Chen X, Zhang Z. The Upstream Pathway of mTOR-Mediated Autophagy in Liver Diseases. Cells 2019; 8:E1597. [PMID: 31835352 PMCID: PMC6953127 DOI: 10.3390/cells8121597] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy, originally found in liver experiments, is a cellular process that degrades damaged organelle or protein aggregation. This process frees cells from various stress states is a cell survival mechanism under stress stimulation. It is now known that dysregulation of autophagy can cause many liver diseases. Therefore, how to properly regulate autophagy is the key to the treatment of liver injury. mechanistic target of rapamycin (mTOR)is the core hub regulating autophagy, which is subject to different upstream signaling pathways to regulate autophagy. This review summarizes three upstream pathways of mTOR: the phosphoinositide 3-kinase (PI3K)/protein kinase (AKT) signaling pathway, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, and the rat sarcoma (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-extracellular activated protein kinase kinase (MEK)/ extracellular-signal-regulated kinase (ERK) signaling pathway, specifically explored their role in liver fibrosis, hepatitis B, non-alcoholic fatty liver, liver cancer, hepatic ischemia reperfusion and other liver diseases through the regulation of mTOR-mediated autophagy. Moreover, we also analyzed the crosstalk between these three pathways, aiming to find new targets for the treatment of human liver disease based on autophagy.
Collapse
Affiliation(s)
- Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Dongmei Wang
- College of Medical, Henan University of Science and Technology, Luoyang 471000, China;
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| |
Collapse
|
182
|
Fedeli C, Filadi R, Rossi A, Mammucari C, Pizzo P. PSEN2 (presenilin 2) mutants linked to familial Alzheimer disease impair autophagy by altering Ca 2+ homeostasis. Autophagy 2019; 15:2044-2062. [PMID: 30892128 PMCID: PMC6844518 DOI: 10.1080/15548627.2019.1596489] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 02/05/2023] Open
Abstract
PSEN2 (presenilin 2) is one of the 3 proteins that, when mutated, causes early onset familial Alzheimer disease (FAD) cases. In addition to its well-known role within the γ-secretase complex (the enzyme ultimately responsible for Aβ peptides formation), PSEN2 is endowed with some γ-secretase-independent functions in distinct cell signaling pathways, such as the modulation of intracellular Ca2+ homeostasis. Here, by using different FAD-PSEN2 cell models, we demonstrate that mutated PSEN2 impairs autophagy by causing a block in the degradative flux at the level of the autophagosome-lysosome fusion step. The defect does not depend on an altered lysosomal functionality but rather on a decreased recruitment of the small GTPase RAB7 to autophagosomes, a key event for normal autophagy progression. Importantly, FAD-PSEN2 action on autophagy is unrelated to its γ-secretase activity but depends on its previously reported ability to partially deplete ER Ca2+ content, thus reducing cytosolic Ca2+ response upon IP3-linked cell stimulations. Our data sustain the pivotal role for Ca2+ signaling in autophagy and reveal a novel mechanism by which FAD-linked presenilins alter the degradative process, reinforcing the view of a causative role for a dysfunctional quality control pathway in AD neurodegeneration.Abbreviations: Aβ: amyloid β; AD: Alzheimer disease; ACTB: actin beta; AMPK: AMP-activated protein kinase; APP: amyloid-beta precursor protein; BafA: bafilomycin A1; BAPTA-AM: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester; CFP: cyan fluorescent protein; EGTA-AM: ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester; ER: endoplasmic reticulum; EGFP-HDQ74: enhanced GFP-huntingtin exon 1 containing 74 polyglutamine repeats; FAD: familial Alzheimer disease; FCS: fetal calf serum; FRET: fluorescence/Förster resonance energy transfer; GFP: green fluorescent protein; IP3: inositol trisphosphate; KD: knockdown; LAMP1: lysosomal associated membrane protein 1; MAP1LC3-II/LC3-II: lipidated microtubule-associated protein 1 light chain 3; MCU: mitochondrial calcium uniporter; MICU1: mitochondrial calcium uptake 1; MEFs: mouse embryonic fibroblasts; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; SQSTM1/p62: sequestosome 1; PSEN1: presenilin 1; PSEN2: presenilin 2; RAB7: RAB7A: member RAS oncogene family; RFP: red fluorescent protein; ATP2A/SERCA: ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting; siRNA: small interference RNA; V-ATPase: vacuolar-type H+-ATPase; WT: wild type.
