151
|
Catorce MN, Gevorkian G. LPS-induced Murine Neuroinflammation Model: Main Features and Suitability for Pre-clinical Assessment of Nutraceuticals. Curr Neuropharmacol 2016; 14:155-64. [PMID: 26639457 PMCID: PMC4825946 DOI: 10.2174/1570159x14666151204122017] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is an important feature in the pathogenesis and progression of neurodegenerative diseases such as Alzheimer´s disease (AD), Parkinson´s disease (PD), frontotemporal dementia and amyotrophic lateral sclerosis. Based on current knowledge in the field, suggesting that targeting peripheral inflammation could be a promising additional treatment/prevention approach for neurodegenerative diseases, drugs and natural products with anti-inflammatory properties have been evaluated in animal models of neuroinflammation and neurodegeneration. In this review, we provide an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice, and address the data reproducibility in published research. We also summarize briefly basic features of various natural products, nutraceuticals, with known anti-inflammatory effects and present an overview of data on their therapeutic potential for reducing neuroinflammation in LPS-treated mice.
Collapse
Affiliation(s)
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico.
| |
Collapse
|
152
|
Wisniewski T, Drummond E. Developing therapeutic vaccines against Alzheimer's disease. Expert Rev Vaccines 2015; 15:401-15. [PMID: 26577574 PMCID: PMC4940858 DOI: 10.1586/14760584.2016.1121815] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. It is characterized by an imbalance between the production and clearance of amyloid β (Aβ) and tau proteins. In AD these normal proteins accumulate, leading to aggregation and a conformational change forming oligomeric and fibrillary species with a high β-sheet content. Active and passive immunotherapeutic approaches result in dramatic reduction of Aβ pathology in AD animal models. However, there is much more limited evidence in human studies of significant clinical benefits from these strategies and it is becoming apparent that they may only be effective very early in AD. Vaccination targeting only tau pathology has shown benefits in some mouse studies but human studies are limited. Greater therapeutic efficacy for the next generation of vaccine approaches will likely benefit from specifically targeting the most toxic species of Aβ and tau, ideally simultaneously.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| | - Eleanor Drummond
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| |
Collapse
|
153
|
Newell-Litwa KA, Horwitz R, Lamers ML. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 2015; 8:1495-515. [PMID: 26542704 PMCID: PMC4728321 DOI: 10.1242/dmm.022103] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The actin motor protein non-muscle myosin II (NMII) acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.
Collapse
Affiliation(s)
- Karen A Newell-Litwa
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Marcelo L Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-010, Brazil
| |
Collapse
|
154
|
van Noort JM, Bsibsi M, Nacken PJ, Verbeek R, Venneker EH. Therapeutic Intervention in Multiple Sclerosis with Alpha B-Crystallin: A Randomized Controlled Phase IIa Trial. PLoS One 2015; 10:e0143366. [PMID: 26599332 PMCID: PMC4657879 DOI: 10.1371/journal.pone.0143366] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
As a molecular chaperone and activator of Toll-like receptor 2-mediated protective responses by microglia and macrophages, the small heat shock protein alpha B-crystallin (HspB5) exerts therapeutic effects in different animal models for neuroinflammation, including the model for multiple sclerosis (MS). Yet, HspB5 can also stimulate human antigen-specific memory T cells to release IFN-γ, a cytokine with well-documented detrimental effects during MS. In this study, we explored in a Phase IIa randomized clinical trial the therapeutic application of HspB5 in relapsing-remitting MS (RR-MS), using intravenous doses sufficient to support its protective effects, but too low to trigger pathogenic memory T-cell responses. These sub-immunogenic doses were selected based on in vitro analysis of the dose-response profile of human T cells and macrophages to HspB5, and on the immunological effects of HspB5 in healthy humans as established in a preparatory Phase I study. In a 48-week randomized, placebo-controlled, double-blind Phase IIa trial, three bimonthly intravenous injections of 7.5, 12.5 or 17.5 mg HspB5 were found to be safe and well tolerated in RR-MS patients. While predefined clinical endpoints did not differ significantly between the relatively small groups of MS patients treated with either HspB5 or placebo, repeated administration especially of the lower doses of HspB5 led to a progressive decline in MS lesion activity as monitored by magnetic resonance imaging (MRI), which was not seen in the placebo group. Exploratory linear regression analysis revealed this decline to be significant in the combined group receiving either of the two lower doses, and to result in a 76% reduction in both number and total volumes of active MRI lesions at 9 months into the study. These data provide the first indication for clinical benefit resulting from intervention in RR-MS with HspB5. Trial Registration: ClinicalTrials.gov Phase I: NCT02442557; Phase IIa: NCT02442570
Collapse
|
155
|
Malagoli D, Mandrioli M, Tascedda F, Ottaviani E. Circulating phagocytes: the ancient and conserved interface between immune and neuroendocrine function. Biol Rev Camb Philos Soc 2015; 92:369-377. [PMID: 26548761 DOI: 10.1111/brv.12234] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
Immune and neuroendocrine functions display significant overlap in highly divergent and evolutionarily distant models such as molluscs, crustaceans, insects and mammals. Fundamental players in this crosstalk are professional phagocytes: macrophages in vertebrates and immunocytes in invertebrates. Although they have different developmental origins, macrophages and immunocytes possess comparable functions and differentiate under the control of evolutionarily conserved transcription factors. Macrophages and immunocytes share their pools of receptors, signalling molecules and pathways with neural cells and the neuro-endocrine system. In crustaceans, adult transdifferentiation of circulating haemocytes into neural cells has been documented recently. In light of developmental, molecular and functional evidence, we propose that the immune-neuroendocrine role of circulating phagocytes pre-dates the split of protostomian and deuterostomian superphyla and has been conserved during the evolution of the main groups of metazoans.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Enzo Ottaviani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| |
Collapse
|
156
|
Mao L, Nicolae A, Oliveira MAP, He F, Hachi S, Fleming RMT. A constraint-based modelling approach to metabolic dysfunction in Parkinson's disease. Comput Struct Biotechnol J 2015; 13:484-91. [PMID: 26504511 PMCID: PMC4579274 DOI: 10.1016/j.csbj.2015.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 12/18/2022] Open
Abstract
One of the hallmarks of sporadic Parkinson's disease is degeneration of dopaminergic neurons in the pars compacta of the substantia nigra. The aetiopathogenesis of this degeneration is still not fully understood, with dysfunction of many biochemical pathways in different subsystems suggested to be involved. Recent advances in constraint-based modelling approaches hold great potential to systematically examine the relative contribution of dysfunction in disparate pathways to dopaminergic neuronal degeneration, but few studies have employed these methods in Parkinson's disease research. Therefore, this review outlines a framework for future constraint-based modelling of dopaminergic neuronal metabolism to decipher the multi-factorial mechanisms underlying the neuronal pathology of Parkinson's disease.
