151
|
Zaitceva V, Kopeina GS, Zhivotovsky B. Anastasis: Return Journey from Cell Death. Cancers (Basel) 2021; 13:3671. [PMID: 34359573 PMCID: PMC8345212 DOI: 10.3390/cancers13153671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
For over 20 years, it has been a dogma that once the integrity of mitochondria is disrupted and proapoptotic proteins that are normally located in the intermembrane space of mitochondria appeared in the cytoplasm, the process of cell death becomes inevitable. However, it has been recently shown that upon removal of the death signal, even at the stage of disturbance in the mitochondria, cells can recover and continue to grow. This phenomenon was named anastasis. Here, we will critically discuss the present knowledge concerning the mechanisms of cell death reversal, or development of anastasis, methods for its detection, and what role signaling from different intracellular compartments plays in anastasis stimulation.
Collapse
Affiliation(s)
- Victoria Zaitceva
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Z.); (G.S.K.)
| | - Gelina S. Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Z.); (G.S.K.)
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Z.); (G.S.K.)
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden
| |
Collapse
|
152
|
Chen J, Bassot A, Giuliani F, Simmen T. Amyotrophic Lateral Sclerosis (ALS): Stressed by Dysfunctional Mitochondria-Endoplasmic Reticulum Contacts (MERCs). Cells 2021; 10:cells10071789. [PMID: 34359958 PMCID: PMC8304209 DOI: 10.3390/cells10071789] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which there is currently no cure. Progress in the characterization of other neurodegenerative mechanisms has shifted the spotlight onto an intracellular structure called mitochondria-endoplasmic reticulum (ER) contacts (MERCs) whose ER portion can be biochemically isolated as mitochondria-associated membranes (MAMs). Within the central nervous system (CNS), these structures control the metabolic output of mitochondria and keep sources of oxidative stress in check via autophagy. The most relevant MERC controllers in the ALS pathogenesis are vesicle-associated membrane protein-associated protein B (VAPB), a mitochondria-ER tether, and the ubiquitin-specific chaperone valosin containing protein (VCP). These two systems cooperate to maintain mitochondrial energy output and prevent oxidative stress. In ALS, mutant VAPB and VCP take a central position in the pathology through MERC dysfunction that ultimately alters or compromises mitochondrial bioenergetics. Intriguingly, both proteins are targets themselves of other ALS mutant proteins, including C9orf72, FUS, or TDP-43. Thus, a new picture emerges, where different triggers cause MERC dysfunction in ALS, subsequently leading to well-known pathological changes including endoplasmic reticulum (ER) stress, inflammation, and motor neuron death.
Collapse
Affiliation(s)
- Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (J.C.); (A.B.)
| | - Arthur Bassot
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (J.C.); (A.B.)
| | - Fabrizio Giuliani
- Department of Medicine (Neurology), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada;
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (J.C.); (A.B.)
- Correspondence: ; Tel.: +1-780-492-1546
| |
Collapse
|
153
|
Neuroserpin Inclusion Bodies in a FENIB Yeast Model. Microorganisms 2021; 9:microorganisms9071498. [PMID: 34361933 PMCID: PMC8305157 DOI: 10.3390/microorganisms9071498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
FENIB (familial encephalopathy with neuroserpin inclusion bodies) is a human monogenic disease caused by point mutations in the SERPINI1 gene, characterized by the intracellular deposition of polymers of neuroserpin (NS), which leads to proteotoxicity and cell death. Despite the different cell and animal models developed thus far, the exact mechanism of cell toxicity elicited by NS polymers remains unclear. Here, we report that human wild-type NS and the polymerogenic variant G392E NS form protein aggregates mainly localized within the endoplasmic reticulum (ER) when expressed in the yeast S. cerevisiae. The expression of NS in yeast delayed the exit from the lag phase, suggesting that NS inclusions cause cellular stress. The cells also showed a higher resistance following mild oxidative stress treatments when compared to control cells. Furthermore, the expression of NS in a pro-apoptotic mutant strain-induced cell death during aging. Overall, these data recapitulate phenotypes observed in mammalian cells, thereby validating S. cerevisiae as a model for FENIB.
Collapse
|
154
|
Han S, Zhao F, Hsia J, Ma X, Liu Y, Torres S, Fujioka H, Zhu X. The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo. J Cell Sci 2021; 134:269077. [PMID: 34110411 DOI: 10.1242/jcs.253443] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) play an essential role in multiple cell physiological processes. Although Mfn2 was the first protein implicated in the formation of MERCs, there is debate as to whether it acts as a tether or antagonizer, largely based on in vitro studies. To understand the role of Mfn2 in MERCs in vivo, we characterized ultrastructural and biochemical changes of MERCs in pyramidal neurons of hippocampus in Mfn2 conditional knockout mice and in Mfn2 overexpressing mice, and found that Mfn2 ablation caused reduced close contacts, whereas Mfn2 overexpression caused increased close contacts between the endoplasmic reticulum (ER) and mitochondria in vivo. Functional studies on SH-SY5Y cells with Mfn2 knockout or overexpression demonstrating similar biochemical changes found that mitochondrial calcium uptake along with IP3R3-Grp75 interaction was decreased in Mfn2 knockout cells but increased in Mfn2 overexpressing cells. Lastly, we found Mfn2 knockout decreased and Mfn2 overexpression increased the interaction between the ER-mitochondria tethering pair of VAPB-PTPIP51. In conclusion, our study supports the notion that Mfn2 plays a critical role in ER-mitochondrial tethering and the formation of close contacts in neuronal cells in vivo.
Collapse
Affiliation(s)
- Song Han
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey Hsia
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yi Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sandy Torres
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
155
|
Madec AM, Perrier J, Panthu B, Dingreville F. Role of mitochondria-associated endoplasmic reticulum membrane (MAMs) interactions and calcium exchange in the development of type 2 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:169-202. [PMID: 34392929 DOI: 10.1016/bs.ircmb.2021.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucotoxicity-induced β-cell dysfunction in type 2 diabetes is associated with alterations of mitochondria and the endoplasmic reticulum (ER). Mitochondria and ER form a network in cells that controls cell function and fate. Mitochondria of the pancreatic β cell play a central role in the secretion of insulin in response to glucose through their ability to produce ATP. Both organelles interact at contact sites, defined as mitochondria-associated membranes (MAMs), which were recently implicated in the regulation of glucose homeostasis. Here, we review MAM functions in the cell and we focus on the crosstalk between the ER and Mitochondria in the context of T2D, highlighting the pivotal role played by MAMs especially in β cells through inter-organelle calcium exchange and glucotoxicity-associated β cell dysfunction.
Collapse
Affiliation(s)
| | - Johan Perrier
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon, France
| | | | | |
Collapse
|
156
|
Tian S, Lei P, Zhang J, Sun Y, Li B, Shan Y. Sulforaphane Balances Ca 2+ Homeostasis Injured by Excessive Fat via Mitochondria-Associated Membrane (MAM). Mol Nutr Food Res 2021; 65:e2001076. [PMID: 33929090 DOI: 10.1002/mnfr.202001076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Indexed: 11/10/2022]
Abstract
SCOPE Mitochondria-associated membrane (MAM) connects endoplasmic reticulum (ER) and mitochondria plays a significant role in lipid metabolism and Ca2+ homeostasis. Albeit sulforaphane (SFN) shows potential in ameliorating excessive fat accumulation and mitochondrial function; whether MAM is a target of SFN and its underlying mechanisms are still unclear. METHODS AND RESULTS High-fat-intake models are established both in vivo and in vitro. SFN widens the distance between ER and mitochondria and down-regulates MAM tether protein mitofusin-2. SFN reverses the increase of Ca2+ induced by fatty acid and inhibits the Ca2+ channel inositol-1,4,5-trisphosphate receptor (IP3R). Compared with high fat group, SFN alleviates Ca2+ overload in the mitochondria and suppresses mitochondrial calcium uniporter (MCU). Furthermore, SFN increases mitochondrial DNA quantities and mitochondria membrane potential, while decreasing reactive oxygen species (ROS) production. Finally, SFN increases mitochondria complexes IV content and ATP synthesis. CONCLUSION These results suggest that SFN balances the Ca2+ homeostasis in the MAM through regulating Ca2+ flux by Ca2+ channel IP3R and MCU.
