151
|
Ohta E, Nagayama Y, Koyama N, Kakiuchi D, Hosokawa S. Malaria in cynomolgus monkeys used in toxicity studies in Japan. J Toxicol Pathol 2016; 29:31-8. [PMID: 26989299 PMCID: PMC4766527 DOI: 10.1293/tox.2015-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
Plasmodium spp. protozoa cause malaria and are known to infect humans and a variety of animal species including macaque monkeys. Here we report both our experience with malaria recrudescence in cynomolgus monkeys (Macaca fascicularis) in a toxicity study and the results of a survey on Plasmodium infection in cynomolgus monkeys imported to Japan for laboratory use. A cynomolgus monkey from the toxicity study presented with severe anemia and Plasmodium protozoa in erythrocytes on a thin blood smear and was subsequently diagnosed with symptomatic malaria. In this animal, congestion and accumulation of hemozoin (malaria pigment) in macrophages were noted in the enlarged and darkly discolored spleen. As a follow-up for the experience, spleen sections from 800 cynomolgus monkeys in toxicity studies conducted between 2003 and 2013 were retrospectively examined for hemozoin deposition as a marker of Plasmodium infection. The origin of the animals included Cambodia, China, Indonesia, and Vietnam. Hemozoin deposition was confirmed in 44% of all examined monkeys. Monkeys from Indonesia showed the highest incidence of hemozoin deposition (approx. 80%). A high prevalence of Plasmodium infection in laboratory monkeys was also confirmed with polymerase chain reaction (PCR) by using Plasmodium genus-specific primers. Although Japan is not a country with endemic malaria, it is important to be aware of the prevalence and potential impact of background infection with Plasmodium spp. and recrudescence of symptomatic malaria in imported laboratory monkeys on pharmaceutical toxicity studies.
Collapse
Affiliation(s)
- Etsuko Ohta
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Yuko Nagayama
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Naoki Koyama
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Dai Kakiuchi
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Satoru Hosokawa
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
152
|
Sutton PL, Luo Z, Divis PCS, Friedrich VK, Conway DJ, Singh B, Barnwell JW, Carlton JM, Sullivan SA. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi. INFECTION GENETICS AND EVOLUTION 2016; 40:243-252. [PMID: 26980604 DOI: 10.1016/j.meegid.2016.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
Abstract
Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical. We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes.
Collapse
Affiliation(s)
- Patrick L Sutton
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Zunping Luo
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Paul C S Divis
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom; Malaria Research Centre, Faculty of Medicine and Health Sciences, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Volney K Friedrich
- Department of Anthropology, New York University, 38 Waverly Place, New York, NY 10003, United States
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom; Malaria Research Centre, Faculty of Medicine and Health Sciences, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Balbir Singh
- Malaria Research Centre, Faculty of Medicine and Health Sciences, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - John W Barnwell
- Laboratory Research and Development Unit, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States.
| |
Collapse
|
153
|
Grigg MJ, Barber BE, Marfurt J, Imwong M, William T, Bird E, Piera KA, Aziz A, Boonyuen U, Drakeley CJ, Cox J, White NJ, Cheng Q, Yeo TW, Auburn S, Anstey NM. Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia. PLoS One 2016; 11:e0149519. [PMID: 26930493 PMCID: PMC4773021 DOI: 10.1371/journal.pone.0149519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/02/2016] [Indexed: 12/22/2022] Open
Abstract
Background Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission. Methods The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket. Results Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates. Conclusion Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.
Collapse
Affiliation(s)
- Matthew J. Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- * E-mail:
| | - Bridget E. Barber
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Jutta Marfurt
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia
| | - Elspeth Bird
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Kim A. Piera
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ammar Aziz
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christopher J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jonathan Cox
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Qin Cheng
- Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, Queensland Institute of Medical Research, Brisbane, Australia
| | - Tsin W. Yeo
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
154
|
Rawa MSA, Fong MY, Lau YL. Genetic diversity and natural selection in the rhoptry-associated protein 1 (RAP-1) of recent Plasmodium knowlesi clinical isolates from Malaysia. Malar J 2016; 15:62. [PMID: 26847346 PMCID: PMC4743133 DOI: 10.1186/s12936-016-1127-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/25/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Plasmodium rhoptry-associated protein 1 (RAP-1) plays a role in the formation of the parasitophorous vacuole following the parasite's invasion of red blood cells. Although there is some evidence that the protein is recognized by the host's immune system, study of Plasmodium falciparum RAP-1 (PfRAP-1) suggests that it is not under immune pressure. A previous study on five old (1953-1962) P. knowlesi strains suggested that RAP-1 has limited genetic polymorphism and might be under negative selection. In the present study, 30 recent P. knowlesi isolates were studied to obtain a better insight into the polymorphism and natural selection of PkRAP-1. METHODS Blood samples from 30 knowlesi malaria patients were used. These samples were collected between 2010 and 2014. The PkRAP-1 gene, which contains two exons, was amplified by PCR, cloned into Escherichia coli and sequenced. Genetic diversity and phylogenetic analyses were performed using MEGA6 and DnaSP ver. 5.10.00 programs. RESULTS Thirty PkRAP-1 sequences were obtained. The nucleotide diversity (π) of exons 1, 2 and the total coding region (0.00915, 0.01353 and 0.01298, respectively) were higher than those of the old strains. Further analysis revealed a lower rate of non-synonymous (dN) than synonymous (dS) mutations, suggesting negative (purifying) selection of PkRAP-1. Tajima's D test and Fu and Li's D test values were not significant. At the amino acid level, 22 haplotypes were established with haplotype H7 having the highest frequency (7/34, 20.5 %). In the phylogenetic analysis, two distinct haplotype groups were observed. The first group contained the majority of the haplotypes, whereas the second had fewer haplotypes. CONCLUSIONS The present study found higher genetic polymorphism in the PkRAP-1 gene than the polymorphism level reported in a previous study. This observation may stem from the difference in sample size between the present (n = 30) and the previous (n = 5) study. Synonymous and non-synonymous mutation analysis indicated purifying (negative) selection of the gene. The separation of PkRAP-1haplotypes into two groups provides further evidence to the postulation of two distinct P. knowlesi types or lineages.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Faculty of Medicine, Department of Parasitology, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mun-Yik Fong
- Faculty of Medicine, Department of Parasitology, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yee-Ling Lau
- Faculty of Medicine, Department of Parasitology, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
155
|
Abstract
There were only four species of Plasmodium that were thought to cause malaria in humans until a large number of human infections by Plasmodium knowlesi, a malaria parasite typically found in long-tailed and pig-tailed macaques, were reported in 2004 in Malaysian Borneo. Since then, cases of knowlesi malaria have been reported throughout South-east Asia and also in travellers returning from the region. This article describes the molecular, entomological and epidemiological data which indicate that P. knowlesi is an ancient parasite that is primarily zoonotic, and there are three highly divergent sub-populations. It also describes the detection methods for P. knowlesi, which is morphologicaly similar to P. malariae, and the clinical features and treatment of this malaria parasite that is potentially fatal.
Collapse
|
156
|
Fong MY, Wong SS, Silva JRD, Lau YL. Genetic polymorphism in domain I of the apical membrane antigen-1 among Plasmodium knowlesi clinical isolates from Peninsular Malaysia. Acta Trop 2015; 152:145-150. [PMID: 26384455 DOI: 10.1016/j.actatropica.2015.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 09/07/2015] [Accepted: 09/14/2015] [Indexed: 01/23/2023]
Abstract
The simian malaria parasite Plasmodium knowlesi is now recognized as a species that can cause human malaria. The first report of large scale human knowlesi malaria was in 2004 in Malaysia Borneo. Since then, hundreds of human knowlesi malaria cases have been reported in Southeast Asia. The present study investigates the genetic polymorphism of P. knowlesi DI domain of the apical membrane antigen-1 (AMA-1), a protein considered as a promising vaccine candidate for malaria. The DI domain of AMA-1 gene of P. knowlesi clinical isolates from Peninsular Malaysia was amplified by PCR, cloned into Escherichia coli, then sequenced and analysed. Ninety-seven DI domain sequences were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence showed 21 synonymous and 25 nonsynonymous mutations. Nonetheless, nucleotide sequence analysis revealed low genetic diversity of the DI domain, and it was under purifying (negative) selection. At the amino acid level, 26 different haplotypes were identified and 2 were predominant haplotypes (H1, H2) with high frequencies. Phylogenetic analysis revealed that the 26 haplotypes could be clustered into 2 distinct groups (I and II). Members of the groups were basically derived from haplotypes H1 and H2, respectively.
Collapse
Affiliation(s)
- Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Shen Siang Wong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Jeremy Ryan De Silva
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
157
|
Faust C, Dobson AP. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium. One Health 2015; 1:66-75. [PMID: 28616467 PMCID: PMC5441356 DOI: 10.1016/j.onehlt.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022] Open
Abstract
Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi, in Southeast Asia highlights the permeability of species barriers in Plasmodium. Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence-absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.