Collapse
Affiliation(s)
- Longfei Mao
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Averina Nicolae
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Miguel A P Oliveira
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Feng He
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Siham Hachi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Ronan M T Fleming
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| |
Collapse
|
157
|
Müller L, Pawelec G. As we age: Does slippage of quality control in the immune system lead to collateral damage? Ageing Res Rev 2015; 23:116-23. [PMID: 25676139 DOI: 10.1016/j.arr.2015.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 12/22/2022]
Abstract
The vertebrate adaptive immune system is remarkable for its possession of a very broad range of antigen receptors imbuing the system with exquisite specificity, in addition to the phagocytic and inflammatory cells of the innate system shared with invertebrates. This system requires strict control both at the level of the generation the cells carrying these receptors and at the level of their activation and effector function mediation in order to avoid autoimmunity and mitigate immune pathology. Thus, quality control checkpoints are built into the system at multiple nodes in the response, relying on clonal selection and regulatory networks to maximize pathogen-directed effects and minimize collateral tissue damage. However, these checkpoints are compromised with age, resulting in poorer immune control manifesting as tissue-damaging autoimmune and inflammatory phenomena which can cause widespread systemic disease, paradoxically compounding the problems associated with increased susceptibility to infectious disease and possibly cancer in the elderly. Better understanding the reasons for slippage of immune control will pave the way for developing rational strategies for interventions to maintain appropriate immunity while reducing immunopathology.
Collapse
|
158
|
Broux B, Gowing E, Prat A. Glial regulation of the blood-brain barrier in health and disease. Semin Immunopathol 2015; 37:577-90. [PMID: 26245144 DOI: 10.1007/s00281-015-0516-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022]
Abstract
The brain is the organ with the highest metabolic demand in the body. Therefore, it needs specialized vasculature to provide it with the necessary oxygen and nutrients, while protecting it against pathogens and toxins. The blood-brain barrier (BBB) is very tightly regulated by specialized endothelial cells, two basement membranes, and astrocytic endfeet. The proximity of astrocytes to the vessel makes them perfect candidates to influence the function of the BBB. Moreover, other glial cells are also known to contribute to either BBB quiescence or breakdown. In this review, we summarize the knowledge on glial regulation of the BBB during development, in homeostatic conditions in the adult, and during neuroinflammatory responses.
Collapse
Affiliation(s)
- Bieke Broux
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis Street, Room R9.912, Montréal, Québec, Canada, H2X 0A9
- Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
- Hasselt University, Biomedical Research Institute and transnationale Universiteit Limburg, School of Life Sciences, Agoralaan, Building C, 3590, Diepenbeek, Belgium
| | - Elizabeth Gowing
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis Street, Room R9.912, Montréal, Québec, Canada, H2X 0A9
- Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Alexandre Prat
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis Street, Room R9.912, Montréal, Québec, Canada, H2X 0A9.
- Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
159
|
Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, Montresor A, Carlucci T, Nanì S, Tosadori G, Calciano L, Catalucci D, Berton G, Bonetti B, Constantin G. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 2015. [PMID: 26214837 DOI: 10.1038/nm.3913] [Citation(s) in RCA: 624] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a pathological hallmark of Alzheimer's disease, and innate immune cells have been shown to contribute to disease pathogenesis. In two transgenic models of Alzheimer's disease (5xFAD and 3xTg-AD mice), neutrophils extravasated and were present in areas with amyloid-β (Aβ) deposits, where they released neutrophil extracellular traps (NETs) and IL-17. Aβ42 peptide triggered the LFA-1 integrin high-affinity state and rapid neutrophil adhesion to integrin ligands. In vivo, LFA-1 integrin controlled neutrophil extravasation into the CNS and intraparenchymal motility. In transgenic Alzheimer's disease models, neutrophil depletion or inhibition of neutrophil trafficking via LFA-1 blockade reduced Alzheimer's disease-like neuropathology and improved memory in mice already showing cognitive dysfunction. Temporary depletion of neutrophils for 1 month at early stages of disease led to sustained improvements in memory. Transgenic Alzheimer's disease model mice lacking LFA-1 were protected from cognitive decline and had reduced gliosis. In humans with Alzheimer's disease, neutrophils adhered to and spread inside brain venules and were present in the parenchyma, along with NETs. Our results demonstrate that neutrophils contribute to Alzheimer's disease pathogenesis and cognitive impairment and suggest that the inhibition of neutrophil trafficking may be beneficial in Alzheimer's disease.