Collapse
Affiliation(s)
- Sicong Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peng Lei
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yao Sun
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Baolong Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yujuan Shan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
157
|
Lopez-Crisosto C, Díaz-Vegas A, Castro PF, Rothermel BA, Bravo-Sagua R, Lavandero S. Endoplasmic reticulum-mitochondria coupling increases during doxycycline-induced mitochondrial stress in HeLa cells. Cell Death Dis 2021; 12:657. [PMID: 34183648 PMCID: PMC8238934 DOI: 10.1038/s41419-021-03945-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Subcellular organelles communicate with each other to regulate function and coordinate responses to changing cellular conditions. The physical-functional coupling of the endoplasmic reticulum (ER) with mitochondria allows for the direct transfer of Ca2+ between organelles and is an important avenue for rapidly increasing mitochondrial metabolic activity. As such, increasing ER-mitochondrial coupling can boost the generation of ATP that is needed to restore homeostasis in the face of cellular stress. The mitochondrial unfolded protein response (mtUPR) is activated by the accumulation of unfolded proteins in mitochondria. Retrograde signaling from mitochondria to the nucleus promotes mtUPR transcriptional responses aimed at restoring protein homeostasis. It is currently unknown whether the changes in mitochondrial-ER coupling also play a role during mtUPR stress. We hypothesized that mitochondrial stress favors an expansion of functional contacts between mitochondria and ER, thereby increasing mitochondrial metabolism as part of a protective response. Hela cells were treated with doxycycline, an antibiotic that inhibits the translation of mitochondrial-encoded proteins to create protein disequilibrium. Treatment with doxycycline decreased the abundance of mitochondrial encoded proteins while increasing expression of CHOP, C/EBPβ, ClpP, and mtHsp60, markers of the mtUPR. There was no change in either mitophagic activity or cell viability. Furthermore, ER UPR was not activated, suggesting focused activation of the mtUPR. Within 2 h of doxycycline treatment, there was a significant increase in physical contacts between mitochondria and ER that was distributed throughout the cell, along with an increase in the kinetics of mitochondrial Ca2+ uptake. This was followed by the rise in the rate of oxygen consumption at 4 h, indicating a boost in mitochondrial metabolic activity. In conclusion, an early phase of the response to doxycycline-induced mitochondrial stress is an increase in mitochondrial-ER coupling that potentiates mitochondrial metabolic activity as a means to support subsequent steps in the mtUPR pathway and sustain cellular adaptation.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Díaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2050, Sydney, NSW, Australia
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, 7680201, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile
- Chilean State Universities Network on Aging, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, 7680201, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
158
|
Koshenov Z, Oflaz FE, Hirtl M, Pilic J, Bachkoenig OA, Gottschalk B, Madreiter-Sokolowski CT, Rost R, Malli R, Graier WF. Sigma-1 Receptor Promotes Mitochondrial Bioenergetics by Orchestrating ER Ca 2+ Leak during Early ER Stress. Metabolites 2021; 11:422. [PMID: 34206832 PMCID: PMC8305890 DOI: 10.3390/metabo11070422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle of eukaryotic cells and responsible for the trafficking and processing of nearly 30% of all human proteins. Any disturbance to these processes can cause ER stress, which initiates an adaptive mechanism called unfolded protein response (UPR) to restore ER functions and homeostasis. Mitochondrial ATP production is necessary to meet the high energy demand of the UPR, while the molecular mechanisms of ER to mitochondria crosstalk under such stress conditions remain mainly enigmatic. Thus, better understanding the regulation of mitochondrial bioenergetics during ER stress is essential to combat many pathologies involving ER stress, the UPR, and mitochondria. This article investigates the role of Sigma-1 Receptor (S1R), an ER chaperone, has in enhancing mitochondrial bioenergetics during early ER stress using human neuroblastoma cell lines. Our results show that inducing ER stress with tunicamycin, a known ER stressor, greatly enhances mitochondrial bioenergetics in a time- and S1R-dependent manner. This is achieved by enhanced ER Ca2+ leak directed towards mitochondria by S1R during the early phase of ER stress. Our data point to the importance of S1R in promoting mitochondrial bioenergetics and maintaining balanced H2O2 metabolism during early ER stress.
Collapse
Affiliation(s)
- Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Furkan E. Oflaz
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Martin Hirtl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Johannes Pilic
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Olaf A. Bachkoenig
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Corina T. Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
159
|
Barrera MJ, Aguilera S, Castro I, Carvajal P, Jara D, Molina C, González S, González MJ. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren's syndrome. Autoimmun Rev 2021; 20:102867. [PMID: 34118452 DOI: 10.1016/j.autrev.2021.102867] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
Relevant reviews highlight the association between dysfunctional mitochondria and inflammation, but few studies address the contribution of mitochondria and mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) to cellular homeostasis and inflammatory signaling. The present review outlines the important role of mitochondria in cellular homeostasis and how dysfunctional mitochondrion can release and misplace mitochondrial components (cardiolipin, mitochondrial DNA (mtDNA), and mitochondrial formylated peptides) through multiple mechanisms. These components can act as damage-associated molecular patterns (DAMPs) and induce an inflammatory response via pattern recognition receptors (PRRs). Accumulation of damaged ROS-generating mitochondria, accompanied by the release of mitochondrial DAMPs, can activate PRRs such as the NLRP3 inflammasome, TLR9, cGAS/STING, and ZBP1. This process would explain the chronic inflammation that is observed in autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type I diabetes (T1D), and Sjögren's syndrome. This review also provides a comprehensive overview of the importance of MERCs to mitochondrial function and morphology, cellular homeostasis, and the inflammatory response. MERCs play an important role in calcium homeostasis by mediating the transfer of calcium from the ER to the mitochondria and thereby facilitating the production of ATP. They also contribute to the synthesis and transfer of phospholipids, protein folding in the ER, mitochondrial fission, mitochondrial fusion, initiation of autophagosome formation, regulation of cell death/survival signaling, and regulation of immune responses. Therefore, alterations within MERCs could increase inflammatory signaling, modulate ER stress responses, cell homeostasis, and ultimately, the cell fate. This study shows severe ultrastructural alterations of mitochondria in salivary gland cells from Sjögren's syndrome patients for the first time, which could trigger alterations in cellular bioenergetics. This finding could explain symptoms such as fatigue and malfunction of the salivary glands in Sjögren's syndrome patients, which would contribute to the chronic inflammatory pathology of the disease. However, this is only a first step in solving this complex puzzle, and several other important factors such as changes in mitochondrial morphology, functionality, and their important contacts with other organelles require further in-depth study. Future work should focus on detecting the key milestones that are related to inflammation in patients with autoimmune diseases, such as Sjögren´s syndrome.
Collapse
Affiliation(s)
- María-José Barrera
- Facultad de Odontología, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| | | | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Jara
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
160
|
Systems modeling predicts that mitochondria ER contact sites regulate the postsynaptic energy landscape. NPJ Syst Biol Appl 2021; 7:26. [PMID: 34078916 PMCID: PMC8172538 DOI: 10.1038/s41540-021-00185-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
Spatiotemporal compartmentation of calcium dynamics is critical for neuronal function, particularly in postsynaptic spines. This exquisite level of Ca2+ compartmentalization is achieved through the storage and release of Ca2+ from various intracellular organelles particularly the endoplasmic reticulum (ER) and the mitochondria. Mitochondria and ER are established storage organelles controlling Ca2+ dynamics in neurons. Mitochondria also generate a majority of energy used within postsynaptic spines to support the downstream events associated with neuronal stimulus. Recently, high resolution microscopy has unveiled direct contact sites between the ER and the mitochondria (MERCs), which directly channel Ca2+ release from the ER into the mitochondrial membrane. In this study, we develop a computational 3D reaction-diffusion model to investigate the role of MERCs in regulating Ca2+ and ATP dynamics. This spatiotemporal model accounts for Ca2+ oscillations initiated by glutamate stimulus of metabotropic and ionotropic glutamate receptors and Ca2+ changes in four different compartments: cytosol, ER, mitochondria, and the MERC microdomain. Our simulations predict that the organization of these organelles and inter-organellar contact sites play a key role in modulating Ca2+ and ATP dynamics. We further show that the crosstalk between geometry (mitochondria and MERC) and metabolic parameters (cytosolic ATP hydrolysis, ATP generation) influences the neuronal energy state. Our findings shed light on the importance of organelle interactions in predicting Ca2+ dynamics in synaptic signaling. Overall, our model predicts that a combination of MERC linkage and mitochondria size is necessary for optimal ATP production in the cytosol.
Collapse
|
161
|
Wilson EL, Metzakopian E. ER-mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms. Cell Death Differ 2021; 28:1804-1821. [PMID: 33335290 PMCID: PMC8185109 DOI: 10.1038/s41418-020-00705-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondria-ER contact sites (MERCS) are known to underpin many important cellular homoeostatic functions, including mitochondrial quality control, lipid metabolism, calcium homoeostasis, the unfolded protein response and ER stress. These functions are known to be dysregulated in neurodegenerative diseases, including Parkinson's disease (PD), Alzheimer's disease (AD) and amyloid lateral sclerosis (ALS), and the number of disease-related proteins and genes being associated with MERCS is increasing. However, many details regarding MERCS and their role in neurodegenerative diseases remain unknown. In this review, we aim to summarise the current knowledge regarding the structure and function of MERCS, and to update the field on current research in PD, AD and ALS. Furthermore, we will evaluate high-throughput screening techniques, including RNAi vs CRISPR/Cas9, pooled vs arrayed formats and how these could be combined with current techniques to visualise MERCS. We will consider the advantages and disadvantages of each technique and how it can be utilised to uncover novel protein pathways involved in MERCS dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Louise Wilson
- UK Dementia Research Institute, Department of Clinical Neuroscience, University of Cambridge, Cambridge, CB2 0AH, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neuroscience, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
162
|
Burkewitz K, Feng G, Dutta S, Kelley CA, Steinbaugh M, Cram EJ, Mair WB. Atf-6 Regulates Lifespan through ER-Mitochondrial Calcium Homeostasis. Cell Rep 2021; 32:108125. [PMID: 32905769 PMCID: PMC8030272 DOI: 10.1016/j.celrep.2020.108125] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/24/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Individually, dysfunction of both the endoplasmic reticulum (ER) and mitochondria has been linked to aging, but how communication between these organelles might be targeted to promote longevity is unclear. Here, we provide evidence that, in Caenorhabditis elegans, inhibition of the conserved unfolded protein response (UPRER) mediator, activating transcription factor (atf)-6, increases lifespan by modulating calcium homeostasis and signaling to mitochondria. Atf-6 loss confers longevity via downregulation of the ER calcium buffer, calreticulin. ER calcium release via the inositol triphosphate receptor (IP3R/itr-1) is required for longevity, while IP3R/itr-1 gain of function is sufficient to extend lifespan. Highlighting coordination between organelles, the mitochondrial calcium import channel mcu-1 is also required for atf-6 longevity. IP3R inhibition leads to impaired mitochondrial bioenergetics and hyperfusion, which is sufficient to suppress long life in atf-6 mutants. This study reveals the importance of organellar calcium handling as a critical output for the UPRER in determining the quality of aging. Burkewitz et al. show that modulating subcellular calcium compartmentalization and signaling is a mechanism of both aging and longevity. The loss of ATF-6, a conserved mediator of the unfolded protein response, disrupts calcium retention in the ER; subsequently, ER calcium release triggers lifespan extension by stimulating mitochondrial dynamics and function.