Collapse
Affiliation(s)
- Christina Faust
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
158
|
Siregar JE, Faust CL, Murdiyarso LS, Rosmanah L, Saepuloh U, Dobson AP, Iskandriati D. Non-invasive surveillance for Plasmodium in reservoir macaque species. Malar J 2015; 14:404. [PMID: 26459307 PMCID: PMC4603874 DOI: 10.1186/s12936-015-0857-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/22/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Primates are important reservoirs for human diseases, but their infection status and disease dynamics are difficult to track in the wild. Within the last decade, a macaque malaria, Plasmodium knowlesi, has caused disease in hundreds of humans in Southeast Asia. In order to track cases and understand zoonotic risk, it is imperative to be able to quantify infection status in reservoir macaque species. In this study, protocols for the collection of non-invasive samples and isolation of malaria parasites from naturally infected macaques are optimized. METHODS Paired faecal and blood samples from 60 Macaca fascicularis and four Macaca nemestrina were collected. All animals came from Sumatra or Java and were housed in semi-captive breeding colonies around West Java. DNA was extracted from samples using a modified protocol. Nested polymerase chain reactions (PCR) were run to detect Plasmodium using primers targeting mitochondrial DNA. Sensitivity of screening faecal samples for Plasmodium was compared to other studies using Kruskal Wallis tests and logistic regression models. RESULTS The best primer set was 96.7 % (95 % confidence intervals (CI): 83.3-99.4 %) sensitive for detecting Plasmodium in faecal samples of naturally infected macaques (n = 30). This is the first study to produce definitive estimates of Plasmodium sensitivity and specificity in faecal samples from naturally infected hosts. The sensitivity was significantly higher than some other studies involving wild primates. CONCLUSIONS Faecal samples can be used for detection of malaria infection in field surveys of macaques, even when there are no parasites visible in thin blood smears. Repeating samples from individuals will improve inferences of the epidemiology of malaria in wild primates.
Collapse
Affiliation(s)
| | - Christina L Faust
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | | | - Lis Rosmanah
- Pusat Studi Satwa Primata, Institut Pertanian Bogor, Bogor, Indonesia.
| | - Uus Saepuloh
- Pusat Studi Satwa Primata, Institut Pertanian Bogor, Bogor, Indonesia.
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Diah Iskandriati
- Pusat Studi Satwa Primata, Institut Pertanian Bogor, Bogor, Indonesia.
| |
Collapse
|
159
|
A case of severe Plasmodium knowlesi in a splenectomized patient. Parasitol Int 2015; 65:55-57. [PMID: 26454133 DOI: 10.1016/j.parint.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
Plasmodium knowlesi, a zoonotic malaria, is now considered the fifth species of Plasmodium causing malaria in humans. With its 24-hour erythrocytic stage of development, it has raised concern regarding its high potential in replicating and leading to severe illness. Spleen is an important site for removal of parasitized red blood cells and generating immunity. We reported a case of knowlesi malaria in a non-immune, splenectomized patient. We observed the delay in parasite clearance, high parasitic counts, and severe illness at presentation. A thorough search through literature revealed several case reports on falciparum and vivax malaria in splenectomized patients. However, literature available for knowlesi malaria in splenectomized patient is limited. Further studies need to be carried out to clarify the role of spleen in host defense against human malaria especially P. knowlesi.
Collapse
|
160
|
Wong ML, Chua TH, Leong CS, Khaw LT, Fornace K, Wan-Sulaiman WY, William T, Drakeley C, Ferguson HM, Vythilingam I. Seasonal and Spatial Dynamics of the Primary Vector of Plasmodium knowlesi within a Major Transmission Focus in Sabah, Malaysia. PLoS Negl Trop Dis 2015; 9:e0004135. [PMID: 26448052 PMCID: PMC4598189 DOI: 10.1371/journal.pntd.0004135] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/10/2015] [Indexed: 11/18/2022] Open
Abstract
Background The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species. Methodology/Principal Findings We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000hrs. Conclusions/Significance This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region. The first natural infection of Plasmodium knowlesi was reported 40 years ago. At that time it was perceived that the infection would not affect humans. However, now P. knowlesi is the predominant malaria species (38% of the cases) infecting people in Malaysia and is a notable obstacle to malaria elimination in the country. Plasmodium knowlesi has also been reported from all countries in Southeast Asia with the exception of Lao PDR and Timor Leste. In Sabah, Malaysian Borneo cases of human P. knowlesi are increasing. Thus, a comprehensive understanding of the bionomics of the vectors is required so as to enable proper control strategies. Here, we conducted a longitudinal study in Kudat district, Sabah, to determine and characterize the vectors of P. knowlesi within this transmission foci. Anopheles balabacensis was the predominant mosquito in all study sites and is confirmed as vector for P. knowlesi and other simian malaria parasites. The peak biting time was in the early part of the evening between1800 to 2000. Thus, breaking the chain of transmission is an extremely challenging task for the malaria elimination programme.
Collapse
Affiliation(s)
- Meng L. Wong
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tock H. Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Cherng S. Leong
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Loke T. Khaw
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Scotland, United Kingdom
| | - Indra Vythilingam
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
161
|
Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi. Proc Natl Acad Sci U S A 2015; 112:13027-32. [PMID: 26438871 DOI: 10.1073/pnas.1509534112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10(-3)) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (FST) = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean FST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.
Collapse
|
162
|
Akter R, Vythilingam I, Khaw LT, Qvist R, Lim YAL, Sitam FT, Venugopalan B, Sekaran SD. Simian malaria in wild macaques: first report from Hulu Selangor district, Selangor, Malaysia. Malar J 2015; 14:386. [PMID: 26437652 PMCID: PMC4595055 DOI: 10.1186/s12936-015-0856-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/22/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Malaria is a vector-borne parasitic disease which is prevalent in many developing countries. Recently, it has been found that Plasmodium knowlesi, a simian malaria parasite can be life-threatening to humans. Long-tailed macaques, which are widely distributed in Malaysia, are the natural hosts for simian malaria, including P. knowlesi. The aim of the present study was to determine the prevalence of simian malaria parasites in long-tailed macaques in the district of Hulu Selangor, Selangor, Malaysia. METHODS A total of 70 blood samples were collected from Macaca fascicularis dwelling in the forest of Hulu Selangor by the Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia. DNA was extracted using PureLink™ Genomic DNA Kits. Conventional and nested PCR were used to detect the genus and species of Plasmodium parasites respectively. In addition, phylogenetic analysis was carried out to confirm the species of Plasmodium parasites. RESULTS Thirty-five (50 %) of the 70 samples were positive for Plasmodium using genus-specific primers. These positive samples were then subjected to nested PCR targeting the 18S ribosomal RNA genes to detect all five simian malaria parasites: namely, P. knowlesi, Plasmodium inui, Plasmodium cynomolgi, Plasmodium fieldi, and Plasmodium coatneyi. All five species of simian malaria parasites were detected. Of these, P. inui was the predominant (65.7 %), followed by P. knowlesi (60 %), P. cynomolgi (51.4 %) P. coatneyi (45.7 %) and P. fieldi (2.9 %). A total of nine macaques had mono-infection with P. knowlesi (four), P. cynomolgi (two), P. coatneyi (two) and P. fieldi (one). Eleven of the macaques had dual infections while 12 had triple infections. Three macaques were infected with four species of Plasmodium. Molecular and phylogenetic analysis confirmed the five species of Plasmodium parasites. CONCLUSION This study has provided evidence to elucidate the presence of transmission of malaria parasites among the local macaques in Hulu Selangor. Since malaria is a zoonosis, it is important to determine the new control strategies for the control of malaria.
Collapse
Affiliation(s)
- Rumana Akter
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Loke Tim Khaw
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Rajes Qvist
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Frankie Thomas Sitam
- Department of Wildlife and National Park (PERHILITAN), KM10, Jalan Cheras, 56100, Kuala Lumpur, Malaysia.
| | - Balan Venugopalan
- State Vector Borne Disease Control Unit, Selangor State Health Department, Selangor, Malaysia.
| | - Shamala Devi Sekaran
- Department of Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
163
|
Wesolowski R, Wozniak A, Mila-Kierzenkowska C, Szewczyk-Golec K. Plasmodium knowlesi as a Threat to Global Public Health. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:575-81. [PMID: 26537037 PMCID: PMC4635839 DOI: 10.3347/kjp.2015.53.5.575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/02/2015] [Accepted: 08/04/2015] [Indexed: 01/06/2023]
Abstract
Malaria is a tropical disease caused by protozoans of the Plasmodium genus. Delayed diagnosis and misdiagnosis are strongly associated with higher mortality. In recent years, a greater importance is attributed to Plasmodium knowlesi, a species found mainly in Southeast Asia. Routine parasitological diagnostics are associated with certain limitations and difficulties in unambiguous determination of the parasite species based only on microscopic image. Recently, molecular techniques have been increasingly used for predictive diagnosis. The aim of the study is to draw attention to the risk of travelling to knowlesi malaria endemic areas and to raise awareness among personnel involved in the therapeutic process.
Collapse
Affiliation(s)
- Roland Wesolowski
- The Chair of Medical Biology, Ludwik Rydygier Collegium Medicum of Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Alina Wozniak
- The Chair of Medical Biology, Ludwik Rydygier Collegium Medicum of Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Celestyna Mila-Kierzenkowska
- The Chair of Medical Biology, Ludwik Rydygier Collegium Medicum of Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- The Chair of Medical Biology, Ludwik Rydygier Collegium Medicum of Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
164
|
Fong MY, Ahmed MA, Wong SS, Lau YL, Sitam F. Genetic Diversity and Natural Selection of the Plasmodium knowlesi Circumsporozoite Protein Nonrepeat Regions. PLoS One 2015; 10:e0137734. [PMID: 26379157 PMCID: PMC4575020 DOI: 10.1371/journal.pone.0137734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/21/2015] [Indexed: 11/18/2022] Open
Abstract
Background Plasmodium knowlesi is a simian malaria parasite that has been identified to cause malaria in humans. To date, several thousand cases of human knowlesi malaria have been reported around Southeast Asia. Thus far, there is no detailed study on genetic diversity and natural selection of P. knowlesi circumsporozoite protein (CSP), a prominent surface antigen on the sporozoite of the parasite. In the present study, the genetic diversity and natural selection acting on the nonrepeat regions of the gene encoding P. knowlesi CSP were investigated, focusing on the T-cell epitope regions at the C-terminal of the protein. Methods Blood samples from 32 knowlesi malaria patients and 2 wild monkeys (Macaca fascicularis) were used. The CSP of the P. knowlesi isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The nonrepeat regions of the CSP gene were analysed for genetic diversity, natural selection and haplotypic grouping using MEGA5 and DnaSP version 5.10.00 programmes. A haplotype network was constructed based on the C-terminal (Th2R/Th3R) T-cell epitope regions using the Median-Joining method in the NETWORK version 4.6.1.2 programme. Previously published sequences from other regions (Malaysia Borneo, Singapore) were also included in the analysis. Results A total of 123 P. knowlesi CSP sequences were analysed. Multiple sequence alignment revealed 58 amino acid changes, and 42 novel amino acid haplotypes were identified. Polymorphism was higher in the C-terminal Th2R/Th3R epitope (π = 0.0293, n = 123) region compared to the overall combined nonrepeat regions (π = 0.0120, n = 123). Negative natural selection was observed within the nonrepeat regions of the CSP gene. Within the C-terminal Th2R/Th3R epitope regions, there was evidence of slight positive selection. Based on haplotype network analysis of the Th2R/Th3R regions, five abundant haplotypes were identified. Sharing of haplotypes between humans and macaques were observed. Conclusion This study contributes to the understanding of the type and distribution of naturally occurring polymorphism in the P. knowlesi CSP gene. This study also provides a measurement of the genetic diversity of P. knowlesi and identifies the predominant haplotypes within Malaysia based on the C-terminal Th2R/Th3R regions.