Collapse
Affiliation(s)
- Elena Zenaro
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Enrica Pietronigro
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | | | - Gennj Piacentino
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Laura Marongiu
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Simona Budui
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Ermanna Turano
- Department of Neurological and Movement Sciences, Neurology Section, University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Stefano Angiari
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Silvia Dusi
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Alessio Montresor
- 1] Department of Pathology and Diagnostics, University of Verona, Verona, Italy. [2] The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Tommaso Carlucci
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Sara Nanì
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Gabriele Tosadori
- 1] Department of Pathology and Diagnostics, University of Verona, Verona, Italy. [2] The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Lucia Calciano
- Department of Public Health and Community Medicine, University of Verona, Verona, Italy
| | - Daniele Catalucci
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), and Humanitas Research Hospital, Milan, Italy
| | - Giorgio Berton
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Bruno Bonetti
- Department of Neurological and Movement Sciences, Neurology Section, University of Verona, Verona, Italy
| | - Gabriela Constantin
- 1] Department of Pathology and Diagnostics, University of Verona, Verona, Italy. [2] The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| |
Collapse
|
160
|
Prins M, Schul E, Geurts J, van der Valk P, Drukarch B, van Dam AM. Pathological differences between white and grey matter multiple sclerosis lesions. Ann N Y Acad Sci 2015. [PMID: 26200258 DOI: 10.1111/nyas.12841] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a debilitating disease characterized by demyelination of the central nervous system (CNS), resulting in widespread formation of white matter lesions (WMLs) and grey matter lesions (GMLs). WMLs are pathologically characterized by the presence of immune cells that infiltrate the CNS, whereas these immune cells are barely present in GMLs. This striking pathological difference between WMLs and GMLs raises questions about the underlying mechanism. It is known that infiltrating leukocytes contribute to the generation of WMLs; however, since GMLs show a paucity of infiltrating immune cells, their importance in GML formation remains to be determined. Here, we review pathological characteristics of WMLs and GMLs, and suggest some possible explanations for the observed pathological differences. In our view, cellular and molecular characteristics of WM and GM, and local differences within WMLs and GMLs (in particular, in glial cell populations and the molecules they express), determine the pathway to demyelination. Further understanding of GML pathogenesis, considered to contribute to chronic MS, may have a direct impact on the development of novel therapeutic targets to counteract this progressive neurological disorder.
Collapse
Affiliation(s)
| | | | | | - Paul van der Valk
- Department of Pathology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
161
|
van Buel EM, Patas K, Peters M, Bosker FJ, Eisel ULM, Klein HC. Immune and neurotrophin stimulation by electroconvulsive therapy: is some inflammation needed after all? Transl Psychiatry 2015; 5. [PMID: 26218851 PMCID: PMC5068722 DOI: 10.1038/tp.2015.100] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A low-grade inflammatory response is commonly seen in the peripheral blood of major depressive disorder (MDD) patients, especially those with refractory and chronic disease courses. However, electroconvulsive therapy (ECT), the most drastic intervention reserved for these patients, is closely associated with an enhanced haematogenous as well as neuroinflammatory immune response, as evidenced by both human and animal studies. A related line of experimental evidence further shows that inflammatory stimulation reinforces neurotrophin expression and may even mediate dramatic neurogenic and antidepressant-like effects following exposure to chronic stress. The current review therefore attempts a synthesis of our knowledge on the neurotrophic and immunological aspects of ECT and other electrically based treatments in psychiatry. Perhaps contrary to contemporary views, we conclude that targeted potentiation, rather than suppression, of inflammatory responses may be of therapeutic relevance to chronically depressed patients or a subgroup thereof.
Collapse
Affiliation(s)
- E M van Buel
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands,Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. E-mail:
| | - K Patas
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands,Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology, University Medical Center Eppendorf, Hamburg, Germany
| | - M Peters
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands
| | - F J Bosker
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - U L M Eisel
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands,Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H C Klein
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
162
|
Abstract
Astrocytes were historically classified as supporting cells; however, it is becoming increasingly clear that they actively contribute to neuronal functioning under normal and pathological conditions. As interest in the contribution of neuroinflammation to Alzheimer's disease (AD) progression has grown, manipulating glial cells has become an attractive target for future therapies. Astrocytes have largely been under-represented in studies that assess the role of glia in these processes, despite substantial evidence of astrogliosis in AD. The actual role of astrocytes in AD remains elusive, as they seem to adopt different functions dependent on disease progression and the extent of accompanying parenchymal inflammation. Astrocytes may contribute to the clearance of amyloid β-peptide (Aβ) and restrict the spread of inflammation in the brain. Conversely, they may contribute to neurodegeneration in AD by releasing neurotoxins and neglecting crucial metabolic roles. The present review summarizes current evidence on the multi-faceted functions of astrocytes in AD, highlighting the significant scope available for future therapeutic targets.
