151
|
Abstract
Alternative splicing is a well-studied gene regulatory mechanism that produces biological diversity by allowing the production of multiple protein isoforms from a single gene. An involvement of alternative splicing in the key biological signalling Hippo pathway is emerging and offers new therapeutic avenues. This review discusses examples of alternative splicing in the Hippo pathway, how deregulation of these processes may contribute to disease and whether these processes offer new potential therapeutic targets.
Collapse
|
152
|
Byun YS, Kim EK, Araki K, Yamamura KI, Lee K, Yoon WK, Won YS, Kim HC, Choi KC, Nam KH. Fryl deficiency is associated with defective kidney development and function in mice. Exp Biol Med (Maywood) 2018; 243:408-417. [PMID: 29409347 DOI: 10.1177/1535370218758249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
FRY like transcription coactivator ( Fryl) gene located on chromosome 5 is a paralog of FRY microtubule binding protein ( Fry) in vertebrates. It encodes a protein with unknown functions. Fryl gene is conserved in various species ranging from eukaryotes to human. Although there are several reports on functions of Fry gene, functions of Fryl gene remain unclear. A mouse line containing null mutation in Fryl gene by gene trapping was produced in this study for the first time. The survival and growth of Fryl-/- mice were observed. Fryl gene expression levels in mouse tissues were determined and histopathologic analyses were conducted. Most Fryl-/- mice died soon after birth. Rare Fryl-/- survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl-/- survivors died of hydronephrosis before age 1. No abnormal histopathologic lesion was apparent in full-term embryo or adult tissues except the kidney. Abnormal lining cell layer detachments from walls of collecting and convoluted tubules in kidneys were apparent in Fryl-/- neonates and full-term embryos. Fryl gene was expressed in renal tubular tissues including the glomeruli and convoluted and collecting tubules. This indicates that defects in tubular systems are associated with Fryl functions and death of Fryl-/- neonates. Fryl protein is required for normal development and functional maintenance of kidney in mice. This is the first report of in vivo Fryl gene functions. Impact statement FRY like transcription coactivator ( Fryl) gene is conserved in various species ranging from eukaryotes to human. It expresses a protein with unknown function. We generated a Fryl gene mutant mouse line and found that most homozygous mice died soon after their birth. Rare Fryl-/- survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl-/- survivors died of hydronephrosis before age 1. Full-term mutant embryos showed abnormal collecting and convoluted tubules in kidneys where Fryl gene was expressed. Collectively, these results indicate that Fryl protein is required for normal development and functional maintenance of kidney in mice. To the best of our knowledge, this is the first report on in vivo Fryl gene functions.
Collapse
Affiliation(s)
- Yong-Sub Byun
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
- 2 Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 28644, Korea
| | - Eun-Kyoung Kim
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Kimi Araki
- 3 Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ken-Ichi Yamamura
- 3 Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kihoon Lee
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Won-Kee Yoon
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Young-Suk Won
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Hyoung-Chin Kim
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Kyung-Chul Choi
- 2 Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 28644, Korea
| | - Ki-Hoan Nam
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| |
Collapse
|
153
|
Chakraborty S, Hong W. Linking Extracellular Matrix Agrin to the Hippo Pathway in Liver Cancer and Beyond. Cancers (Basel) 2018; 10:cancers10020045. [PMID: 29415512 PMCID: PMC5836077 DOI: 10.3390/cancers10020045] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
In addition to the structural and scaffolding role, the extracellular matrix (ECM) is emerging as a hub for biomechanical signal transduction that is frequently relayed to intracellular sensors to regulate diverse cellular processes. At a macroscopic scale, matrix rigidity confers long-ranging effects contributing towards tissue fibrosis and cancer. The transcriptional co-activators YAP/TAZ, better known as the converging effectors of the Hippo pathway, are widely recognized for their new role as nuclear mechanosensors during organ homeostasis and cancer. Still, how YAP/TAZ senses these “stiffness cues” from the ECM remains enigmatic. Here, we highlight the recent perspectives on the role of agrin in mechanosignaling from the ECM via antagonizing the Hippo pathway to activate YAP/TAZ in the contexts of cancer, neuromuscular junctions, and cardiac regeneration.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A-STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A-STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| |
Collapse
|
154
|
Fu V, Plouffe SW, Guan KL. The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol 2018; 49:99-107. [PMID: 29316535 DOI: 10.1016/j.ceb.2017.12.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/05/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
The Hippo pathway is a universal governor of organ size, tissue homeostasis, and regeneration. A growing body of work has advanced our understanding of Hippo pathway regulation of cell proliferation, differentiation, and spatial patterning not only in organ development but also upon injury-induced regeneration. The pathway's central role in stem cell biology thus implicates its potential for therapeutic manipulation in mammalian organ regeneration. In this review, we survey recent literature linking the Hippo pathway to the development, homeostasis, and regeneration of various organs, including Hippo-independent roles for YAP, defined here as YAP functions that are not regulated by the Hippo pathway kinases LATS1/2.
Collapse
Affiliation(s)
- Vivian Fu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
155
|
Abstract
The Hippo pathway has generated considerable interest in recent years because of its involvement in several key hallmarks of cancer progression and metastasis. Research on the Hippo signaling pathway in cancer has been used to determine the activity of yes-associated protein (YAP) in tumorigenesis and disease progression. Previous studies have shown that the Hippo pathway can be used as a target to inhibit YAP activity and is a viable treatment for cancer. However, more studies are required to further advance our understanding of the Hippo signaling pathway in cancer. It has been shown that knockout of serine/threonine-kinases LATS1/2 in the Hippo pathway suppresses cancer immunity in mice. In addition, suppression of the oncogene YAP could contribute toward cancer immune therapy. Therefore, regulation of Hippo signaling can be an attractive alternative strategy for cancer treatment. This review will provide a summary of currently known compounds that activate or suppress the Hippo pathway.
Collapse
|
156
|
Furth N, Aylon Y, Oren M. p53 shades of Hippo. Cell Death Differ 2018; 25:81-92. [PMID: 28984872 PMCID: PMC5729527 DOI: 10.1038/cdd.2017.163] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
The three p53 family members, p53, p63 and p73, are structurally similar and share many biochemical activities. Yet, along with their common fundamental role in protecting genomic fidelity, each has acquired distinct functions related to diverse cell autonomous and non-autonomous processes. Similar to the p53 family, the Hippo signaling pathway impacts a multitude of cellular processes, spanning from cell cycle and metabolism to development and tumor suppression. The core Hippo module consists of the tumor-suppressive MST-LATS kinases and oncogenic transcriptional co-effectors YAP and TAZ. A wealth of accumulated data suggests a complex and delicate regulatory network connecting the p53 and Hippo pathways, in a highly context-specific manner. This generates multiple layers of interaction, ranging from interdependent and collaborative signaling to apparent antagonistic activity. Furthermore, genetic and epigenetic alterations can disrupt this homeostatic network, paving the way to genomic instability and cancer. This strengthens the need to better understand the nuances that control the molecular function of each component and the cross-talk between the different components. Here, we review interactions between the p53 and Hippo pathways within a subset of physiological contexts, focusing on normal stem cells and development, as well as regulation of apoptosis, senescence and metabolism in transformed cells.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| |
Collapse
|
157
|
Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 2017; 18:758-770. [PMID: 28951564 PMCID: PMC6192510 DOI: 10.1038/nrm.2017.87] [Citation(s) in RCA: 924] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence suggests that mechanical signals emanating from the cell's microenvironment are fundamental regulators of cell behaviour. Moreover, at the macroscopic scale, the influence of forces, such as the forces generated by blood flow, muscle contraction, gravity and overall tissue rigidity (for example, inside of a tumour lump), is central to our understanding of physiology and disease pathogenesis. Still, how mechanical cues are sensed and transduced at the molecular level to regulate gene expression has long remained enigmatic. The identification of the transcription factors YAP and TAZ as mechanotransducers started to fill this gap. YAP and TAZ read a broad range of mechanical cues, from shear stress to cell shape and extracellular matrix rigidity, and translate them into cell-specific transcriptional programmes. YAP and TAZ mechanotransduction is critical for driving stem cell behaviour and regeneration, and it sheds new light on the mechanisms by which aberrant cell mechanics is instrumental for the onset of multiple diseases, such as atherosclerosis, fibrosis, pulmonary hypertension, inflammation, muscular dystrophy and cancer.