Collapse
Affiliation(s)
- Kristopher Burkewitz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Gaomin Feng
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Sneha Dutta
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Michael Steinbaugh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
163
|
Ahmadi Z, Jena H, Singh M, Dhawan G, Kumar P. Self-Assembled Biodegradable Core-Shell Nanocomposites of Amphiphilic Retinoic Acid-LMW bPEI Conjugates Exhibit Enhanced Transgene Expression in Hepatocellular Carcinoma Cells With Inherent Anticancer Properties. J Pharm Sci 2021; 110:3047-3060. [PMID: 33933435 DOI: 10.1016/j.xphs.2021.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
Low molecular weight branched polyethylenimines (LMW bPEIs) are almost nontoxic but display poor transfection efficiency due to lack of adequate complexation ability with nucleic acids followed by transportation across the cell membrane. Here, a series of amphiphilic retinoyl-bPEI conjugates (RP-1, RP-2 and RP-3) has been synthesized by allowing the reaction between bPEI (1.8 kDa) and a bioactive and hydrophobic vitamin A metabolite, all-trans-retinoic acid (ATRA), in varying amounts. In aqueous medium, these conjugates self-assembled into core-shell RP nanocomposites with size ranging from ~113-178 nm and zeta potential from ~ +15-35 mV. Evaluation of pDNA complexes of RP nanocomposites revealed that all the complexes exhibited significantly enhanced transfection efficiency without compromising on the cytocompatibility. RP-3/pDNA complex, with the highest content of retinoic acid, exhibited the best transfection efficiency. Further, due to anticancer properties of ATRA, these nanocomposites significantly reduced the viability of cancer cells (HepG2 and MCF-7 cells) without affecting the viability of non-cancerous cells (HEK 293 cells) demonstrating the cell-selective nature of the formulated nanocomposites. The intracellular trafficking and co-localization studies involving RP-3 nanocomposites also showed their higher uptake with intracellular and nuclear accumulation properties. Altogether, the results demonstrate the promising potential of the RP conjugates that can be used in future hepatocellular carcinoma targeted gene delivery applications.
Collapse
Affiliation(s)
- Zeba Ahmadi
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad- 201002, India
| | - Harekrushna Jena
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India; Department of Biomedical Sciences, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi- 110019, India
| | - Mahak Singh
- Department of Chemistry, Ramjas College (University of Delhi), University Enclave, Delhi-110007, India
| | - Gagan Dhawan
- Department of Biomedical Sciences, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi- 110019, India.
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
164
|
Popovic R, Celardo I, Yu Y, Costa AC, Loh SHY, Martins LM. Combined Transcriptomic and Proteomic Analysis of Perk Toxicity Pathways. Int J Mol Sci 2021; 22:4598. [PMID: 33925631 PMCID: PMC8124185 DOI: 10.3390/ijms22094598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
In Drosophila, endoplasmic reticulum (ER) stress activates the protein kinase R-like endoplasmic reticulum kinase (dPerk). dPerk can also be activated by defective mitochondria in fly models of Parkinson's disease caused by mutations in pink1 or parkin. The Perk branch of the unfolded protein response (UPR) has emerged as a major toxic process in neurodegenerative disorders causing a chronic reduction in vital proteins and neuronal death. In this study, we combined microarray analysis and quantitative proteomics analysis in adult flies overexpressing dPerk to investigate the relationship between the transcriptional and translational response to dPerk activation. We identified tribbles and Heat shock protein 22 as two novel Drosophila activating transcription factor 4 (dAtf4) regulated transcripts. Using a combined bioinformatics tool kit, we demonstrated that the activation of dPerk leads to translational repression of mitochondrial proteins associated with glutathione and nucleotide metabolism, calcium signalling and iron-sulphur cluster biosynthesis. Further efforts to enhance these translationally repressed dPerk targets might offer protection against Perk toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; (R.P.); (I.C.); (Y.Y.); (A.C.C.); (S.H.Y.L.)
| |
Collapse
|
165
|
Tao J, Chen H, Wang YJ, Qiu JX, Meng QQ, Zou RJ, Li L, Huang JG, Zhao ZK, Huang YL, Zhang HF, Zheng JM. Ketogenic Diet Suppressed T-Regulatory Cells and Promoted Cardiac Fibrosis via Reducing Mitochondria-Associated Membranes and Inhibiting Mitochondrial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5512322. [PMID: 33959215 PMCID: PMC8075689 DOI: 10.1155/2021/5512322] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023]
Abstract
Ketogenic diet (KD) is popular in diabetic patients but its cardiac safety and efficiency on the heart are unknown. The aim of the present study is to determine the effects and the underlined mechanisms of KD on cardiac function in diabetic cardiomyopathy (DCM). We used db/db mice to model DCM, and different diets (regular or KD) were used. Cardiac function and interstitial fibrosis were determined. T-regulatory cell (Treg) number and functions were evaluated. The effects of ketone body (KB) on fatty acid (FA) and glucose metabolism, mitochondria-associated endoplasmic reticulum membranes (MAMs), and mitochondrial respiration were assessed. The mechanisms via which KB regulated MAMs and Tregs were addressed. KD improved metabolic indices in db/db mice. However, KD impaired cardiac diastolic function and exacerbated ventricular fibrosis. Proportions of circulatory CD4+CD25+Foxp3+ cells in whole blood cells and serum levels of IL-4 and IL-10 were reduced in mice fed with KD. KB suppressed the differentiation to Tregs from naive CD4+ T cells. Cultured medium from KB-treated Tregs synergically activated cardiac fibroblasts. Meanwhile, KB inhibited Treg proliferation and productions of IL-4 and IL-10. Treg MAMs, mitochondrial respiration and respiratory complexes, and FA synthesis and oxidation were all suppressed by KB while glycolytic levels were increased. L-carnitine reversed Treg proliferation and function inhibited by KB. Proportions of ST2L+ cells in Tregs were reduced by KB, as well as the production of ST2L ligand, IL-33. Reinforcement expressions of ST2L in Tregs counteracted the reductions in MAMs, mitochondrial respiration, and Treg proliferations and productions of Treg cytokines IL-4 and IL-10. Therefore, despite the improvement of metabolic indices, KD impaired Treg expansion and function and promoted cardiac fibroblast activation and interstitial fibrosis. This could be mainly mediated by the suppression of MAMs and fatty acid metabolism inhibition via blunting IL-33/ST2L signaling.
Collapse
Affiliation(s)
- Jun Tao
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ya-Jing Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun-Xiong Qiu
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Qi Meng
- Department of Orthopedics of Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Rong-Jun Zou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Li
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun-Gang Huang
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zong-Kai Zhao
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Li Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun-Meng Zheng
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of surgery, Kiang Wu Hospital, Macau SAR, China
| |
Collapse
|
166
|
Bustos G, Ahumada-Castro U, Silva-Pavez E, Puebla A, Lovy A, Cesar Cardenas J. The ER-mitochondria Ca 2+ signaling in cancer progression: Fueling the monster. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:49-121. [PMID: 34392932 DOI: 10.1016/bs.ircmb.2021.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. All major tumor suppressors and oncogenes are now recognized to have fundamental connections with metabolic pathways. A hallmark feature of cancer cells is a reprogramming of their metabolism even when nutrients are available. Increasing evidence indicates that most cancer cells rely on mitochondrial metabolism to sustain their energetic and biosynthetic demands. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contact sites (MERCS). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), a family of Ca2+ release channels activated by the ligand IP3. IP3R mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU). Once in the mitochondrial matrix, Ca2+ activates several proteins that stimulate mitochondrial performance. The role of IP3R and MCU in cancer, as well as the other proteins that enable the Ca2+ communication between these two organelles is just beginning to be understood. Here, we describe the function of the main players of the ER mitochondrial Ca2+ communication and discuss how this particular signal may contribute to the rise and development of cancer traits.
Collapse
Affiliation(s)
- Galdo Bustos
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Eduardo Silva-Pavez
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Andrea Puebla
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States.
| | - J Cesar Cardenas
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
167
|
Zhang SS, Zhou S, Crowley-McHattan ZJ, Wang RY, Li JP. A Review of the Role of Endo/Sarcoplasmic Reticulum-Mitochondria Ca 2+ Transport in Diseases and Skeletal Muscle Function. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083874. [PMID: 33917091 PMCID: PMC8067840 DOI: 10.3390/ijerph18083874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
The physical contact site between a mitochondrion and endoplasmic reticulum (ER), named the mitochondria-associated membrane (MAM), has emerged as a fundamental platform for regulating the functions of the two organelles and several cellular processes. This includes Ca2+ transport from the ER to mitochondria, mitochondrial dynamics, autophagy, apoptosis signalling, ER stress signalling, redox reaction, and membrane structure maintenance. Consequently, the MAM is suggested to be involved in, and as a possible therapeutic target for, some common diseases and impairment in skeletal muscle function, such as insulin resistance and diabetes, obesity, neurodegenerative diseases, Duchenne muscular dystrophy, age-related muscle atrophy, and exercise-induced muscle damage. In the past decade, evidence suggests that alterations in Ca2+ transport from the ER to mitochondria, mediated by the macromolecular complex formed by IP3R, Grp75, and VDAC1, may be a universal mechanism for how ER-mitochondria cross-talk is involved in different physiological/pathological conditions mentioned above. A better understanding of the ER (or sarcoplasmic reticulum in muscle)-mitochondria Ca2+ transport system may provide a new perspective for exploring the mechanism of how the MAM is involved in the pathology of diseases and skeletal muscle dysfunction. This review provides a summary of recent research findings in this area.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (S.-S.Z.); (J.-P.L.)
- Faculty of Health, Southern Cross University, East Lismore, NSW 2480, Australia; (S.Z.); (Z.J.C.-M.)
| | - Shi Zhou
- Faculty of Health, Southern Cross University, East Lismore, NSW 2480, Australia; (S.Z.); (Z.J.C.-M.)
| | | | - Rui-Yuan Wang
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (S.-S.Z.); (J.-P.L.)
- Correspondence:
| | - Jun-Ping Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (S.-S.Z.); (J.-P.L.)
| |
Collapse
|
168
|
Abstract
Our cells are comprised of billions of proteins, lipids, and other small molecules packed into their respective subcellular organelles, with the daunting task of maintaining cellular homeostasis over a lifetime. However, it is becoming increasingly evident that organelles do not act as autonomous discrete units but rather as interconnected hubs that engage in extensive communication through membrane contacts. In the last few years, our understanding of how these contacts coordinate organelle function has redefined our view of the cell. This review aims to present novel findings on the cellular interorganelle communication network and how its dysfunction may contribute to aging and neurodegeneration. The consequences of disturbed interorganellar communication are intimately linked with age-related pathologies. Given that both aging and neurodegenerative diseases are characterized by the concomitant failure of multiple cellular pathways, coordination of organelle communication and function could represent an emerging regulatory mechanism critical for long-term cellular homeostasis. We anticipate that defining the relationships between interorganelle communication, aging, and neurodegeneration will open new avenues for therapeutics.