Collapse
Affiliation(s)
- Chiara Fedeli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alice Rossi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute – Italian National Research Council (CNR), Padua, Italy
| |
Collapse
|
183
|
Fageria L, Bambroo V, Mathew A, Mukherjee S, Chowdhury R, Pande S. Functional Autophagic Flux Regulates AgNP Uptake And The Internalized Nanoparticles Determine Tumor Cell Fate By Temporally Regulating Flux. Int J Nanomedicine 2019; 14:9063-9076. [PMID: 31819419 PMCID: PMC6875509 DOI: 10.2147/ijn.s222211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) are known to induce the conserved, cellular, homeostatic process- autophagy in tumor cells. Previous studies primarily focus on the pro-survival role of autophagy post AgNP exposure in tumor cells, but seldom on its role in AgNP uptake, or on the functional significance of autophagy temporal dynamics. Our study sheds more light on the extensive crosstalk that exists between AgNP and autophagy, which can be critical to the improvement of AgNP-induced therapeutic effects. Methods β-cyclodextrin (β-CD) coated AgNPs of two different sizes were synthesized by nucleation method and characterized by transmission electron microscopy. Fluorescence microscopy and flow cytometry were used to probe intracellular uptake of AgNPs. Endocytic mechanism of AgNPs was classically analyzed through use of various endocytosis inhibitors. Autophagy was evaluated by immunoblot and fluorescence microscopy. Additionally, immunoblot was performed to monitor Janus Kinase (JNK) signalling, ubiquitination of proteins, expression of endo-lysosomal and apoptotic markers in correlation to AgNP-induced autophagy. Results The intra-cellular route of entry for the small NPs (~9 nm; ss-AgNPs) was different than the large NPs (~19 nm; ls-AgNPs) studied. However, irrespective of their unique route of entry an inhibition of autophagic flux by chloroquine (CQ) reduced uptake of both the AgNPs. In contrary, rapamycin (Rapa), an autophagy inducer enhanced it. Importantly, JNK activation was required for autophagy induction and AgNP uptake. Furthermore, effect of AgNPs on autophagy showed temporal dependency. An enhanced autophagic flux was noted at early time points; however, prolonged exposure resulted in inhibition of flux marked by increase in Rab7, LC3B-II and p62 proteins. Inhibition of flux was associated with lysosomal dysfunction, decreased LAMP1 expression and an increased accumulation of ubiquitinated (Ub) proteins. This resulted in heightened reactive oxygen species (ROS) and consequent cytotoxicity. Conclusion In this study, we observed that a functional autophagic flux aids AgNP uptake, but AgNPs in turn, overtime, inhibits flux and endo-lysosomal function. We provide critical, novel insights into crosstalk between AgNP and autophagy which can be vital to future AgNP-based therapy development.
Collapse
Affiliation(s)
- Leena Fageria
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Vishakha Bambroo
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Angel Mathew
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Surojit Pande
- Department of Chemistry, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| |
Collapse
|
184
|
Fraser J, Simpson J, Fontana R, Kishi‐Itakura C, Ktistakis NT, Gammoh N. Targeting of early endosomes by autophagy facilitates EGFR recycling and signalling. EMBO Rep 2019; 20:e47734. [PMID: 31448519 PMCID: PMC6776898 DOI: 10.15252/embr.201947734] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Despite recently uncovered connections between autophagy and the endocytic pathway, the role of autophagy in regulating endosomal function remains incompletely understood. Here, we find that the ablation of autophagy-essential players disrupts EGF-induced endocytic trafficking of EGFR. Cells lacking ATG7 or ATG16L1 exhibit increased levels of phosphatidylinositol-3-phosphate (PI(3)P), a key determinant of early endosome maturation. Increased PI(3)P levels are associated with an accumulation of EEA1-positive endosomes where EGFR trafficking is stalled. Aberrant early endosomes are recognised by the autophagy machinery in a TBK1- and Gal8-dependent manner and are delivered to LAMP2-positive lysosomes. Preventing this homeostatic regulation of early endosomes by autophagy reduces EGFR recycling to the plasma membrane and compromises downstream signalling and cell survival. Our findings uncover a novel role for the autophagy machinery in maintaining early endosome function and growth factor sensing.