Collapse
Affiliation(s)
- Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Md Atique Ahmed
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shen Siang Wong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Frankie Sitam
- Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
165
|
Maeno Y, Quang NT, Culleton R, Kawai S, Masuda G, Nakazawa S, Marchand RP. Humans frequently exposed to a range of non-human primate malaria parasite species through the bites of Anopheles dirus mosquitoes in South-central Vietnam. Parasit Vectors 2015; 8:376. [PMID: 26178324 PMCID: PMC4504216 DOI: 10.1186/s13071-015-0995-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have described natural human infections of the non-human primate parasites Plasmodium knowlesi and Plasmodium cynomolgi. In Southeast Asia, mosquitoes of the Anopheles leucosphyrus group bite both humans and monkeys in the forest and thus offer a possible route for Plasmodium species to bridge the species barrier. In this study we analysed the species composition of malarial sporozoites infecting the salivary glands of Anopheles dirus in order to determine their potential role as bridge vectors of Plasmodium parasites from monkeys to humans. METHODS Mosquitoes were collected in the forest and forest fringe area of Khanh Phu commune by human-baited landing collection. Anopheles species were determined on the basis of morphologic features. Sporozoite-infected salivary glands were applied to filter paper and dried in an ambient atmosphere, before storage in closed vials at 4-6 °C. Detection and identification of Plasmodium species in salivary glands were carried out by nested-PCR of the small subunit ribosomal RNA gene. RESULTS Six species of Plasmodium parasites were detected by PCR, of which P. vivax was the most common, followed by P. knowlesi, P. inui, P. cynomolgi, P. coatneyi and P. falciparum. Twenty-six of the 79 sporozoite infected mosquitoes showed multiple infections, most of which were a combination of P. vivax with one or more of the non-human primate Plasmodium species. CONCLUSIONS These results suggest that humans overnighting in this forest are frequently inoculated with both human and non-human primate malaria parasites, leading to a situation conducive for the emergence of novel zoonotic malaria.
Collapse
Affiliation(s)
- Yoshimasa Maeno
- Department of Virology and Parasitology, Fujita Health University School of Medicine, 1-98 Kutsukake, Toyoake, Aichi, 470-1192, Japan.
| | - Nguyen Tuyen Quang
- Khanh Phu Malaria Research Unit, Medical Committee Netherlands-Viet Nam, Nha Trang, Khanh Hoa province, Viet Nam.
| | - Richard Culleton
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Nagasaki, Japan.
| | - Satoru Kawai
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan.
| | - Gaku Masuda
- The Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Kyoto, Japan.
| | - Shusuke Nakazawa
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Nagasaki, Japan.
| | - Ron P Marchand
- Khanh Phu Malaria Research Unit, Medical Committee Netherlands-Viet Nam, Nha Trang, Khanh Hoa province, Viet Nam.
| |
Collapse
|
166
|
Tyagi S, Das A. Mitochondrial population genomic analyses reveal population structure and demography of Indian Plasmodium falciparum. Mitochondrion 2015; 24:9-21. [PMID: 26149324 DOI: 10.1016/j.mito.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022]
Abstract
Inference on the genetic diversity of Plasmodium falciparum populations could help in better management of malaria. A very recent study with mitochondrial (mt) genomes in global P. falciparum had revealed interesting evolutionary genetic patterns of Indian isolates in comparison to global ones. However, no population genetic study using the whole mt genome sequences of P. falciparum isolates collected in the entire distribution range in India has yet been performed. We herewith have analyzed 85 whole mt genomes (48 already published and 37 entirely new) sampled from eight differentially endemic Indian locations to estimate genetic diversity and infer population structure and historical demography of Indian P. falciparum. We found 19 novel Indian-specific Single Nucleotide Polymorphisms (SNPs) and 22 novel haplotypes segregating in Indian P. falciparum. Accordingly, high haplotype and nucleotide diversities were detected in Indian P. falciparum in comparison to many other global isolates. Indian P. falciparum populations were found to be moderately sub-structured with four different genetic clusters. Interestingly, group of local populations aggregate to form each cluster; while samples from Jharkhand and Odisha formed a single cluster, P. falciparum isolates from Asom formed an independent one. Similarly, Surat, Bilaspur and Betul formed a single cluster and Goa and Mangalore formed another. Interestingly, P. falciparum isolates from the two later populations were significantly genetically differentiated from isolates collected in other six Indian locations. Signature of historical population expansion was evident in five population samples, and the onset of expansion event was found to be very similar to African P. falciparum. In agreement with the previous finding, the estimated Time to Most Recent Common Ancestor (TMRCA) and the effective population size were high in Indian P. falciparum. All these genetic features of Indian P. falciparum with high mt genome diversity are somehow similar to Africa, but quite different from other Asian population samples.
Collapse
Affiliation(s)
- Suchi Tyagi
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, New Delhi, India
| | - Aparup Das
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
167
|
Tachibana SI, Kawai S, Katakai Y, Takahashi H, Nakade T, Yasutomi Y, Horii T, Tanabe K. Contrasting infection susceptibility of the Japanese macaques and cynomolgus macaques to closely related malaria parasites, Plasmodium vivax and Plasmodium cynomolgi. Parasitol Int 2015; 64:274-81. [DOI: 10.1016/j.parint.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 11/24/2022]
|
168
|
Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species. PLoS Pathog 2015; 11:e1004888. [PMID: 26020959 PMCID: PMC4447398 DOI: 10.1371/journal.ppat.1004888] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/17/2015] [Indexed: 12/20/2022] Open
Abstract
Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system. Extraordinary phases of pathogen evolution may occur during an emerging zoonosis, potentially involving adaptation to human hosts, with changes in patterns of virulence and transmission. In a large population genetic survey, we show that the malaria parasite Plasmodium knowlesi in humans is an admixture of two highly divergent parasite populations, each associated with different forest-dwelling macaque reservoir host species. Most of the transmission and sexual reproduction occurs separately in each of the two parasite populations. In addition to the reservoir host-associated parasite population structure, there was also significant genetic differentiation that correlated with geographical distance. Although both P. knowlesi types co-exist in the same areas, the divergence between them is similar to or greater than that seen between sub-species in other sexually reproducing eukaryotes. This may offer particular opportunities for evolution of virulence and host-specificity, not seen with other malaria parasites, so studies of ongoing adaptation and interventions to reduce transmission are urgent priorities.
Collapse
|
169
|
Faber BW, Abdul Kadir K, Rodriguez-Garcia R, Remarque EJ, Saul FA, Vulliez-Le Normand B, Bentley GA, Kocken CHM, Singh B. Low levels of polymorphisms and no evidence for diversifying selection on the Plasmodium knowlesi Apical Membrane Antigen 1 gene. PLoS One 2015; 10:e0124400. [PMID: 25881166 PMCID: PMC4400157 DOI: 10.1371/journal.pone.0124400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Infection with Plasmodium knowlesi, a zoonotic primate malaria, is a growing human health problem in Southeast Asia. P. knowlesi is being used in malaria vaccine studies, and a number of proteins are being considered as candidate malaria vaccine antigens, including the Apical Membrane Antigen 1 (AMA1). In order to determine genetic diversity of the ama1 gene and to identify epitopes of AMA1 under strongest immune selection, the ama1 gene of 52 P. knowlesi isolates derived from human infections was sequenced. Sequence analysis of isolates from two geographically isolated regions in Sarawak showed that polymorphism in the protein is low compared to that of AMA1 of the major human malaria parasites, P. falciparum and P. vivax. Although the number of haplotypes was 27, the frequency of mutations at the majority of the polymorphic positions was low, and only six positions had a variance frequency higher than 10%. Only two positions had more than one alternative amino acid. Interestingly, three of the high-frequency polymorphic sites correspond to invariant sites in PfAMA1 or PvAMA1. Statistically significant differences in the quantity of three of the six high frequency mutations were observed between the two regions. These analyses suggest that the pkama1 gene is not under balancing selection, as observed for pfama1 and pvama1, and that the PkAMA1 protein is not a primary target for protective humoral immune responses in their reservoir macaque hosts, unlike PfAMA1 and PvAMA1 in humans. The low level of polymorphism justifies the development of a single allele PkAMA1-based vaccine.