Collapse
Affiliation(s)
- Tito Panciera
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| |
Collapse
|
158
|
Xiao Z, Baudry J, Cao L, Huang J, Chen H, Yates CR, Li W, Dong B, Waters CM, Smith JC, Quarles LD. Polycystin-1 interacts with TAZ to stimulate osteoblastogenesis and inhibit adipogenesis. J Clin Invest 2017; 128:157-174. [PMID: 29202470 DOI: 10.1172/jci93725] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023] Open
Abstract
The molecular mechanisms that transduce the osteoblast response to physical forces in the bone microenvironment are poorly understood. Here, we used genetic and pharmacological experiments to determine whether the polycystins PC1 and PC2 (encoded by Pkd1 and Pkd2) and the transcriptional coactivator TAZ form a mechanosensing complex in osteoblasts. Compound-heterozygous mice lacking 1 copy of Pkd1 and Taz exhibited additive decrements in bone mass, impaired osteoblast-mediated bone formation, and enhanced bone marrow fat accumulation. Bone marrow stromal cells and osteoblasts derived from these mice showed impaired osteoblastogenesis and enhanced adipogenesis. Increased extracellular matrix stiffness and application of mechanical stretch to multipotent mesenchymal cells stimulated the nuclear translocation of the PC1 C-terminal tail/TAZ (PC1-CTT/TAZ) complex, leading to increased runt-related transcription factor 2-mediated (Runx2-mediated) osteogenic and decreased PPARγ-dependent adipogenic gene expression. Using structure-based virtual screening, we identified a compound predicted to bind to PC2 in the PC1:PC2 C-terminal tail region with helix:helix interaction. This molecule stimulated polycystin- and TAZ-dependent osteoblastogenesis and inhibited adipogenesis. Thus, we show that polycystins and TAZ integrate at the molecular level to reciprocally regulate osteoblast and adipocyte differentiation, indicating that the polycystins/TAZ complex may be a potential therapeutic target to increase bone mass.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jerome Baudry
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Li Cao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jinsong Huang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hao Chen
- Department of Pharmaceutical Sciences and
| | | | - Wei Li
- Department of Pharmaceutical Sciences and
| | - Brittany Dong
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christopher M Waters
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
159
|
Jeong MG, Song H, Shin JH, Jeong H, Kim HK, Hwang ES. Transcriptional coactivator with PDZ-binding motif is required to sustain testicular function on aging. Aging Cell 2017; 16:1035-1042. [PMID: 28613007 PMCID: PMC5595677 DOI: 10.1111/acel.12631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Transcriptional coactivator with PDZ‐binding motif (TAZ) directly interacts with transcription factors and regulates their transcriptional activity. Extensive functional studies have shown that TAZ plays critical regulatory roles in stem cell proliferation, differentiation, and survival and also modulates the development of organs such as the lung, kidney, heart, and bone. Despite the importance of TAZ in stem cell maintenance, TAZ function has not yet been evaluated in spermatogenic stem cells of the male reproductive system. Here, we investigated the expression and functions of TAZ in mouse testis. TAZ was expressed in spermatogenic stem cells; however, its deficiency caused significant structural abnormalities, including atrophied tubules, widened interstitial space, and abnormal Leydig cell expansion, thereby resulting in lowered sperm counts and impaired fertility. Furthermore, TAZ deficiency increased the level of apoptosis and senescence in spermatogenic cells and Leydig cells upon aging. The expression of senescence‐associated β‐galactosidase (SA‐βgal), secretory phenotypes, and cyclin‐dependent kinase inhibitors (p16, p19, and p21) significantly increased in the absence of TAZ. TAZ downregulation in testicular cells further increased SA‐βgal and p21 expression induced by oxidative stress, whereas TAZ overexpression decreased p21 induction and prevented senescence. Mechanistic studies showed that TAZ suppressed DNA‐binding activity of p53 through a direct interaction and thus attenuated p53‐induced p21 gene transcription. Our results suggested that TAZ may suppress apoptosis and premature senescence in spermatogenic cells by inhibiting the p53‐p21 signaling pathway, thus playing important roles in the maintenance and control of reproductive function.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Hyuna Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Ji Hyun Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Hana Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
160
|
Sabra H, Brunner M, Mandati V, Wehrle-Haller B, Lallemand D, Ribba AS, Chevalier G, Guardiola P, Block MR, Bouvard D. β1 integrin-dependent Rac/group I PAK signaling mediates YAP activation of Yes-associated protein 1 (YAP1) via NF2/merlin. J Biol Chem 2017; 292:19179-19197. [PMID: 28972170 DOI: 10.1074/jbc.m117.808063] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/28/2017] [Indexed: 01/08/2023] Open
Abstract
Cell adhesion to the extracellular matrix or to surrounding cells plays a key role in cell proliferation and differentiation and is critical for proper tissue homeostasis. An important pathway in adhesion-dependent cell proliferation is the Hippo signaling cascade, which is coregulated by the transcription factors Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ). However, how cells integrate extracellular information at the molecular level to regulate YAP1's nuclear localization is still puzzling. Herein, we investigated the role of β1 integrins in regulating this process. We found that β1 integrin-dependent cell adhesion is critical for supporting cell proliferation in mesenchymal cells both in vivo and in vitro β1 integrin-dependent cell adhesion relied on the relocation of YAP1 to the nucleus after the down-regulation of its phosphorylated state mediated by large tumor suppressor gene 1 and 2 (LATS1/2). We also found that this phenotype relies on β1 integrin-dependent local activation of the small GTPase RAC1 at the plasma membrane to control the activity of P21 (RAC1)-activated kinase (PAK) of group 1. We further report that the regulatory protein merlin (neurofibromin 2, NF2) interacts with both YAP1 and LATS1/2 via its C-terminal moiety and FERM domain, respectively. PAK1-mediated merlin phosphorylation on Ser-518 reduced merlin's interactions with both LATS1/2 and YAP1, resulting in YAP1 dephosphorylation and nuclear shuttling. Our results highlight RAC/PAK1 as major players in YAP1 regulation triggered by cell adhesion.
Collapse
Affiliation(s)
- Hiba Sabra
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Molly Brunner
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Vinay Mandati
- the Department of Cancer Biology, Scripps Research Institute, Jupiter, Florida 33458
| | - Bernhard Wehrle-Haller
- the Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dominique Lallemand
- the Ecole Polytechnique, Department of Biochemistry, CNRS 7654, F-91128 Palaiseau, France, and
| | - Anne-Sophie Ribba
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Genevieve Chevalier
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Philippe Guardiola
- the Centre Hospitalier Universitaire and Université d'Angers, Plateform, Institute for Biological Health, Transcriptome and Epigenomic, F-49933 Angers, France
| | - Marc R Block
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Daniel Bouvard
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France,
| |
Collapse
|
161
|
Abstract
Angiogenesis and vascular remodeling are essential for the establishment of vascular networks during organogenesis. Here we show that the Hippo signaling pathway effectors YAP and TAZ are required, in a gene dosage-dependent manner, for the proliferation and migration of vascular endothelial cells (ECs) during retinal angiogenesis. Intriguingly, nuclear translocation of YAP and TAZ induced by Lats1/2-deletion blocked endothelial migration and phenocopied Yap/Taz-deficient mutants. Furthermore, overexpression of a cytoplasmic form of YAP (YAPS127D) partially rescued the migration defects caused by loss of YAP and TAZ function. Finally, we found that cytoplasmic YAP positively regulated the activity of the small GTPase CDC42, deletion of which caused severe defects in endothelial migration. These findings uncover a previously unrecognized role of cytoplasmic YAP/TAZ in promoting cell migration by activating CDC42 and provide insight into how Hippo signaling in ECs regulates angiogenesis.
Collapse
|
162
|
Bae JS, Kim SM, Lee H. The Hippo signaling pathway provides novel anti-cancer drug targets. Oncotarget 2017; 8:16084-16098. [PMID: 28035075 PMCID: PMC5362547 DOI: 10.18632/oncotarget.14306] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy.
Collapse
Affiliation(s)
- June Sung Bae
- Biomolecular Function Research Branch, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sun Mi Kim
- Biomolecular Function Research Branch, National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
163
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
164
|
Michgehl U, Pavenstädt H, Vollenbröker B. Cross talk between the Crumbs complex and Hippo signaling in renal epithelial cells. Pflugers Arch 2017; 469:917-926. [PMID: 28612137 DOI: 10.1007/s00424-017-2004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Cell polarity has a crucial role in organizing cells into tissues and in mediating transport processes and cell-cell communication. Especially the cells of the nephron require apicobasal polarity to establish and maintain their barrier function. The Crumbs complex including the integral membrane protein Crumbs, as well as Pals1 and Patj, is essential for the establishment of apicobasal polarity. The interactions of the core proteins and the interplay with other processes have been characterized in various epithelial cell lines in detail. Notably, Crb2 and Crb3 are expressed within the kidney and play an important role in the proper function of podocytes and tubules, respectively. The interaction of polarity proteins and components of the Hippo pathway-an evolutionarily highly conserved kinase cascade regulating cell proliferation, organ size, and tissue regeneration-has been discovered recently. Here, we discuss potential molecular and physiological links between the Crumbs complex and the Hippo pathway in renal cells.
Collapse
Affiliation(s)
- U Michgehl
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany.
| | - H Pavenstädt
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany
| | - B Vollenbröker
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany
| |
Collapse
|
165
|
Szymaniak AD, Mi R, McCarthy SE, Gower AC, Reynolds TL, Mingueneau M, Kukuruzinska M, Varelas X. The Hippo pathway effector YAP is an essential regulator of ductal progenitor patterning in the mouse submandibular gland. eLife 2017; 6. [PMID: 28492365 PMCID: PMC5466420 DOI: 10.7554/elife.23499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/08/2017] [Indexed: 11/23/2022] Open
Abstract
Salivary glands, such as submandibular glands (SMGs), are composed of branched epithelial ductal networks that terminate in acini that together produce, transport and secrete saliva. Here, we show that the transcriptional regulator Yap, a key effector of the Hippo pathway, is required for the proper patterning and morphogenesis of SMG epithelium. Epithelial deletion of Yap in developing SMGs results in the loss of ductal structures, arising from reduced expression of the EGF family member Epiregulin, which we show is required for the expansion of Krt5/Krt14-positive ductal progenitors. We further show that epithelial deletion of the Lats1 and Lats2 genes, which encode kinases that restrict nuclear Yap localization, results in morphogenesis defects accompanied by an expansion of Krt5/Krt14-positive cells. Collectively, our data indicate that Yap-induced Epiregulin signaling promotes the identity of SMG ductal progenitors and that removal of nuclear Yap by Lats1/2-mediated signaling is critical for proper ductal maturation. DOI:http://dx.doi.org/10.7554/eLife.23499.001 Our mouths are continually bathed by saliva – a thick, clear liquid that helps us to swallow and digest our food and protects us against infections. Saliva is produced by and released from salivary glands, which are organs that contain a branched network of tubes. Salivary glands can only properly develop if immature cells known as stem cells, which give rise to the mature cells in the organ, are controlled. Despite their importance for development of salivary glands, little has been known about the signals that control these stem cells. Szymaniak et al. have now discovered new regulators of the salivary gland stem cells in mice, including essential roles in the regulation of these cells by a protein known as Yap. The Yap protein is controlled by a set of proteins that together are known as the Hippo pathway. Szymaniak et al. found that when the gene for Yap was deleted in mice very few stem cells were made, and the transport tubes of the salivary tubes failed to develop. Conversely, when the Hippo pathway was disrupted in mice there were too many stem cells because they could not properly develop into the mature cells, leading to incorrect transport tube development.. These results indicate that Yap is essential for controlling the stem cells of the salivary glands, and offer important insight into the signals that control how the salivary glands develop. The next step will be to investigate whether the Hippo pathway or Yap are affected in diseases of the salivary gland, which often show incorrect numbers of stem cells. DOI:http://dx.doi.org/10.7554/eLife.23499.002
Collapse
Affiliation(s)
| | - Rongjuan Mi
- Department of Biochemistry, Boston University School of Medicine, Boston, United States.,Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, United States
| | - Shannon E McCarthy
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University, Boston, United States
| | | | | | - Maria Kukuruzinska
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, United States
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
166
|
Haque F, Kaku Y, Fujimura S, Ohmori T, Adelstein RS, Nishinakamura R. Non-muscle myosin II deletion in the developing kidney causes ureter-bladder misconnection and apical extrusion of the nephric duct lineage epithelia. Dev Biol 2017; 427:121-130. [PMID: 28478097 DOI: 10.1016/j.ydbio.2017.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 01/23/2023]
Abstract
In kidney development, connection of the nephric duct (ND) to the cloaca and subsequent sprouting of the ureteric bud (UB) from the ND are important for urinary exit tract formation. Although the roles of Ret signaling are well established, it remains unclear how intracellular cytoskeletal proteins regulate these morphogenetic processes. Myh9 and Myh10 encode two different non-muscle myosin II heavy chains, and Myh9 mutations in humans are implicated in congenital kidney diseases. Here we report that ND/UB lineage-specific deletion of Myh9/Myh10 in mice caused severe hydroureter/hydronephrosis at birth. At mid-gestation, the mutant ND/UB epithelia exhibited aberrant basal protrusion and ectopic UB formation, which likely led to misconnection of the ureter to the bladder. In addition, the mutant epithelia exhibited apical extrusion followed by massive apoptosis in the lumen, which could be explained by reduced apical constriction and intercellular adhesion mediated by E-cadherin. These phenotypes were not ameliorated by genetic reduction of the tyrosine kinase receptor Ret. In contrast, ERK was activated in the mutant cells and its chemical inhibition partially ameliorated the phenotypes. Thus, myosin II is essential for maintaining the apicobasal integrity of the developing kidney epithelia independently of Ret signaling.