Collapse
Affiliation(s)
- Maja Petkovic
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Caitlin E O'Brien
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
169
|
Phuong HT, Ishiwata-Kimata Y, Nishi Y, Oguchi N, Takagi H, Kimata Y. Aeration mitigates endoplasmic reticulum stress in Saccharomyces cerevisiae even without mitochondrial respiration. MICROBIAL CELL 2021; 8:77-86. [PMID: 33816593 PMCID: PMC8010904 DOI: 10.15698/mic2021.04.746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Saccharomyces cerevisiae is a facultative anaerobic organism that grows well under both aerobic and hypoxic conditions in media containing abundant fermentable nutrients such as glucose. In order to deeply understand the physiological dependence of S. cerevisiae on aeration, we checked endoplasmic reticulum (ER)-stress status by monitoring the splicing of HAC1 mRNA, which is promoted by the ER stress-sensor protein, Ire1. HAC1-mRNA splicing that was caused by conventional ER-stressing agents, including low concentrations of dithiothreitol (DTT), was more potent in hypoxic cultures than in aerated cultures. Moreover, growth retardation was observed by adding low-dose DTT into hypoxic cultures of ire1Δ cells. Unexpectedly, aeration mitigated ER stress and DTT-induced impairment of ER oxidative protein folding even when mitochondrial respiration was halted by the ρo mutation. An ER-located protein Ero1 is known to directly consume molecular oxygen to initiate the ER protein oxidation cascade, which promotes oxidative protein folding of ER client proteins. Our further study using ero1-mutant strains suggested that, in addition to mitochondrial respiration, this Ero1-medaited reaction contributes to mitigation of ER stress by molecular oxygen. Taken together, here we demonstrate a scenario in which aeration acts beneficially on S. cerevisiae cells even under fermentative conditions.
Collapse
Affiliation(s)
- Huong Thi Phuong
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yuki Ishiwata-Kimata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yuki Nishi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Norie Oguchi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hiroshi Takagi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yukio Kimata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
170
|
Dokukina IV, Yamashev MV, Samarina EA, Tilinova OM, Grachev EA. Calcium-dependent insulin resistance in hepatocytes: mathematical model. J Theor Biol 2021; 522:110684. [PMID: 33794287 DOI: 10.1016/j.jtbi.2021.110684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Hepatocyte insulin resistance is one of the early factors of developing type II diabetes. If insulin resistance is treated early, type II diabetes could be prevented. In recent years, scientists have been conducting extensive research on the underlying issues on a cellular and molecular level. It was found that the modulation of IP3-receptors, the mitochondrial ability to form the mitochondria-associated membranes (MAMs) and the endoplasmic reticulum stress during Ca2+ signaling play a key role in hepatocyte being able to maintain euglycemia and provide metabolic flexibility. However, researchers cannot agree on what factor is the key one in resulting in insulin resistance. In this work, we propose a mathematical model of Ca2+ signaling. We included in the model all the major contributors of a proper Ca2+ signaling during both the fasting and the postprandial state. Our modeling results are in good agreement with available experimental data. The analysis of modeling results suggests that MAMs dysfunction alone cannot result in abnormal Ca2+ signaling and the wrong modulation of IP3-receptors is a more definite reason. However, both the MAMs dysfunction and the IP3 signaling dysregulation combined can lead to a robust Ca2+ signal and improper glucose release. In addition, our model results suggest a strong dependence of Ca2+ oscillations pattern on morphological characteristics of the ER and the mitochondria.
Collapse
Affiliation(s)
- Irina V Dokukina
- Sarov Physical and Technical Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation.
| | | | - Ekaterina A Samarina
- Sarov Physical and Technical Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Oksana M Tilinova
- Sarov Physical and Technical Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | | |
Collapse
|
171
|
Alassaf M, Halloran MC. Pregnancy-associated plasma protein-aa regulates endoplasmic reticulum-mitochondria associations. eLife 2021; 10:59687. [PMID: 33759764 PMCID: PMC8024009 DOI: 10.7554/elife.59687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondria form close physical associations to facilitate calcium transfer, thereby regulating mitochondrial function. Neurons with high metabolic demands, such as sensory hair cells, are especially dependent on precisely regulated ER-mitochondria associations. We previously showed that the secreted metalloprotease pregnancy-associated plasma protein-aa (Pappaa) regulates mitochondrial function in zebrafish lateral line hair cells (Alassaf et al., 2019). Here, we show that pappaa mutant hair cells exhibit excessive and abnormally close ER-mitochondria associations, suggesting increased ER-mitochondria calcium transfer. pappaa mutant hair cells are more vulnerable to pharmacological induction of ER-calcium transfer. Additionally, pappaa mutant hair cells display ER stress and dysfunctional downstream processes of the ER-mitochondria axis including altered mitochondrial morphology and reduced autophagy. We further show that Pappaa influences ER-calcium transfer and autophagy via its ability to stimulate insulin-like growth factor-1 bioavailability. Together our results identify Pappaa as a novel regulator of the ER-mitochondria axis.
Collapse
Affiliation(s)
- Mroj Alassaf
- Department of Integrative Biology, University of Wisconsin, Madison, United States.,Department of Neuroscience, University of Wisconsin, Madison, United States.,Neuroscience Training Program, University of Wisconsin, Madison, United States
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin, Madison, United States.,Department of Neuroscience, University of Wisconsin, Madison, United States.,Neuroscience Training Program, University of Wisconsin, Madison, United States
| |
Collapse
|
172
|
Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases. J Clin Med 2021; 10:jcm10061268. [PMID: 33803835 PMCID: PMC8003245 DOI: 10.3390/jcm10061268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have shown that some rare respiratory diseases, such as alpha-1 antitrypsin deficiency (AATD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) present oxidative stress (OS) and endoplasmic reticulum (ER) stress. Their involvement in these pathologies and the use of antioxidants as therapeutic agents to minimize the effects of OS are discussed in this review.
Collapse
|
173
|
Leal NS, Martins LM. Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020227. [PMID: 33672391 PMCID: PMC7926795 DOI: 10.3390/biomedicines9020227] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
The way organelles are viewed by cell biologists is quickly changing. For many years, these cellular entities were thought to be unique and singular structures that performed specific roles. However, in recent decades, researchers have discovered that organelles are dynamic and form physical contacts. In addition, organelle interactions modulate several vital biological functions, and the dysregulation of these contacts is involved in cell dysfunction and different pathologies, including neurodegenerative diseases. Mitochondria–ER contact sites (MERCS) are among the most extensively studied and understood juxtapositioned interorganelle structures. In this review, we summarise the major biological and ultrastructural dysfunctions of MERCS in neurodegeneration, with a particular focus on Alzheimer’s disease as well as Parkinson’s disease, amyotrophic lateral sclerosis and frontotemporal dementia. We also propose an updated version of the MERCS hypothesis in Alzheimer’s disease based on new findings. Finally, we discuss the possibility of MERCS being used as possible drug targets to halt cell death and neurodegeneration.
Collapse
|
174
|
Angebault C, Panel M, Lacôte M, Rieusset J, Lacampagne A, Fauconnier J. Metformin Reverses the Enhanced Myocardial SR/ER-Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice. Front Cell Dev Biol 2021; 8:609493. [PMID: 33569379 PMCID: PMC7868535 DOI: 10.3389/fcell.2020.609493] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Besides skeletal muscle dysfunction, Duchenne muscular dystrophy (DMD) exhibits a progressive cardiomyopathy characterized by an impaired calcium (Ca2+) homeostasis and a mitochondrial dysfunction. Here we aimed to determine whether sarco-endoplasmic reticulum (SR/ER)–mitochondria interactions and mitochondrial function were impaired in dystrophic heart at the early stage of the pathology. For this purpose, ventricular cardiomyocytes and mitochondria were isolated from 3-month-old dystrophin-deficient mice (mdx mice). The number of contacts points between the SR/ER Ca2+ release channels (IP3R1) and the porine of the outer membrane of the mitochondria, VDAC1, measured using in situ proximity ligation assay, was greater in mdx cardiomyocytes. Expression levels of IP3R1 as well as the mitochondrial Ca2+ uniporter (MCU) and its regulated subunit, MICU1, were also increased in mdx heart. MICU2 expression was however unchanged. Furthermore, the mitochondrial Ca2+ uptake kinetics and the mitochondrial Ca2+ content were significantly increased. Meanwhile, the Ca2+-dependent pyruvate dehydrogenase phosphorylation was reduced, and its activity significantly increased. In Ca2+-free conditions, pyruvate-driven complex I respiration was decreased whereas in the presence of Ca2+, complex I-mediated respiration was boosted. Further, impaired complex I-mediated respiration was independent of its intrinsic activity or expression, which remains unchanged but is accompanied by an increase in mitochondrial reactive oxygen species production. Finally, mdx mice were treated with the complex I modulator metformin for 1 month. Metformin normalized the SR/ER-mitochondria interaction, decreased MICU1 expression and mitochondrial Ca2+ content, and enhanced complex I-driven respiration. In summary, before any sign of dilated cardiomyopathy, the DMD heart displays an aberrant SR/ER-mitochondria coupling with an increase mitochondrial Ca2+ homeostasis and a complex I dysfunction. Such remodeling could be reversed by metformin providing a novel therapeutic perspective in DMD.
Collapse
Affiliation(s)
- Claire Angebault
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Mathieu Panel
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Mathilde Lacôte
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jennifer Rieusset
- CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1-Univ Lyon, Lyon, France
| | - Alain Lacampagne
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jérémy Fauconnier
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
175
|
Pontisso I, Combettes L. Role of Sigma-1 Receptor in Calcium Modulation: Possible Involvement in Cancer. Genes (Basel) 2021; 12:139. [PMID: 33499031 PMCID: PMC7911422 DOI: 10.3390/genes12020139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ca2+ signaling plays a pivotal role in the control of cellular homeostasis and aberrant regulation of Ca2+ fluxes have a strong impact on cellular functioning. As a consequence of this ubiquitous role, Ca2+ signaling dysregulation is involved in the pathophysiology of multiple diseases including cancer. Indeed, multiple studies have highlighted the role of Ca2+ fluxes in all the steps of cancer progression. In particular, the transfer of Ca2+ at the ER-mitochondrial contact sites, also known as mitochondrial associated membranes (MAMs), has been shown to be crucial for cancer cell survival. One of the proteins enriched at this site is the sigma-1 receptor (S1R), a protein that has been described as a Ca2+-sensitive chaperone that exerts a protective function in cells in various ways, including the modulation of Ca2+ signaling. Interestingly, S1R is overexpressed in many types of cancer even though the exact mechanisms by which it promotes cell survival are not fully elucidated. This review summarizes the findings describing the roles of S1R in the control of Ca2+ signaling and its involvement in cancer progression.