Collapse
Affiliation(s)
- Jane Fraser
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Joanne Simpson
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Rosa Fontana
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | | | | | - Noor Gammoh
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
185
|
Guo W, Stoklund Dittlau K, Van Den Bosch L. Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 2019; 99:133-150. [PMID: 31542222 DOI: 10.1016/j.semcdb.2019.07.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Because of the extremely polarized morphology, the proper functioning of neurons largely relies on the efficient cargo transport along the axon. Axonal transport defects have been reported in multiple neurodegenerative diseases as an early pathological feature. The discovery of mutations in human genes involved in the transport machinery provide a direct causative relationship between axonal transport defects and neurodegeneration. Here, we summarize the current genetic findings related to axonal transport in neurodegenerative diseases, and we discuss the relationship between axonal transport defects and other pathological changes observed in neurodegeneration. In addition, we summarize the therapeutic approaches targeting the axonal transport machinery in studies of neurodegenerative diseases. Finally, we review the technical advances in tracking axonal transport both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Katarina Stoklund Dittlau
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
186
|
Hu W, Chan H, Lu L, Wong KT, Wong SH, Li MX, Xiao ZG, Cho CH, Gin T, Chan MTV, Wu WKK, Zhang L. Autophagy in intracellular bacterial infection. Semin Cell Dev Biol 2019; 101:41-50. [PMID: 31408699 DOI: 10.1016/j.semcdb.2019.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/06/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Autophagy is a conserved intracellular degradation process enclosing the bulk of cytosolic components for lysosomal degradation to maintain cellular homeostasis. Accumulating evidences showed that a specialized form of autophagy, known as xenophagy, could serve as an innate immune response to defend against pathogens invading inside the host cells. Correspondingly, infectious pathogens have developed a variety of strategies to disarm xenophagy, leading to a prolonged and persistent intracellular colonization. In this review, we first summarize the current knowledge about the general mechanisms of intracellular bacterial infections and xenophagy. We then focus on the ongoing battle between these two processes.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, PR China; Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Lan Lu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, PR China
| | - Kam Tak Wong
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming X Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Zhan G Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Tony Gin
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lin Zhang
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
187
|
Cutrona MB, Simpson JC. A High-Throughput Automated Confocal Microscopy Platform for Quantitative Phenotyping of Nanoparticle Uptake and Transport in Spheroids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902033. [PMID: 31334922 DOI: 10.1002/smll.201902033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Indexed: 05/23/2023]
Abstract
There is a high demand for advanced, image-based, automated high-content screening (HCS) approaches to facilitate phenotypic screening in 3D cell culture models. A major challenge lies in retaining the resolution of fine cellular detail but at the same time imaging multicellular structures at a large scale. In this study, a confocal microscopy-based HCS platform in optical multiwell plates that enables the quantitative morphological profiling of populations of nonuniform spheroids obtained from HT-29 human colorectal cancer cells is described. This platform is then utilized to demonstrate a quantitative dissection of the penetration of synthetic nanoparticles (NP) in multicellular 3D spheroids at multiple levels of scale. A pilot RNA interference-based screening validates this methodology and identifies a subset of RAB GTPases that regulate NP trafficking in these spheroids. This technology is suitable for high-content phenotyping in 3D cell-based screening, providing a framework for nanomedicine drug development as applied to translational oncology.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), Galway, H91 W2TY, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), Galway, H91 W2TY, Ireland
| |
Collapse
|
188
|
Shearer LJ, Petersen NO. Distribution and Co-localization of endosome markers in cells. Heliyon 2019; 5:e02375. [PMID: 31687537 PMCID: PMC6819826 DOI: 10.1016/j.heliyon.2019.e02375] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/02/2023] Open
Abstract
Clathrin mediated endocytosis is one pathway for internalization of extracellular nano materials into cells [1, 2]. In this pathway, proteins attached to receptors and the internalized materials are encapsulated in clathrin coated membrane vesicles that subsequently fuse with or transform into intracellular compartments (early and late endosomes) as their contents are being directed to the lysosomes for degradation. The following proteins are commonly used to mark the pathway at various stages: Rab5 (early endosome), Rab7 (late endosome), and LAMP-1 (lysosome). In this work, we studied the distribution and co-localization of these marker proteins in two cell lines (C2C12 and A549) to determine whether these markers are unique for specific endosome types or whether they can co-exist with other markers. We estimate the densities and sizes of the endosomes containing the three markers, as well as the number of marker antibodies attached to each endosome. We determine that the markers are not unique to one endosome type but that the extent of co-localization is different for the two cell types. In fact, we find endosomes that contain all three markers simultaneously. Our results suggest that the use of these proteins as specific markers for specific endosome types should be reevaluated. This was the first successful use of triple image cross correlation spectroscopy to qualitatively and quantitatively study the extent of interaction among three different species in cells and also the first experimental study of three-way interactions of clathrin mediated endocytic markers.