Collapse
Affiliation(s)
- Fahim Haque
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yusuke Kaku
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomoko Ohmori
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
167
|
Qiao Y, Chen J, Lim YB, Finch-Edmondson ML, Seshachalam VP, Qin L, Jiang T, Low BC, Singh H, Lim CT, Sudol M. YAP Regulates Actin Dynamics through ARHGAP29 and Promotes Metastasis. Cell Rep 2017; 19:1495-1502. [DOI: 10.1016/j.celrep.2017.04.075] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/02/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022] Open
|
168
|
Hu JKH, Du W, Shelton SJ, Oldham MC, DiPersio CM, Klein OD. An FAK-YAP-mTOR Signaling Axis Regulates Stem Cell-Based Tissue Renewal in Mice. Cell Stem Cell 2017; 21:91-106.e6. [PMID: 28457749 DOI: 10.1016/j.stem.2017.03.023] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/07/2017] [Accepted: 03/26/2017] [Indexed: 02/05/2023]
Abstract
Tissue homeostasis requires the production of newly differentiated cells from resident adult stem cells. Central to this process is the expansion of undifferentiated intermediates known as transit-amplifying (TA) cells, but how stem cells are triggered to enter this proliferative TA state remains an important open question. Using the continuously growing mouse incisor as a model of stem cell-based tissue renewal, we found that the transcriptional cofactors YAP and TAZ are required both to maintain TA cell proliferation and to inhibit differentiation. Specifically, we identified a pathway involving activation of integrin α3 in TA cells that signals through an LATS-independent FAK/CDC42/PP1A cascade to control YAP-S397 phosphorylation and nuclear localization. This leads to Rheb expression and potentiates mTOR signaling to drive the proliferation of TA cells. These findings thus reveal a YAP/TAZ signaling mechanism that coordinates stem cell expansion and differentiation during organ renewal.
Collapse
Affiliation(s)
- Jimmy Kuang-Hsien Hu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wei Du
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Samuel J Shelton
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - C Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
169
|
Rinschen MM, Grahammer F, Hoppe AK, Kohli P, Hagmann H, Kretz O, Bertsch S, Höhne M, Göbel H, Bartram MP, Gandhirajan RK, Krüger M, Brinkkoetter PT, Huber TB, Kann M, Wickström SA, Benzing T, Schermer B. YAP-mediated mechanotransduction determines the podocyte's response to damage. Sci Signal 2017; 10:10/474/eaaf8165. [PMID: 28400537 DOI: 10.1126/scisignal.aaf8165] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Podocytes are terminally differentiated cells of the kidney filtration barrier. They are subjected to physiological filtration pressure and considerable mechanical strain, which can be further increased in various kidney diseases. When injury causes cytoskeletal reorganization and morphological alterations of these cells, the filtration barrier may become compromised and allow proteins to leak into the urine (a condition called proteinuria). Using time-resolved proteomics, we showed that podocyte injury stimulated the activity of the transcriptional coactivator YAP and the expression of YAP target genes in a rat model of glomerular disease before the development of proteinuria. Although the activities of YAP and its ortholog TAZ are activated by mechanical stress in most cell types, injury reduced YAP and TAZ activity in cultured human and mouse podocyte cell lines grown on stiff substrates. Culturing these cells on soft matrix or inhibiting stress fiber formation recapitulated the damage-induced YAP up-regulation observed in vivo, indicating a mechanotransduction-dependent mechanism of YAP activation in podocytes. YAP overexpression in cultured podocytes increased the abundance of extracellular matrix-related proteins that can contribute to fibrosis. YAP activity was increased in mouse models of diabetic nephropathy, and the YAP target CTGF was highly expressed in renal biopsies from glomerular disease patients. Although overexpression of human YAP in mice induced mild proteinuria, pharmacological inhibition of the interaction between YAP and its partner TEAD in rats ameliorated glomerular disease and reduced damage-induced mechanosignaling in the glomeruli. Thus, perturbation of YAP-dependent mechanosignaling is a potential therapeutic target for treating some glomerular diseases.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department of Internal Medicine II, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Florian Grahammer
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Kathrin Hoppe
- Department of Internal Medicine II, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Priyanka Kohli
- Department of Internal Medicine II, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany
| | - Henning Hagmann
- Department of Internal Medicine II, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Oliver Kretz
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Bertsch
- Department of Internal Medicine II, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department of Internal Medicine II, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Malte P Bartram
- Department of Internal Medicine II, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Marcus Krüger
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany
| | - Paul-Thomas Brinkkoetter
- Department of Internal Medicine II, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Martin Kann
- Department of Internal Medicine II, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sara A Wickström
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany.,Skin Homeostasis and Ageing, Paul Gerson Unna Research Group, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Benzing
- Department of Internal Medicine II, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department of Internal Medicine II, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
170
|
Rohban MH, Singh S, Wu X, Berthet JB, Bray MA, Shrestha Y, Varelas X, Boehm JS, Carpenter AE. Systematic morphological profiling of human gene and allele function via Cell Painting. eLife 2017; 6. [PMID: 28315521 PMCID: PMC5386591 DOI: 10.7554/elife.24060] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
We hypothesized that human genes and disease-associated alleles might be systematically functionally annotated using morphological profiling of cDNA constructs, via a microscopy-based Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable morphological profiles, which grouped into biologically meaningful gene clusters consistent with known functional annotation (e.g., the RAS-RAF-MEK-ERK cascade). We used novel subpopulation-based visualization methods to interpret the morphological changes for specific clusters. This unbiased morphologic map of gene function revealed TRAF2/c-REL negative regulation of YAP1/WWTR1-responsive pathways. We confirmed this discovery of functional connectivity between the NF-κB pathway and Hippo pathway effectors at the transcriptional level, thereby expanding knowledge of these two signaling pathways that critically regulate tumor initiation and progression. We make the images and raw data publicly available, providing an initial morphological map of major biological pathways for future study. DOI:http://dx.doi.org/10.7554/eLife.24060.001 Many human diseases are caused by particular changes, called mutations, in patients’ DNA. A genome is the complete DNA set of an organism, which contains all the information to build the body and keep it working. This information is stored as a code made up of four chemicals called bases. Humans have about 30,000 genes built from DNA, which contain specific sequences of bases. Genome sequencing can determine the exact order of these bases, and has revealed a long list of mutations in genes that could cause particular diseases. However, over 30% of genes in the human body do not have a known role. Genes can serve multiple roles, some of which are not yet discovered, and even when a gene’s purpose is known, the impact of each particular mutation in a given gene is largely uncatalogued. Therefore, new methods need to be developed to identify the biological roles of both normal and abnormal gene sequences. For hundreds of years, biologists have used microscopy to study how living cells work. Rohban et al. have now asked whether modern software that extracts data from microscopy images could create a fingerprint-like profile of a cell that would reflect how its genes affect its role and appearance. While some genes do not necessarily carry a code with instructions of what a cell should look like, they can indirectly modify the structure of the cell. The resulting changes in the shape of the cell can then be captured in images. The idea was that two cells with matching profiles would indicate that their combinations of genes had matching biological roles too. Rohban et al. tested their approach with human cells grown in the laboratory. In each sample of cells, they ‘turned on’ one of a few hundred relatively well-known human genes, some of which were known to have similar roles. The cells were then stained via a technique called ‘Cell Painting’ to reveal eight specific components of each cell, including its DNA and its surface membrane. The stained cells were imaged under a microscope and the resulting microscopy images analyzed to create a profile of each type of cell. Rohban et al. confirmed that turning on genes known to perform similar biological roles lead to similar-looking cells. The analysis also revealed a previously unknown interaction between two major pathways in the cell that control how cancer starts and develops. In the future, this approach could predict the biological roles of less-understood genes by looking for profiles that match those of well-known genes. Applying this strategy to every human gene, and mutations in genes that are linked to diseases, could help to answer many mysteries about how genes build the human body and keep it working. DOI:http://dx.doi.org/10.7554/eLife.24060.002
Collapse
Affiliation(s)
| | - Shantanu Singh
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Xiaoyun Wu
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Julia B Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | | | | | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, United States
| | | |
Collapse
|
171
|
Ragni CV, Diguet N, Le Garrec JF, Novotova M, Resende TP, Pop S, Charon N, Guillemot L, Kitasato L, Badouel C, Dufour A, Olivo-Marin JC, Trouvé A, McNeill H, Meilhac SM. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat Commun 2017; 8:14582. [PMID: 28239148 PMCID: PMC5333361 DOI: 10.1038/ncomms14582] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 01/12/2017] [Indexed: 01/15/2023] Open
Abstract
Although in flies the atypical cadherin Fat is an upstream regulator of Hippo signalling, the closest mammalian homologue, Fat4, has been shown to regulate tissue polarity rather than growth. Here we show in the mouse heart that Fat4 modulates Hippo signalling to restrict growth. Fat4 mutant myocardium is thicker, with increased cardiomyocyte size and proliferation, and this is mediated by an upregulation of the transcriptional activity of Yap1, an effector of the Hippo pathway. Fat4 is not required for the canonical activation of Hippo kinases but it sequesters a partner of Yap1, Amotl1, out of the nucleus. The nuclear translocation of Amotl1 is accompanied by Yap1 to promote cardiomyocyte proliferation. We, therefore, identify Amotl1, which is not present in flies, as a mammalian intermediate for non-canonical Hippo signalling, downstream of Fat4. This work uncovers a mechanism for the restriction of heart growth at birth, a process which impedes the regenerative potential of the mammalian heart.