Collapse
Affiliation(s)
- Ilaria Pontisso
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| | - Laurent Combettes
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
176
|
Scarpelli PH, Pecenin MF, Garcia CRS. Intracellular Ca 2+ Signaling in Protozoan Parasites: An Overview with a Focus on Mitochondria. Int J Mol Sci 2021; 22:ijms22010469. [PMID: 33466510 PMCID: PMC7796463 DOI: 10.3390/ijms22010469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ signaling has been involved in controling critical cellular functions such as activation of proteases, cell death, and cell cycle control. The endoplasmatic reticulum plays a significant role in Ca2+ storage inside the cell, but mitochondria have long been recognized as a fundamental Ca2+ pool. Protozoan parasites such as Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma cruzi display a Ca2+ signaling toolkit with similarities to higher eukaryotes, including the participation of mitochondria in Ca2+-dependent signaling events. This review summarizes the most recent knowledge in mitochondrial Ca2+ signaling in protozoan parasites, focusing on the mechanism involved in mitochondrial Ca2+ uptake by pathogenic protists.
Collapse
|
177
|
Meex RCR, Blaak EE. Mitochondrial Dysfunction is a Key Pathway that Links Saturated Fat Intake to the Development and Progression of NAFLD. Mol Nutr Food Res 2021; 65:e1900942. [PMID: 32574416 PMCID: PMC7816225 DOI: 10.1002/mnfr.201900942] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the most common form of liver disease and is characterized by fat accumulation in the liver. Hypercaloric diets generally increase hepatic fat accumulation, whereas hypocaloric diets decrease liver fat content. In addition, there is evidence to suggest that moderate amounts of unsaturated fatty acids seems to be protective for the development of a fatty liver, while consumption of saturated fatty acids (SFA) appears to predispose toward hepatic steatosis. Recent studies highlight a key role for mitochondrial dysfunction in the development and progression of NAFLD. It is proposed that changes in mitochondrial structure and function are key mechanisms by which SFA lead to the development and progression of NAFLD. In this review, it is described how SFA intake is associated with liver steatosis and decreases the efficiency of the respiratory transport chain. This results in the production of reactive oxygen species and damage to nearby structures, eventually leading to inflammation, apoptosis, and scarring of the liver. Furthermore, studies demonstrating that SFA intake affects the composition of mitochondrial membranes are presented, and this process accelerates the progression of NAFLD. It is likely that events are intertwined and reinforce each other, leading to a constant deterioration in health.
Collapse
Affiliation(s)
- Ruth C. R. Meex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| |
Collapse
|
178
|
Bassot A, Chen J, Simmen T. Post-Translational Modification of Cysteines: A Key Determinant of Endoplasmic Reticulum-Mitochondria Contacts (MERCs). CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211001213. [PMID: 37366382 PMCID: PMC10243593 DOI: 10.1177/25152564211001213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 06/28/2023]
Abstract
Cells must adjust their redox state to an ever-changing environment that could otherwise result in compromised homeostasis. An obvious way to adapt to changing redox conditions depends on cysteine post-translational modifications (PTMs) to adapt conformation, localization, interactions and catalytic activation of proteins. Such PTMs should occur preferentially in the proximity of oxidative stress sources. A particular concentration of these sources is found near membranes where the endoplasmic reticulum (ER) and the mitochondria interact on domains called MERCs (Mitochondria-Endoplasmic Reticulum Contacts). Here, fine inter-organelle communication controls metabolic homeostasis. MERCs achieve this goal through fluxes of Ca2+ ions and inter-organellar lipid exchange. Reactive oxygen species (ROS) that cause PTMs of mitochondria-associated membrane (MAM) proteins determine these intertwined MERC functions. Chronic changes of the pattern of these PTMs not only control physiological processes such as the circadian clock but could also lead to or worsen many human disorders such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Thomas Simmen
- Thomas Simmen, Department of Cell
Biology, Faculty of Medicine and Dentistry, University of Alberta,
Edmonton, Alberta, Canada T6G2H7.
| |
Collapse
|
179
|
Cremer T, Neefjes J, Berlin I. The journey of Ca 2+ through the cell - pulsing through the network of ER membrane contact sites. J Cell Sci 2020; 133:133/24/jcs249136. [PMID: 33376155 DOI: 10.1242/jcs.249136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcium is the third most abundant metal on earth, and the fundaments of its homeostasis date back to pre-eukaryotic life forms. In higher organisms, Ca2+ serves as a cofactor for a wide array of (enzymatic) interactions in diverse cellular contexts and constitutes the most important signaling entity in excitable cells. To enable responsive behavior, cytosolic Ca2+ concentrations are kept low through sequestration into organellar stores, particularly the endoplasmic reticulum (ER), but also mitochondria and lysosomes. Specific triggers are then used to instigate a local release of Ca2+ on demand. Here, communication between organelles comes into play, which is accomplished through intimate yet dynamic contacts, termed membrane contact sites (MCSs). The field of MCS biology in relation to cellular Ca2+ homeostasis has exploded in recent years. Taking advantage of this new wealth of knowledge, in this Review, we invite the reader on a journey of Ca2+ flux through the ER and its associated MCSs. New mechanistic insights and technological advances inform the narrative on Ca2+ acquisition and mobilization at these sites of communication between organelles, and guide the discussion of their consequences for cellular physiology.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
180
|
Aras S, Purandare N, Gladyck S, Somayajulu-Nitu M, Zhang K, Wallace DC, Grossman LI. Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1) rescues the cellular phenotype of MELAS by inducing homeostatic mechanisms. Proc Natl Acad Sci U S A 2020; 117:32056-32065. [PMID: 33257573 PMCID: PMC7749287 DOI: 10.1073/pnas.2005877117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MNRR1 (CHCHD2) is a bi-organellar regulator of mitochondrial function that directly activates cytochrome c oxidase in the mitochondria and functions in the nucleus as a transcriptional activator for hundreds of genes. Since MNRR1 depletion contains features of a mitochondrial disease phenotype, we evaluated the effects of forced expression of MNRR1 on the mitochondrial disease MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) syndrome. MELAS is a multisystem encephalomyopathy disorder that can result from a heteroplasmic mutation in the mitochondrial DNA (mtDNA; m.3243A > G) at heteroplasmy levels of ∼50 to 90%. Since cybrid cell lines with 73% m.3243A > G heteroplasmy (DW7) display a significant reduction in MNRR1 levels compared to the wild type (0% heteroplasmy) (CL9), we evaluated the effects of MNRR1 levels on mitochondrial functioning. Overexpression of MNRR1 in DW7 cells induces the mitochondrial unfolded protein response (UPRmt), autophagy, and mitochondrial biogenesis, thereby rescuing the mitochondrial phenotype. It does so primarily as a transcription activator, revealing this function to be a potential therapeutic target. The role of MNRR1 in stimulating UPRmt, which is blunted in MELAS cells, was surprising and further investigation uncovered that under conditions of stress the import of MNRR1 into the mitochondria was blocked, allowing the protein to accumulate in the nucleus to enhance its transcription function. In the mammalian system, ATF5, has been identified as a mediator of UPRmt MNRR1 knockout cells display an ∼40% reduction in the protein levels of ATF5, suggesting that MNRR1 plays an important role upstream of this known mediator of UPRmt.
Collapse
Affiliation(s)
- Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Neeraja Purandare
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Stephanie Gladyck
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Mallika Somayajulu-Nitu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104;
- Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201;
| |
Collapse
|
181
|
Leal NS, Dentoni G, Schreiner B, Naia L, Piras A, Graff C, Cattaneo A, Meli G, Hamasaki M, Nilsson P, Ankarcrona M. Amyloid Β-Peptide Increases Mitochondria-Endoplasmic Reticulum Contact Altering Mitochondrial Function and Autophagosome Formation in Alzheimer's Disease-Related Models. Cells 2020; 9:cells9122552. [PMID: 33260715 PMCID: PMC7760163 DOI: 10.3390/cells9122552] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 01/24/2023] Open
Abstract
Recent findings have shown that the connectivity and crosstalk between mitochondria and the endoplasmic reticulum (ER) at mitochondria-ER contact sites (MERCS) are altered in Alzheimer's disease (AD) and in AD-related models. MERCS have been related to the initial steps of autophagosome formation as well as regulation of mitochondrial function. Here, the interplay between MERCS, mitochondria ultrastructure and function and autophagy were evaluated in different AD animal models with increased levels of Aβ as well as in primary neurons derived from these animals. We start by showing that the levels of Mitofusin 1, Mitofusin 2 and mitochondrial import receptor subunit TOM70 are decreased in post-mortem brain tissue derived from familial AD. We also show that Aβ increases the juxtaposition between ER and mitochondria both in adult brain of different AD mouse models as well as in primary cultures derived from these animals. In addition, the connectivity between ER and mitochondria are also increased in wild-type neurons exposed to Aβ. This alteration in MERCS affects autophagosome formation, mitochondrial function and ATP formation during starvation. Interestingly, the increment in ER-mitochondria connectivity occurs simultaneously with an increase in mitochondrial activity and is followed by upregulation of autophagosome formation in a clear chronological sequence of events. In summary, we report that Aβ can affect cell homeostasis by modulating MERCS and, consequently, altering mitochondrial activity and autophagosome formation. Our data suggests that MERCS is a potential target for drug discovery in AD.
Collapse
Affiliation(s)
- Nuno Santos Leal
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden; (G.D.); (B.S.); (L.N.); (A.P.); (C.G.); (P.N.)