Collapse
|
163
|
Mongillo P, Bertotto D, Pitteri E, Stefani A, Marinelli L, Gabai G. Peripheral leukocyte populations and oxidative stress biomarkers in aged dogs showing impaired cognitive abilities. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9778. [PMID: 25905581 PMCID: PMC4408299 DOI: 10.1007/s11357-015-9778-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/14/2015] [Indexed: 05/02/2023]
Abstract
In the present study, the peripheral blood leukocyte phenotypes, lymphocyte subset populations, and oxidative stress parameters were studied in cognitively characterized adult and aged dogs, in order to assess possible relationships between age, cognitive decline, and the immune status. Adult (N = 16, 2-7 years old) and aged (N = 29, older than 8 years) dogs underwent two testing procedures, for the assessment of spatial reversal learning and selective social attention abilities, which were shown to be sensitive to aging in pet dogs. Based on age and performance in cognitive testing, dogs were classified as adult not cognitively impaired (ADNI, N = 12), aged not cognitively impaired (AGNI, N = 19) and aged cognitively impaired (AGCI, N = 10). Immunological and oxidative stress parameters were compared across groups with the Kruskal-Wallis test. AGCI dogs displayed lower absolute CD4 cell count (p < 0.05) than ADNI and higher monocyte absolute count and percentage (p < 0.05) than AGNI whereas these parameters were not different between AGNI and ADNI. AGNI dogs had higher CD8 cell percentage than ADNI (p < 0.05). Both AGNI and AGCI dogs showed lower CD4/CD8 and CD21 count and percentage and higher neutrophil/lymphocyte and CD3/CD21 ratios (p < 0.05). None of the oxidative parameters showed any statistically significant difference among groups. These observations suggest that alterations in peripheral leukocyte populations may reflect age-related changes occurring within the central nervous system and disclose interesting perspectives for the dog as a model for studying the functional relationship between the nervous and immune systems during aging.
Collapse
Affiliation(s)
- Paolo Mongillo
- />Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell’Università 16, Agripolis, 35020 Legnaro, PD Italy
| | - Daniela Bertotto
- />Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell’Università 16, Agripolis, 35020 Legnaro, PD Italy
| | - Elisa Pitteri
- />Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell’Università 16, Agripolis, 35020 Legnaro, PD Italy
| | - Annalisa Stefani
- />Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, PD Italy
| | - Lieta Marinelli
- />Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell’Università 16, Agripolis, 35020 Legnaro, PD Italy
| | - Gianfranco Gabai
- />Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell’Università 16, Agripolis, 35020 Legnaro, PD Italy
| |
Collapse
|
164
|
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is an emerging global epidemic. It is characterized by an imbalance between production and clearance of amyloid β (Aβ) and tau proteins. Oligomeric forms of Aβ and tau are believed to be the most toxic. Dramatic results from AD animal models showed great promise for active and passive immune therapies targeting Aβ. However, there is very limited evidence in human studies of the clinical benefits from these approaches. Immunotherapies targeting only tau pathology have had some success but are limited so far to mouse models. The majority of current methods is based on immunological targeting of a self-protein; hence, benefits need to be balanced against risks of stimulating excessive autoimmune toxic inflammation. For greater efficacy the next generation of vaccines needs to focus more on concurrently targeting all the intermediate toxic conformers of oligomeric Aβ and tau species.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA.
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA
| |
Collapse
|
165
|
Altered activation of innate immunity associates with white matter volume and diffusion in first-episode psychosis. PLoS One 2015; 10:e0125112. [PMID: 25970596 PMCID: PMC4430522 DOI: 10.1371/journal.pone.0125112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
First-episode psychosis (FEP) is associated with inflammatory and brain structural changes, but few studies have investigated whether systemic inflammation associates with brain structural changes in FEP. Thirty-seven FEP patients (median 27 days on antipsychotic medication), and 19 matched controls were recruited. Serum levels of 38 chemokines and cytokines, and cardiovascular risk markers were measured at baseline and 2 months later. We collected T1- and diffusion-weighted MRIs with a 3 T scanner from the patients at baseline. We analyzed the association of psychosis-related inflammatory markers with gray and white matter (WM) volume using voxel-based morphometry and WM diffusion using tract-based spatial statistics with whole-brain and region-of-interest (ROI) analyses. FEP patients had higher CCL22 and lower TGFα, CXCL1, CCL7, IFN-α2 and ApoA-I than controls. CCL22 decreased significantly between baseline and 2 months in patients but was still higher than in controls. The association between inflammatory markers and FEP remained significant after adjusting for age, sex, smoking and BMI. We did not observe a correlation of inflammatory markers with any symptoms or duration of antipsychotic treatment. Baseline CCL22 levels correlated negatively with WM volume and positively with mean diffusivity and radial diffusivity bilaterally in the frontal lobes in ROI analyses. Decreased serum level of ApoA-I was associated with smaller volume of the medial temporal WM. In whole-brain analyses, CCL22 correlated positively with mean diffusivity and radial diffusivity, and CXCL1 associated negatively with fractional anisotropy and positively with mean diffusivity and radial diffusivity in several brain regions. This is the first report to demonstrate an association between circulating chemokine levels and WM in FEP patients. Interestingly, CCL22 has been previously implicated in autoimmune diseases associated with WM pathology. The results suggest that an altered activation of innate immunity may contribute to WM damage in psychotic disorders.