Collapse
Affiliation(s)
- Chiara V Ragni
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75005 Paris, France
| | - Nicolas Diguet
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France
| | - Jean-François Le Garrec
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France
| | - Marta Novotova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovak Republic
| | - Tatiana P Resende
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sorin Pop
- Institut Pasteur, Quantitative Image Analysis Unit, 75015 Paris, France.,CNRS URA 2582, 75015 Paris, France
| | - Nicolas Charon
- ENS Cachan, Center of Mathematics and Their Applications, 94235 Cachan, France.,CNRS UMR 8536, 94235 Cachan, France
| | - Laurent Guillemot
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Lisa Kitasato
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Caroline Badouel
- Samuel Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Alexandre Dufour
- Institut Pasteur, Quantitative Image Analysis Unit, 75015 Paris, France.,CNRS URA 2582, 75015 Paris, France
| | | | - Alain Trouvé
- ENS Cachan, Center of Mathematics and Their Applications, 94235 Cachan, France.,CNRS UMR 8536, 94235 Cachan, France
| | - Helen McNeill
- Samuel Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Sigolène M Meilhac
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France
| |
Collapse
|
172
|
Nishio M, Maehama T, Goto H, Nakatani K, Kato W, Omori H, Miyachi Y, Togashi H, Shimono Y, Suzuki A. Hippo vs. Crab: tissue-specific functions of the mammalian Hippo pathway. Genes Cells 2017; 22:6-31. [PMID: 28078823 DOI: 10.1111/gtc.12461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is a vital suppressor of tumorigenesis that is often inactivated in human cancers. In normal cells, the Hippo pathway is triggered by external forces such as cell crowding, or changes to the extracellular matrix or cell polarity. Once activated, Hippo signaling down-regulates transcription supported by the paralogous cofactors YAP1 and TAZ. The Hippo pathway's functions in normal and cancer biology have been dissected by studies of mutant mice with null or conditional tissue-specific mutations of Hippo signaling elements. In this review, we attempt to systematically summarize results that have been gleaned from detailed in vivo characterizations of these mutants. Our goal is to describe the physiological roles of Hippo signaling in several normal organ systems, as well as to emphasize how disruption of the Hippo pathway, and particularly hyperactivation of YAP1/TAZ, can be oncogenic.
Collapse
Affiliation(s)
- Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Goto
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Nakatani
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wakako Kato
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirofumi Omori
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Miyachi
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
173
|
Weide T, Vollenbröker B, Schulze U, Djuric I, Edeling M, Bonse J, Hochapfel F, Panichkina O, Wennmann DO, George B, Kim S, Daniel C, Seggewiß J, Amann K, Kriz W, Krahn MP, Pavenstädt H. Pals1 Haploinsufficiency Results in Proteinuria and Cyst Formation. J Am Soc Nephrol 2017; 28:2093-2107. [PMID: 28154200 DOI: 10.1681/asn.2016040474] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022] Open
Abstract
The nephron is the basic physiologic subunit of the mammalian kidney and is made up of several apicobasally polarized epithelial cell types. The process of apicobasal polarization in animal cells is controlled by the evolutionarily conserved Crumbs (CRB), Partitioning-defective, and Scribble protein complexes. Here, we investigated the role of protein associated with LIN-7 1 (Pals1, also known as Mpp5), a core component of the apical membrane-determining CRB complex in the nephron. Pals1 interacting proteins, including Crb3 and Wwtr1/Taz, have been linked to renal cyst formation in mice before. Immunohistologic analysis revealed Pals1 expression in renal tubular cells and podocytes of human kidneys. Mice lacking one Pals1 allele (functionally haploid for Pals1) in nephrons developed a fully penetrant phenotype, characterized by cyst formation and severe defects in renal barrier function, which led to death within 6-8 weeks. In Drosophila nephrocytes, deficiency of the Pals1 ortholog caused alterations in slit-diaphragm-like structures. Additional studies in epithelial cell culture models revealed that Pals1 functions as a dose-dependent upstream regulator of the crosstalk between Hippo- and TGF-β-mediated signaling. Furthermore, Pals1 haploinsufficiency in mouse kidneys associated with the upregulation of Hippo pathway target genes and marker genes of TGF-β signaling, including biomarkers of renal diseases. These findings support a link between apical polarity proteins and renal diseases, especially renal cyst diseases. Further investigation of the Pals1-linked networks is required to decipher the mechanisms underlying the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Thomas Weide
- Internal Medicine D, University Hospital of Münster, Münster, Germany;
| | | | - Ulf Schulze
- Internal Medicine D, University Hospital of Münster, Münster, Germany
| | - Ivona Djuric
- Internal Medicine D, University Hospital of Münster, Münster, Germany
| | - Maria Edeling
- Internal Medicine D, University Hospital of Münster, Münster, Germany
| | - Jakob Bonse
- Internal Medicine D, University Hospital of Münster, Münster, Germany
| | - Florian Hochapfel
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Olga Panichkina
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | | | - Britta George
- Internal Medicine D, University Hospital of Münster, Münster, Germany
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Christoph Daniel
- Nephropathology Department, Institute of Pathology, Erlangen-Nürnberg University, Erlangen, Germany
| | - Jochen Seggewiß
- Interdisciplinary Center for Clinical Research, University of Münster, Munster, Germany; and
| | - Kerstin Amann
- Nephropathology Department, Institute of Pathology, Erlangen-Nürnberg University, Erlangen, Germany
| | - Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael P Krahn
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
174
|
Sero JE, Bakal C. Multiparametric Analysis of Cell Shape Demonstrates that β-PIX Directly Couples YAP Activation to Extracellular Matrix Adhesion. Cell Syst 2017; 4:84-96.e6. [PMID: 28065575 PMCID: PMC5289939 DOI: 10.1016/j.cels.2016.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023]
Abstract
Mechanical signals from the extracellular matrix (ECM) and cellular geometry regulate the nuclear translocation of transcriptional regulators such as Yes-associated protein (YAP). Elucidating how physical signals control the activity of mechanosensitive proteins poses a technical challenge, because perturbations that affect cell shape may also affect protein localization indirectly. Here, we present an approach that mitigates confounding effects of cell-shape changes, allowing us to identify direct regulators of YAP localization. This method uses single-cell image analysis and statistical models that exploit the naturally occurring heterogeneity of cellular populations. Through systematic depletion of all human kinases, Rho family GTPases, GEFs, and GTPase activating proteins (GAPs), together with targeted chemical perturbations, we found that β-PIX, a Rac1/Ccd42 GEF, and PAK2, a Rac1/Cdc42 effector, drive both YAP activation and cell-ECM adhesion turnover during cell spreading. Our observations suggest that coupling YAP to adhesion dynamics acts as a mechano-timer, allowing cells to rapidly tune gene expression in response to physical signals.
Collapse
Affiliation(s)
- Julia E Sero
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
175
|
Pfleger CM. The Hippo Pathway: A Master Regulatory Network Important in Development and Dysregulated in Disease. Curr Top Dev Biol 2017; 123:181-228. [PMID: 28236967 DOI: 10.1016/bs.ctdb.2016.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Hippo Pathway is a master regulatory network that regulates proliferation, cell growth, stemness, differentiation, and cell death. Coordination of these processes by the Hippo Pathway throughout development and in mature organisms in response to diverse external and internal cues plays a role in morphogenesis, in controlling organ size, and in maintaining organ homeostasis. Given the importance of these processes, the Hippo Pathway also plays an important role in organismal health and has been implicated in a variety of diseases including eye disease, cardiovascular disease, neurodegeneration, and cancer. This review will focus on Drosophila reports that identified the core components of the Hippo Pathway revealing specific downstream biological outputs of this complicated network. A brief description of mammalian reports will complement review of the Drosophila studies. This review will also survey upstream regulation of the core components with a focus on feedback mechanisms.
Collapse
Affiliation(s)
- Cathie M Pfleger
- The Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
176
|
McNeill H, Reginensi A. Lats1/2 Regulate Yap/Taz to Control Nephron Progenitor Epithelialization and Inhibit Myofibroblast Formation. J Am Soc Nephrol 2016; 28:852-861. [PMID: 27647853 DOI: 10.1681/asn.2016060611] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
In the kidney, formation of the functional filtration units, the nephrons, is essential for postnatal life. During development, mesenchymal progenitors tightly regulate the balance between self-renewal and differentiation to give rise to all nephron epithelia. Here, we investigated the functions of the Hippo pathway serine/threonine-protein kinases Lats1 and Lats2, which phosphorylate and inhibit the transcriptional coactivators Yap and Taz, in nephron progenitor cells. Genetic deletion of Lats1 and Lats2 in nephron progenitors of mice led to disruption of nephrogenesis, with an accumulation of spindle-shaped cells in both cortical and medullary regions of the kidney. Lineage-tracing experiments revealed that the cells that accumulated in the interstitium derived from nephron progenitor cells and expressed E-cadherin as well as vimentin, a myofibroblastic marker not usually detected after mesenchymal-to-epithelial transition. The accumulation of these interstitial cells associated with collagen deposition and ectopic expression of the myofibroblastic markers vimentin and α-smooth-muscle actin in developing kidneys. Although these myofibroblastic cells had high Yap and Taz accumulation in the nucleus concomitant with a loss of phosphorylated Yap, reduction of Yap and/or Taz expression levels completely rescued the Lats1/2 phenotype. Taken together, our results demonstrate that Lats1/2 kinases restrict Yap/Taz activities to promote nephron progenitor cell differentiation in the mammalian kidney. Notably, our data also show that myofibroblastic cells can differentiate from nephron progenitors.