- Correspondence: (N.S.L.); (M.A.); Tel.: +44-122-333-4390 (N.S.L.); +46-852-483-577 (M.A.)
| | - Giacomo Dentoni
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden; (G.D.); (B.S.); (L.N.); (A.P.); (C.G.); (P.N.)
| | - Bernadette Schreiner
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden; (G.D.); (B.S.); (L.N.); (A.P.); (C.G.); (P.N.)
| | - Luana Naia
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden; (G.D.); (B.S.); (L.N.); (A.P.); (C.G.); (P.N.)
| | - Antonio Piras
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden; (G.D.); (B.S.); (L.N.); (A.P.); (C.G.); (P.N.)
| | - Caroline Graff
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden; (G.D.); (B.S.); (L.N.); (A.P.); (C.G.); (P.N.)
| | - Antonio Cattaneo
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Roma, Italy; (A.C.); (G.M.)
| | - Giovanni Meli
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Roma, Italy; (A.C.); (G.M.)
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden; (G.D.); (B.S.); (L.N.); (A.P.); (C.G.); (P.N.)
| | - Maria Ankarcrona
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden; (G.D.); (B.S.); (L.N.); (A.P.); (C.G.); (P.N.)
- Correspondence: (N.S.L.); (M.A.); Tel.: +44-122-333-4390 (N.S.L.); +46-852-483-577 (M.A.)
| |
Collapse
|
182
|
Amelkina O, Comizzoli P. Initial response of ovarian tissue transcriptome to vitrification or microwave-assisted dehydration in the domestic cat model. BMC Genomics 2020; 21:828. [PMID: 33238878 PMCID: PMC7690003 DOI: 10.1186/s12864-020-07236-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Long term preservation of living ovarian tissues is a critical approach in human reproductive medicine as well as in the conservation of rare animal genotypes. Compared to single cell preservation, optimization of protocols for tissues is highly complex because of the diversity of cells responding differently to non-physiological conditions. Using the prepubertal domestic cat as a model, the objective was to study immediate effects of vitrification or microwave-assisted dehydration on the global transcriptome dynamics in the ovarian cortex. RNA sequencing was performed on ovarian tissues (n = 6 individuals) from different conditions: fresh tissue after dissection (F), vitrified/warmed tissue (V), tissue dehydrated for 5 min (D5) or 10 min (D10) followed by rehydration. Differential gene expression analysis was performed for comparison pairs V vs. F, D10 vs. F, D5 vs. F and D10 vs. D5, and networks were built based on results of functional enrichment and in silico protein-protein interactions. Results The impact of the vitrification protocol was already measurable within 20 min after warming and involved upregulation of the expression of seven mitochondrial DNA genes related to mitochondrial respiration. The analysis of D10 vs. F revealed, 30 min after rehydration, major downregulation of gene expression with enrichment of in silico interacting genes in Ras, Rap1, PI3K-Akt and MAPK signaling pathways. However, comparison of D5 vs. F showed negligible effects of the shorter dehydration protocol with two genes enriched in Ras signaling. Comparison of D10 vs. D5 showed downregulation of only seven genes. Vitrification and dehydration protocols mainly changed the expression of different genes and functional terms, but some of the differentially expressed genes formed a major in silico protein-protein interaction cluster enriched for mitochondrial respiration and Ras/MAPK signaling pathways. Conclusions Our results showed, for the first time, different effects of vitrification and microwave-assisted dehydration protocols on the global transcriptome of the ovarian cortex (using the domestic cat as a biomedical model). Acquired data and networks built on the basis of differentially expressed genes (1) can help to better understand stress responses to non-physiological stresses and (2) can be used as directions for future preservation protocol optimizations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07236-z.
Collapse
Affiliation(s)
- Olga Amelkina
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.
| |
Collapse
|
183
|
Navarro-Betancourt JR, Papillon J, Guillemette J, Iwawaki T, Chung CF, Cybulsky AV. Role of IRE1α in podocyte proteostasis and mitochondrial health. Cell Death Discov 2020; 6:128. [PMID: 33298866 PMCID: PMC7677398 DOI: 10.1038/s41420-020-00361-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glomerular epithelial cell (GEC)/podocyte proteostasis is dysregulated in glomerular diseases. The unfolded protein response (UPR) is an adaptive pathway in the endoplasmic reticulum (ER) that upregulates proteostasis resources. This study characterizes mechanisms by which inositol requiring enzyme-1α (IRE1α), a UPR transducer, regulates proteostasis in GECs. Mice with podocyte-specific deletion of IRE1α (IRE1α KO) were produced and nephrosis was induced with adriamycin. Compared with control, IRE1α KO mice had greater albuminuria. Adriamycin increased glomerular ER chaperones in control mice, but this upregulation was impaired in IRE1α KO mice. Likewise, autophagy was blunted in adriamycin-treated IRE1α KO animals, evidenced by reduced LC3-II and increased p62. Mitochondrial ultrastructure was markedly disrupted in podocytes of adriamycin-treated IRE1α KO mice. To pursue mechanistic studies, GECs were cultured from glomeruli of IRE1α flox/flox mice and IRE1α was deleted by Cre-lox recombination. In GECs incubated with tunicamycin, deletion of IRE1α attenuated upregulation of ER chaperones, LC3 lipidation, and LC3 transcription, compared with control GECs. Deletion of IRE1α decreased maximal and ATP-linked oxygen consumption, as well as mitochondrial membrane potential. In summary, stress-induced chaperone production, autophagy, and mitochondrial health are compromised by deletion of IRE1α. The IRE1α pathway is cytoprotective in glomerular disease associated with podocyte injury and ER stress.
Collapse
Affiliation(s)
- José R Navarro-Betancourt
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Takao Iwawaki
- Department of Life Science, Kanazawa Medical University, Uchinada, Japan
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
184
|
Glancy B, Kim Y, Katti P, Willingham TB. The Functional Impact of Mitochondrial Structure Across Subcellular Scales. Front Physiol 2020; 11:541040. [PMID: 33262702 PMCID: PMC7686514 DOI: 10.3389/fphys.2020.541040] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are key determinants of cellular health. However, the functional role of mitochondria varies from cell to cell depending on the relative demands for energy distribution, metabolite biosynthesis, and/or signaling. In order to support the specific needs of different cell types, mitochondrial functional capacity can be optimized in part by modulating mitochondrial structure across several different spatial scales. Here we discuss the functional implications of altering mitochondrial structure with an emphasis on the physiological trade-offs associated with different mitochondrial configurations. Within a mitochondrion, increasing the amount of cristae in the inner membrane improves capacity for energy conversion and free radical-mediated signaling but may come at the expense of matrix space where enzymes critical for metabolite biosynthesis and signaling reside. Electrically isolating individual cristae could provide a protective mechanism to limit the spread of dysfunction within a mitochondrion but may also slow the response time to an increase in cellular energy demand. For individual mitochondria, those with relatively greater surface areas can facilitate interactions with the cytosol or other organelles but may be more costly to remove through mitophagy due to the need for larger phagophore membranes. At the network scale, a large, stable mitochondrial reticulum can provide a structural pathway for energy distribution and communication across long distances yet also enable rapid spreading of localized dysfunction. Highly dynamic mitochondrial networks allow for frequent content mixing and communication but require constant cellular remodeling to accommodate the movement of mitochondria. The formation of contact sites between mitochondria and several other organelles provides a mechanism for specialized communication and direct content transfer between organelles. However, increasing the number of contact sites between mitochondria and any given organelle reduces the mitochondrial surface area available for contact sites with other organelles as well as for metabolite exchange with cytosol. Though the precise mechanisms guiding the coordinated multi-scale mitochondrial configurations observed in different cell types have yet to be elucidated, it is clear that mitochondrial structure is tailored at every level to optimize mitochondrial function to meet specific cellular demands.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
- NIAMS, National Institutes of Health, Bethesda, MD, United States
| | - Yuho Kim
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
| | - T. Bradley Willingham
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
185
|
Gao P, Yan Z, Zhu Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Front Cell Dev Biol 2020; 8:604240. [PMID: 33240899 PMCID: PMC7680862 DOI: 10.3389/fcell.2020.604240] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are physically connected to form dedicated structural domains known as mitochondria-associated ER membranes (MAMs), which participate in fundamental biological processes, including lipid and calcium (Ca2+) homeostasis, mitochondrial dynamics and other related cellular behaviors such as autophagy, ER stress, inflammation and apoptosis. Many studies have proved the importance of MAMs in maintaining the normal function of both organelles, and the abnormal amount, structure or function of MAMs is related to the occurrence of cardiovascular diseases. Here, we review the knowledge regarding the components of MAMs according to their different functions and the specific roles of MAMs in cardiovascular physiology and pathophysiology, focusing on some highly prevalent cardiovascular diseases, including ischemia-reperfusion, diabetic cardiomyopathy, heart failure, pulmonary arterial hypertension and systemic vascular diseases. Finally, we summarize the possible mechanisms of MAM in cardiovascular diseases and put forward some obstacles in the understanding of MAM function we may encounter.
Collapse
Affiliation(s)
- Peng Gao
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
186
|
Yap KN, Yamada K, Zikeli S, Kiaris H, Hood WR. Evaluating endoplasmic reticulum stress and unfolded protein response through the lens of ecology and evolution. Biol Rev Camb Philos Soc 2020; 96:541-556. [PMID: 33164297 DOI: 10.1111/brv.12667] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER ). ER stress response and the UPRER maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life-history trade-offs in free-living animals.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Shelby Zikeli
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, 29208, U.S.A
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| |
Collapse
|
187
|
Zhang LN, Xia YZ, Zhang C, Zhang H, Luo JG, Yang L, Kong LY. Vielanin K enhances doxorubicin-induced apoptosis via activation of IRE1α- TRAF2 - JNK pathway and increases mitochondrial Ca 2 + influx in MCF-7 and MCF-7/MDR cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153329. [PMID: 32896708 DOI: 10.1016/j.phymed.2020.153329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Therapeutic failure and drug resistance are common and have important implications in the poor prognosis of advanced breast cancer. It is necessary to acquire a natural product to overcome the resistance of cancer and increase the sensitivity of drug-resistant cells to anticancer agents. PURPOSE To demonstrate whether the compound Vielanin K (VK) has the potential to increase the sensitivity of MCF-7 and MCF-7/MDR cells to anticancer agents. METHODS Cell viability and proliferative capacity were determined by MTT, colony formation and EdU assays. Apoptosis and Ca2+ accumulation were evaluated by flow cytometry. Then, proteins were detected by immunoblotting, and gene expression levels were explored by qRT-PCR. RESULTS In MCF-7 and corresponding MDR cells, VK increased the fluorescence intensity of Rho123, but not CFDA. VK treatment did not affect the protein expression of P-gp, MRP1 or BCRP. VK treatment enhanced the DOX-induced apoptotic cascade, while VK combined with DOX increased JNK phosphorylation by activating the IRE1α-TRAF2 signaling pathway. In addition, Ca2+ was released from the endoplasmic reticulum following combination treatment, thereby giving rise to mitochondrial apoptosis. Silencing IRE1α and JNK with small interfering RNA (siRNA) efficiently attenuated combination treatment-induced apoptosis. These effects caused mitochondrial depolarization and reduced viability in MCF-7 and corresponding MCF-7/MDR cells. CONCLUSION VK combined with DOX increases the apoptosis of MCF-7 and corresponding MCF-7/MDR cells by activating ER stress and mitochondrial apoptosis via IRE1α-TRAF2-JNK signaling.