Collapse
Affiliation(s)
- Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- * E-mail: (BWF); (BS)
| | - Khamisah Abdul Kadir
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | | | - Edmond J Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Frederick A. Saul
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS URA 2185, Paris, France
| | - Brigitte Vulliez-Le Normand
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS URA 2185, Paris, France
| | - Graham A. Bentley
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS URA 2185, Paris, France
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Balbir Singh
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia
- * E-mail: (BWF); (BS)
| |
Collapse
|
170
|
Ahmed MA, Cox-Singh J. Plasmodium knowlesi - an emerging pathogen. ACTA ACUST UNITED AC 2015; 10:134-140. [PMID: 26029250 PMCID: PMC4440384 DOI: 10.1111/voxs.12115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/12/2022]
Abstract
Ten years have passed since the publication of a large focus of Plasmodium knowlesi infections in the human population. The discovery was made during a molecular investigation of atypical P. malariae cases in the Kapit Health Division, Sarawak, Malaysian Borneo. Patients were more symptomatic with higher parasite counts than expected in P. malariae infections. The investigation found only P. knowlesi DNA present in patient blood samples. Morphological similarity had allowed P. knowlesi to masquerade as P. malariae during routine diagnostic microscopy for malaria. P. knowlesi, a malaria parasite of macaque monkeys, had entered the human population. The subsequent development of P. knowlesi species-specific PCR assays soon demonstrated that the entry was not confined to the Kapit Division but extended across island and mainland Southeast Asia. Relevant clinical descriptions and guidelines for the treatment and management of patents with P. knowlesi malaria were not available. Nor was it clear whether P. knowlesi had undergone a host switch event into the human population or if infections were zoonotic. The outputs of studies on P. knowlesi malaria during the past 10 years will be summarized, highlighting major findings within the context of pathophysiology, virulence, host switch events, treatment, control and importantly malaria elimination.
Collapse
Affiliation(s)
- M A Ahmed
- School of Medicine, University of St Andrews St Andrews, UK
| | - J Cox-Singh
- Department of Parasitology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
171
|
Human infections with Plasmodium knowlesi--zoonotic malaria. Clin Microbiol Infect 2015; 21:640-8. [PMID: 25843504 DOI: 10.1016/j.cmi.2015.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 11/21/2022]
Abstract
In 2004 a large focus of Plasmodium knowlesi malaria was reported in the human population in Sarawak, Malaysian Borneo. Plasmodium knowlesi, a parasite of the South-East Asian macaques (Macaca fascicularis and Macaca nemestrina), had entered the human population. Plasmodium knowlesi is transmitted by the leucosphyrus group of Anopheline mosquitoes and transmission is largely zoonotic and restricted to the jungle setting. Humans entering jungle transmission sites are at risk. Since 2004, human cases of P. knowlesi have been continuously reported in local communities and in travellers returning from South East Asia. Plasmodium knowlesi is the most common type of indigenous malaria reported in Malaysia. Infections are most often uncomplicated but at least 10% of patients report with severe malaria and 1-2% of cases have a fatal outcome. Parasitaemia is positively associated with the clinical and laboratory markers of severe malaria. The current literature on P. knowlesi, including epidemiology, natural hosts and vectors, pathogenesis, clinical descriptions, treatment and diagnosis, is reviewed. There are many gaps in our understanding of this disease that are highlighted here with suggestions for further research to inform pre-emptive control measures that would be required to prevent a full emergence of this parasite into the human population.
Collapse
|
172
|
Cox-Singh J, Culleton R. Plasmodium knowlesi: from severe zoonosis to animal model. Trends Parasitol 2015; 31:232-8. [PMID: 25837310 DOI: 10.1016/j.pt.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Plasmodium knowlesi malaria is a newly described zoonosis in Southeast Asia. Similarly to Plasmodium falciparum, P. knowlesi can reach high parasitaemia in the human host and both species cause severe and fatal illness. Interpretation of host-parasite interactions in studies of P. knowlesi malaria adds a counterpoint to studies on P. falciparum. However, there is no model system for testing the resulting hypotheses on malaria pathophysiology or for developing new interventions. Plasmodium knowlesi is amenable to genetic manipulation in vitro and several nonhuman primate species are susceptible to experimental infection. Here, we make a case for drawing on P. knowlesi as both a human pathogen and an experimental model to lift the roadblock between malaria research and its translation into human health benefits.
Collapse
Affiliation(s)
- Janet Cox-Singh
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
173
|
Fong MY, Rashdi SAA, Yusof R, Lau YL. Distinct genetic difference between the Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from North Borneo and Peninsular Malaysia. Malar J 2015; 14:91. [PMID: 25890095 PMCID: PMC4339428 DOI: 10.1186/s12936-015-0610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is one of the monkey malaria parasites that can cause human malaria. The Duffy binding protein of P. knowlesi (PkDBPαII) is essential for the parasite's invasion into human and monkey erythrocytes. A previous study on P. knowlesi clinical isolates from Peninsular Malaysia reported high level of genetic diversity in the PkDBPαII. Furthermore, 36 amino acid haplotypes were identified and these haplotypes could be separated into allele group I and allele group II. In the present study, the PkDBPαII of clinical isolates from the Malaysian states of Sarawak and Sabah in North Borneo was investigated, and compared with the PkDBPαII of Peninsular Malaysia isolates. METHODS Blood samples from 28 knowlesi malaria patients were used. These samples were collected between 2011 and 2013 from hospitals in North Borneo. The PkDBPαII region of the isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The genetic diversity, natural selection and phylogenetics of PkDBPαII haplotypes were analysed using MEGA5 and DnaSP ver. 5.10.00 programmes. RESULTS Forty-nine PkDBPαII sequences were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence revealed 58 synonymous and 102 non-synonymous mutations. Analysis on these mutations showed that PkDBPαII was under purifying (negative) selection. At the amino acid level, 38 different PkDBPαII haplotypes were identified. Twelve of the 28 blood samples had mixed haplotype infections. Phylogenetic analysis revealed that all the haplotypes were in allele group I, but they formed a sub-group that was distinct from those of Peninsular Malaysia. Wright's FST fixation index indicated high genetic differentiation between the North Borneo and Peninsular Malaysia haplotypes. CONCLUSIONS This study is the first to report the genetic diversity and natural selection of PkDBPαII of P. knowlesi from Borneo Island. The PkDBPαII haplotypes found in this study were distinct from those from Peninsular Malaysia. This difference may not be attributed to geographical separation because other genetic markers studied thus far such as the P. knowlesi circumsporozoite protein gene and small subunit ribosomal RNA do not display such differentiation. Immune evasion may possibly be the reason for the differentiation.
Collapse
Affiliation(s)
- Mun-Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sarah A A Rashdi
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Ruhani Yusof
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
174
|
Interleukin-18 Antagonism Improved Histopathological Conditions of Malaria Infection in Mice. IRANIAN JOURNAL OF PARASITOLOGY 2015; 10:389-401. [PMID: 26622294 PMCID: PMC4662739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Interleukin 18 (IL-18) exerts pleiotropic roles in many inflammatory-related diseases including parasitic infection. Previous studies have demonstrated the promising therapeutic potential of modulating IL-18 bioactivity in various pathological conditions. However, its involvement during malaria infection has yet to be established. In this study, we demonstrated the effect of modulating IL-18 on the histopathological conditions of malaria infected mice. METHODS Plasmodium berghei ANKA infection in male ICR mice was used as a model for malaria infection. Modulation of IL-18 release was carried out by treatment of malarial mice with recombinant mouse IL-18 (rmIL-18) and recombinant mouse IL-18 Fc chimera (rmIL-18Fc) intravenously. Histopathological study and analysis were performed on major organs including brain, liver, spleen, lungs and kidney. RESULTS Treatment with rmIL-18Fc resulted in significant improvements on the histopathological conditions of the organs in malaria-infected mice. CONCLUSION IL-18 is an important mediator of malaria pathogenesis and targeting IL-18 could prove beneficial in malaria-infected host.
Collapse
|
175
|
Dixon MA, Dar OA, Heymann DL. Emerging infectious diseases: opportunities at the human-animal-environment interface. Vet Rec 2014; 174:546-51. [PMID: 24920712 DOI: 10.1136/vr.g3263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Osman A Dar
- Chatham House Centre on Global Health Security, Chatham House, 10 St James's Square, London SW1Y 4LE, UK, e-mail:
| | - David L Heymann
- Public Health England, Wellington House, 133-155 Waterloo Road, London SE1 8UG, UK, e-mail:
| |
Collapse
|
176
|
Mapping infectious disease landscapes: unmanned aerial vehicles and epidemiology. Trends Parasitol 2014; 30:514-9. [PMID: 25443854 DOI: 10.1016/j.pt.2014.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/20/2022]
Abstract
The potential applications of unmanned aerial vehicles (UAVs), or drones, have generated intense interest across many fields. UAVs offer the potential to collect detailed spatial information in real time at relatively low cost and are being used increasingly in conservation and ecological research. Within infectious disease epidemiology and public health research, UAVs can provide spatially and temporally accurate data critical to understanding the linkages between disease transmission and environmental factors. Using UAVs avoids many of the limitations associated with satellite data (e.g., long repeat times, cloud contamination, low spatial resolution). However, the practicalities of using UAVs for field research limit their use to specific applications and settings. UAVs fill a niche but do not replace existing remote-sensing methods.