Collapse
Affiliation(s)
- Lindsay J. Shearer
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| | - Nils O. Petersen
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| |
Collapse
|
189
|
Sequential formation of different layers of dystrophic neurites in Alzheimer's brains. Mol Psychiatry 2019; 24:1369-1382. [PMID: 30899091 PMCID: PMC7204504 DOI: 10.1038/s41380-019-0396-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neuritic plaques in which dystrophic neurites (DNs) are typical constituents. We recently showed that DNs labeled by antibodies to the tubular endoplasmic reticulum (ER) protein reticulon-3 (RTN3) are enriched with clustered tubular ER. However, multi-vesicle bodies are also found in DNs, suggesting that different populations of DNs exist in brains of AD patients. To understand how different DNs evolve to surround core amyloid plaques, we monitored the growth of DNs in AD mouse brains (5xFAD and APP/PS1ΔE9 mice) by multiple approaches, including two-dimensional and three-dimensional (3D) electron microscopy (EM). We discovered that a pre-autophagosome protein ATG9A was enriched in DNs when a plaque was just beginning to develop. ATG9A-positive DNs were often closer to the core amyloid plaque, whereas RTN3 immunoreactive DNs were mostly located in the outer layers of ATG9A-positive DNs. Proteins such as RAB7 and LC3 appeared in DNs at later stages during plaque growth, likely accumulated as a part of large autophagy vesicles, and were distributed relatively furthest from the core amyloid plaque. Reconstructing the 3D structure of different morphologies of DNs revealed that DNs in AD mouse brains were constituted in three layers that are distinct by enriching different types of vesicles, as validated by immune-EM methods. Collectively, our results provide the first evidence that DNs evolve from dysfunctions of pre-autophagosomes, tubular ER, mature autophagosomes, and the ubiquitin proteasome system during plaque growth.
Collapse
|
190
|
Fischer N, Preuße C, Radke J, Pehl D, Allenbach Y, Schneider U, Feist E, von Casteleyn V, Hahn K, Ruck T, Meuth SG, Goebel HH, Graf R, Mammen A, Benveniste O, Stenzel W. Sequestosome-1 (p62) expression reveals chaperone-assisted selective autophagy in immune-mediated necrotizing myopathies. Brain Pathol 2019; 30:261-271. [PMID: 31376301 PMCID: PMC8018061 DOI: 10.1111/bpa.12772] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Diffuse myofiber necrosis in the context of inflammatory myopathy is the hallmark of immune‐mediated necrotizing myopathy (IMNM). We have previously shown that skeletal muscle fibers of IMNM patients may display nonrimmed vacuoles and sarcoplasmic irregularities. The dysfunctional chaperone activity has been linked to the defective assembly of skeletal muscle proteins and their degradation via lysosomes, autophagy and the proteasomal machinery. This study was undertaken to highlight a chaperone‐assisted selective autophagy (CASA) pathway, functionally involved in protein homeostasis, cell stress and the immune response in skeletal muscle of IMNM patients. Skeletal muscle biopsies from 54 IMNM patients were analyzed by immunostaining, as well as by qPCR. Eight biopsies of sIBM patients served as pathological controls, and eight biopsies of nondisease control subjects were included. Alteration of autophagy was detectable in all IMNM biopsy samples highlighted via a diffuse sarcoplasmic staining pattern by p62 and LC3 independent of vacuoles. This pattern was at variance with the coarse focal staining pattern mostly confined to rimmed vacuoles in sIBM. Colocalization of p62 with the chaperone proteins HSP70 and αB‐crystalline points to the specific targeting of misfolded proteins to the CASA machinery. Bcl2‐associated athanogene 3 (BAG3) positivity of these fibers emphasizes the selectivity of autophagy processes and these fibers also express MHC class I sarcolemma. Expression of genes involved in autophagy and endoplasmic reticulum (ER) stress pathways studied here is significantly upregulated in IMNM. We highlight that vacuoles without sarcolemmal features may arise in IMNM muscle biopsies, and they must not be confounded with sIBM‐specific vacuoles. Further, we show the activation of selective autophagy and emphasize the role of chaperones in this context. CASA occurs in IMNM muscle, and specific molecular pathways of autophagy differ from the ones in sIBM, with p62 as a unique identifier of this process.