Collapse
Affiliation(s)
- Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; and .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Antoine Reginensi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
177
|
Bai H, Zhu Q, Surcel A, Luo T, Ren Y, Guan B, Liu Y, Wu N, Joseph NE, Wang TL, Zhang N, Pan D, Alpini G, Robinson DN, Anders RA. Yes-associated protein impacts adherens junction assembly through regulating actin cytoskeleton organization. Am J Physiol Gastrointest Liver Physiol 2016; 311:G396-411. [PMID: 27229120 PMCID: PMC5076009 DOI: 10.1152/ajpgi.00027.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/11/2016] [Indexed: 01/31/2023]
Abstract
The Hippo pathway effector Yes-associated protein (YAP) regulates liver size by promoting cell proliferation and inhibiting apoptosis. However, recent in vivo studies suggest that YAP has important cellular functions other than controlling proliferation and apoptosis. Transgenic YAP expression in mouse hepatocytes results in severe jaundice. A possible explanation for the jaundice could be defects in adherens junctions that prevent bile from leaking into the blood stream. Indeed, immunostaining of E-cadherin and electron microscopic examination of bile canaliculi of Yap transgenic livers revealed abnormal adherens junction structures. Using primary hepatocytes from Yap transgenic livers and Yap knockout livers, we found that YAP antagonizes E-cadherin-mediated cell-cell junction assembly by regulating the cellular actin architecture, including its mechanical properties (elasticity and cortical tension). Mechanistically, we found that YAP promoted contractile actin structure formation by upregulating nonmuscle myosin light chain expression and cellular ATP generation. Thus, by modulating actomyosin organization, YAP may influence many actomyosin-dependent cellular characteristics, including adhesion, membrane protrusion, spreading, morphology, and cortical tension and elasticity, which in turn determine cell differentiation and tissue morphogenesis.
Collapse
Affiliation(s)
- Haibo Bai
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Qingfeng Zhu
- 2Institute of Biomedical Sciences (IBS), Fudan University, Shanghai, People's Republic of China; and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Alexandra Surcel
- 3Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland;
| | - Tianzhi Luo
- 3Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland;
| | - Yixin Ren
- 3Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland;
| | - Bin Guan
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Ying Liu
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Nan Wu
- 6Research, Central Texas Veterans Health Care System, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas; and Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Nora Eve Joseph
- 5Department of Pathology, University of Chicago, Chicago, Illinois; and
| | - Tian -Li Wang
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Nailing Zhang
- 4Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland;
| | - Duojia Pan
- 4Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland;
| | - Gianfranco Alpini
- 6Research, Central Texas Veterans Health Care System, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas; and Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Douglas N. Robinson
- 3Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland;
| | - Robert A. Anders
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
178
|
The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis. Sci Rep 2016; 6:31931. [PMID: 27550469 PMCID: PMC4994041 DOI: 10.1038/srep31931] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF.
Collapse
|
179
|
Liu Z, Wu H, Jiang K, Wang Y, Zhang W, Chu Q, Li J, Huang H, Cai T, Ji H, Yang C, Tang N. MAPK-Mediated YAP Activation Controls Mechanical-Tension-Induced Pulmonary Alveolar Regeneration. Cell Rep 2016; 16:1810-9. [PMID: 27498861 DOI: 10.1016/j.celrep.2016.07.020] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/06/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022] Open
Abstract
The pulmonary alveolar epithelium undergoes extensive regeneration in response to lung injuries, including lung resection. In recent years, our understanding of cell lineage relationships in the pulmonary alveolar epithelium has improved significantly. However, the molecular and cellular mechanisms that regulate pneumonectomy (PNX)-induced alveolar regeneration remain largely unknown. In this study, we demonstrate that mechanical-tension-induced YAP activation in alveolar stem cells plays a major role in promoting post-PNX alveolar regeneration. Our results indicate that JNK and p38 MAPK signaling is critical for mediating actin-cytoskeleton-remodeling-induced nuclear YAP expression in alveolar stem cells. Moreover, we show that Cdc42-controlled actin remodeling is required for the activation of JNK, p38, and YAP in post-PNX lungs. Our findings together establish that the Cdc42/F-actin/MAPK/YAP signaling cascade is essential for promoting alveolar regeneration in response to mechanical tension in the lung.
Collapse
Affiliation(s)
- Zhe Liu
- College of Life Sciences, Peking University, Beijing 100871, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Huijuan Wu
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kewu Jiang
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanjie Wang
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenjing Zhang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200031, China
| | - Qiqi Chu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Juan Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China
| | - Chun Yang
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
180
|
A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun 2016; 7:12309. [PMID: 27480037 PMCID: PMC4974664 DOI: 10.1038/ncomms12309] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
Branching morphogenesis is a complex biological process common to the development of most epithelial organs. Here we demonstrate that NF2, LATS1/2 and YAP play a critical role in branching morphogenesis in the mouse kidney. Removal of Nf2 or Lats1/2 from the ureteric bud (UB) lineage causes loss of branching morphogenesis that is rescued by loss of one copy of Yap and Taz, and phenocopied by YAP overexpression. Mosaic analysis demonstrates that cells with high YAP expression have reduced contribution to UB tips, similar to Ret−/− cells, and that YAP suppresses RET signalling and tip identity. Conversely, Yap/Taz UB-deletion leads to cyst-like branching and expansion of UB tip markers, suggesting a shift towards tip cell identity. Based on these data we propose that NF2 and the Hippo pathway locally repress YAP/TAZ activity in the UB to promote subsequent splitting of the tip to allow branching morphogenesis. Branching morphogenesis is essential for the formation of most epithelial organs. Here, the authors show that Neurofibromatosis 2 (NF2), the Hippo pathway kinases LATS1 and LATS2, and the transcriptional co-activators YAP and TAZ control tip identity, RET signalling and branching morphogenesis in the mouse kidney.
Collapse
|
181
|
Huang Z, Zhang L, Chen Y, Zhang H, Yu C, Zhou F, Zhang Z, Jiang L, Li R, Ma J, Li Z, Lai Y, Lin T, Zhao X, Zhang Q, Zhang B, Ye Z, Liu S, Wang W, Liang X, Liao R, Shi W. RhoA deficiency disrupts podocyte cytoskeleton and induces podocyte apoptosis by inhibiting YAP/dendrin signal. BMC Nephrol 2016; 17:66. [PMID: 27389190 PMCID: PMC4936208 DOI: 10.1186/s12882-016-0287-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/14/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Podocyte apoptosis is a major mechanism that leads to proteinuria in many kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. RhoA is one of Rho GTPases that has been well studied and plays a key role in regulating cytoskeletal architecture. Previous study showed that insufficient RhoA could result in rat aortic smooth muscle cell apoptosis. However, whether RhoA is involved in podocyte apoptosis remains unknown. METHODS Culture podocytes were treated with LPS, ADR or siRNA for 48 h before harvest. Subcellular immunoblotting, qRT-PCR, immunofluorescence and flow cytometry were used to exam the expression and function of RhoA or YAP in podocytes. RESULTS We found that the expression of RhoA and its activity were significantly decreased in LPS or ADR-injured podocytes, accompanying loss of stress fibers and increased cell apoptosis. Knocking down RhoA or its downstream effector mDia expression by siRNA also caused loss of stress fibers and podocyte apoptosis. Moreover, our results further demonstrated that RhoA deficiency could reduce the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Silenced dendrin expression significantly abolished RhoA, mDia or YAP deficiency-induced podocyte apoptosis. CONCLUSION RhoA deficiency could disrupt podocyte cytoskeleton and induce podocyte apoptosis by inhibiting YAP/dendrin signal. RhoA/mDia/YAP/dendrin signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary RhoA would be one potent way to prevent proteinuria kidney diseases.
Collapse
Affiliation(s)
- Zongshun Huang
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
- />Southern Medical University, Guangzhou, Guangdong China
| | - Li Zhang
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Yuanhan Chen
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Hong Zhang
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Chunping Yu
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Fangjian Zhou
- />State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060 China
- />Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060 China
| | - Zhiling Zhang
- />State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060 China
- />Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060 China
| | - Lijuan Jiang
- />State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060 China
- />Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060 China
| | - Ruizhao Li
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Jianchao Ma
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Zhuo Li
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Yuxiong Lai
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Ting Lin
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Xinchen Zhao
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Qianmei Zhang
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Bin Zhang
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Zhiming Ye
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Shuangxin Liu
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Wenjian Wang
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Xinling Liang
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Ruyi Liao
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| | - Wei Shi
- />Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 China
| |
Collapse
|
182
|
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer Cell 2016; 29:783-803. [PMID: 27300434 PMCID: PMC6186419 DOI: 10.1016/j.ccell.2016.05.005] [Citation(s) in RCA: 1440] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
YAP and TAZ are highly related transcriptional regulators pervasively activated in human malignancies. Recent work indicates that, remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, chemoresistance, and metastasis. YAP/TAZ are sensors of the structural and mechanical features of the cell microenvironment. A number of cancer-associated extrinsic and intrinsic cues conspire to overrule the YAP-inhibiting microenvironment of normal tissues, including changes in mechanotransduction, inflammation, oncogenic signaling, and regulation of the Hippo pathway. Addiction to YAP/TAZ thus potentially represents a central cancer vulnerability that may be exploited therapeutically.
Collapse
Affiliation(s)
- Francesca Zanconato
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy.
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy.
| |
Collapse
|
183
|
Lopez-Anido C, Poitelon Y, Gopinath C, Moran JJ, Ma KH, Law WD, Antonellis A, Feltri ML, Svaren J. Tead1 regulates the expression of Peripheral Myelin Protein 22 during Schwann cell development. Hum Mol Genet 2016; 25:3055-3069. [PMID: 27288457 DOI: 10.1093/hmg/ddw158] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/14/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
Schwann cells are myelinating glia in the peripheral nervous system that form the myelin sheath. A major cause of peripheral neuropathy is a copy number variant involving the Peripheral Myelin Protein 22 (PMP22) gene, which is located within a 1.4-Mb duplication on chromosome 17 associated with the most common form of Charcot-Marie-Tooth Disease (CMT1A). Rodent models of CMT1A have been used to show that reducing Pmp22 overexpression mitigates several aspects of a CMT1A-related phenotype. Mechanistic studies of Pmp22 regulation identified enhancers regulated by the Sox10 (SRY sex determining region Y-box 10) and Egr2/Krox20 (Early growth response protein 2) transcription factors in myelinated nerves. However, relatively little is known regarding how other transcription factors induce Pmp22 expression during Schwann cell development and myelination. Here, we examined Pmp22 enhancers as a function of cell type-specificity, nerve injury and development. While Pmp22 enhancers marked by active histone modifications were lost or remodeled after injury, we found that these enhancers were permissive in early development prior to Pmp22 upregulation. Pmp22 enhancers contain binding motifs for TEA domain (Tead) transcription factors of the Hippo signaling pathway. We discovered that Tead1 and co-activators Yap and Taz are required for Pmp22 expression, as well as for the expression of Egr2 Tead1 directly binds Pmp22 and Egr2 enhancers early in development and Tead1 binding is induced during myelination, correlating with Pmp22 expression. The data identify Tead1 as a novel regulator of Pmp22 expression during development in concert with Sox10 and Egr2.
