151
|
Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment. Lasers Med Sci 2015; 30:1357-65. [PMID: 25794592 DOI: 10.1007/s10103-015-1742-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Gold-based nanoparticles have been used in a number of therapeutic and diagnostic applications. The purpose of this study was to investigate the efficacy of gold-silica nanoshells (AuNS) in photothermal therapy (PTT) of rat gliomas. Rat alveolar macrophages (Ma) were used as nanoparticle delivery vectors. Uptake of AuNS (bare and PEGylated) was investigated in Ma. AuNS were incubated with Ma for 24 h. Phase contrast microscopy was used to visualize the distribution of loaded Ma in three-dimensional glioma spheroids. PTT efficacy was evaluated for both empty (Ma) and AuNS-loaded Ma (Ma(NS)) in both monolayers and spheroids consisting of C6 rat glioma cells and Ma. Monolayers/spheroids were irradiated for 5 min with light from an 810-nm diode laser at irradiances ranging from 7 to 28 W cm(-2). Monolayer survival was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay while PTT efficacy in spheroids was determined from growth kinetics and live/dead fluorescence microscopy. PTT efficacy was investigated in vivo using a Sprague-Dawley rat glioma model. Five rats received direct intracranial injection of a mixture of 10(4) C6 glioma cells and, 2 days later, an equal number of Ma(NS). Three rats received laser treatment (810 nm; 10 min; 1 W) while the remaining two served as controls (no laser treatment). The uptake ratio of bare to PEGylated AuNS by Ma was 4:1. A significant photothermal effect was observed in vitro, albeit at relatively high radiant exposures (2.1-4.2 kJ cm(-2)). PTT proved effective in vivo in preventing or delaying tumor development in the PTT-treated animals.
Collapse
|
152
|
Su Y, Xie Z, Kim GB, Dong C, Yang J. Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 2015; 1:201-217. [PMID: 25984572 PMCID: PMC4428174 DOI: 10.1021/ab500179h] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug delivery systems, particularly nanomaterial-based drug delivery systems, possess a tremendous amount of potential to improve diagnostic and therapeutic effects of drugs. Controlled drug delivery targeted to a specific disease is designed to significantly improve the pharmaceutical effects of drugs and reduce their side effects. Unfortunately, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even with the development of numerous surface markers and targeting modalities. Thus, alternative drug and nanomedicine targeting approaches are desired. Circulating cells, such as erythrocytes, leukocytes, and stem cells, present innate disease sensing and homing properties. Hence, using living cells as drug delivery carriers has gained increasing interest in recent years. This review highlights the recent advances in the design of cell-mediated drug delivery systems and targeting mechanisms. The approaches of drug encapsulation/conjugation to cell-carriers, cell-mediated targeting mechanisms, and the methods of controlled drug release are elaborated here. Cell-based "live" targeting and delivery could be used to facilitate a more specific, robust, and smart payload distribution for the next-generation drug delivery systems.
Collapse
Affiliation(s)
- Yixue Su
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Zhiwei Xie
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Gloria B. Kim
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| |
Collapse
|
153
|
Gao Y, Yu Y. Macrophage uptake of Janus particles depends upon Janus balance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2833-8. [PMID: 25674706 DOI: 10.1021/la504668c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Properties of synthetic particles, such as size and shape, influence how immune cells uptake vaccine and drug carriers. Here, we explore the role of a new property, anisotropic presentation of ligands, in particle uptake by macrophage cells. We use micrometer-sized Janus particles that are partially coated with ligands and investigate how the ligand patch size (Janus balance) affects their uptake by macrophages. Macrophage uptake of both 1.6 and 3 μm Janus particles is enhanced as the size of the ligand patch increases. However, presenting ligands asymmetrically reduces particle phagocytosis; Janus particles with the same amount of ligands as uniformly coated particles are internalized less efficiently. We also show that, because of the asymmetric geometry of Janus particles, the onset of ligand-mediated phagocytosis depends upon the orientation of the particles with respect to the cells. This study demonstrates Janus balance as a new parameter that we can use to manipulate the macrophage uptake of particles.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | |
Collapse
|
154
|
Ben M'Barek K, Molino D, Quignard S, Plamont MA, Chen Y, Chavrier P, Fattaccioli J. Phagocytosis of immunoglobulin-coated emulsion droplets. Biomaterials 2015; 51:270-277. [PMID: 25771017 DOI: 10.1016/j.biomaterials.2015.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/02/2015] [Indexed: 11/15/2022]
Abstract
Phagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. The size of targets to be eliminated ranges from small particles as bacteria to large objects as cancerous or senescent cells. Most of our current quantitative knowledge on phagocytosis is based on the use of solid polymer microparticles as model targets that are well adapted to the study of phagocytosis mechanisms that do not involve any lateral mobility of the ligands, despite the relevance of this parameter in the immunological context. Herein we designed monodisperse, IgG-coated emulsion droplets that are efficiently and specifically internalized by macrophages through in-vitro FcγR-mediated phagocytosis. We show that, contrary to solid polymeric beads, droplet uptake is efficient even for low IgG densities, and is accompagnied by the clustering of the opsonins in the zone of contact with the macrophage during the adhesion step. Beyond the sole interest in the design of the material, our results suggest that lateral mobility of proteins at the interface of a target greatly enhances the phagocytic uptake.