Collapse
|
166
|
Abstract
Vertebrate myelination is an evolutionary advancement essential for motor, sensory, and higher-order cognitive function. CNS myelin, a multilamellar differentiation of the oligodendrocyte plasma membrane, ensheaths axons to facilitate electrical conduction. Myelination is one of the most pivotal cell-cell interactions for normal brain development, involving extensive information exchange between differentiating oligodendrocytes and axons. The molecular mechanisms of myelination are discussed, along with new perspectives on oligodendrocyte plasticity and myelin remodeling of the developing and adult CNS.
Collapse
|
167
|
Dysregulation of glutamine transporter SNAT1 in Rett syndrome microglia: a mechanism for mitochondrial dysfunction and neurotoxicity. J Neurosci 2015; 35:2516-29. [PMID: 25673846 DOI: 10.1523/jneurosci.2778-14.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the gene encoding MeCP2, an epigenetic modulator that binds the methyl CpG dinucleotide in target genes to regulate transcription. Previously, we and others reported a role of microglia in the pathophysiology of RTT. To understand the mechanism of microglia dysfunction in RTT, we identified a MeCP2 target gene, SLC38A1, which encodes a major glutamine transporter (SNAT1), and characterized its role in microglia. We found that MeCP2 acts as a microglia-specific transcriptional repressor of SNAT1. Because glutamine is mainly metabolized in the mitochondria, where it is used as an energy substrate and a precursor for glutamate production, we hypothesize that SNAT1 overexpression in MeCP2-deficient microglia would impair the glutamine homeostasis, resulting in mitochondrial dysfunction as well as microglial neurotoxicity because of glutamate overproduction. Supporting this hypothesis, we found that MeCP2 downregulation or SNAT1 overexpression in microglia resulted in (1) glutamine-dependent decrease in microglial viability, which was corroborated by reduced microglia counts in the brains of MECP2 knock-out mice; (2) proliferation of mitochondria and enhanced mitochondrial production of reactive oxygen species; (3) increased oxygen consumption but decreased ATP production (an energy-wasting state); and (4) overproduction of glutamate that caused NMDA receptor-dependent neurotoxicity. The abnormalities could be rectified by mitochondria-targeted expression of catalase and a mitochondria-targeted peptide antioxidant, Szeto-Schiller 31. Our results reveal a novel mechanism via which MeCP2 regulates bioenergetic pathways in microglia and suggest a therapeutic potential of mitochondria-targeted antioxidants for RTT.
Collapse
|
168
|
Brøchner CB, Holst CB, Møllgård K. Outer brain barriers in rat and human development. Front Neurosci 2015; 9:75. [PMID: 25852456 PMCID: PMC4360706 DOI: 10.3389/fnins.2015.00075] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/20/2015] [Indexed: 12/24/2022] Open
Abstract
Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.
Collapse
Affiliation(s)
- Christian B Brøchner
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Camilla B Holst
- Department of Oncology, Copenhagen University Hospital Copenhagen, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
169
|
Shin H, Kim J, Song JH. Clozapine and olanzapine inhibit proton currents in BV2 microglial cells. Eur J Pharmacol 2015; 755:74-9. [PMID: 25771455 DOI: 10.1016/j.ejphar.2015.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/23/2015] [Accepted: 03/01/2015] [Indexed: 01/21/2023]
Abstract
Excessive reactive oxygen species produced by NADPH oxidase in over-activated microglia can lead to neuronal death. Some atypical antipsychotic drugs possibly have anti-inflammatory properties and suppress the production of pro-inflammatory cytokines and reactive oxygen species from microglia. Voltage-gated proton channels (Hv1) are expressed in microglia and are required for NADPH oxidase-dependent reactive oxygen species generation, which could contribute to neuronal death and ischemic brain damage. In the present study, we examined the effects of the atypical antipsychotics clozapine, olanzapine and risperidone on proton currents in microglial BV2 cells. Clozapine and olanzapine inhibited proton currents with IC50 values of 9.8 μM and 84 μM, respectively. Risperidone, however, showed very weak inhibition of proton currents. Clozapine-induced inhibition of proton currents was not accompanied by a positive shift in the activation voltage or reversal potential, indicating that the inhibition was not mediated through an increase in the intracellular pH. Clozapine binds to a multitude of receptors, including serotonin, dopamine and muscarinic receptors. Serotonin receptors, however, were not responsible for the proton current inhibition by clozapine. Of the three drugs, only clozapine could reach concentrations to inhibit microglial proton currents in the brain at therapeutic doses. Thus, the anti-inflammatory activity of clozapine may be partly attributable to its inhibition of microglial proton currents.