Collapse
Affiliation(s)
- Camila Lopez-Anido
- Waisman Center, Madison, WI, USA.,Comparative Biomedical Sciences Graduate Program, Madison, WI, USA
| | | | - Chetna Gopinath
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Ki Hwan Ma
- Waisman Center, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, Madison, WI, USA
| | - William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John Svaren
- Waisman Center, Madison, WI, USA .,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
184
|
YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci 2016; 19:879-87. [PMID: 27273766 PMCID: PMC4925303 DOI: 10.1038/nn.4316] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons, using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice we show that Taz is required in Schwann cells for radial sorting and myelination, and that Yap is redundant with Taz. Yap/Taz are activated in Schwann cells by mechanical stimuli, and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for proper radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells.
Collapse
|
185
|
Wong JS, Meliambro K, Ray J, Campbell KN. Hippo signaling in the kidney: the good and the bad. Am J Physiol Renal Physiol 2016; 311:F241-8. [PMID: 27194720 DOI: 10.1152/ajprenal.00500.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/16/2016] [Indexed: 01/01/2023] Open
Abstract
The Hippo signaling pathway is an evolutionarily conserved kinase cascade, playing multiple roles in embryonic development that controls organ size, cell proliferation, and apoptosis. At the center of this network lie the Hippo kinase target and downstream pathway effector Yes-associated protein (YAP) and its paralog TAZ. In its phosphorylated form, cytoplasmic YAP is sequestered in an inactive state. When it is dephosphorylated, YAP, a potent oncogene, is activated and relocates to the nucleus to interact with a number of transcription factors and signaling regulators that promote cell growth, differentiation, and survival. The identification of YAP activation in human cancers has made it an attractive target for chemotherapeutic drug development. Little is known to date about the function of the Hippo pathway in the kidney, but that is rapidly changing. Recent studies have shed light on the role of Hippo-YAP signaling in glomerular and lower urinary tract embryonic development, maintenance of podocyte homeostasis, the integrity of the glomerular filtration barrier, regulation of renal tubular cyst growth, renal epithelial injury in diabetes, and renal fibrogenesis. This review summarizes the current knowledge of the Hippo-YAP signaling axis in the kidney under normal and disease conditions.
Collapse
Affiliation(s)
- Jenny S Wong
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin Meliambro
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Justina Ray
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
186
|
Gandhirajan RK, Jain M, Walla B, Johnsen M, Bartram MP, Huynh Anh M, Rinschen MM, Benzing T, Schermer B. Cysteine S-Glutathionylation Promotes Stability and Activation of the Hippo Downstream Effector Transcriptional Co-activator with PDZ-binding Motif (TAZ). J Biol Chem 2016; 291:11596-607. [PMID: 27048650 DOI: 10.1074/jbc.m115.712539] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 11/06/2022] Open
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) are critical transcriptional co-activators downstream of the Hippo pathway involved in the regulation of organ size, tissue regeneration, proliferation, and apoptosis. Recent studies suggested common and distinct functions of TAZ and YAP and their diverse impact under several pathological conditions. Here we report differential regulation of TAZ and YAP in response to oxidative stress. H2O2 exposure leads to increased stability and activation of TAZ but not of YAP. H2O2 induces reversible S-glutathionylation at conserved cysteine residues within TAZ. We further demonstrate that TAZ S-glutathionylation is critical for reactive oxygen species (ROS)-mediated, TAZ-dependent TEA domain transcription factor (TEAD) trans-activation. Lysophosphatidic acid, a physiological activator of YAP and TAZ, induces ROS elevation and, subsequently, TAZ S-glutathionylation, which promotes TAZ-mediated target gene expression. TAZ expression is essential for renal homeostasis in mice, and we identify basal TAZ S-glutathionylation in murine kidney lysates, which is elevated during ischemia/reperfusion injury in vivo This induced nuclear localization of TAZ and increased expression of connective tissue growth factor. These results describe a novel mechanism by which ROS sustains total cellular levels of TAZ. This preferential regulation suggests TAZ to be a redox sensor of the Hippo pathway.
Collapse
Affiliation(s)
- Rajesh Kumar Gandhirajan
- From the Department II of Internal Medicine and Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
| | - Manaswita Jain
- From the Department II of Internal Medicine and Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
| | - Benedikt Walla
- From the Department II of Internal Medicine and Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
| | - Marc Johnsen
- From the Department II of Internal Medicine and Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
| | - Malte P Bartram
- From the Department II of Internal Medicine and Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
| | - Minh Huynh Anh
- From the Department II of Internal Medicine and Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
| | - Markus M Rinschen
- From the Department II of Internal Medicine and Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
| | - Thomas Benzing
- From the Department II of Internal Medicine and Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and Systems Biology of Ageing Cologne, University of Cologne, 50937 Cologne, Germany
| | - Bernhard Schermer
- From the Department II of Internal Medicine and Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and Systems Biology of Ageing Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
187
|
Huang Z, Zhang L, Chen Y, Zhang H, Zhang Q, Li R, Ma J, Li Z, Yu C, Lai Y, Lin T, Zhao X, Zhang B, Ye Z, Liu S, Wang W, Liang X, Liao R, Shi W. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway. Cell Death Dis 2016; 7:e2142. [PMID: 26986510 PMCID: PMC4823952 DOI: 10.1038/cddis.2016.51] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/06/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Podocyte apoptosis is a major mechanism that leads to proteinuria in many chronic kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. The Rho family of small GTPases has been shown to be required in maintaining podocyte structure and function. Recent studies have indicated that podocyte-specific deletion of Cdc42 in vivo, but not of RhoA or Rac1, leads to congenital nephrotic syndrome and glomerulosclerosis. However, the underlying cellular events in podocyte controlled by Cdc42 remain unclear. Here, we assessed the cellular mechanisms by which Cdc42 regulates podocyte apoptosis. We found that the expression of Cdc42 and its activity were significantly decreased in high glucose-, lipopolysaccharide- or adriamycin-injured podocytes. Reduced Cdc42 expression in vitro and in vivo by small interfering RNA and selective Cdc42 inhibitor ML-141, respectively, caused podocyte apoptosis and proteinuria. Our results further demonstrated that insufficient Cdc42 or Nwasp, its downstream effector, could decrease the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Moreover, our data indicated that the loss of stress fibers caused by Cdc42/Nwasp deficiency also decreased Yes-associated protein (YAP) mRNA and protein expression, and induced podocyte apoptosis. Podocyte apoptosis induced by Cdc42/Nwasp/stress fiber deficiency was significantly inhibited by overexpressing-active YAP. Thus, the Cdc42/Nwasp/stress fibers/YAP signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary Cdc42 would be one potent way to prevent proteinuria kidney diseases.
Collapse
Affiliation(s)
- Z Huang
- Southern Medical University, Guangzhou, Guangdong, China
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - L Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Y Chen
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - H Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Q Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - R Li
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - J Ma
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Z Li
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - C Yu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Y Lai
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - T Lin
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - X Zhao
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - B Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Z Ye
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - S Liu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - W Wang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - X Liang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - R Liao
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - W Shi
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China. Tel: +86-13822182116; Fax: +86-20-83827812-62027; E-mail:
| |
Collapse
|
188
|
Grampa V, Delous M, Zaidan M, Odye G, Thomas S, Elkhartoufi N, Filhol E, Niel O, Silbermann F, Lebreton C, Collardeau-Frachon S, Rouvet I, Alessandri JL, Devisme L, Dieux-Coeslier A, Cordier MP, Capri Y, Khung-Savatovsky S, Sigaudy S, Salomon R, Antignac C, Gubler MC, Benmerah A, Terzi F, Attié-Bitach T, Jeanpierre C, Saunier S. Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation. PLoS Genet 2016; 12:e1005894. [PMID: 26967905 PMCID: PMC4788435 DOI: 10.1371/journal.pgen.1005894] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/02/2016] [Indexed: 01/01/2023] Open
Abstract
Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos. Altogether, our study demonstrates that NEK8 human mutations cause major organ developmental defects due to altered ciliogenesis and cell differentiation/proliferation through deregulation of the Hippo pathway. Genes mutated in ciliopathies encode proteins with various localizations and functions at the primary cilium. Here we report novel NEK8 mutations in patients with renal cystic hypodysplasia and associated ciliopathy defects. NEK8 belongs to a protein complex defining the Inversin compartment of the cilium. It is also a negative regulator of the Hippo signaling pathway that controls organ growth. We report genotype-phenotype correlation in the patients. We functionally demonstrate that the two types of mutations (missense versus nonsense) differentially affect ciliogenesis, cell apoptosis and epithelialisation. We also show that all the mutations lead to dysregulation of the Hippo pathway through nuclear YAP imbalance but that the nature of this imbalance is different according to the type of mutation. We confirm alteration of the Hippo pathway associated with Nek8 mutation in vivo in Jck mice. Remarkably, we show that morphogenesis defects observed in Nek8 knockdown epithelial cells or zebrafish embryos are rescued by Verteporfin, a specific inhibitor of YAP transcriptional activity, demonstrating the causative role of YAP dysregulation in the occurrence of these defects. Altogether, this study links NEK8 mutations to dysregulation of the Hippo pathway and provide molecular clues to understand the variability of the multiorgan defects in the patients.