Collapse
Affiliation(s)
- Kalthoum Ben M'Barek
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Diana Molino
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Sandrine Quignard
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Marie-Aude Plamont
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Yong Chen
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Philippe Chavrier
- Institut Curie, Research Center, Paris, France; Membrane and Cytoskeleton Dynamics, CNRS, UMR 144, Paris, France
| | - Jacques Fattaccioli
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France.
| |
Collapse
|
155
|
Abstract
Nanocapsules that can be tailored intelligently and specifically have drawn considerable attention in the fields of drug delivery and bioimaging. Here we conduct a theoretical study on cell uptake of a spherical nanocapsule which is modeled as a linear elastic solid thin shell in three dimensions. It is found that there exist five wrapping phases based on the stability of three wrapping states: no wrapping, partial wrapping and full wrapping. The wrapping phase diagrams are strongly dependent on the capsule size, adhesion energy, cell membrane tension, and bending rigidity ratio between the capsule and membrane. Discussion is made on similarities and differences between the cell uptake of solid nanocapsules and fluid vesicles. The reported results may have important implications for biomedical applications of nanotechnology.
Collapse
Affiliation(s)
- Xin Yi
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
156
|
Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf B Biointerfaces 2015; 126:631-48. [DOI: 10.1016/j.colsurfb.2014.12.041] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
|
157
|
Hartwell BL, Antunez L, Sullivan BP, Thati S, Sestak JO, Berkland C. Multivalent Nanomaterials: Learning from Vaccines and Progressing to Antigen-Specific Immunotherapies. J Pharm Sci 2015; 104:346-61. [DOI: 10.1002/jps.24273] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 12/28/2022]
|
158
|
Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm 2015; 89:163-74. [DOI: 10.1016/j.ejpb.2014.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
|
159
|
Zheng Y, Tang H, Ye H, Zhang H. Adhesion and bending rigidity-mediated wrapping of carbon nanotubes by a substrate-supported cell membrane. RSC Adv 2015. [DOI: 10.1039/c5ra04426j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adhesion and bending rigidity-mediated wrapping of carbon nanotubes by a substrate-supported cell membrane has been explored and phase diagrams that characterize the effect of the energy competition on the equilibrium configuration have been presented.
Collapse
Affiliation(s)
- Yonggang Zheng
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Department of Engineering Mechanics
- Faculty of Vehicle Engineering and Mechanics
- Dalian University of Technology
- Dalian 116024
| | - Huayuan Tang
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Department of Engineering Mechanics
- Faculty of Vehicle Engineering and Mechanics
- Dalian University of Technology
- Dalian 116024
| | - Hongfei Ye
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Department of Engineering Mechanics
- Faculty of Vehicle Engineering and Mechanics
- Dalian University of Technology
- Dalian 116024
| | - Hongwu Zhang
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Department of Engineering Mechanics
- Faculty of Vehicle Engineering and Mechanics
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
160
|
Aula S, Lakkireddy S, Jamil K, Kapley A, Swamy AVN, Lakkireddy HR. Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra05889a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding of interplay between nanoparticles physicochemical and biophysical properties, and their impact on pharmacokinetic biodistribution and toxicological properties help designing of appropriate nanoparticle products for biomedical applications.
Collapse
Affiliation(s)
- Sangeetha Aula
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
- Department of Biotechnology
| | - Samyuktha Lakkireddy
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
- Department of Biotechnology
| | - Kaiser Jamil
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
| | - Atya Kapley
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
- Environmental Genomics Division
| | - A. V. N. Swamy
- Department of Chemical Engineering
- Jawaharlal Nehru Technological University Anantapur (JNTUA)
- Anantapuramu
- India
| | - Harivardhan Reddy Lakkireddy
- Drug Delivery Technologies and Innovation
- Pharmaceutical Sciences
- Sanofi Research and Development
- 94403 Vitry-sur-Seine
- France
| |
Collapse
|
161
|
Cell rigidity and shape override CD47's "self"-signaling in phagocytosis by hyperactivating myosin-II. Blood 2014; 125:542-52. [PMID: 25411427 DOI: 10.1182/blood-2014-06-585299] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A macrophage engulfs another cell or foreign particle in an adhesive process that often activates myosin-II, unless the macrophage also engages "marker of self" CD47 that inhibits myosin. For many cell types, adhesion-induced activation of myosin-II is maximized by adhesion to a rigid rather than a flexible substrate. Here we demonstrate that rigidity of a phagocytosed cell also hyperactivates myosin-II, which locally overwhelms self-signaling at a phagocytic synapse. Cell stiffness is one among many factors including shape that changes in erythropoiesis, in senescence and in diseases ranging from inherited anemias and malaria to cancer. Controlled stiffening of normal human red blood cells (RBCs) in different shapes does not compromise CD47's interaction with the macrophage self-recognition receptor signal regulatory protein alpha (SIRPA). Uptake of antibody-opsonized RBCs is always fastest with rigid RBC discocytes, which also show that maximal active myosin-II at the synapse can dominate self-signaling by CD47. Rigid but rounded RBC stomatocytes signal self better than rigid RBC discocytes, highlighting the effects of shape on CD47 inhibition. Physical properties of phagocytic targets thus regulate self signaling, as is relevant to erythropoiesis, to clearance of rigid RBCs after blood storage, clearance of rigid pathological cells such as thalassemic or sickle cells, and even to interactions of soft/stiff cancer cells with macrophages.