Collapse
Affiliation(s)
- Hyewon Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Jiwon Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea.
| |
Collapse
|
170
|
Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR, Ambati BK, Vetter ML. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech 2015; 8:443-55. [PMID: 25755083 PMCID: PMC4415894 DOI: 10.1242/dmm.018788] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/26/2015] [Indexed: 12/30/2022] Open
Abstract
Microglia serve key homeostatic roles, and respond to neuronal perturbation and decline with a high spatiotemporal resolution. The course of all chronic CNS pathologies is thus paralleled by local microgliosis and microglia activation, which begin at early stages of the disease. However, the possibility of using live monitoring of microglia during early disease progression to predict the severity of neurodegeneration has not been explored. Because the retina allows live tracking of fluorescent microglia in their intact niche, here we investigated their early changes in relation to later optic nerve neurodegeneration. To achieve this, we used the DBA/2J mouse model of inherited glaucoma, which develops progressive retinal ganglion cell degeneration of variable severity during aging, and represents a useful model to study pathogenic mechanisms of retinal ganglion cell decline that are similar to those in human glaucoma. We imaged CX3CR1(+/GFP) microglial cells in vivo at ages ranging from 1 to 5 months by confocal scanning laser ophthalmoscopy (cSLO) and quantified cell density and morphological activation. We detected early microgliosis at the optic nerve head (ONH), where axonopathy first manifests, and could track attenuation of this microgliosis induced by minocycline. We also observed heterogeneous and dynamic patterns of early microglia activation in the retina. When the same animals were aged and analyzed for the severity of optic nerve pathology at 10 months of age, we found a strong correlation with the levels of ONH microgliosis at 3 to 4 months. Our findings indicate that live imaging and monitoring the time course and levels of early retinal microgliosis and microglia activation in glaucoma could serve as indicators of future neurodegeneration severity.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Cesar O Romero
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Kevin T Breen
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Alexis A Chagovetz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael R Steele
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Balamurali K Ambati
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
171
|
Kizil C, Kyritsis N, Brand M. Effects of inflammation on stem cells: together they strive? EMBO Rep 2015; 16:416-26. [PMID: 25739812 DOI: 10.15252/embr.201439702] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammation entails a complex set of defense mechanisms acting in concert to restore the homeostatic balance in organisms after damage or pathogen invasion. This immune response consists of the activity of various immune cells in a highly complex manner. Inflammation is a double-edged sword as it is reported to have both detrimental and beneficial consequences. In this review, we discuss the effects of inflammation on stem cell activity, focusing primarily on neural stem/progenitor cells in mammals and zebrafish. We also give a brief overview of the effects of inflammation on other stem cell compartments, exemplifying the positive and negative role of inflammation on stemness. The majority of the chronic diseases involve an unremitting phase of inflammation due to improper resolution of the initial pro-inflammatory response that impinges on the stem cell behavior. Thus, understanding the mechanisms of crosstalk between the inflammatory milieu and tissue-resident stem cells is an important basis for clinical efforts. Not only is it important to understand the effect of inflammation on stem cell activity for further defining the etiology of the diseases, but also better mechanistic understanding is essential to design regenerative therapies that aim at micromanipulating the inflammatory milieu to offset the negative effects and maximize the beneficial outcomes.
Collapse
Affiliation(s)
- Caghan Kizil
- German Centre for Neurodegenerative Diseases (DZNE) Dresden within the Helmholtz Association, Dresden, Germany DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD) of the Technische Universität Dresden, Dresden, Germany
| | - Nikos Kyritsis
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD) of the Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD) of the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
172
|
Mattson MP. Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence. Ageing Res Rev 2015; 20:37-45. [PMID: 25576651 DOI: 10.1016/j.arr.2014.12.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/17/2022]
Abstract
Although the human brain is exceptional in size and information processing capabilities, it is similar to other mammals with regard to the factors that promote its optimal performance. Three such factors are the challenges of physical exercise, food deprivation/fasting, and social/intellectual engagement. Because it evolved, in part, for success in seeking and acquiring food, the brain functions best when the individual is hungry and physically active, as typified by the hungry lion stalking and chasing its prey. Indeed, studies of animal models and human subjects demonstrate robust beneficial effects of regular exercise and intermittent energy restriction/fasting on cognitive function and mood, particularly in the contexts of aging and associated neurodegenerative disorders. Unfortunately, the agricultural revolution and the invention of effort-sparing technologies have resulted in a dramatic reduction or elimination of vigorous exercise and fasting, leaving only intellectual challenges to bolster brain function. In addition to disengaging beneficial adaptive responses in the brain, sedentary overindulgent lifestyles promote obesity, diabetes and cardiovascular disease, all of which may increase the risk of cognitive impairment and Alzheimer's disease. It is therefore important to embrace the reality of the requirements for exercise, intermittent fasting and critical thinking for optimal brain health throughout life, and to recognize the dire consequences for our aging population of failing to implement such brain-healthy lifestyles.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States.
| |
Collapse
|
173
|
Su YY, Yang GF, Lu GM, Wu S, Zhang LJ. PET and MR imaging of neuroinflammation in hepatic encephalopathy. Metab Brain Dis 2015; 30:31-45. [PMID: 25514861 DOI: 10.1007/s11011-014-9633-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
Abstract
Neurological or psychiatric abnormalities associated with hepatic encephalopathy (HE) range from subclinical findings to coma. HE is commonly accompanied with the accumulation of toxic substances in bloodstream. The toxicity effect of hyperammonemia on astrocyte, such as the alteration in neurotransmission, oxidative stress, astrocyte swelling, is considered as an important factor in the pathogenesis of HE. Besides, neuroinflammation has captured more attention in the process of HE, but the mechanism of neuroinflammation leading to HE remains unclear. Molecular imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) targeting activated microglia and/ or other mediators appear to be promising noninvasive approaches to assess HE. This review focuses on novel imaging and therapy strategies of neuroinflammation in HE.