Collapse
Affiliation(s)
- Valentina Grampa
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Marion Delous
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Mohamad Zaidan
- INSERM U1151, CNRS UMR8253, Paris Descartes—Sorbonne Paris Cité University, Necker-Enfants Malades Institute, Mechanisms and Therapeutic Strategies of Chronic Kidney Diseases, Necker Hospital, Paris, France
| | - Gweltas Odye
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sophie Thomas
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris, France
| | - Nadia Elkhartoufi
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris, France
- Department of Genetics, AP-HP, Necker Hospital, Paris, France
| | - Emilie Filhol
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Olivier Niel
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatric Nephrology, AP-HP, Robert Debré Hospital, Paris, France
| | - Flora Silbermann
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Corinne Lebreton
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Intestinal Immunity, Paris, France
| | | | - Isabelle Rouvet
- Cellular Biotechnology Department and Biobank, Hospices Civils de Lyon, CHU de Lyon, Lyon, France
| | | | - Louise Devisme
- Anatomopathological Department, CHRU Lille, University Hospital, Lille, France
| | | | - Marie-Pierre Cordier
- Department of Genetics, Femme Mère-Enfant Hospital, University of Lyon 1, Bron, France
| | - Yline Capri
- Department of Genetics, CHU Robert-Debré, Paris, France
| | | | - Sabine Sigaudy
- Multidisciplinary Department of Prenatal Diagnosis, La Timone Children’s Hospital, Marseille, France
| | - Rémi Salomon
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatric Nephrology, AP-HP, Necker Hospital, Paris, France
| | - Corinne Antignac
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Department of Genetics, AP-HP, Necker Hospital, Paris, France
| | - Marie-Claire Gubler
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Alexandre Benmerah
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Fabiola Terzi
- INSERM U1151, CNRS UMR8253, Paris Descartes—Sorbonne Paris Cité University, Necker-Enfants Malades Institute, Mechanisms and Therapeutic Strategies of Chronic Kidney Diseases, Necker Hospital, Paris, France
| | - Tania Attié-Bitach
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris, France
- Department of Histology-Embryology and Cytogenetics, AP-HP, Necker Hospital, Paris, France
| | - Cécile Jeanpierre
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sophie Saunier
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- * E-mail:
| |
Collapse
|
189
|
Yu FX, Zhao B, Guan KL. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 2016; 163:811-28. [PMID: 26544935 DOI: 10.1016/j.cell.2015.10.044] [Citation(s) in RCA: 1682] [Impact Index Per Article: 186.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/16/2022]
Abstract
Two decades of studies in multiple model organisms have established the Hippo pathway as a key regulator of organ size and tissue homeostasis. By inhibiting YAP and TAZ transcription co-activators, the Hippo pathway regulates cell proliferation, apoptosis, and stemness in response to a wide range of extracellular and intracellular signals, including cell-cell contact, cell polarity, mechanical cues, ligands of G-protein-coupled receptors, and cellular energy status. Dysregulation of the Hippo pathway exerts a significant impact on cancer development. Further investigation of the functions and regulatory mechanisms of this pathway will help uncovering the mystery of organ size control and identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
190
|
Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, Lovric S, Ashraf S, Braun DA, Halbritter J, Fang H, Airik R, Vega-Warner V, Cho KJ, Chan TA, Morris LGT, ffrench-Constant C, Allen N, McNeill H, Büscher R, Kyrieleis H, Wallot M, Gaspert A, Kistler T, Milford DV, Saleem MA, Keng WT, Alexander SI, Valentini RP, Licht C, Teh JC, Bogdanovic R, Koziell A, Bierzynska A, Soliman NA, Otto EA, Lifton RP, Holzman LB, Sibinga NES, Walz G, Tufro A, Hildebrandt F. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 2016; 7:10822. [PMID: 26905694 PMCID: PMC4770090 DOI: 10.1038/ncomms10822] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 01/25/2016] [Indexed: 01/12/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.
Collapse
Affiliation(s)
- Heon Yung Gee
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Carolin E Sadowski
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pardeep K Aggarwal
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Jonathan D Porath
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Toma A Yakulov
- University Freiburg Medical Center, Freiburg 79106, Germany
| | - Markus Schueler
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Svjetlana Lovric
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shazia Ashraf
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniela A Braun
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jan Halbritter
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Humphrey Fang
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rannar Airik
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Virginia Vega-Warner
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kyeong Jee Cho
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Luc G T Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Charles ffrench-Constant
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nicholas Allen
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Helen McNeill
- Department of Molecular Genetics, Samuel Lunenfeld-Tanenbaum Research Institute, University of Toronto, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Rainer Büscher
- Department of Pediatrics II, University Hospital of Essen, Essen 45147, Germany
| | | | - Michael Wallot
- Department of Pediatrics, Bethanien Hospital, Moers 47441, Germany
| | - Ariana Gaspert
- Institute of Surgical Pathology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Thomas Kistler
- Division of Nephrology, Kantonsspital Winterthur, Winterthur 8401, Switzerland
| | - David V Milford
- Department of Paediatric Nephrology, Birmingham Children's Hospital, Birmingham B4 6NH, UK
| | - Moin A Saleem
- Children's and Academic Renal Unit, University of Bristol, Bristol BS1 5NB, UK
| | - Wee Teik Keng
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur 50586, Malaysia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead 2145, Australia
| | - Rudolph P Valentini
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital of Michigan/Wayne State University, Detroit, Michigan 48201, USA
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Jun C Teh
- Division of Nephrology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Radovan Bogdanovic
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Department of Nephrology, University of Belgrade, Faculty of Medicine, Belgrade 11000, Serbia
| | - Ania Koziell
- Department of Experimental Immunobiology, Division of Transplantation Immunology &Mucosal Biology, King's College London, Faculty of Life Sciences &Medicine, 5th floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology &Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo 11562, Egypt.,Egyptian Group for Orphan Renal Diseases, Cairo 11562, Egypt
| | - Edgar A Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Lawrence B Holzman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas E S Sibinga
- Wilf Family Cardiovascular Research Institute and Department of Medicine/Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Gerd Walz
- University Freiburg Medical Center, Freiburg 79106, Germany
| | - Alda Tufro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
191
|
Abstract
The basic unit of kidney function is the nephron. In the mouse, around 14,000 nephrons form in a 10-day period extending into early neonatal life, while the human fetus forms the adult complement of nephrons in a 32-week period completed prior to birth. This review discusses our current understanding of mammalian nephrogenesis: the contributing cell types and the regulatory processes at play. A conceptual developmental framework has emerged for the mouse kidney. This framework is now guiding studies of human kidney development enabled in part by in vitro systems of pluripotent stem cell-seeded nephrogenesis. A near future goal will be to translate our developmental knowledge-base to the productive engineering of new kidney structures for regenerative medicine.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
192
|
Park R, Moon UY, Park JY, Hughes LJ, Johnson RL, Cho SH, Kim S. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun 2016; 7:10329. [PMID: 26754915 PMCID: PMC4729961 DOI: 10.1038/ncomms10329] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 11/09/2022] Open
Abstract
Timely generation and normal maturation of ependymal cells along the aqueduct are critical for preventing physical blockage between the third and fourth ventricles and the development of fetal non-communicating hydrocephalus. Our study identifies Yap, the downstream effector of the evolutionarily conserved Hippo pathway, as a central regulator for generating developmentally controlled ependymal cells along the ventricular lining of the aqueduct. Yap function is necessary for proper proliferation of progenitors and apical attachment of ependymal precursor cells. Importantly, an injury signal initiated by lysophosphatidic acid (LPA), an upstream regulator of Yap that can cause fetal haemorrhagic hydrocephalus, deregulates Yap in the developing aqueduct. LPA exposure leads to the loss of N-cadherin concentrations at the apical endfeet, which can be partially restored by forced Yap expression and more efficiently by phosphomimetic Yap. These results reveal a novel function of Yap in retaining tissue junctions during normal development and after fetal brain injury.
Collapse
Affiliation(s)
- Raehee Park
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Uk Yeol Moon
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Jun Young Park
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Lucinda J. Hughes
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Graduate Program of Biomedical Sciences, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Randy L. Johnson
- Department of Cancer Biology, MD Anderson Cancer Research Center, University of Texas, Houston, Texas 77030, USA
| | - Seo-Hee Cho
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| |
Collapse
|
193
|
YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene 2016; 35:4256-68. [PMID: 26725322 PMCID: PMC4931992 DOI: 10.1038/onc.2015.491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 10/26/2015] [Accepted: 11/27/2015] [Indexed: 12/29/2022]
Abstract
Postnatal proliferation of cerebellar granule neuron precursors (CGNPs), proposed cells of origin for the SHH-associated subgroup of medulloblastoma, is driven by Sonic hedgehog (Shh) and insulin-like growth factor (IGF) in the developing cerebellum. Shh induces the oncogene Yes-associated protein (YAP), which drives IGF2 expression in CGNPs and mouse Shh-associated medulloblastomas. To determine how IGF2 expression is regulated downstream of YAP, we carried out an unbiased screen for transcriptional regulators bound to IGF2 promoters. We report that Y-box binding protein-1 (YB-1), an onco-protein regulating transcription and translation, binds to IGF2 promoter P3. We observed that YB-1 is upregulated across human medulloblastoma subclasses as well as in other varieties of pediatric brain tumors. Utilizing the cerebellar progenitor model for the Shh subgroup of medulloblastoma in mice, we show for the first time that YB-1 is induced by Shh in CGNPs. Its expression is YAP-dependent and it is required for IGF2 expression in CGNPs. Finally, both gain-of function and loss-of-function experiments reveal that YB-1 activity is required for sustaining CGNP and medulloblastoma cell (MBC) proliferation. Collectively, our findings describe a novel role for YB-1 in driving proliferation in the developing cerebellum and MBCs and they identify the SHH:YAP:YB1:IGF2 axis as a powerful target for therapeutic intervention in medulloblastomas.