Collapse
|
162
|
Affiliation(s)
- Matthew L Wheeler
- Division of Biomedical Sciences and the F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David M Underhill
- Division of Biomedical Sciences and the F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
163
|
Wang D, Phan N, Isely C, Bruene L, Bratlie KM. Effect of Surface Modification and Macrophage Phenotype on Particle Internalization. Biomacromolecules 2014; 15:4102-10. [DOI: 10.1021/bm5011382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
164
|
Richards DM, Endres RG. The mechanism of phagocytosis: two stages of engulfment. Biophys J 2014; 107:1542-53. [PMID: 25296306 PMCID: PMC4190621 DOI: 10.1016/j.bpj.2014.07.070] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/14/2023] Open
Abstract
Despite being of vital importance to the immune system, the mechanism by which cells engulf relatively large solid particles during phagocytosis is still poorly understood. From movies of neutrophil phagocytosis of polystyrene beads, we measure the fractional engulfment as a function of time and demonstrate that phagocytosis occurs in two distinct stages. During the first stage, engulfment is relatively slow and progressively slows down as phagocytosis proceeds. However, at approximately half-engulfment, the rate of engulfment increases dramatically, with complete engulfment attained soon afterwards. By studying simple mathematical models of phagocytosis, we suggest that the first stage is due to a passive mechanism, determined by receptor diffusion and capture, whereas the second stage is more actively controlled, perhaps with receptors being driven toward the site of engulfment. We then consider a more advanced model that includes signaling and captures both stages of engulfment. This model predicts that there is an optimum ligand density for quick engulfment. Further, we show how this model explains why nonspherical particles engulf quickest when presented tip-first. Our findings suggest that active regulation may be a later evolutionary innovation, allowing fast and robust engulfment even for large particles.
Collapse
Affiliation(s)
- David M Richards
- Department of Life Sciences, Imperial College, London, United Kingdom; Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom.
| | - Robert G Endres
- Department of Life Sciences, Imperial College, London, United Kingdom; Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom
| |
Collapse
|
165
|
She S, Yu D, Han X, Tong W, Mao Z, Gao C. Fabrication of biconcave discoidal silica capsules and their uptake behavior by smooth muscle cells. J Colloid Interface Sci 2014; 426:124-30. [PMID: 24863774 DOI: 10.1016/j.jcis.2014.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Biconcave discoidal silica microcapsules were fabricated by reaction of tetraethoxysilane (TEOS) on biconcave discoidal Ca(OH)2 templates, followed by core removal. The biconcave discoidal morphology of microcapsules was characterized by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). The thickness of silica capsule shell can be tuned by two methods, "Gradient concentration" method and "Multi-step growth" method. Through the latter one, the shell thickness can be controlled more effectively. Compared with spherical microcapsules, the biconcave discoidal ones were internalized into smooth muscle cells (SMCs) with a slower rate.
Collapse
Affiliation(s)
- Shupeng She
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dahai Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xu Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
166
|
Secret E, Kelly SJ, Crannell KE, Andrew JS. Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS APPLIED MATERIALS & INTERFACES 2014; 6:10313-21. [PMID: 24926532 DOI: 10.1021/am501754s] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Poly(ethylene glycol) based hydrogel microparticles were developed for pulmonary drug delivery. Hydrogels are particularly attractive for pulmonary delivery because they can be size engineered for delivery into the bronchi, yet also swell upon reaching their destination to avoid uptake and clearance by alveolar macrophages. To develop enzyme-responsive hydrogel microparticles for pulmonary delivery a new synthesis method based on a solution polymerization was developed. This method produces spherical poly(ethylene glycol) (PEG) microparticles from high molecular weight poly(ethylene glycol) diacrylate (PEGDA)-based precursors that incorporate peptides in the polymer chain. Specifically, we have synthesized hydrogel microparticles that degrade in response to matrix metalloproteinases that are overexpressed in pulmonary diseases. Small hydrogel microparticles with sizes suitable for lung delivery by inhalation were obtained from solid precursors when PEGDA was dissolved in water at a high concentration. The average diameter of the particles was between 2.8 and 4 μm, depending on the molecular weight of the precursor polymer used and its concentration in water. The relation between the physical properties of the particles and their enzymatic degradation is also reported, where an increased mesh size corresponds to increased degradation.
Collapse
Affiliation(s)
- Emilie Secret
- Department of Materials Science and Engineering, University of Florida , Gainesville, Florida 32611, United States
| | | | | | | |
Collapse
|
167
|
Kozlovskaya V, Alexander JF, Wang Y, Kuncewicz T, Liu X, Godin B, Kharlampieva E. Internalization of red blood cell-mimicking hydrogel capsules with pH-triggered shape responses. ACS NANO 2014; 8:5725-37. [PMID: 24848786 PMCID: PMC4076035 DOI: 10.1021/nn500512x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/21/2014] [Indexed: 05/03/2023]
Abstract
We report on naturally inspired hydrogel capsules with pH-induced transitions from discoids to oblate ellipsoids and their interactions with cells. We integrate characteristics of erythrocytes such as discoidal shape, hollow structure, and elasticity with reversible pH-responsiveness of poly(methacrylic acid) (PMAA) to design a new type of drug delivery carrier to be potentially triggered by chemical stimuli in the tumor lesion. The capsules are fabricated from cross-linked PMAA multilayers using sacrificial discoid silicon templates. The degree of capsule shape transition is controlled by the pH-tuned volume change, which in turn is regulated by the capsule wall composition. The (PMAA)15 capsules undergo a dramatic 24-fold volume change, while a moderate 2.3-fold volume variation is observed for more rigid PMAA-(poly(N-vinylpyrrolidone) (PMAA-PVPON)5 capsules when solution pH is varied between 7.4 and 4. Despite that both types of capsules exhibit discoid-to-oblate ellipsoid transitions, a 3-fold greater swelling in radial dimensions is found for one-component systems due to a greater degree of the circular face bulging. We also show that (PMAA-PVPON)5 discoidal capsules interact differently with J774A.1 macrophages, HMVEC endothelial cells, and 4T1 breast cancer cells. The discoidal capsules show 60% lower internalization as compared to spherical capsules. Finally, hydrogel capsules demonstrate a 2-fold decrease in size upon internalization. These capsules represent a unique example of elastic hydrogel discoids capable of pH-induced drastic and reversible variations in aspect ratios. Considering the RBC-mimicking shape, their dimensions, and their capability to undergo pH-triggered intracellular responses, the hydrogel capsules demonstrate considerable potential as novel carriers in shape-regulated transport and cellular uptake.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Jenolyn F. Alexander
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Yun Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Kuncewicz
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
168
|
Yi X, Gao H. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: a two-dimensional study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062712. [PMID: 25019819 DOI: 10.1103/physreve.89.062712] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 05/07/2023]
Abstract
A fundamental understanding of cell-nanomaterial interaction is essential for biomedical diagnostics, therapeutics, and nanotoxicity. Here, we perform a theoretical analysis to investigate the phase diagram and morphological evolution of an elastic rod-shaped nanoparticle wrapped by a lipid membrane in two dimensions. We show that there exist five possible wrapping phases based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases depend on the shape and size of the particle, adhesion energy, membrane tension, and bending rigidity ratio between the particle and membrane. While symmetric morphologies are observed in the early and late stages of wrapping, in between a soft rod-shaped nanoparticle undergoes a dramatic symmetry breaking morphological change while stiff and rigid nanoparticles experience a sharp reorientation. These results are of interest to the study of a range of phenomena including viral budding, exocytosis, as well as endocytosis or phagocytosis of elastic particles into cells.