Collapse
Affiliation(s)
- Yun Yan Su
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nangjing, Jiangsu Province, 210002, China
| | | | | | | | | |
Collapse
|
174
|
Ruocco LA, Treno C, Gironi Carnevale UA, Arra C, Boatto G, Pagano C, Tino A, Nieddu M, Michel M, Prikulis I, Carboni E, de Souza Silva MA, Huston JP, Sadile AG, Korth C. Immunization with DISC1 protein in an animal model of ADHD influences behavior and excitatory amino acids in prefrontal cortex and striatum. Amino Acids 2015; 47:637-50. [DOI: 10.1007/s00726-014-1897-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/09/2014] [Indexed: 12/11/2022]
|
175
|
Kuban KCK, O’Shea TM, Allred EN, Fichorova RN, Heeren T, Paneth N, Hirtz D, Dammann O, Leviton A. The breadth and type of systemic inflammation and the risk of adverse neurological outcomes in extremely low gestation newborns. Pediatr Neurol 2015; 52:42-8. [PMID: 25459361 PMCID: PMC4276530 DOI: 10.1016/j.pediatrneurol.2014.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND We hypothesized that the risk of brain damage in extremely preterm neonates increases with the breadth and type of systemic inflammation, indexed by the number of elevated inflammation-related proteins and the number of functional categories of inflammation-related proteins exhibiting an elevated concentration. METHODS In blood from 881 infants born before 28 weeks gestation, we measured the concentrations of 25 inflammation-related proteins, representing six functional categories (cytokines, chemokines, growth factors, adhesion molecules, metalloproteinases, and liver-produced acute phase reactant proteins) on postnatal days 1, 7, and 14. We evaluated associations between the number and type of proteins whose concentrations were elevated on two separate occasions a week apart and the diagnoses of ventriculomegaly as a neonate, and at 2 years, microcephaly, impaired early cognitive functioning, cerebral palsy, and autism risk as assessed with the Modified Checklist for Autism in Toddlers screen, and in a subset of these children from 12 of 14 sites (n = 826), an attention problem identified with the Child Behavior Checklist. RESULTS The risk of abnormal brain structure and function overall was increased among children who had recurrent and/or persistent elevations of the 25 proteins. The risk for most outcomes did not rise until at least four proteins in at least two functional categories were elevated. When we focused our analysis on 10 proteins previously found to be associated consistently with neurological outcomes, we found the risk of low Mental Development Index on the Bayley Scales of Infant Development-II, microcephaly, and a Child Behavior Checklist-defined attention problem increased with higher numbers of these recurrently and/or persistently elevated proteins. INTERPRETATION Increasing breadth of early neonatal inflammation, indexed by the number of protein elevations or the number of protein functional classes elevated, is associated with increasing risk of disorders of brain structure and function among infants born extremely preterm.
Collapse
Affiliation(s)
- Karl C. K. Kuban
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | | | - Elizabeth N. Allred
- Harvard Medical School, Boston, MA, USA,Boston Children’s Hospital, Boston, MA, USA,Harvard School of Public Health, Boston, MA, USA
| | - Raina N. Fichorova
- Harvard Medical School, Boston, MA, USA,Department of Obstetrics, Gynecology & Reproductive Biology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tim Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Deborah Hirtz
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Olaf Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston MA, USA
| | - Alan Leviton
- Harvard Medical School, Boston, MA, USA,Boston Children’s Hospital, Boston, MA, USA
| | | |
Collapse
|
176
|
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer's disease. Cell Mol Neurobiol 2015; 35:71-83. [PMID: 25149075 PMCID: PMC11486233 DOI: 10.1007/s10571-014-0101-6] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Amyloid β (Aβ) plays a pivotal role in the progression of Alzheimer's disease (AD) through its neurotoxic and inflammatory effects. On one hand, Aβ binds to microglia and activates them to produce inflammatory mediators. On the other hand, Aβ is cleared by microglia through receptor-mediated phagocytosis and degradation. This review focuses on microglial membrane receptors that bind Aβ and contribute to microglial activation and/or Aβ phagocytosis and clearance. These receptors can be categorized into several groups. The scavenger receptors (SRs) include scavenger receptor A-1 (SCARA-1), MARCO, scavenger receptor B-1 (SCARB-1), CD36 and the receptor for advanced glycation end product (RAGE). The G protein-coupled receptors (GPCRs) are formyl peptide receptor 2 (FPR2) and chemokine-like receptor 1 (CMKLR1). There are also toll-like receptors (TLRs) including TLR2, TLR4, and the co-receptor CD14. Functionally, SCARA-1 and CMKLR1 are involved in the uptake of Aβ, and RAGE is responsible for the activation of microglia and production of proinflammatory mediators following Aβ binding. CD36, CD36/CD47/α6β1-intergrin, CD14/TLR2/TLR4, and FPR2 display both functions. Additionally, MARCO and SCARB-1 also exhibit the ability to bind Aβ and may be involved in the progression of AD. Here, we focus on the expression and distribution of these receptors in microglia and their roles in microglia interaction with Aβ. Finally, we discuss the potential therapeutic value of these receptors in AD.