Collapse
Affiliation(s)
- Li-Na Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China.
| |
Collapse
|
188
|
Hasegawa S, Inagi R. Organelle Stress and Crosstalk in Kidney Disease. KIDNEY360 2020; 1:1157-1164. [PMID: 35368784 PMCID: PMC8815491 DOI: 10.34067/kid.0002442020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Organelles play important roles in maintaining cellular homeostasis. Organelle stress responses, especially in mitochondria, endoplasmic reticula (ER), and primary cilia, are deeply involved in kidney disease pathophysiology. Mitochondria are the center of energy production in most eukaryotic cells. Renal proximal tubular cells are highly energy demanding and abundant in mitochondria. Mitochondrial dysfunctions in association with energy metabolism alterations produce reactive oxygen species and promote inflammation in proximal tubular cells, resulting in progression of kidney disease. The ER play critical roles in controlling protein quality. Unfolded protein response (UPR) pathways are the adaptive response to ER stress for maintaining protein homeostasis. UPR pathway dysregulation under pathogenic ER stress often occurs in glomerular and tubulointerstitial cells and promotes progression of kidney disease. The primary cilia sense extracellular signals and maintain calcium homeostasis in cells. Dysfunction of the primary cilia in autosomal dominant polycystic kidney disease reduces the calcium concentration in proximal tubular cells, leading to increased cell proliferation and retention of cyst fluid. In recent years, the direct interaction at membrane contact sites has received increased attention in association with the development of imaging technologies. The part of the ER that is directly connected to mitochondria is termed the mitochondria-associated ER membrane (MAM), which regulates calcium homeostasis and phospholipid metabolism in cells. Disruption of MAM integrity collapses cellular homeostasis and leads to diseases such as diabetes and Alzheimer disease. This review summarizes recent research on organelle stress and crosstalk, and their involvement in kidney disease pathophysiology. In addition, potential treatment options that target organelle stress responses are discussed.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
189
|
Lytridou AA, Demetriadou A, Christou M, Potamiti L, Mastroyiannopoulos NP, Kyriacou K, Phylactou LA, Drousiotou A, Petrou PP. Stbd1 promotes glycogen clustering during endoplasmic reticulum stress and supports survival of mouse myoblasts. J Cell Sci 2020; 133:jcs244855. [PMID: 32958708 PMCID: PMC7648618 DOI: 10.1242/jcs.244855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/16/2020] [Indexed: 01/08/2023] Open
Abstract
Imbalances in endoplasmic reticulum (ER) homeostasis provoke a condition known as ER stress and activate the unfolded protein response (UPR) pathway, an evolutionarily conserved cell survival mechanism. Here, we show that mouse myoblasts respond to UPR activation by stimulating glycogenesis and the formation of α-amylase-degradable, glycogen-containing ER structures. We demonstrate that the glycogen-binding protein Stbd1 is markedly upregulated through the PERK signalling branch of the UPR pathway and is required for the build-up of glycogen structures in response to ER stress activation. In the absence of ER stress, Stbd1 overexpression is sufficient to induce glycogen clustering but does not stimulate glycogenesis. Glycogen structures induced by ER stress are degraded under conditions of glucose restriction through a process that does not depend on autophagosome-lysosome fusion. Furthermore, we provide evidence that failure to induce glycogen clustering during ER stress is associated with enhanced activation of the apoptotic pathway. Our results reveal a so far unknown response of mouse myoblasts to ER stress and uncover a novel specific function of Stbd1 in this process, which may have physiological implications during myogenic differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Andria A Lytridou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Anthi Demetriadou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Melina Christou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Nikolas P Mastroyiannopoulos
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Anthi Drousiotou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Petros P Petrou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
190
|
Yang S, Zhou R, Zhang C, He S, Su Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in the Pathogenesis of Type 2 Diabetes Mellitus. Front Cell Dev Biol 2020; 8:571554. [PMID: 33195204 PMCID: PMC7606698 DOI: 10.3389/fcell.2020.571554] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are essential intracellular organelles that actively communicate via temporally and spatially formed contacts called mitochondria-associated membranes (MAMs). These mitochondria-ER contacts are not only necessary for the physiological function of the organelles and their coordination with each other, but they also control the intracellular lipid exchange, calcium signaling, cell survival, and homeostasis in cellular metabolism. Growing evidence strongly supports the role of the mitochondria-ER connection in the insulin resistance of peripheral tissues, pancreatic β cell dysfunction, and the consequent development of type 2 diabetes mellitus (T2DM). In this review, we summarize current advances in the understanding of the mitochondria-ER connection and specifically focus on addressing a new perspective of the alterations in mitochondria-ER communication in insulin signaling and β cell maintenance.
Collapse
Affiliation(s)
- Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruixue Zhou
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Caixia Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Siyuan He
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
191
|
Guerra ÂR, Soares BIG, Freire CSR, Silvestre AJD, Duarte MF, Duarte IF. Metabolic Effects of a Eucalyptus Bark Lipophilic Extract on Triple Negative Breast Cancer and Nontumor Breast Epithelial Cells. J Proteome Res 2020; 20:565-575. [PMID: 32975121 DOI: 10.1021/acs.jproteome.0c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, untargeted metabolomics was used to unveil the impact of a Eucalyptus (Eucalyptus nitens) outer bark lipophilic extract on the metabolism of triple negative breast cancer (TNBC) and nontumor breast cells. Integrative analysis of culture medium, intracellular polar metabolites, and cellular lipids provided a comprehensive picture of cell metabolic adaptations, which enabled several hypotheses about the metabolic targets and pathways affected to be proposed. One of the most marked effects in MDA-MB-231 breast cancer cells, upon 48 h incubation with the E. nitens extract (15 μg/mL), was the enhancement of the NAD+/NADH ratio, likely reflecting a shift to mitochondrial respiration, which appeared to be fueled by amino acids and fatty acids resulting from hydrolysis of neutral lipids (triglycerides and cholesteryl esters). Contrastingly, in MCF-10A breast epithelial cells, the E. nitens extract appeared to intensify glycolysis and the tricarboxylic acid cycle (resulting in a decreased NAD+/NADH ratio), while having no effect on the cell lipid composition. This knowledge improves the current understanding of the biological activity of E. nitens bark extracts and is potentially useful to promote their development in the field of TNBC anticancer therapy.
Collapse
Affiliation(s)
- Ângela R Guerra
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal
| | - Belinda I G Soares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal.,MED-Mediterranean Institute for Agriculture, Environment and Development, CEBAL, 7801-908 Beja, Portugal
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
192
|
Sharma N, Arora S, Saurav S, Motiani RK. Pathophysiological significance of calcium signaling at Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs). CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
193
|
Vecellio Reane D, Rizzuto R, Raffaello A. The ER-mitochondria tether at the hub of Ca2+ signaling. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
194
|
Jackisch L, Murphy AM, Kumar S, Randeva H, Tripathi G, McTernan PG. Tunicamycin-Induced Endoplasmic Reticulum Stress Mediates Mitochondrial Dysfunction in Human Adipocytes. J Clin Endocrinol Metab 2020; 105:5837767. [PMID: 32413131 DOI: 10.1210/clinem/dgaa258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
CONTEXT Dysfunctional endoplasmic reticulum (ER) and mitochondria are known to contribute to the pathology of metabolic disease. This damage may occur, in part, as a consequence of ER-mitochondria cross-talk in conditions of nutrient excess such as obesity. To date, insight into this dynamic relationship has not been characterized in adipose tissue. Therefore, this study investigated whether ER stress contributes to the development of mitochondrial inefficiency in human adipocytes from lean and obese participants. METHODS Human differentiated adipocytes from Chub-S7 cell line and primary abdominal subcutaneous adipocytes from lean and obese participants were treated with tunicamycin to induce ER stress. Key parameters of mitochondrial function were assessed, including mitochondrial respiration, membrane potential (MMP), and dynamics. RESULTS ER stress led to increased respiratory capacity in a model adipocyte system (Chub-S7 adipocytes) in a concentration and time dependent manner (24 h: 23%↑; 48 h: 68%↑, P < 0.001; 72 h: 136%↑, P < 0.001). This corresponded with mitochondrial inefficiency and diminished MMP, highlighting the formation of dysfunctional mitochondria. Morphological analysis revealed reorganization of mitochondrial network, specifically mitochondrial fragmentation. Furthermore, p-DRP1, a key protein in fission, significantly increased (P < 0.001). Additionally, adipocytes from obese subjects displayed lower basal respiration (49%↓, P < 0.01) and were unresponsive to tunicamycin in contrast to their lean counterparts, demonstrating inefficient mitochondrial oxidative capacity. CONCLUSION These human data suggest that adipocyte mitochondrial inefficiency is driven by ER stress and exacerbated in obesity. Nutrient excess-induced ER stress leads to mitochondrial dysfunction that may therefore shift lipid deposition ectopically and thus have further implications on the development of related metabolic disorders.