Collapse
Affiliation(s)
- Xin Yi
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Huajian Gao
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
169
|
Abstract
With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community.
Collapse
Affiliation(s)
- Timothy J Keane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
170
|
Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS NANO 2014; 8:4100-32. [PMID: 24787360 PMCID: PMC4046791 DOI: 10.1021/nn500136z] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Targeted nanomedicine holds promise to find clinical use in many medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary, and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their nontargeted counterparts. We analyze diverse aspects of endothelial nanomedicine including (i) circulation and targeting of carriers with diverse geometries, (ii) multivalent interactions of carrier with endothelium, (iii) anchoring to multiple determinants, (iv) accessibility of binding sites and cellular response to their engagement, (v) role of cell phenotype and microenvironment in targeting, (vi) optimization of targeting by lowering carrier avidity, (vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands, and (viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry, and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers.
Collapse
Affiliation(s)
- Melissa Howard
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Aaron C. Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir V. Shuvaev
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
171
|
Neubauer MP, Poehlmann M, Fery A. Microcapsule mechanics: from stability to function. Adv Colloid Interface Sci 2014; 207:65-80. [PMID: 24345731 DOI: 10.1016/j.cis.2013.11.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 01/22/2023]
Abstract
Microcapsules are reviewed with special emphasis on the relevance of controlled mechanical properties for functional aspects. At first, assembly strategies are presented that allow control over the decisive geometrical parameters, diameter and wall thickness, which both influence the capsule's mechanical performance. As one of the most powerful approaches the layer-by-layer technique is identified. Subsequently, ensemble and, in particular, single-capsule deformation techniques are discussed. The latter generally provide more in-depth information and cover the complete range of applicable forces from smaller than pN to N. In a theory chapter, we illustrate the physics of capsule deformation. The main focus is on thin shell theory, which provides a useful approximation for many deformation scenarios. Finally, we give an overview of applications and future perspectives where the specific design of mechanical properties turns microcapsules into (multi-)functional devices, enriching especially life sciences and material sciences.
Collapse
|
172
|
Paul D, Achouri S, Yoon YZ, Herre J, Bryant CE, Cicuta P. Phagocytosis dynamics depends on target shape. Biophys J 2014; 105:1143-50. [PMID: 24010657 DOI: 10.1016/j.bpj.2013.07.036] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 01/08/2023] Open
Abstract
A complete understanding of phagocytosis requires insight into both its biochemical and physical aspects. One of the ways to explore the physical mechanism of phagocytosis is to probe whether and how the target properties (e.g., size, shape, surface states, stiffness, etc.) affect their uptake. Here we report an imaging-based method to explore phagocytosis kinetics, which is compatible with real-time imaging and can be used to validate existing reports using fixed and stained cells. We measure single-event engulfment time from a large number of phagocytosis events to compare how size and shape of targets determine their engulfment. The data shows an increase in the average engulfment time for increased target size, for spherical particles. The uptake time data on nonspherical particles confirms that target shape plays a more dominant role than target size for phagocytosis: Ellipsoids with an eccentricity of 0.954 and much smaller surface areas than spheres were taken up five times more slowly than spherical targets.
Collapse
Affiliation(s)
- Debjani Paul
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
173
|
Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:481-92. [PMID: 24273100 DOI: 10.1002/etc.2470] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/03/2013] [Accepted: 11/14/2013] [Indexed: 05/19/2023]
Abstract
The increased application of nanoparticles (NPs) is increasing the risk of their release into the environment. Although many toxicity studies have been conducted, the environmental risk is difficult to estimate, because uptake mechanisms are often not determined in toxicity studies. In the present study, the authors review dominant uptake mechanisms of NPs in cells, as well as the effect of NP properties, experimental conditions, and cell type on NP uptake. Knowledge of NP uptake is crucial for risk assessment and is essential to predict the behavior of NPs based on their physical-chemical properties. Important uptake mechanisms for eukaryotic cells are macropinocytosis, receptor-mediated endocytosis, and phagocytosis in specialized mammalian cells. The studies reviewed demonstrate that uptake into nonphagocytic cells depends strongly on NP size, with an uptake optimum at an NP diameter of approximately 50 nm. Increasing surface charges, either positive or negative, have been shown to increase particle uptake in comparison with uncharged NPs. Another important factor is the degree of (homo-) aggregation. Results regarding shape have been ambiguous. Difficulties in the production of NPs, with 1 property changed at a time, call for a full characterization of NP properties. Only then will it be possible to draw conclusions as to which property affected the uptake.