Collapse
Affiliation(s)
- Norina Fischer
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Josefine Radke
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Debora Pehl
- Oxford University Hospitals Foundation Trust, Neuropathology & Ocular Pathology Department, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Yves Allenbach
- Assistance Public-Hôpitaux de Paris, Sorbonne-Université, INSERM, UMR974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Udo Schneider
- Department of Rheumatology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Eugen Feist
- Department of Rheumatology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Vincent von Casteleyn
- Department of Rheumatology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Katrin Hahn
- Department of Neurology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Tobias Ruck
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Rose Graf
- National Institutes of Health, 9000 Rockville Pike, Building 50, Room 1505, Bethesda, MD, 20892, USA
| | - Andrew Mammen
- National Institutes of Health, 9000 Rockville Pike, Building 50, Room 1505, Bethesda, MD, 20892, USA
| | - Olivier Benveniste
- Assistance Public-Hôpitaux de Paris, Sorbonne-Université, INSERM, UMR974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Leibniz ScienceCampus Chronic Inflammation, Berlin, Germany
| |
Collapse
|
191
|
Effect of Autophagy Regulated by Sirt1/FoxO1 Pathway on the Release of Factors Promoting Thrombosis from Vascular Endothelial Cells. Int J Mol Sci 2019; 20:ijms20174132. [PMID: 31450612 PMCID: PMC6747322 DOI: 10.3390/ijms20174132] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Factors promoting thrombosis such as von Willebrand factor (vWF) and P-selectin are essential for the development of atherosclerosis (AS) and arterial thrombosis. The processing, maturation and release of vWF are regulated by autophagy of vascular endothelial cells. The Sirt1/FoxO1 pathway is an important pathway to regulate autophagy of endothelial cells, therefore the Sirt1/FoxO1 pathway may be an important target for the prevention of thrombosis. We investigated the role of ox-LDL in the release of vWF and P-selectin and the expression of Sirt1 and FoxO1 by Western Blot, Flow Cytometry, ELISA, and tandem fluorescent mRFP-GFP-LC3. We found that vWF and P-selectin secretion increased and Sirt1/FoxO1 pathway was depressed in human umbilical vein endothelial cells (HUVEC) when treated with ox-LDL. Moreover, the expression of autophagy-related protein LC3-II/I and p62 increased. Then, we explored the relationship between autophagy regulated by the Sirt1/FoxO1 pathway and the secretion of vWF and P-selectin. We found that Sirt1/FoxO1, activated by the Sirt1 activators resveratrol (RSV) and SRT1720, decreased the secretion of vWF and P-selectin, which can be abolished by the autophagy inhibitor 3-MA. The expression of Rab7 increased when Sirt1/FoxO1 pathway was activated, and the accumulation of p62 was decreased. Autophagy flux was inhibited by ox-LDL and Sirt1/FoxO1 pathway might enhance autophagy flux through the promotion of the Rab7 expression. Taken together, our data suggest that by enhancing autophagy flux and decreasing the release of vWF and P-selectin, the Sirt1/FoxO1 pathway may be a promising target to prevent AS and arterial thrombosis.
Collapse
|
192
|
Interactions between Autophagy and DNA Viruses. Viruses 2019; 11:v11090776. [PMID: 31450758 PMCID: PMC6784137 DOI: 10.3390/v11090776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic biological process in the body. By targeting exogenous microorganisms and aged intracellular proteins and organelles and sending them to the lysosome for phagocytosis and degradation, autophagy contributes to energy recycling. When cells are stimulated by exogenous pathogenic microorganisms such as viruses, activation or inhibition of autophagy is often triggered. As autophagy has antiviral effects, many viruses may escape and resist the process by encoding viral proteins. At the same time, viruses can also use autophagy to enhance their replication or increase the persistence of latent infections. Here, we give a brief overview of autophagy and DNA viruses and comprehensively review the known interactions between human and animal DNA viruses and autophagy and the role and mechanisms of autophagy in viral DNA replication and DNA virus-induced innate and acquired immunity.