Collapse
|
177
|
William T, Jelip J, Menon J, Anderios F, Mohammad R, Awang Mohammad TA, Grigg MJ, Yeo TW, Anstey NM, Barber BE. Changing epidemiology of malaria in Sabah, Malaysia: increasing incidence of Plasmodium knowlesi. Malar J 2014; 13:390. [PMID: 25272973 PMCID: PMC4195888 DOI: 10.1186/1475-2875-13-390] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain. METHODS To describe the changing epidemiology of malaria in Sabah, in particular the increasing incidence of P. knowlesi, a retrospective descriptive study was undertaken involving a review of Department of Health malaria notification data from 2012-2013, extending a previous review of these data from 1992-2011. In addition, malaria PCR and microscopy data from the State Public Health Laboratory were reviewed to estimate the accuracy of the microscopy-based notification data. RESULTS Notifications of P. malariae/P. knowlesi increased from 703 in 2011 to 815 in 2012 and 996 in 2013. Notifications of P. vivax and P. falciparum decreased from 605 and 628, respectively, in 2011, to 297 and 263 in 2013. In 2013, P. malariae/P. knowlesi accounted for 62% of all malaria notifications compared to 35% in 2011. Among 1,082 P. malariae/P. knowlesi blood slides referred for PCR testing during 2011-2013, there were 924 (85%) P. knowlesi mono-infections, 30 (2.8%) P. falciparum, 43 (4.0%) P. vivax, seven (0.6%) P. malariae, six (0.6%) mixed infections, 31 (2.9%) positive only for Plasmodium genus, and 41 (3.8%) Plasmodium-negative. Plasmodium knowlesi mono-infection accounted for 32/156 (21%) and 33/87 (38%) blood slides diagnosed by microscopy as P. falciparum and P. vivax, respectively. Twenty-six malaria deaths were reported during 2010-2013, including 12 with 'P. malariae/P. knowlesi' (all adults), 12 with P. falciparum (seven adults), and two adults with P. vivax. CONCLUSIONS Notifications of P. malariae/P. knowlesi in Sabah are increasing, with this trend likely reflecting a true increase in incidence of P. knowlesi and presenting a major threat to malaria control and elimination in Malaysia. With the decline of P. falciparum and P. vivax, control programmes need to incorporate measures to protect against P. knowlesi, with further research required to determine effective interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bridget E Barber
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88560, Sabah, Malaysia.
| |
Collapse
|
178
|
Dhiman RC. Emerging vector-borne zoonoses: eco-epidemiology and public health implications in India. Front Public Health 2014; 2:168. [PMID: 25325052 PMCID: PMC4179687 DOI: 10.3389/fpubh.2014.00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/15/2014] [Indexed: 01/19/2023] Open
Abstract
The diseases originating from animals or associated with man and animals are remerging and have resulted in considerable morbidity and mortality. The present review highlights the re-emergence of emerging mainly zoonotic diseases like chikungunya, scrub typhus, and extension of spatial distribution of cutaneous leishmaniasis from western Rajasthan to Himachal Pradesh, Kerala, and Haryana states; West Nile virus to Assam, and non-endemic areas of Japanese encephalitis (JE) like Maharashtra and JE to Delhi; Crimean-Congo hemorrhagic fever making inroads in Ahmedabad; and reporting fifth parasite of human malaria with possibility of zoonosis have been highlighted, which necessitates further studies for prevention and control. Emphasis has been given on understanding the ecology of reservoir hosts of pathogen, micro niche of vector species, climatic, socioeconomic risk factors, etc. Development of facilities for diagnosis of virus from insects, reservoirs, and human beings (like BSL4, which has been established in NIV, Pune), awareness about symptoms of new emerging viral and other zoonotic diseases, differential diagnosis, risk factors (climatic, ecological, and socioeconomic) and mapping of disease-specific vulnerable areas, and mathematical modeling for projecting epidemiological scenario is needed for preparedness of public health institutes. It is high time to understand the ecological link of zoonotic or anthroponotic diseases for updated risk maps and epidemiological knowledge for effective preventive and control measures. The public health stakeholders in India as well as in Southeast Asia should emphasize on understanding the eco-epidemiology of the discussed zoonotic diseases for taking preventive actions.
Collapse
Affiliation(s)
- Ramesh C Dhiman
- National Institute of Malaria Research, Indian Council of Medical Research , New Delhi , India
| |
Collapse
|
179
|
Grigg MJ, William T, Drakeley CJ, Jelip J, von Seidlein L, Barber BE, Fornace KM, Anstey NM, Yeo TW, Cox J. Factors that are associated with the risk of acquiring Plasmodium knowlesi malaria in Sabah, Malaysia: a case-control study protocol. BMJ Open 2014; 4:e006004. [PMID: 25149186 PMCID: PMC4156811 DOI: 10.1136/bmjopen-2014-006004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission. METHODS AND ANALYSIS A population-based case-control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models. ETHICS This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK.
Collapse
Affiliation(s)
- M J Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - T William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia Infectious Diseases Unit, Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia Sabah Department of Health, Kota Kinabalu, Sabah, Malaysia
| | - C J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - J Jelip
- Sabah Department of Health, Kota Kinabalu, Sabah, Malaysia
| | - L von Seidlein
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - B E Barber
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - K M Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - N M Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - T W Yeo
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - J Cox
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
180
|
Ahmed AM, Pinheiro MM, Divis PC, Siner A, Zainudin R, Wong IT, Lu CW, Singh-Khaira SK, Millar SB, Lynch S, Willmann M, Singh B, Krishna S, Cox-Singh J. Disease progression in Plasmodium knowlesi malaria is linked to variation in invasion gene family members. PLoS Negl Trop Dis 2014; 8:e3086. [PMID: 25121807 PMCID: PMC4133233 DOI: 10.1371/journal.pntd.0003086] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
Emerging pathogens undermine initiatives to control the global health impact of infectious diseases. Zoonotic malaria is no exception. Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, has entered the human population. P. knowlesi, like Plasmodium falciparum, can reach high parasitaemia in human infections, and the World Health Organization guidelines for severe malaria list hyperparasitaemia among the measures of severe malaria in both infections. Not all patients with P. knowlesi infections develop hyperparasitaemia, and it is important to determine why. Between isolate variability in erythrocyte invasion, efficiency seems key. Here we investigate the idea that particular alleles of two P. knowlesi erythrocyte invasion genes, P. knowlesi normocyte binding protein Pknbpxa and Pknbpxb, influence parasitaemia and human disease progression. Pknbpxa and Pknbpxb reference DNA sequences were generated from five geographically and temporally distinct P. knowlesi patient isolates. Polymorphic regions of each gene (approximately 800 bp) were identified by haplotyping 147 patient isolates at each locus. Parasitaemia in the study cohort was associated with markers of disease severity including liver and renal dysfunction, haemoglobin, platelets and lactate, (r = ≥ 0.34, p = <0.0001 for all). Seventy-five and 51 Pknbpxa and Pknbpxb haplotypes were resolved in 138 (94%) and 134 (92%) patient isolates respectively. The haplotypes formed twelve Pknbpxa and two Pknbpxb allelic groups. Patients infected with parasites with particular Pknbpxa and Pknbpxb alleles within the groups had significantly higher parasitaemia and other markers of disease severity. Our study strongly suggests that P. knowlesi invasion gene variants contribute to parasite virulence. We focused on two invasion genes, and we anticipate that additional virulent loci will be identified in pathogen genome-wide studies. The multiple sustained entries of this diverse pathogen into the human population must give cause for concern to malaria elimination strategists in the Southeast Asian region.
Collapse
Affiliation(s)
- Atique M. Ahmed
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - Miguel M. Pinheiro
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Paul C. Divis
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - Angela Siner
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - Ramlah Zainudin
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
- Faculty of Resource Science and Technology, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | | | | | - Sarina K. Singh-Khaira
- Division of Clinical Sciences, St. George's, University of London, London, United Kingdom
| | - Scott B. Millar
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Sean Lynch
- Clinical Blood Sciences, St. George's, University of London, London, United Kingdom
| | - Matthias Willmann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Balbir Singh
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - Sanjeev Krishna
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
- Division of Clinical Sciences, St. George's, University of London, London, United Kingdom
| | - Janet Cox-Singh
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
- Division of Clinical Sciences, St. George's, University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
181
|
Dantas-Torres F, Cameron MM, Colwell DD, Otranto D. A look into the Medical and Veterinary Entomology crystal ball. MEDICAL AND VETERINARY ENTOMOLOGY 2014; 28 Suppl 1:6-13. [PMID: 25171603 DOI: 10.1111/mve.12066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Medical and Veterinary Entomology (MVE) represents a leading periodical in its field and covers many aspects of the biology and control of insects, ticks, mites and other arthropods of medical and veterinary importance. Since the first issue of the journal, researchers working in both developed and developing countries have published in MVE, with direct impact on current knowledge in the field. An increasing number of articles dealing with the epidemiology and transmission of vector-borne pathogens have been published in MVE, reflecting rapid changes in vector distribution, pathogen transmission and host-arthropod interactions. This article represents a gaze into the crystal ball in which we identify areas of increasing interest, discuss the main changes that have occurred in the epidemiology of parasitic arthropods since the first issue of MVE, and predict the principal scientific topics that might arise in the next 25 years for scientists working in medical and veterinary entomology.
Collapse
Affiliation(s)
- F Dantas-Torres
- Department of Immunology, Aggeu Magalhães Research Centre, Oswaldo Cruz Foundation, Recife, PE, Brazil; Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | | | | | | |
Collapse
|
182
|
Imai N, White MT, Ghani AC, Drakeley CJ. Transmission and control of Plasmodium knowlesi: a mathematical modelling study. PLoS Negl Trop Dis 2014; 8:e2978. [PMID: 25058400 PMCID: PMC4109903 DOI: 10.1371/journal.pntd.0002978] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/12/2014] [Indexed: 12/21/2022] Open
Abstract
Introduction Plasmodium knowlesi is now recognised as a leading cause of malaria in Malaysia. As humans come into increasing contact with the reservoir host (long-tailed macaques) as a consequence of deforestation, assessing the potential for a shift from zoonotic to sustained P. knowlesi transmission between humans is critical. Methods A multi-host, multi-site transmission model was developed, taking into account the three areas (forest, farm, and village) where transmission is thought to occur. Latin hypercube sampling of model parameters was used to identify parameter sets consistent with possible prevalence in macaques and humans inferred from observed data. We then explore the consequences of increasing human-macaque contact in the farm, the likely impact of rapid treatment, and the use of long-lasting insecticide-treated nets (LLINs) in preventing wider spread of this emerging infection. Results Identified model parameters were consistent with transmission being sustained by the macaques with spill over infections into the human population and with high overall basic reproduction numbers (up to 2267). The extent to which macaques forage in the farms had a non-linear relationship with human infection prevalence, the highest prevalence occurring when macaques forage in the farms but return frequently to the forest where they experience higher contact with vectors and hence sustain transmission. Only one of 1,046 parameter sets was consistent with sustained human-to-human transmission in the absence of macaques, although with a low human reproduction number (R0H = 1.04). Simulations showed LLINs and rapid treatment provide personal protection to humans with maximal estimated reductions in human prevalence of 42% and 95%, respectively. Conclusion This model simulates conditions where P. knowlesi transmission may occur and the potential impact of control measures. Predictions suggest that conventional control measures are sufficient at reducing the risk of infection in humans, but they must be actively implemented if P. knowlesi is to be controlled. Plasmodium knowlesi is a malaria of macaques which is now recognised as a leading cause of human malaria in Malaysia. Although current human infections are a result of human-macaque contact, there is a potential for P. knowlesi to be transmitted solely among humans. The authors developed a multi-host, multi-site transmission model to assess the likelihood of this happening due to increased human-macaque contact as a consequence of deforestation, population growth, and land-use change. How effective currently available malaria control measures were against P. knowlesi was also an important issue that was explored using the model. Although the model predicts that conventional control measures will be sufficient against P. knowlesi, with the push to eliminate malaria by the end of 2015, it is crucial to be aware of zoonotic malarias which may undermine such efforts.