Collapse
Affiliation(s)
- Katja Kettler
- Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
174
|
Li W, Zhao X, Liu H. One-pot self-coupling concurrent living polymerizations of inimers to synthesize hyperbranched-linking-hyperbranched polymer cylinders via cyclic trithiocarbonate. Polym Chem 2014. [DOI: 10.1039/c3py01200j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
175
|
Liang Y, Kiick KL. Multifunctional lipid-coated polymer nanogels crosslinked by photo-triggered Michael-type addition. Polym Chem 2014. [DOI: 10.1039/c3py01269g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
176
|
Efficient hepatic delivery of drugs: novel strategies and their significance. BIOMED RESEARCH INTERNATIONAL 2013; 2013:382184. [PMID: 24286077 PMCID: PMC3826320 DOI: 10.1155/2013/382184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/14/2013] [Accepted: 08/25/2013] [Indexed: 02/06/2023]
Abstract
Liver is a vital organ responsible for plethora of functions including detoxification, protein synthesis, and the production of biochemicals necessary for the sustenance of life. Therefore, patients with chronic liver diseases such as viral hepatitis, liver cirrhosis, and hepatocellular carcinoma need immediate attention to sustain life and as a result are often exposed to the prolonged treatment with drugs/herbal medications. Lack of site-specific delivery of these medications to the hepatocytes/nonparenchymal cells and adverse effects associated with their off-target interactions limit their continuous use. This calls for the development and fabrication of targeted delivery systems which can deliver the drug payload at the desired site of action for defined period of time. The primary aim of drug targeting is to manipulate the whole body distribution of drugs, that is, to prevent distribution to non-target cells and concomitantly increase the drug concentration at the targeted site. Carrier molecules are designed for their selective cellular uptake, taking advantage of specific receptors or binding sites present on the surface membrane of the target cell. In this review, various aspects of liver targeting of drug molecules and herbal medications have been discussed which elucidate the importance of delivering the drugs/herbal medications at their desired site of action.
Collapse
|
177
|
Chen J, Kozlovskaya V, Goins A, Campos-Gomez J, Saeed M, Kharlampieva E. Biocompatible Shaped Particles from Dried Multilayer Polymer Capsules. Biomacromolecules 2013; 14:3830-41. [DOI: 10.1021/bm4008666] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jun Chen
- Department
of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Veronika Kozlovskaya
- Department
of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Allison Goins
- Department
of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Javier Campos-Gomez
- Department
of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, United States
| | - Mohammad Saeed
- Department
of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, United States
| | - Eugenia Kharlampieva
- Department
of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
178
|
Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials 2013; 34:7168-80. [DOI: 10.1016/j.biomaterials.2013.05.072] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/27/2013] [Indexed: 11/23/2022]
|
179
|
Zhang L, Wang Y, Cao Y, Lou D, Wang B. Transport barriers and strategies of antitumor nanocarriers delivery system. J Biomed Mater Res A 2013; 101:3661-9. [DOI: 10.1002/jbm.a.34635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/23/2012] [Accepted: 12/31/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Lin Zhang
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| | - Yazhou Wang
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| | - Yang Cao
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| | - Deshuai Lou
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| | - Bochu Wang
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| |
Collapse
|
180
|
Best JP, Cui J, Müllner M, Caruso F. Tuning the mechanical properties of nanoporous hydrogel particles via polymer cross-linking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9824-9831. [PMID: 23885961 DOI: 10.1021/la402146t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Soft hydrogel particles with tunable mechanical properties are promising for next-generation therapeutic applications. This is due to the increasingly proven role that physicochemical properties play in particulate-based delivery vectors, both in vitro and in vivo. The ability to understand and quantify the mechanical properties of such systems is therefore essential to optimize function and performance. We report control over the mechanical properties of poly(methacrylic acid) (PMA) hydrogel particles based on a mesoporous silica templating method. The mechanical properties of the obtained particles can be finely tuned through variation of the cross-linker concentration, which is hereby quantified using a cross-linking polymer with a fluorescent tag. We demonstrate that the mechanical properties of the particles can be elucidated using an atomic force microscopy (AFM) force spectroscopy method, which additionally allows for the study of hydrogel material properties at the nanoscale through high-resolution force mapping. Young's modulus and stiffness of the particles were tuned between 0.04 and 2.53 MPa and between 1.6 and 28.4 mN m(-1), respectively, through control over the cross-linker concentration. The relationship between the concentration of the cross-linker added and the amount of adsorbed polymer was observed to follow a Langmuir isotherm, and this relationship was found to correlate linearly with the particle mechanical properties.
Collapse
Affiliation(s)
- James P Best
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
181
|
Characterizing and Patterning Polyacrylamide Substrates Functionalized with N-Hydroxysuccinimide. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0288-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
182
|
Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc Natl Acad Sci U S A 2013; 110:11875-80. [PMID: 23821745 DOI: 10.1073/pnas.1301766110] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phagocytes clear the body of undesirable particles such as infectious agents and debris. To extend pseudopods over the surface of targeted particles during engulfment, cells must change shape through extensive membrane and cytoskeleton remodeling. We observed that pseudopod extension occurred in two phases. In the first phase, pseudopods extended rapidly, with actin polymerization pushing the plasma membrane forward. The second phase occurred once the membrane area from preexisting reservoirs was depleted, leading to increased membrane tension. Increased tension directly altered the small Rho GTPase Rac1, 3'-phosphoinositide, and cytoskeletal organization. Furthermore, it activated exocytosis of vesicles containing GPI-anchored proteins, increasing membrane area and phagocytosis efficiency for large particles. We thus propose that, during phagocytosis, membrane remodeling, cytoskeletal organization, and biochemical signaling are orchestrated by the mechanical signal of membrane tension. These results put a simple mechanical signal at the heart of understanding immunological responses.