Collapse
|
193
|
Morgan NE, Cutrona MB, Simpson JC. Multitasking Rab Proteins in Autophagy and Membrane Trafficking: A Focus on Rab33b. Int J Mol Sci 2019; 20:ijms20163916. [PMID: 31408960 PMCID: PMC6719199 DOI: 10.3390/ijms20163916] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy (particularly macroautophagy) is a bulk degradation process used by eukaryotic cells in order to maintain adequate energy levels and cellular homeostasis through the delivery of long-lived proteins and organelles to the lysosome, resulting in their degradation. It is becoming increasingly clear that many of the molecular requirements to fulfil autophagy intersect with those of conventional and unconventional membrane trafficking pathways. Of particular interest is the dependence of these processes on multiple members of the Rab family of small GTP binding proteins. Rab33b is a protein that localises to the Golgi apparatus and has suggested functions in both membrane trafficking and autophagic processes. Interestingly, mutations in the RAB33B gene have been reported to cause the severe skeletal disorder, Smith–McCort Dysplasia; however, the molecular basis for Rab33b in this disorder remains to be determined. In this review, we focus on the current knowledge of the participation of Rab33b and its interacting partners in membrane trafficking and macroautophagy, and speculate on how its function, and dysfunction, may contribute to human disease.
Collapse
Affiliation(s)
- Niamh E Morgan
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland
| | - Meritxell B Cutrona
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland.
| |
Collapse
|
194
|
Zeng X, Carlin CR. Adenovirus early region 3 RIDα protein limits NFκB signaling through stress-activated EGF receptors. PLoS Pathog 2019; 15:e1008017. [PMID: 31425554 PMCID: PMC6715251 DOI: 10.1371/journal.ppat.1008017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/29/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
The host limits adenovirus infections by mobilizing immune systems directed against infected cells that also represent major barriers to clinical use of adenoviral vectors. Adenovirus early transcription units encode a number of products capable of thwarting antiviral immune responses by co-opting host cell pathways. Although the EGF receptor (EGFR) was a known target for the early region 3 (E3) RIDα protein encoded by nonpathogenic group C adenoviruses, the functional role of this host-pathogen interaction was unknown. Here we report that incoming viral particles triggered a robust, stress-induced pathway of EGFR trafficking and signaling prior to viral gene expression in epithelial target cells. EGFRs activated by stress of adenoviral infection regulated signaling by the NFκB family of transcription factors, which is known to have a critical role in the host innate immune response to infectious adenoviruses and adenovirus vectors. We found that the NFκB p65 subunit was phosphorylated at Thr254, shown previously by other investigators to be associated with enhanced nuclear stability and gene transcription, by a mechanism that was attributable to ligand-independent EGFR tyrosine kinase activity. Our results indicated that the adenoviral RIDα protein terminated this pathway by co-opting the host adaptor protein Alix required for sorting stress-exposed EGFRs in multivesicular endosomes, and promoting endosome-lysosome fusion independent of the small GTPase Rab7, in infected cells. Furthermore RIDα expression was sufficient to down-regulate the same EGFR/NFκB signaling axis in a previously characterized stress-activated EGFR trafficking pathway induced by treatment with the pro-inflammatory cytokine TNF-α. We also found that cell stress activated additional EGFR signaling cascades through the Gab1 adaptor protein that may have unappreciated roles in the adenoviral life cycle. Similar to other E3 proteins, RIDα is not conserved in adenovirus serotypes associated with potentially severe disease, suggesting stress-activated EGFR signaling may contribute to adenovirus virulence.
Collapse
Affiliation(s)
- Xuehuo Zeng
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, United States of America
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, United States of America
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, United States of America
| |
Collapse
|
195
|
史 琳, 王 柯, 邓 玉, 王 莹, 朱 双, 杨 旭, 廖 文. [Role of lipophagy in the regulation of lipid metabolism and the molecular mechanism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:867-874. [PMID: 31340923 PMCID: PMC6765557 DOI: 10.12122/j.issn.1673-4254.2019.07.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 01/02/2023]
Abstract
Recent studies have discovered a selective autophagy-lipophagy, which can selectively identify and degrade lipids and plays an important role in regulating cellular lipid metabolism and maintaining intracellular lipid homeostasis. The process of lipophagy can be directly or indirectly regulated by genes, enzymes, transcriptional regulators and other factors. This review examines the role of lipophagy in reducing liver lipid content, regulating pancreatic lipid metabolism, and regulating adipose tissue differentiation, and summarizes the findings of the molecules (Rab GTPase, enzymes, ion channels, transcription factors, small molecular substances) involved in the regulation of lipophagy, which points to new directions for the treatment of diseases caused by lipid accumulation.