Collapse
|
194
|
Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 2015; 343:42-53. [PMID: 26524510 DOI: 10.1016/j.yexcr.2015.10.034] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022]
Abstract
Signalling from the extracellular matrix (ECM) is a fundamental cellular input that sustains proliferation, opposes cell death and regulates differentiation. Through integrins, cells perceive both the chemical composition and physical properties of the ECM. In particular, cell behaviour is profoundly influenced by the mechanical elasticity or stiffness of the ECM, which regulates the ability of cells to develop forces through their contractile actomyosin cytoskeleton and to mature focal adhesions. This mechanosensing ability affects fundamental cellular functions, such that alterations of ECM stiffness is nowadays considered not a simple consequence of pathology, but a causative input driving aberrant cell behaviours. We here discuss recent advances on how mechanical signals intersect nuclear transcription and in particular the activity of YAP/TAZ transcriptional coactivators, known downstream transducers of the Hippo pathway and important effectors of ECM mechanical cues.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, via Bassi 58/B, 35131 Padua, Italy.
| |
Collapse
|
195
|
Reginensi A, Hoshi M, Boualia SK, Bouchard M, Jain S, McNeill H. Yap and Taz are required for Ret-dependent urinary tract morphogenesis. Development 2015; 142:2696-703. [PMID: 26243870 DOI: 10.1242/dev.122044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the high occurrence of congenital abnormalities of the lower urinary tract in humans, the molecular, cellular and morphological aspects of their development are still poorly understood. Here, we use a conditional knockout approach to inactivate within the nephric duct (ND) lineage the two effectors of the Hippo pathway, Yap and Taz. Deletion of Yap leads to hydronephrotic kidneys with blind-ending megaureters at birth. In Yap mutants, the ND successfully migrates towards, and contacts, the cloaca. However, close analysis reveals that the tip of the Yap(-/-) ND forms an aberrant connection with the cloaca and does not properly insert into the cloaca, leading to later detachment of the ND from the cloaca. Taz deletion from the ND does not cause any defect, but analysis of Yap(-/-);Taz(-/-) NDs indicates that both genes play partially redundant roles in ureterovesical junction formation. Aspects of the Yap(-/-) phenotype resemble hypersensitivity to RET signaling, including excess budding of the ND, increased phospho-ERK and increased expression of Crlf1, Sprouty1, Etv4 and Etv5. Importantly, the Yap(ND) (-/-) ND phenotype can be largely rescued by reducing Ret gene dosage. Taken together, these results suggest that disrupting Yap/Taz activities enhances Ret pathway activity and contributes to pathogenesis of lower urinary tract defects in human infants.
Collapse
Affiliation(s)
- Antoine Reginensi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5
| | - Masato Hoshi
- Departments of Internal Medicine (Renal Division) and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sami Kamel Boualia
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada H3A 1A3
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada H3A 1A3
| | - Sanjay Jain
- Departments of Internal Medicine (Renal Division) and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5 Department of Molecular Genetics, University of Toronto, Toronto, Canada M5G 1X5
| |
Collapse
|
196
|
Mari C, Winyard P. Concise Review: Understanding the Renal Progenitor Cell Niche In Vivo to Recapitulate Nephrogenesis In Vitro. Stem Cells Transl Med 2015; 4:1463-71. [PMID: 26494782 DOI: 10.5966/sctm.2015-0104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/31/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Chronic kidney disease (CKD), defined as progressive kidney damage and a reduction of the glomerular filtration rate, can progress to end-stage renal failure (CKD5), in which kidney function is completely lost. CKD5 requires dialysis or kidney transplantation, which is limited by the shortage of donor organs. The incidence of CKD5 is increasing annually in the Western world, stimulating an urgent need for new therapies to repair injured kidneys. Many efforts are directed toward regenerative medicine, in particular using stem cells to replace nephrons lost during progression to CKD5. In the present review, we provide an overview of the native nephrogenic niche, describing the complex signals that allow survival and maintenance of undifferentiated renal stem/progenitor cells and the stimuli that promote differentiation. Recapitulating in vitro what normally happens in vivo will be beneficial to guide amplification and direct differentiation of stem cells toward functional renal cells for nephron regeneration. SIGNIFICANCE Kidneys perform a plethora of functions essential for life. When their main effector, the nephron, is irreversibly compromised, the only therapeutic choices available are artificial replacement (dialysis) or renal transplantation. Research focusing on alternative treatments includes the use of stem cells. These are immature cells with the potential to mature into renal cells, which could be used to regenerate the kidney. To achieve this aim, many problems must be overcome, such as where to take these cells from, how to obtain enough cells to deliver to patients, and, finally, how to mature stem cells into the cell types normally present in the kidney. In the present report, these questions are discussed. By knowing the factors directing the proliferation and differentiation of renal stem cells normally present in developing kidney, this knowledge can applied to other types of stem cells in the laboratory and use them in the clinic as therapy for the kidney.
Collapse
Affiliation(s)
- Chiara Mari
- Developmental Biology and Cancer, Institute of Child Health, University College London, London, United Kingdom
| | - Paul Winyard
- Developmental Biology and Cancer, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
197
|
Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature 2015; 526:715-8. [PMID: 26503053 DOI: 10.1038/nature15382] [Citation(s) in RCA: 460] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/07/2015] [Indexed: 12/15/2022]
Abstract
The gut epithelium has remarkable self-renewal capacity that under homeostatic conditions is driven by Wnt signalling in Lgr5(+) intestinal stem cells (ISCs). However, the mechanisms underlying ISC regeneration after injury remain poorly understood. The Hippo signalling pathway mediates tissue growth and is important for regeneration. Here we demonstrate in mice that Yap, a downstream transcriptional effector of Hippo, is critical for recovery of intestinal epithelium after exposure to ionizing radiation. Yap transiently reprograms Lgr5(+) ISCs by suppressing Wnt signalling and excessive Paneth cell differentiation, while promoting cell survival and inducing a regenerative program that includes Egf pathway activation. Accordingly, growth of Yap-deficient organoids is rescued by the Egfr ligand epiregulin, and we find that non-cell-autonomous production of stromal epiregulin may compensate for Yap loss in vivo. Consistent with key roles for regenerative signalling in tumorigenesis, we further demonstrate that Yap inactivation abolishes adenomas in the Apc(Min) mouse model of colon cancer, and that Yap-driven expansion of Apc(-/-) organoids requires the Egfr module of the Yap regenerative program. Finally, we show that in vivo Yap is required for progression of early Apc mutant tumour-initiating cells, suppresses their differentiation into Paneth cells, and induces a regenerative program and Egfr signalling. Our studies reveal that upon tissue injury, Yap reprograms Lgr5(+) ISCs by inhibiting the Wnt homeostatic program, while inducing a regenerative program that includes activation of Egfr signalling. Moreover, our findings reveal a key role for the Yap regenerative pathway in driving cancer initiation.
Collapse
Affiliation(s)
- Alex Gregorieff
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Yu Liu
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Mohammad R Inanlou
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Yuliya Khomchuk
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
198
|
Elias BC, Das A, Parekh DV, Mernaugh G, Adams R, Yang Z, Brakebusch C, Pozzi A, Marciano DK, Carroll TJ, Zent R. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. J Cell Sci 2015; 128:4293-305. [PMID: 26490995 DOI: 10.1242/jcs.164509] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/14/2015] [Indexed: 01/06/2023] Open
Abstract
The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.
Collapse
Affiliation(s)
- Bertha C Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Das
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diptiben V Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rebecca Adams
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zhufeng Yang
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cord Brakebusch
- Biotech Research Center, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Veterans Affairs Hospital, Nashville, TN 37232, USA
| | - Denise K Marciano
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas J Carroll
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
199
|
Chen J, Harris RC. Interaction of the EGF Receptor and the Hippo Pathway in the Diabetic Kidney. J Am Soc Nephrol 2015; 27:1689-700. [PMID: 26453611 DOI: 10.1681/asn.2015040415] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/27/2015] [Indexed: 12/30/2022] Open
Abstract
Activation of the EGF receptor (EGFR) or the Hippo signaling pathway can control cell proliferation, apoptosis, and differentiation, and the dysregulation of these pathways can contribute to tumorigenesis. Previous studies showed that activation of EGFR signaling in renal epithelial cells can exacerbate diabetic kidney injury. Moreover, EGFR has been implicated in regulating the Hippo signaling pathway in Drosophila; thus, we examined this potential interaction in mammalian diabetic kidney disease. Yes-associated protein (YAP) is a transcriptional regulator regulated by the Hippo signaling pathway. We found YAP protein expression and phosphorylation were upregulated in diabetic mouse renal proximal tubule epithelial cells, which were inhibited in diabetic proximal tubule EGFR-knockout mice (EGFR(ptKO)) or administration of an EGFR tyrosine kinase inhibitor erlotinib. Furthermore, activation of an EGFR-PI3K-Akt-CREB signaling pathway mediated YAP gene expression and YAP nuclear translocation and interaction with the TEA domain (TEAD) transcription factor complex, which led to upregulated expression of two TEAD-dependent genes, the connective tissue growth factor and amphiregulin genes. In a renal proximal tubule cell line, either pharmacologic or genetic inhibition of EGFR, Akt, or CREB blunted YAP expression in response to high-glucose treatment. Additionally, knocking down YAP expression by specific siRNA inhibited cell proliferation in response to high glucose or exogenous EGF. Therefore, these results link the Hippo pathway to EGFR-mediated renal epithelial injury in diabetes.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Veterans Affairs, Nashville, Tennessee; and Department of Medicine and
| | - Raymond C Harris
- Department of Veterans Affairs, Nashville, Tennessee; and Department of Medicine and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
200
|
Barry DM, Xu K, Meadows SM, Zheng Y, Norden PR, Davis GE, Cleaver O. Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development 2015; 142:3058-70. [PMID: 26253403 DOI: 10.1242/dev.125260] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022]
Abstract
The Rho family of small GTPases has been shown to be required in endothelial cells (ECs) during blood vessel formation. However, the underlying cellular events controlled by different GTPases remain unclear. Here, we assess the cellular mechanisms by which Cdc42 regulates mammalian vascular morphogenesis and maintenance. In vivo deletion of Cdc42 in embryonic ECs (Cdc42(Tie2KO)) results in blocked lumen formation and endothelial tearing, leading to lethality of mutant embryos by E9-10 due to failed blood circulation. Similarly, inducible deletion of Cdc42 (Cdc42(Cad5KO)) at mid-gestation blocks angiogenic tubulogenesis. By contrast, deletion of Cdc42 in postnatal retinal vessels leads to aberrant vascular remodeling and sprouting, as well as markedly reduced filopodia formation. We find that Cdc42 is essential for organization of EC adhesion, as its loss results in disorganized cell-cell junctions and reduced focal adhesions. Endothelial polarity is also rapidly lost upon Cdc42 deletion, as seen by failed localization of apical podocalyxin (PODXL) and basal actin. We link observed failures to a defect in F-actin organization, both in vitro and in vivo, which secondarily impairs EC adhesion and polarity. We also identify Cdc42 effectors Pak2/4 and N-WASP, as well as the actomyosin machinery, to be crucial for EC actin organization. This work supports the notion of Cdc42 as a central regulator of the cellular machinery in ECs that drives blood vessel formation.
Collapse
Affiliation(s)
- David M Barry
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Ke Xu
- Department SCRB, Harvard University, Cambridge, MA 02138, USA
| | - Stryder M Meadows
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA 70118, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Pieter R Norden
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|