Collapse
Affiliation(s)
- Laura Jackisch
- Warwick Medical School, University of Warwick, UHCW, Coventry, UK
| | - Alice M Murphy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Sudhesh Kumar
- Warwick Medical School, University of Warwick, UHCW, Coventry, UK
| | - Harpal Randeva
- Warwick Medical School, University of Warwick, UHCW, Coventry, UK
| | - Gyanendra Tripathi
- Human Sciences Research Centre, College of Life and Natural Sciences, University of Derby, Derby, UK
| | - Philip G McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
195
|
Martínez-Klimova E, Aparicio-Trejo OE, Gómez-Sierra T, Jiménez-Uribe AP, Bellido B, Pedraza-Chaverri J. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction. Biofactors 2020; 46:716-733. [PMID: 32905648 DOI: 10.1002/biof.1673] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Obstructive nephropathy favors the progression to chronic kidney disease (CKD), a severe health problem worldwide. The unilateral ureteral obstruction (UUO) model is used to study the development of fibrosis. Impairment of renal mitochondria plays a crucial role in several types of CKD and has been strongly related to fibrosis onset. Nevertheless, in the UUO model, the impairment of mitochondria, their relationship with endoplasmic reticulum (ER) stress induction and the participation of both to induce the fibrotic process remain unclear. In this review, we summarize the current information about mitochondrial bioenergetics, redox dynamics, mitochondrial mass, and biogenesis alterations, as well as the relationship of these mitochondrial alterations with ER stress and their participation in fibrotic processes in UUO models. Early after obstruction, there is metabolic reprogramming related to mitochondrial fatty acid β-oxidation impairment, triggering lipid deposition, oxidative stress, (calcium) Ca2+ dysregulation, and a reduction in mitochondrial mass and biogenesis. Mitochondria and the ER establish a pathological feedback loop that promotes the impairment of both organelles by ER stress pathways and Ca2+ levels dysregulation. Preserving mitochondrial and ER function can prevent or at least delay the fibrotic process and loss of renal function. However, deeper understanding is still necessary for future clinically-useful therapies.
Collapse
Affiliation(s)
- Elena Martínez-Klimova
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Belen Bellido
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
196
|
Carvalho EJ, Stathopulos PB, Madesh M. Regulation of Ca 2+ exchanges and signaling in mitochondria. CURRENT OPINION IN PHYSIOLOGY 2020; 17:197-206. [PMID: 33103015 DOI: 10.1016/j.cophys.2020.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondrial calcium (mCa2+) homeostasis also plays a key role in the buffering of cytosolic calcium (cCa2+) and calcium transported into the mitochondrial matrix regulates cellular metabolism, migration and cell fate decisions. Recent work has highlighted the importance of mCa2+ homeostasis in regulating cellular function. The discovery of the mCa2+ uptake complex has shed new light on the role of mCa2+ dynamics in cytoskeletal remodeling, mitochondrial shape and motility in cellular dynamics. Here we attempt to decipher the vast landscape of calcium regulatory effects of the mitochondria, the underlying mechanisms and the dynamics that control cellular function.
Collapse
Affiliation(s)
- Edmund J Carvalho
- Department of Medicine, Centre for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX, 78228.,Department of Microbiology, Centre for Cellular Immunotherapies, University of Pennsylvania, Pennsylvania, 19104
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medicine, Centre for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX, 78228
| |
Collapse
|
197
|
Sasi USS, Ganapathy S, Palayyan SR, Gopal RK. Mitochondria Associated Membranes (MAMs): Emerging Drug Targets for Diabetes. Curr Med Chem 2020; 27:3362-3385. [PMID: 30747057 DOI: 10.2174/0929867326666190212121248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/01/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
MAMs, the physical association between the Endoplasmic Reticulum (ER) and mitochondria are, functional domains performing a significant role in the maintenance of cellular homeostasis. It is evolving as an important signaling center that coordinates nutrient and hormonal signaling for the proper regulation of hepatic insulin action and glucose homeostasis. Moreover, MAMs can be considered as hot spots for the transmission of stress signals from ER to mitochondria. The altered interaction between ER and mitochondria results in the amendment of several insulin-sensitive tissues, revealing the role of MAMs in glucose homeostasis. The development of mitochondrial dysfunction, ER stress, altered lipid and Ca2+ homeostasis are typically co-related with insulin resistance and β cell dysfunction. But little facts are known about the role played by these stresses in the development of metabolic disorders. In this review, we highlight the mechanisms involved in maintaining the contact site with new avenues of investigations for the development of novel preventive and therapeutic targets for T2DM.
Collapse
Affiliation(s)
- U S Swapna Sasi
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIRNational Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sindhu Ganapathy
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIRNational Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Salin Raj Palayyan
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIRNational Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raghu K Gopal
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIRNational Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
198
|
Thoma A, Lyon M, Al-Shanti N, Nye GA, Cooper RG, Lightfoot AP. Eukarion-134 Attenuates Endoplasmic Reticulum Stress-Induced Mitochondrial Dysfunction in Human Skeletal Muscle Cells. Antioxidants (Basel) 2020; 9:antiox9080710. [PMID: 32764412 PMCID: PMC7466046 DOI: 10.3390/antiox9080710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/25/2022] Open
Abstract
Maladaptive endoplasmic reticulum (ER) stress is associated with modified reactive oxygen species (ROS) generation and mitochondrial abnormalities; and is postulated as a potential mechanism involved in muscle weakness in myositis, an acquired autoimmune neuromuscular disease. This study investigates the impact of ROS generation in an in vitro model of ER stress in skeletal muscle, using the ER stress inducer tunicamycin (24 h) in the presence or absence of a superoxide dismutase/catalase mimetic Eukarion (EUK)-134. Tunicamycin induced maladaptive ER stress, which was mitigated by EUK-134 at the transcriptional level. ER stress promoted mitochondrial dysfunction, described by substantial loss of mitochondrial membrane potential, as well as a reduction in respiratory control ratio, reserve capacity, phosphorylating respiration, and coupling efficiency, which was ameliorated by EUK-134. Tunicamycin induced ROS-mediated biogenesis and fusion of mitochondria, which, however, had high propensity of fragmentation, accompanied by upregulated mRNA levels of fission-related markers. Increased cellular ROS generation was observed under ER stress that was prevented by EUK-134, even though no changes in mitochondrial superoxide were noticeable. These findings suggest that targeting ROS generation using EUK-134 can amend aspects of ER stress-induced changes in mitochondrial dynamics and function, and therefore, in instances of chronic ER stress, such as in myositis, quenching ROS generation may be a promising therapy for muscle weakness and dysfunction.
Collapse
Affiliation(s)
- Anastasia Thoma
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.T.); (N.A.-S.)
| | - Max Lyon
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.L.); (R.G.C.)
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.T.); (N.A.-S.)
| | - Gareth A. Nye
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK;
| | - Robert G. Cooper
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.L.); (R.G.C.)
| | - Adam P. Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.T.); (N.A.-S.)
- Correspondence:
| |
Collapse
|
199
|
Swapna Sasi US, Sindhu G, Raghu KG. Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach. Toxicol In Vitro 2020; 68:104952. [PMID: 32730863 DOI: 10.1016/j.tiv.2020.104952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
Abstract
A proper in vitro model for conducting research on high energy food induced steatosis via defective energy metabolism in the liver is not visible in the literature. The present study developed an in vitro model in HepG2 cell line to mimic high energy diet induced steatosis in liver via mitochondrial dysfunction. For this, HepG2 cells were treated with fructose (100 mM) and palmitate (100 μM) for about 24 h and subjected for biochemical analysis relevant to lipogenesis and mitochondrial biology. Our findings showed that fructose-palmitate treatment caused significant lipid accumulation and rise in lipogenic proteins. Further studies showed alteration in mitochondrial integrity, dynamics and oxidative phosphorylation. Mitochondrial integrity was affected by the dissipation of trans-membrane potential, surplus mitochondrial superoxide with calcium overload. Similarly, mitochondrial dynamics were altered with up regulation of mitochondrial fission proteins: DRP1 and FIS1, cytochrome c release, caspase-3 activity and apoptosis. Various components of the electron transport chain: complex I, II, III and IV were altered with significant depletion in oxygen consumption. Overall our findings illustrate the dominant role of mitochondria in the genesis of high fructose-palmitate induced steatosis in HepG2 cells. Since continuous high energy food consumption is the main inducer of steatosis, this model is found to be an ideal one for preliminary and basic research in the area of liver disease via mitochondrial dysfunction.
Collapse
Affiliation(s)
- U S Swapna Sasi
- Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh 201002, India; Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India.
| | - G Sindhu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India.
| | - K G Raghu
- Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh 201002, India; Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India.
| |
Collapse
|
200
|
Luo Y, Guo Q, Zhang L, Zhuan Q, Meng L, Fu X, Hou Y. Dihydroartemisinin exposure impairs porcine ovarian granulosa cells by activating PERK-eIF2α-ATF4 through endoplasmic reticulum stress. Toxicol Appl Pharmacol 2020; 403:115159. [PMID: 32721431 DOI: 10.1016/j.taap.2020.115159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Dihydroartemisinin (DHA) is an artemisinin derivative commonly used in malaria therapy, and a growing number of studies have focused on the potent anticancer activity of DHA. However, the reproductive toxicity of anticancer drugs is a major concern for young female cancer patients. Previous studies have suggested that DHA can cause embryonic damage and affect oocyte maturation. Here, we explored the side effects of DHA exposure on ovarian somatic cells. We exposed porcine granulosa cells to 5 μM and 40 μM DHA for 24 h or 48 h in vitro. DHA inhibited granulosa cell viability in a dose-dependent manner and, in the 48 h treatment group, DHA enhanced the apoptotic rate. We observed that the levels of intracellular calcium, mitochondrial calcium, and ATP concentration were elevated with DHA treatment. In granulosa cells exposed to DHA, the mRNA levels of endoplasmic reticulum stress-related genes GRP78 and ATF4 were increased. Furthermore, analysis of the unfolded protein response signaling pathway showed that the protein levels of P-PERK, P-eIF2α, and ATF4 were upregulated by DHA exposure. These results demonstrate that in granulosa cells, DHA exposure induces endoplasmic reticulum stress that then activates the PERK/eIF2α/ATF4 signaling pathway, thus providing insight into the mechanism underlying DHA-induced reproductive toxicity, and giving reference to DHA use in females.
Collapse
Affiliation(s)
- Yan Luo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Guo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Luyao Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lin Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|