Collapse
Affiliation(s)
- 琳娜 史
- 南方医科大学 南方医院营养科,广东 广州 510515Department of Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 柯 王
- 华南理工大学食品科学与工程学院,广东 广 州 510640College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - 玉娣 邓
- 南方医科大学公共卫生学院,广东 广州 510515School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 莹娜 王
- 广州市三兴生物技术有限公司,广东 广州 510000Guangzhou Sanxing Biotechnology Co., Ltd., Guangzhou 510000, China
| | - 双玲 朱
- 中山大学附属第一医院,广东 广州 510080First Affiliated Hospital, Sun Yat- sen University, Guangzhou 510080, China
| | - 旭珊 杨
- 南方医科大学公共卫生学院,广东 广州 510515School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 文镇 廖
- 南方医科大学公共卫生学院,广东 广州 510515School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
196
|
Ahat E, Li J, Wang Y. New Insights Into the Golgi Stacking Proteins. Front Cell Dev Biol 2019; 7:131. [PMID: 31380369 PMCID: PMC6660245 DOI: 10.3389/fcell.2019.00131] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
The Golgi stacking proteins, GRASP55 and GRASP65, are best known for their roles in Golgi structure formation. These peripheral Golgi proteins form trans-oligomers that hold the flat cisternal membranes into stacks. Depletion of both GRASP proteins in cells disrupts the Golgi stack structure, increases protein trafficking, but impairs accurate glycosylation, and sorting. Golgi unstacking by GRASPs depletion also reduces cell adhesion and migration in an integrin-dependent manner. In addition to Golgi structure formation and regulation of cellular activities, GRASPs, in particular GRASP55, have recently drawn attention in their roles in autophagy, and unconventional secretion. In autophagy, GRASP55 senses the energy level by O-GlcNAcylation, which regulates GRASP55 translocation from the Golgi to the autophagosome-lysosome interface, where it interacts with LC3 and LAMP2 to facilitate autophagosome-lysosome fusion. This newly discovered function of GRASP55 in autophagy may help explain its role in the stress-induced, autophagosome-dependent unconventional secretion. In this review, we summarize the emerging functions of the GRASP proteins, focusing on their roles in cell adhesion and migration, autophagy, unconventional secretion, as well as on novel GRASP-interacting proteins.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
197
|
Perez Vidakovics MLA, Ure AE, Arrías PN, Romanowski V, Gómez RM. Junín virus induces autophagy in human A549 cells. PLoS One 2019; 14:e0218730. [PMID: 31216340 PMCID: PMC6583977 DOI: 10.1371/journal.pone.0218730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a highly regulated degradative process that promotes cellular homeostasis, is increasingly recognised as a fundamental component of the cellular response against viral infection. In this study, we investigated the role of autophagy during Junín virus (JUNV) multiplication using human A549 cells. We found that JUNV infection induces an increment of the LC3-II/LC3-I ratio, an accumulation of punctate pattern in RFP-LC3-transfected cells and the colocalisation of viral nucleoprotein and LC3 protein, suggesting autophagosome formation. JUNV infection also induced the degradation of the autophagy receptor p62, suggesting that complete autophagic flux was triggered. In addition, we showed that inhibition of autophagy with bafilomycin A1 or 3-methyladenine significantly reduces viral multiplication. Moreover, viral yield was increased when autophagy was induced using rapamycin. Furthermore, JUNV infection induced the colocalisation of p62, ATG16, RAB5, RAB7A and LAMP1 with the autophagosomal LC3 protein. That suggests that phagosomes undergo the maturation process during viral infection. Finally, we demonstrated that siRNA experiments targeting essential autophagy genes (ATG5, ATG7 and Beclin 1) reduce viral protein synthesis and viral yield. Overall, our results indicate that JUNV activates host autophagy machinery enhancing its multiplication.
Collapse
Affiliation(s)
| | - Agustín E. Ure
- Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Paula N. Arrías
- Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Ricardo M. Gómez
- Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
198
|
Arotcarena ML, Teil M, Dehay B. Autophagy in Synucleinopathy: The Overwhelmed and Defective Machinery. Cells 2019; 8:cells8060565. [PMID: 31181865 PMCID: PMC6627933 DOI: 10.3390/cells8060565] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023] Open
Abstract
Alpha-synuclein positive-intracytoplasmic inclusions are the common denominators of the synucleinopathies present as Lewy bodies in Parkinson’s disease, dementia with Lewy bodies, or glial cytoplasmic inclusions in multiple system atrophy. These neurodegenerative diseases also exhibit cellular dyshomeostasis, such as autophagy impairment. Several decades of research have questioned the potential link between the autophagy machinery and alpha-synuclein protein toxicity in synucleinopathy and neurodegenerative processes. Here, we aimed to discuss the active participation of autophagy impairment in alpha-synuclein accumulation and propagation, as well as alpha-synuclein-independent neurodegenerative processes in the field of synucleinopathy. Therapeutic approaches targeting the restoration of autophagy have started to emerge as relevant strategies to reverse pathological features in synucleinopathies.