Collapse
|
183
|
Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 2013; 15:253-82. [PMID: 23642243 DOI: 10.1146/annurev-bioeng-071812-152409] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in nanotechnology and growing needs in biomedical applications have driven the development of multifunctional nanoparticles. These nanoparticles, through nanocrystalline synthesis, advanced polymer processing, and coating and functionalization strategies, have the potential to integrate various functionalities, simultaneously providing (a) contrast for different imaging modalities, (b) targeted delivery of drug/gene, and (c) thermal therapies. Although still in its infancy, the field of multifunctional nanoparticles has shown great promise in emerging medical fields such as multimodal imaging, theranostics, and image-guided therapies. In this review, we summarize the techniques used in the synthesis of complex nanostructures, review the major forms of multifunctional nanoparticles that have emerged over the past few years, and provide a perceptual vision of this important field of nanomedicine.
Collapse
Affiliation(s)
- Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
184
|
Identification, localization, and functional implications of the microdomain-forming stomatin family in the ciliated protozoan Paramecium tetraurelia. EUKARYOTIC CELL 2013; 12:529-44. [PMID: 23376944 DOI: 10.1128/ec.00324-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The SPFH protein superfamily is assumed to occur universally in eukaryotes, but information from protozoa is scarce. In the Paramecium genome, we found only Stomatins, 20 paralogs grouped in 8 families, STO1 to STO8. According to cDNA analysis, all are expressed, and molecular modeling shows the typical SPFH domain structure for all subgroups. For further analysis we used family-specific sequences for fluorescence and immunogold labeling, gene silencing, and functional tests. With all family members tested, we found a patchy localization at/near the cell surface and on vesicles. The Sto1p and Sto4p families are also associated with the contractile vacuole complex. Sto4p also makes puncta on some food vacuoles and is abundant on vesicles recycling from the release site of spent food vacuoles to the site of nascent food vacuole formation. Silencing of the STO1 family reduces mechanosensitivity (ciliary reversal upon touching an obstacle), thus suggesting relevance for positioning of mechanosensitive channels in the plasmalemma. Silencing of STO4 members increases pulsation frequency of the contractile vacuole complex and reduces phagocytotic activity of Paramecium cells. In summary, Sto1p and Sto4p members seem to be involved in positioning specific superficial and intracellular microdomain-based membrane components whose functions may depend on mechanosensation (extracellular stimuli and internal osmotic pressure).
Collapse
|
185
|
Ghosh K, Thodeti CK, Ingber DE. Micromechanical Design Criteria for Tissue Engineering Biomaterials. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
186
|
Cordero RJB, Pontes B, Frases S, Nakouzi AS, Nimrichter L, Rodrigues ML, Viana NB, Casadevall A. Antibody binding to Cryptococcus neoformans impairs budding by altering capsular mechanical properties. THE JOURNAL OF IMMUNOLOGY 2012; 190:317-23. [PMID: 23233725 DOI: 10.4049/jimmunol.1202324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abs to microbial capsules are critical for host defense against encapsulated pathogens, but very little is known about the effects of Ab binding on the capsule, apart from producing qualitative capsular reactions ("quellung" effects). A problem in studying Ab-capsule interactions is the lack of experimental methodology, given that capsules are fragile, highly hydrated structures. In this study, we pioneered the use of optical tweezers microscopy to study Ab-capsule interactions. Binding of protective mAbs to the capsule of the fungal pathogen Cryptococcus neoformans impaired yeast budding by trapping newly emerging buds inside the parental capsule. This effect is due to profound mAb-mediated changes in capsular mechanical properties, demonstrated by a concentration-dependent increase in capsule stiffness. This increase involved mAb-mediated cross-linking of capsular polysaccharide molecules. These results provide new insights into Ab-mediated immunity, while suggesting a new nonclassical mechanism of Ab function, which may apply to other encapsulated pathogens. Our findings add to the growing body of evidence that Abs have direct antimicrobial functions independent of other components of the immune system.
Collapse
Affiliation(s)
- Radames J B Cordero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Gelatin nanospheres incorporating siRNA for controlled intracellular release. Biomaterials 2012; 33:9097-104. [DOI: 10.1016/j.biomaterials.2012.08.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022]
|
188
|
The effect of mechanical properties of iron oxide nanoparticle-loaded functional nano-carrier on tumor targeting and imaging. J Control Release 2012; 162:267-75. [DOI: 10.1016/j.jconrel.2012.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 01/25/2023]
|
189
|
Chen K, Merkel TJ, Pandya A, Napier ME, Luft JC, Daniel W, Sheiko S, DeSimone JM. Low modulus biomimetic microgel particles with high loading of hemoglobin. Biomacromolecules 2012; 13:2748-59. [PMID: 22852860 DOI: 10.1021/bm3007242] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT (particle replication in nonwetting templates) technique. Low cross-linking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained without a significant effect on particle stability and shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen, as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with a Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Ding HM, Ma YQ. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials 2012; 33:5798-802. [DOI: 10.1016/j.biomaterials.2012.04.055] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 12/19/2022]
|
191
|
Balmert SC, Little SR. Biomimetic delivery with micro- and nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3757-78. [PMID: 22528985 PMCID: PMC3627374 DOI: 10.1002/adma.201200224] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Indexed: 05/16/2023]
Abstract
The nascent field of biomimetic delivery with micro- and nanoparticles (MNP) has advanced considerably in recent years. Drawing inspiration from the ways that cells communicate in the body, several different modes of "delivery" (i.e., temporospatial presentation of biological signals) have been investigated in a number of therapeutic contexts. In particular, this review focuses on (1) controlled release formulations that deliver natural soluble factors with physiologically relevant temporal context, (2) presentation of surface-bound ligands to cells, with spatial organization of ligands ranging from isotropic to dynamically anisotropic, and (3) physical properties of particles, including size, shape and mechanical stiffness, which mimic those of natural cells. Importantly, the context provided by multimodal, or multifactor delivery represents a key element of most biomimetic MNP systems, a concept illustrated by an analogy to human interpersonal communication. Regulatory implications of increasingly sophisticated and "cell-like" biomimetic MNP systems are also discussed.