Collapse
Affiliation(s)
- Natsuko Imai
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- * E-mail:
| | - Michael T. White
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Azra C. Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Chris J. Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
183
|
Lezaun J, Porter N. Containment and competition: transgenic animals in the One Health agenda. Soc Sci Med 2014; 129:96-105. [PMID: 24961736 DOI: 10.1016/j.socscimed.2014.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/01/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
The development of the One World, One Health agenda coincides in time with the appearance of a different model for the management of human-animal relations: the genetic manipulation of animal species in order to curtail their ability as carriers of human pathogens. In this paper we examine two examples of this emergent transgenic approach to disease control: the development of transgenic chickens incapable of shedding avian flu viruses, and the creation of transgenic mosquitoes refractory to dengue or malaria infection. Our analysis elaborates three distinctions between the One World, One Health agenda and its transgenic counterpoint. The first concerns the conceptualization of outbreaks and the forms of surveillance that support disease control efforts. The second addresses the nature of the interspecies interface, and the relative role of humans and animals in preventing pathogen transmission. The third axis of comparison considers the proprietary dimensions of transgenic animals and their implications for the assumed public health ethos of One Health programs. We argue that the fundamental difference between these two approaches to infectious disease control can be summarized as one between strategies of containment and strategies of competition. While One World, One Health programs seek to establish an equilibrium in the human-animal interface in order to contain the circulation of pathogens across species, transgenic strategies deliberately trigger a new ecological dynamic by introducing novel animal varieties designed to out-compete pathogen-carrying hosts and vectors. In other words, while One World, One Health policies focus on introducing measures of inter-species containment, transgenic approaches derive their prophylactic benefit from provoking new cycles of intra-species competition between GM animals and their wild-type counterparts. The coexistence of these divergent health protection strategies, we suggest, helps to elucidate enduring tensions and concerns about how humans should relate to, appraise, and intervene on animals and their habitats.
Collapse
Affiliation(s)
| | - Natalie Porter
- University of Oxford, United Kingdom; University of New Hampshire, United States.
| |
Collapse
|
184
|
A review of malaria transmission dynamics in forest ecosystems. Parasit Vectors 2014; 7:265. [PMID: 24912923 PMCID: PMC4057614 DOI: 10.1186/1756-3305-7-265] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/23/2014] [Indexed: 12/25/2022] Open
Abstract
Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized.
Collapse
|
185
|
Torres KL, Dos Santos Moresco MN, Sales LR, da Silva Abranches J, Araújo Alexandre MA, Malheiro A. Transfusion-transmitted malaria in endemic zone: epidemiological profile of blood donors at the Fundação HEMOAM and use of rapid diagnostic tests for malaria screening in Manaus. Rev Bras Hematol Hemoter 2014; 36:269-74. [PMID: 25031166 PMCID: PMC4207922 DOI: 10.1016/j.bjhh.2014.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 03/24/2014] [Indexed: 10/29/2022] Open
Abstract
OBJECTIVE With 99% of the cases in Brazil, malaria is endemic in the Amazon region. Transfusion-transmitted malaria, an important risk in endemic areas, has been reported. The aim of this study was to describe the epidemiological profile of blood donor candidates at the Fundação de Hematologia e Hemoterapia do Amazonas and evaluate the efficacy of rapid diagnostic tests used for malaria screening of blood donors within endemic regions. METHODS Between May 2008 and May 2009, 407 blood donor candidates were selected and grouped based on the Malaria Annual Parasite Index of the geographic area in which they originated: Group 1 (eligible donors - n=265) originated from areas of low to medium risk of exposure to malaria and Group 2 (ineligible donors - n=142) originated from high-risk areas. All samples were concurrently screened using two immunochromatic antigen-based rapid tests and by the thick smear test. RESULTS All samples were negative by all three methods. The demographic profile indicated that the majority of participants were male, ages ranged from 18 to 39 years and less than half the candidates had only elementary schooling. Two issues need to be addressed: one is the ineligibility of donors and its impact on blood donor centers as, in this study, 22.7% of the donors were considered ineligible. The other is the limited sensitivity of the parasitological tests used, allowing a risk of false-negative results. CONCLUSION New methods are needed to ensure transfusion safety without rejecting potential donors, which would ensure safe transfusion without harming the blood supply.
Collapse
Affiliation(s)
- Kátia Luz Torres
- Fundação Centro de Controle de Oncologia do Amazonas, Manaus, AM, Brazil; Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, AM, Brazil; Universidade Federal do Amazonas, Manaus, AM, Brazil.
| | | | - Luciane Rodrigues Sales
- Fundação Centro de Controle de Oncologia do Amazonas, Manaus, AM, Brazil; Universidade Federal do Amazonas, Manaus, AM, Brazil
| | | | - Márcia Almeida Araújo Alexandre
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Adriana Malheiro
- Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, AM, Brazil; Universidade Federal do Amazonas, Manaus, AM, Brazil
| |
Collapse
|
186
|
Nair S, Nkhoma SC, Serre D, Zimmerman PA, Gorena K, Daniel BJ, Nosten F, Anderson TJC, Cheeseman IH. Single-cell genomics for dissection of complex malaria infections. Genome Res 2014; 24:1028-38. [PMID: 24812326 PMCID: PMC4032849 DOI: 10.1101/gr.168286.113] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most malaria infections contain complex mixtures of distinct parasite lineages. These multiple-genotype infections (MGIs) impact virulence evolution, drug resistance, intra-host dynamics, and recombination, but are poorly understood. To address this we have developed a single-cell genomics approach to dissect MGIs. By combining cell sorting and whole-genome amplification (WGA), we are able to generate high-quality material from parasite-infected red blood cells (RBCs) for genotyping and next-generation sequencing. We optimized our approach through analysis of >260 single-cell assays. To quantify accuracy, we decomposed mixtures of known parasite genotypes and obtained highly accurate (>99%) single-cell genotypes. We applied this validated approach directly to infections of two major malaria species, Plasmodium falciparum, for which long term culture is possible, and Plasmodium vivax, for which no long-term culture is feasible. We demonstrate that our single-cell genomics approach can be used to generate parasite genome sequences directly from patient blood in order to unravel the complexity of P. vivax and P. falciparum infections. These methods open the door for large-scale analysis of within-host variation of malaria infections, and reveal information on relatedness and drug resistance haplotypes that is inaccessible through conventional sequencing of infections.
Collapse
Affiliation(s)
- Shalini Nair
- Texas Biomedical Research Institute, San Antonio, Texas 78227-5301, USA
| | - Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre 3, Malawi
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, USA
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Karla Gorena
- University of Texas Health Science Center San Antonio, San Antonio, Texas 78229, USA
| | - Benjamin J Daniel
- University of Texas Health Science Center San Antonio, San Antonio, Texas 78229, USA
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak 63110, Thailand; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford 0X3 7LJ, United Kingdom
| | | | - Ian H Cheeseman
- Texas Biomedical Research Institute, San Antonio, Texas 78227-5301, USA
| |
Collapse
|
187
|
Plasmodium knowlesi in travellers, update 2014. Int J Infect Dis 2014; 22:55-64. [PMID: 24631521 DOI: 10.1016/j.ijid.2013.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Since the initial discovery of Plasmodium knowlesi in Malaysia, cases have been reported from several neighbouring countries. Tourism has also resulted in an increasing number of cases diagnosed in Europe, America, and Oceania. In this review we focus on the risk of the travel-associated acquisition of P. knowlesi malaria. METHODS A search of the literature in PubMed was carried out to identify articles and literature on the distribution of P. knowlesi infections in Southeast Asia and details of its acquisition and importation by travellers to other continents. The cut-off date for the search was December 1, 2013. Search words used were: "Plasmodium knowlesi", "Plasmodium knowlesi infections", "Plasmodium knowlesi travellers", "Plasmodium knowlesi prevalence", "Plasmodium knowlesi host", "Plasmodium knowlesi vector" "Plasmodium knowlesi RDT", and "Plasmodium knowlesi Malaysia". Traveller numbers to Malaysia were obtained from the Tourism Malaysia website. RESULTS A total of 103 articles were found. Using a selection of these and others identified from the reference lists of the papers, we based our review on a total of 66 articles. RESULTS P. knowlesi malaria appears to be the most common malaria species in Malaysian Borneo and is also widely distributed on the Malaysian mainland. Furthermore, locally transmitted cases of P. knowlesi malaria have been reported in Thailand, the Philippines, Vietnam, Singapore, Myanmar, Indonesian Borneo, and Cambodia. Two cases have been reported from non-endemic countries in Asia (Japan and Taiwan) in people with a history of travel to Malaysia and the Philippines. Twelve cases were imported to their home countries by travellers from other continents: two from the USA, two from the Netherlands, two from Germany, and one each from Spain, France, Sweden, Finland, Australia, and New Zealand. In most cases, the infection was associated with a trip to or near forested areas. The symptoms were fever (n=12), headache (n=6), chills (n=6), nausea (n=4), myalgia (n=3), back pain (n=3), abdominal problems (n=1), anorexia (n=2), fatigue (n=2), malaise (n=1), arthralgia (n=1), sore throat (n=1) vomiting (n=2), and jaundice (n=1). All patients were treated successfully with currently available antimalaria treatments. The identification of the pathogen by microscopy can be problematic due to the morphological similarity of P. knowlesi to Plasmodium malariae. CONCLUSION P. knowlesi appears to be a threat not only to the local population in Malaysia, but also to the estimated 25 million annual tourists and occupational travellers to Malaysia, especially those who visit rural, forested areas of the country. The P. knowlesi risk is not limited to Malaysia, and travellers from Southeast Asia presenting with possible malaria should be considered for a diagnostic work-up that includes P. knowlesi.