Collapse
Affiliation(s)
- Marie-Laure Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Margaux Teil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
199
|
Furusawa K, Takasugi T, Chiu YW, Hori Y, Tomita T, Fukuda M, Hisanaga SI. CD2-associated protein (CD2AP) overexpression accelerates amyloid precursor protein (APP) transfer from early endosomes to the lysosomal degradation pathway. J Biol Chem 2019; 294:10886-10899. [PMID: 31138646 DOI: 10.1074/jbc.ra118.005385] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
A hallmark of Alzheimer's disease (AD) pathology is the appearance of senile plaques, which are composed of β-amyloid (Aβ) peptides. Aβ is produced by sequential cleavages of amyloid precursor protein (APP) by β- and γ-secretases. These cleavages take place in endosomes during intracellular trafficking of APP through the endocytic and recycling pathways. Genome-wide association studies have identified several risk factors for late-onset AD, one of which is CD2-associated protein (CD2AP), an adaptor molecule that regulates membrane trafficking. Although CD2AP's involvement in APP trafficking has recently been reported, how APP trafficking is regulated remains unclear. We sought to address this question by investigating the effect of CD2AP overexpression or knockdown on the intracellular APP distribution and degradation of APP in cultured COS-7 and HEK293 cells. We found that overexpression of CD2AP increases the localization of APP to Rab7-positive late endosomes, and decreases its localization to Rab5-positive early endosomes. CD2AP overexpression accelerated the onset of APP degradation without affecting its degradation rate. Furthermore, nutrient starvation increased the localization of APP to Rab7-positive late endosomes, and CD2AP overexpression stimulated starvation-induced lysosomal APP degradation. Moreover, the effect of CD2AP on the degradation of APP was confirmed by CD2AP overexpression and knockdown in primary cortical neurons from mice. We conclude that CD2AP accelerates the transfer of APP from early to late endosomes. This transfer in localization stimulates APP degradation by reducing the amount of time before degradation initiation. Taken together, these results may explain why impaired CD2AP function is a risk factor for AD.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397
| | - Toshiyuki Takasugi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397
| | - Yung-Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 and
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 and
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 and
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397,.
| |
Collapse
|
200
|
Cheng G, Zhang Q, Pan J, Lee Y, Ouari O, Hardy M, Zielonka M, Myers CR, Zielonka J, Weh K, Chang AC, Chen G, Kresty L, Kalyanaraman B, You M. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat Commun 2019; 10:2205. [PMID: 31101821 PMCID: PMC6525201 DOI: 10.1038/s41467-019-10042-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer often has a poor prognosis, with brain metastases a major reason for mortality. We modified lonidamine (LND), an antiglycolytic drug with limited efficacy, to mitochondria-targeted mito-lonidamine (Mito-LND) which is 100-fold more potent. Mito-LND, a tumor-selective inhibitor of oxidative phosphorylation, inhibits mitochondrial bioenergetics in lung cancer cells and mitigates lung cancer cell viability, growth, progression, and metastasis of lung cancer xenografts in mice. Mito-LND blocks lung tumor development and brain metastasis by inhibiting mitochondrial bioenergetics, stimulating the formation of reactive oxygen species, oxidizing mitochondrial peroxiredoxin, inactivating AKT/mTOR/p70S6K signaling, and inducing autophagic cell death in lung cancer cells. Mito-LND causes no toxicity in mice even when administered for eight weeks at 50 times the effective cancer inhibitory dose. Collectively, these findings show that mitochondrial targeting of LND is a promising therapeutic approach for investigating the role of autophagy in mitigating lung cancer development and brain metastasis.
Collapse
Affiliation(s)
- Gang Cheng
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Qi Zhang
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jing Pan
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yongik Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Charles R Myers
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Katherine Weh
- Section of Thoracic Surgery, Department of Surgery, Rogel Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Andrew C Chang
- Section of Thoracic Surgery, Department of Surgery, Rogel Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Guoan Chen
- Section of Thoracic Surgery, Department of Surgery, Rogel Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Laura Kresty
- Section of Thoracic Surgery, Department of Surgery, Rogel Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Balaraman Kalyanaraman
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ming You
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|