Collapse
Affiliation(s)
- Stephen C Balmert
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | | |
Collapse
|
192
|
Moon JJ, Huang B, Irvine DJ. Engineering nano- and microparticles to tune immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3724-46. [PMID: 22641380 PMCID: PMC3786137 DOI: 10.1002/adma.201200446] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Indexed: 05/13/2023]
Abstract
The immune system can be a cure or cause of disease, fulfilling a protective role in attacking cancer or pathogenic microbes but also causing tissue destruction in autoimmune disorders. Thus, therapies aimed to amplify or suppress immune reactions are of great interest. However, the complex regulation of the immune system, coupled with the potential systemic side effects associated with traditional systemic drug therapies, has presented a major hurdle for the development of successful immunotherapies. Recent progress in the design of synthetic micro- and nano-particles that can target drugs, deliver imaging agents, or stimulate immune cells directly through their physical and chemical properties is leading to new approaches to deliver vaccines, promote immune responses against tumors, and suppress autoimmunity. In addition, novel strategies, such as the use of particle-laden immune cells as living targeting agents for drugs, are providing exciting new approaches for immunotherapy. This progress report describes recent advances in the design of micro- and nano-particles for immunotherapies and diagnostics.
Collapse
Affiliation(s)
- James J Moon
- Dept. of Materials Science and Eng., Massachusetts Institute of Technology-MIT, Cambridge, MA, USA
| | | | | |
Collapse
|
193
|
Mitragotri S, Lahann J. Materials for drug delivery: innovative solutions to address complex biological hurdles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3717-23. [PMID: 22807037 DOI: 10.1002/adma.201202080] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
194
|
Abstract
The application of RNA interference to treat disease is an important yet challenging concept in modern medicine. In particular, small interfering RNA (siRNA) have shown tremendous promise in the treatment of cancer. However, siRNA show poor pharmacological properties, which presents a major hurdle for effective disease treatment especially through intravenous delivery routes. In response to these shortcomings, a variety of nanoparticle carriers have emerged, which are designed to encapsulate, protect, and transport siRNA into diseased cells. To be effective as carrier vehicles, nanoparticles must overcome a series of biological hurdles throughout the course of delivery. As a result, one promising approach to siRNA carriers is dynamic, versatile nanoparticles that can perform several in vivo functions. Over the last several years, our research group has investigated hydrogel nanoparticles (nanogels) as candidate delivery vehicles for therapeutics, including siRNA. Throughout the course of our research, we have developed higher order architectures composed entirely of hydrogel components, where several different hydrogel chemistries may be isolated in unique compartments of a single construct. In this Account, we summarize a subset of our experiences in the design and application of nanogels in the context of drug delivery, summarizing the relevant characteristics for these materials as delivery vehicles for siRNA. Through the layering of multiple, orthogonal chemistries in a nanogel structure, we can impart multiple functions to the materials. We consider nanogels as a platform technology, where each functional element of the particle may be independently tuned to optimize the particle for the desired application. For instance, we can modify the shell compartment of a vehicle for cell-specific targeting or evasion of the innate immune system, whereas other compartments may incorporate fluorescent probes or regulate the encapsulation and release of macromolecular therapeutics. Proof-of-principle experiments have demonstrated the utility of multifunctional nanogels. For example, using a simple core/shell nanogel architecture, we have recently reported the delivery of siRNA to chemosensitize drug resistant ovarian cancer cells. Ongoing efforts have resulted in several advanced hydrogel structures, including biodegradable nanogels and multicompartment spheres. In parallel, our research group has studied other properties of the nanogels, including their behavior in confined environments and their ability to translocate through small pores.
Collapse
Affiliation(s)
- Michael H. Smith
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - L. Andrew Lyon
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
195
|
Morachis JM, Mahmoud EA, Almutairi A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol Rev 2012; 64:505-19. [PMID: 22544864 PMCID: PMC3400833 DOI: 10.1124/pr.111.005363] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A significant challenge that most therapeutic agents face is their inability to be delivered effectively. Nanotechnology offers a solution to allow for safe, high-dose, specific delivery of pharmaceuticals to the target tissue. Nanoparticles composed of biodegradable polymers can be designed and engineered with various layers of complexity to achieve drug targeting that was unimaginable years ago by offering multiple mechanisms to encapsulate and strategically deliver drugs, proteins, nucleic acids, or vaccines while improving their therapeutic index. Targeting of nanoparticles to diseased tissue and cells assumes two strategies: physical and chemical targeting. Physical targeting is a strategy enabled by nanoparticle fabrication techniques. It includes using size, shape, charge, and stiffness among other parameters to influence tissue accumulation, adhesion, and cell uptake. New methods to measure size, shape, and polydispersity will enable this field to grow and more thorough comparisons to be made. Physical targeting can be more economically viable when certain fabrication techniques are used. Chemical targeting can employ molecular recognition units to decorate the surface of particles or molecular units responsive to diseased environments or remote stimuli. In this review, we describe sophisticated nanoparticles designed for tissue-specific chemical targeting that use conjugation chemistry to attach targeting moieties. Furthermore, we describe chemical targeting using stimuli responsive nanoparticles that can respond to changes in pH, heat, and light.