Collapse
|
188
|
Moyes CL, Henry AJ, Golding N, Huang Z, Singh B, Baird JK, Newton PN, Huffman M, Duda KA, Drakeley CJ, Elyazar IRF, Anstey NM, Chen Q, Zommers Z, Bhatt S, Gething PW, Hay SI. Defining the geographical range of the Plasmodium knowlesi reservoir. PLoS Negl Trop Dis 2014; 8:e2780. [PMID: 24676231 PMCID: PMC3967999 DOI: 10.1371/journal.pntd.0002780] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/23/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans. METHODOLOGY/PRINCIPAL FINDINGS After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region. CONCLUSIONS/SIGNIFICANCE We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment.
Collapse
Affiliation(s)
- Catherine L. Moyes
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Andrew J. Henry
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Nick Golding
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Zhi Huang
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul N. Newton
- Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Michael Huffman
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Kirsten A. Duda
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Chris J. Drakeley
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Qijun Chen
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Zoonosis, Jilin University, Changchun, China
| | - Zinta Zommers
- Division of Early Warning and Assessment, United Nations Environment Programme, Nairobi, Kenya
| | - Samir Bhatt
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Peter W. Gething
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon I. Hay
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
189
|
He L, Zhang Y, Zhang QL, Zhang WJ, Feng HH, Khan MK, Hu M, Zhou YQ, Zhao JL. Mitochondrial genome of Babesia orientalis, apicomplexan parasite of water buffalo (Bubalus babalis, Linnaeus, 1758) endemic in China. Parasit Vectors 2014; 7:82. [PMID: 24580772 PMCID: PMC3941609 DOI: 10.1186/1756-3305-7-82] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apicomplexan parasites of the genus Babesia, Theileria and Plasmodium are very closely related organisms. Interestingly, their mitochondrial (mt) genomes are highly divergent. Among Babesia, Babesia orientalis is a new species recently identified and specifically epidemic to the southern part of China, causing severe disease to water buffalo. However, no information on the mt genome of B. orientalis was available. METHODS Four pairs of primers were designed based on the full genome sequence of B. orientalis (unpublished data) and by aligning reported mt genomes of B. bovis, B. bigemina, and T. parva. The entire mt genome was amplified by four sets of PCR. The obtained mt genome was annotated by aligning with published apicomplexan mt genomes and Artemis software v11. Phylogenetic analysis was performed by using cox1 and cob amino acid sequences. RESULTS The complete mt genome of B. orientalis (Wuhan strain) was sequenced and characterized. The entire mt genome is 5996 bp in length with a linear form, containing three protein-coding genes including cytochrome c oxidase I (cox1), cytochrome b (cob) and cytochrome c oxidase III (cox3) and six rRNA large subunit gene fragments. The gene arrangement in B. orientalis mt genome is similar to those of B. bovis, B. gibsoni and Theileria parva, but different from those of T. orientalis, T. equi and Plasmodium falciparum. Comparative analysis indicated that cox1 and cob genes were more conserved than cox3. Phylogenetic analysis based on amino acid sequences of cox1, cob and cox1 + cob, respectively, revealed that B. orientalis fell into Babesia clade with the closest relationship to B. bovis. CONCLUSIONS The availability of the entire mt genome sequences of B. orientalis provides valuable information for future phylogenetic, population genetics and molecular epidemiological studies of apicomplexan parasites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
190
|
Foster D, Cox-Singh J, Mohamad DSA, Krishna S, Chin PP, Singh B. Evaluation of three rapid diagnostic tests for the detection of human infections with Plasmodium knowlesi. Malar J 2014; 13:60. [PMID: 24548805 PMCID: PMC3931291 DOI: 10.1186/1475-2875-13-60] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/14/2014] [Indexed: 11/23/2022] Open
Abstract
Background Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, infects humans and can cause fatal malaria. It is difficult to diagnose by microscopy because of morphological similarity to Plasmodium malariae. Nested PCR assay is the most accurate method to distinguish P. knowlesi from other Plasmodium species but is not cost effective in resource-poor settings. Rapid diagnostic tests (RDTs) are recommended for settings where malaria is prevalent. In this study, the effectiveness of three RDTs in detecting P. knowlesi from fresh and frozen patient blood samples was evaluated. Methods Forty malaria patients (28 P. knowlesi, ten P. vivax and two P. falciparum) diagnosed by microscopy were recruited in Sarawak, Malaysian Borneo during a 16-month period. Patient blood samples were used to determine parasitaemia by microscopy, confirm the Plasmodium species present by PCR and evaluate three RDTs: OptiMAL-IT, BinaxNOW® Malaria and Paramax-3. The RDTs were also evaluated using frozen blood samples from 41 knowlesi malaria patients. Results OptiMAL-IT was the most sensitive RDT, with a sensitivity of 71% (20/28; 95% CI = 54-88%) for fresh and 73% (30/41; 95% CI = 59-87%) for frozen knowlesi samples. However, it yielded predominantly falciparum-positive results due to cross-reactivity of the P. falciparum test reagent with P. knowlesi. BinaxNOW® Malaria correctly detected non-P. falciparum malaria in P. knowlesi samples but was the least sensitive, detecting only 29% (8/28; 95% CI = 12-46%) of fresh and 24% (10/41; 95% CI = 11-37%) of frozen samples. The Paramax-3 RDT tested positive for P. vivax with PCR-confirmed P. knowlesi samples with sensitivities of 40% (10/25; 95% CI = 21-59%) with fresh and 32% (13/41; 95% CI = 17-46%) with frozen samples. All RDTs correctly identified P. falciparum- and P. vivax-positive controls with parasitaemias above 2,000 parasites/μl blood. Conclusions The RDTs detected Plasmodium in P. knowlesi-infected blood samples with poor sensitivity and specificity. Patients with P. knowlesi could be misdiagnosed as P. falciparum with OptiMAL-IT, P. vivax with Paramax-3 and more correctly as non-P. vivax/non-P. falciparum with BinaxNOW® Malaria. There is a need for a sensitive and specific RDT for malaria diagnosis in settings where P. knowlesi infections predominate.
Collapse
Affiliation(s)
| | | | | | | | | | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia.
| |
Collapse
|
191
|
Preis J, Lutwick L. Plasmodium knowlesi. Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
192
|
Fatih FA, Staines HM, Siner A, Ahmed MA, Woon LC, Pasini EM, Kocken CH, Singh B, Cox-Singh J, Krishna S. Susceptibility of human Plasmodium knowlesi infections to anti-malarials. Malar J 2013; 12:425. [PMID: 24245918 PMCID: PMC3874596 DOI: 10.1186/1475-2875-12-425] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/12/2013] [Indexed: 12/25/2022] Open
Abstract
Background Evidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed. Methods Here the ex vivo sensitivity of human P. knowlesi isolates in Malaysian Borneo were studied, using a WHO schizont maturation assay modified to accommodate the quotidian life cycle of this parasite. The in vitro sensitivities of P. knowlesi H strain adapted from a primate infection to in vitro culture (by measuring the production of Plasmodium lactate dehydrogenase) were also examined together with some assays using Plasmodium falciparum and Plasmodium vivax. Results Plasmodium knowlesi is uniformly highly sensitive to artemisinins, variably and moderately sensitive to chloroquine, and less sensitive to mefloquine. Conclusions Taken together with reports of clinical failures when P. knowlesi is treated with mefloquine, the data suggest that caution is required if using mefloquine in prevention or treatment of P. knowlesi infections, until further studies are undertaken.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sanjeev Krishna
- Division of Clinical Sciences, Centre for Infection and Immunity, St, George's, University of London, London SW17 0RE, UK.
| |
Collapse
|
193
|
Mouatcho JC, Goldring JPD. Malaria rapid diagnostic tests: challenges and prospects. J Med Microbiol 2013; 62:1491-1505. [PMID: 24048274 DOI: 10.1099/jmm.0.052506-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the last decade, there has been an upsurge of interest in developing malaria rapid diagnostic test (RDT) kits for the detection of Plasmodium species. Three antigens - Plasmodium falciparum histidine-rich protein 2 (PfHRP2), plasmodial aldolase and plasmodial lactate dehydrogenase (pLDH) - are currently used for RDTs. Tests targeting HRP2 contribute to more than 90% of the malaria RDTs in current use. However, the specificities, sensitivities, numbers of false positives, numbers of false negatives and temperature tolerances of these tests vary considerably, illustrating the difficulties and challenges facing current RDTs. This paper describes recent developments in malaria RDTs, reviewing RDTs detecting PfHRP2, pLDH and plasmodial aldolase. The difficulties associated with RDTs, such as genetic variability in the Pfhrp2 gene and the persistence of antigens in the bloodstream following the elimination of parasites, are discussed. The prospect of overcoming the problems associated with current RDTs with a new generation of alternative malaria antigen targets is also described.