Collapse
Affiliation(s)
- José M Morachis
- University of California San Diego, 9500 Gilman Dr., MC 0600, La Jolla, CA 92093-0600, USA
| | | | | |
Collapse
|
196
|
Wang YM, Judkewitz B, DiMarzio CA, Yang C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nat Commun 2012; 3:928. [PMID: 22735456 PMCID: PMC3621452 DOI: 10.1038/ncomms1925] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/25/2012] [Indexed: 11/08/2022] Open
Abstract
Fluorescence imaging is one of the most important research tools in biomedical sciences. However, scattering of light severely impedes imaging of thick biological samples beyond the ballistic regime. Here we directly show focusing and high-resolution fluorescence imaging deep inside biological tissues by digitally time-reversing ultrasound-tagged light with high optical gain (~5×10(5)). We confirm the presence of a time-reversed optical focus along with a diffuse background-a corollary of partial phase conjugation-and develop an approach for dynamic background cancellation. To illustrate the potential of our method, we image complex fluorescent objects and tumour microtissues at an unprecedented depth of 2.5 mm in biological tissues at a lateral resolution of 36 μm×52 μm and an axial resolution of 657 μm. Our results set the stage for a range of deep-tissue imaging applications in biomedical research and medical diagnostics.
Collapse
Affiliation(s)
- Ying Min Wang
- Bioengineering and Electrical Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, California 91125, USA
- These authors contributed equally to this work
| | - Benjamin Judkewitz
- Bioengineering and Electrical Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, California 91125, USA
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- These authors contributed equally to this work
| | - Charles A. DiMarzio
- Electrical and Computer Engineering, Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, Maryland 02115, USA
| | - Changhuei Yang
- Bioengineering and Electrical Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, California 91125, USA
| |
Collapse
|
197
|
Underhill DM, Goodridge HS. Information processing during phagocytosis. Nat Rev Immunol 2012; 12:492-502. [PMID: 22699831 DOI: 10.1038/nri3244] [Citation(s) in RCA: 430] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phagocytosis - the process by which macrophages, dendritic cells and other myeloid phagocytes internalize diverse particulate targets - is a key mechanism of innate immunity. The molecular and cellular events that underlie the binding of targets to a phagocyte and their engulfment into phagosomes have been extensively studied. More recent data suggest that the process of phagocytosis itself provides information to myeloid phagocytes about the nature of the targets they are engulfing and that this helps to tailor inflammatory responses. In this Review, we discuss how such information is acquired during phagocytosis and how it is processed to coordinate an immune response.
Collapse
Affiliation(s)
- David M Underhill
- Inflammatory Bowel & Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8,700 Beverly Boulevard, Los Angeles, California 90048, USA.
| | | |
Collapse
|
198
|
Abstract
Nanostructured particulate materials are expected to revolutionize diagnostics and the delivery of therapeutics for healthcare. To date, chemistry-derived solutions have been the major focus in the design of materials to control interactions with biological systems. Only recently has control over a new set of physical parameters, including size, shape, and rigidity, been explored to optimize the biological response and the in vivo performance of nanoengineered delivery vectors. This Review highlights the methods used to manipulate the physical properties of particles and the relevance of these physical properties to cellular and circulatory interactions. Finally, the importance of future work to synergistically tailor both physical and chemical properties of particulate materials is discussed, with the aim of improving control over particle interactions in the biological domain.
Collapse
Affiliation(s)
- James P Best
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
199
|
Gerisch G. Actin switches in phagocytosis. Commun Integr Biol 2011; 4:344-5. [PMID: 21980576 DOI: 10.4161/cib.4.3.15041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 11/19/2022] Open
Abstract
Exposure of phagocytes to non-spherical particles has provided evidence for multiple actions of the actin system in force generation. For the uptake of long cylindrical particles, a "motile actin clamp" mechanism is proposed. When a phagocyte is engaged with an hour-glass-shaped particle, it exerts contractile activity alternatively at the far end of the particle or at its concave region. Phagocytes can switch within seconds between these different strategies of taking up a particle. This response switching is based on reprogramming the pattern of actin polymerization and depolymerization. The choice between different strategies of interaction with a particle increases the probability of engulfing the entire particle or at least a portion of it. Finally, a switch to actin disassembly enables a phagocyte to release a particle that turns out to be too big to be enclosed.
Collapse
|
200
|
Yoo JW, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 2011; 63:1247-56. [PMID: 21605607 DOI: 10.1016/j.addr.2011.05.004] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 04/26/2011] [Accepted: 05/05/2011] [Indexed: 12/15/2022]
Abstract
Recent studies have led to significant advances in understanding the impact of key drug carrier properties such as size, surface chemistry and shape on their performance. Converting this knowledge into improved therapeutic outcomes, however, has proved challenging. This owes to the fact that successful drug delivery carriers have to navigate through multiple physiological hurdles including reticuloendothelial system (RES) clearance, target accumulation, intracellular uptake and endosomal escape. Each of these processes may require unique, and often conflicting, design parameters, thus making it difficult to choose a design that addresses all these hurdles. This challenge can be addressed by designing carriers whose properties can be changed in time so as to successfully navigate them through various biological hurdles. Several carriers have been reported that implement this strategy. This review will discuss the current status and future prospects of this emerging field of "adaptive micro and nanoparticles".
Collapse
|