Collapse
Affiliation(s)
- Joel C Mouatcho
- Department of Biochemistry, School of Life Science, University of Kwazulu-Natal, Pietermaritzburg, Private Bag X01 Scottsville 3209, South Africa
| | - J P Dean Goldring
- Department of Biochemistry, School of Life Science, University of Kwazulu-Natal, Pietermaritzburg, Private Bag X01 Scottsville 3209, South Africa
| |
Collapse
|
194
|
Expansion of host cellular niche can drive adaptation of a zoonotic malaria parasite to humans. Nat Commun 2013; 4:1638. [PMID: 23535659 DOI: 10.1038/ncomms2612] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/18/2013] [Indexed: 01/06/2023] Open
Abstract
The macaque malaria parasite Plasmodium knowlesi has recently emerged as an important zoonosis in Southeast Asia. Infections are typically mild but can cause severe disease, achieving parasite densities similar to fatal Plasmodium falciparum infections. Here we show that a primate-adapted P. knowlesi parasite proliferates poorly in human blood due to a strong preference for young red blood cells (RBCs). We establish a continuous in vitro culture system by using human blood enriched for young cells. Mathematical modelling predicts that parasite adaptation for invasion of older RBCs is a likely mechanism leading to high parasite densities in clinical infections. Consistent with this model, we find that P. knowlesi can adapt to invade a wider age range of RBCs, resulting in proliferation in normal human blood. Such cellular niche expansion may increase pathogenesis in humans and will be a key feature to monitor as P. knowlesi emerges in human populations.
Collapse
|
195
|
Held J, Kreidenweiss A, Mordmüller B. Novel approaches in antimalarial drug discovery. Expert Opin Drug Discov 2013; 8:1325-37. [PMID: 24090219 DOI: 10.1517/17460441.2013.843522] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The development of new antimalarial drugs remains of the utmost importance, since Plasmodium falciparum has developed resistance against nearly all chemotherapeutics in clinical use. In an effort to contain the resistance of P. falciparum against artemisinins and to further eradication efforts, studies are ongoing to identify novel and more efficacious approaches to develop antimalarials. AREAS COVERED The authors review the classical and new approaches to antimalarial drug discovery, with a special emphasis on the various stages of the parasite's life cycle and the different Plasmodium species. The authors discuss the methodologies and strategies for early efficacy testing that aim to narrow down the portfolio of promising compounds. EXPERT OPINION The increased efforts in the discovery and development of new antimalarial compounds have led to the recognition of new promising hits. However, there is still major roadblock of selecting the most promising compounds and then further testing them in early clinical trials, especially in the current restricted economy. Controlled human malaria infection has much potential for speeding-up the early development process of many drug candidates including those which target the pre-erythrocytic stages.
Collapse
Affiliation(s)
- Jana Held
- University of Tübingen, Institute of Tropical Medicine , Wilhelmstraße 27, D-72074 Tübingen , Germany +49 7071 29 82364 ; +49 7071 295189 ;
| | | | | |
Collapse
|
196
|
Pacheco MA, Cranfield M, Cameron K, Escalante AA. Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens. Malar J 2013; 12:328. [PMID: 24044371 PMCID: PMC3848613 DOI: 10.1186/1475-2875-12-328] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/13/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Plasmodium falciparum shares its most recent common ancestor with parasites found in African apes; these species constitute the so-called Laverania clade. In this investigation, the evolutionary history of Plasmodium lineages found in chimpanzees (Pan troglodytes) was explored. METHODS Here, the remainders of 74 blood samples collected as part of the chimpanzees' routine health examinations were studied. For all positive samples with parasite lineages belonging to the Laverania clade, the complete mitochondrial genome (mtDNA), the gene encoding dihydrofolate reductase-thymidylate synthase (dhfr-ts), the chloroquine resistance transporter (Pfcrt), the circumsporozoite protein (csp), merozoite surface protein 2 (msp2), and the DBL-1 domain from var2CSA were amplified, cloned, and sequenced. Other Plasmodium species were included in the mtDNA, dhfr-ts, and csp analyses. Phylogenetic and evolutionary genetic analyses were performed, including molecular clock analyses on the mtDNA. RESULTS/CONCLUSIONS Nine chimpanzees were malaria positive (12.2%); four of those infections were identified as P. falciparum, two as a Plasmodium reichenowi-like parasite or Plasmodium sp., one as Plasmodium gaboni, and two as Plasmodium malariae. All P. falciparum isolates were resistant to chloroquine indicating that the chimpanzees acquired such infections from humans in recent times. Such findings, however, are not sufficient for implicating chimpanzees as an animal reservoir for P. falciparum.Timing estimates support that the Laverania clade has co-existed with hominids for a long-period of time. The proposed species P. gaboni, Plasmodium billbrayi, and Plasmodium billcollinsi are monophyletic groups supporting that they are indeed different species.An expanded CSP phylogeny is presented, including all the Laverania species and other malarial parasites. Contrasting with other Plasmodium, the Laverania csp exhibits great conservation at the central tandem repeat region. Msp2 and var2CSA, however, show extended recent polymorphism in P. falciparum that likely originated after the P. reichenowi-P. falciparum split. The accumulation of such diversity may indicate adaptation to the human host. These examples support the notion that comparative approaches among P. falciparum and its related species will be of great value in understanding the evolution of proteins that are important in parasite invasion of the human red blood cell, as well as those involved in malaria pathogenesis.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| | | | | | | |
Collapse
|
197
|
Putaporntip C, Thongaree S, Jongwutiwes S. Differential sequence diversity at merozoite surface protein-1 locus of Plasmodium knowlesi from humans and macaques in Thailand. INFECTION GENETICS AND EVOLUTION 2013; 18:213-9. [DOI: 10.1016/j.meegid.2013.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
|
198
|
Goh XT, Lim YAL, Vythilingam I, Chew CH, Lee PC, Ngui R, Tan TC, Yap NJ, Nissapatorn V, Chua KH. Increased detection of Plasmodium knowlesi in Sandakan division, Sabah as revealed by PlasmoNex™. Malar J 2013; 12:264. [PMID: 23902626 PMCID: PMC3733977 DOI: 10.1186/1475-2875-12-264] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is a simian malaria parasite that is widespread in humans in Malaysian Borneo. However, little is known about the incidence and distribution of this parasite in the Sandakan division, Malaysian Borneo. Therefore, the aim of the present epidemiological study was to investigate the incidence and distribution of P. knowlesi as well as other Plasmodium species in this division based on a most recent developed hexaplex PCR system (PlasmoNex™). METHODS A total of 189 whole blood samples were collected from Telupid Health Clinic, Sabah, Malaysia, from 2008 to 2011. All patients who participated in the study were microscopically malaria positive before recruitment. Complete demographic details and haematological profiles were obtained from 85 patients (13 females and 72 males). Identification of Plasmodium species was conducted using PlasmoNex™ targeting the 18S ssu rRNA gene. RESULTS A total of 178 samples were positive for Plasmodium species by using PlasmoNex™. Plasmodium falciparum was identified in 68 samples (38.2%) followed by 64 cases (36.0%) of Plasmodium vivax, 42 (23.6%) cases of P. knowlesi, two (1.1%) cases of Plasmodium malariae and two (1.1%) mixed-species infections (i e, P. vivax/P. falciparum). Thirty-five PlasmoNex™ positive P. knowlesi samples were misdiagnosed as P. malariae by microscopy. Plasmodium knowlesi was detected in all four districts of Sandakan division with the highest incidence in the Kinabatangan district. Thrombocytopaenia and anaemia showed to be the most frequent malaria-associated haematological complications in this study. CONCLUSIONS The discovery of P. knowlesi in Sandakan division showed that prospective studies on the epidemiological risk factors and transmission dynamics of P. knowlesi in these areas are crucial in order to develop strategies for effective malaria control. The availability of advanced diagnostic tool PlasmoNex™ enhanced the accuracy and accelerated the speed in the diagnosis of malaria.
Collapse
Affiliation(s)
- Xiang Ting Goh
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne AL Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ching Hoong Chew
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ping Chin Lee
- School of Science and Technology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tian Chye Tan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nan Jiun Yap
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
199
|
Kumar R, Nyakundi R, Kariuki T, Ozwara H, Nyamongo O, Mlambo G, Ellefsen B, Hannaman D, Kumar N. Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons. Vaccine 2013; 31:3140-7. [PMID: 23684840 DOI: 10.1016/j.vaccine.2013.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/09/2013] [Accepted: 05/01/2013] [Indexed: 12/01/2022]
Abstract
Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (olive baboons, Papio anubis). The results showed that at a dose of 2.5mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5mg and 1mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street (SL-17), New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Plasmodium knowlesi is a malaria parasite that is found in nature in long-tailed and pig-tailed macaques. Naturally acquired human infections were thought to be extremely rare until a large focus of human infections was reported in 2004 in Sarawak, Malaysian Borneo. Human infections have since been described throughout Southeast Asia, and P. knowlesi is now recognized as the fifth species of Plasmodium causing malaria in humans. The molecular, entomological, and epidemiological data indicate that human infections with P. knowlesi are not newly emergent and that knowlesi malaria is primarily a zoonosis. Human infections were undiagnosed until molecular detection methods that could distinguish P. knowlesi from the morphologically similar human malaria parasite P. malariae became available. P. knowlesi infections cause a spectrum of disease and are potentially fatal, but if detected early enough, infections in humans are readily treatable. In this review on knowlesi malaria, we describe the early studies on P. knowlesi and focus on the epidemiology, diagnosis, clinical aspects, and treatment of knowlesi malaria. We also discuss the gaps in our knowledge and the challenges that lie ahead in studying the epidemiology and pathogenesis of knowlesi malaria and in the prevention and control of this zoonotic infection.
Collapse
Affiliation(s)
- Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia.
| | | |
Collapse
|