Collapse
Affiliation(s)
- Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China,
| | | |
Collapse
|
177
|
Oosterhof N, Boddeke E, van Ham TJ. Immune cell dynamics in the CNS: Learning from the zebrafish. Glia 2014; 63:719-35. [PMID: 25557007 DOI: 10.1002/glia.22780] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022]
Abstract
A major question in research on immune responses in the brain is how the timing and nature of these responses influence physiology, pathogenesis or recovery from pathogenic processes. Proper understanding of the immune regulation of the human brain requires a detailed description of the function and activities of the immune cells in the brain. Zebrafish larvae allow long-term, noninvasive imaging inside the brain at high-spatiotemporal resolution using fluorescent transgenic reporters labeling specific cell populations. Together with recent additional technical advances this allows an unprecedented versatility and scope of future studies. Modeling of human physiology and pathology in zebrafish has already yielded relevant insights into cellular dynamics and function that can be translated to the human clinical situation. For instance, in vivo studies in the zebrafish have provided new insight into immune cell dynamics in granuloma formation in tuberculosis and the mechanisms involving treatment resistance. In this review, we highlight recent findings and novel tools paving the way for basic neuroimmunology research in the zebrafish. GLIA 2015;63:719-735.
Collapse
Affiliation(s)
- Nynke Oosterhof
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
178
|
Audet MC, McQuaid RJ, Merali Z, Anisman H. Cytokine variations and mood disorders: influence of social stressors and social support. Front Neurosci 2014; 8:416. [PMID: 25565946 PMCID: PMC4267188 DOI: 10.3389/fnins.2014.00416] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/25/2014] [Indexed: 01/12/2023] Open
Abstract
Stressful events have been implicated in the evolution of mood disorders. In addition to brain neurotransmitters and growth factors, the view has been offered that these disorders might be provoked by the activation of the inflammatory immune system as well as by de novo changes of inflammatory cytokines within the brain. The present review describes the impact of social stressors in animals and in humans on behavioral changes reminiscent of depressive states as well as on cytokine functioning. Social stressors increase pro-inflammatory cytokines in circulation as well as in brain regions that have been associated with depression, varying with the animal's social status and/or behavioral methods used to contend with social challenges. Likewise, in humans, social stressors that favor the development of depression are accompanied by elevated circulating cytokine levels and conversely, conditions that limit the cytokine elevations correlated with symptom attenuation or reversal. The implications of these findings are discussed in relation to the potentially powerful effects of social support, social identity, and connectedness in maintaining well-being and in diminishing symptoms of depression.
Collapse
Affiliation(s)
- Marie-Claude Audet
- Institute of Mental Health Research Ottawa, ON, Canada ; Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | - Robyn J McQuaid
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | - Zul Merali
- Institute of Mental Health Research Ottawa, ON, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| |
Collapse
|
179
|
Brod S, Rattazzi L, Piras G, D'Acquisto F. 'As above, so below' examining the interplay between emotion and the immune system. Immunology 2014; 143:311-8. [PMID: 24943894 DOI: 10.1111/imm.12341] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 12/13/2022] Open
Abstract
While the concept of a palpable relationship between our mental and physical well-being is certainly not new, it is only in the light of modern scientific research that we have begun to realize how deeply connected our emotional and immune states may be. We begin this review with a series of studies demonstrating how four fundamental emotional responses: anger, anxiety, mirth and relaxation are able modulate cytokine production and cellular responses to a variety of immune stimuli. These modulations are shown to be either detrimental or beneficial to a patient's health dependent on the context and duration of the emotion. We also discuss the reverse, highlighting research demonstrating how the loss of key immune cells such as T lymphocytes in clinical and animal studies can negatively impact both emotional well-being and cognition. Additionally, to give a more complete picture of the manifold pathways that link emotion and the immune system, we give a brief overview of the influence the digestive system has upon mental and immunological health. Finally, throughout this review we attempt to highlight the therapeutic potential of this burgeoning field of research in both the diagnosis and treatment of immune and disorders. As well as identifying some of the key obstacles the field must address in order to put this potential into practice.
Collapse
Affiliation(s)
- Samuel Brod
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
180
|
Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 2014; 8:389. [PMID: 25505871 PMCID: PMC4245913 DOI: 10.3389/fncel.2014.00389] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023] Open
Abstract
Although the blood-brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO).
Collapse
Affiliation(s)
- Maxime Gauberti
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Axel Montagne
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Aurélien Quenault
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Denis Vivien
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| |
Collapse
|
181
|
Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett 2014; 163:49-55. [PMID: 25448709 DOI: 10.1016/j.imlet.2014.11.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by deficits in social interactions, communication, and increased stereotypical repetitive behaviors. The immune system plays an important role in neurodevelopment, regulating neuronal proliferation, synapse formation and plasticity, as well as removing apoptotic neurons. Immune dysfunction in ASD has been repeatedly described by many research groups across the globe. Symptoms of immune dysfunction in ASD include neuroinflammation, presence of autoantibodies, increased T cell responses, and enhanced innate NK cell and monocyte immune responses. Moreover these responses are frequently associated with more impairment in core ASD features including impaired social interactions, repetitive behaviors and communication. In mouse models replacing immune components in animals that exhibit autistic relevant features leads to improvement in behavior in these animals. Taken together this research suggests that the immune dysfunction often seen in ASD directly affects aspects of neurodevelopment and neurological processes leading to changes in behavior. Discussion of immune abnormalities in ASD will be the focus of this review.
Collapse
Affiliation(s)
- Jennifer Mead
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
182
|
The role of Galectin-3 in α-synuclein-induced microglial activation. Acta Neuropathol Commun 2014; 2:156. [PMID: 25387690 PMCID: PMC4236422 DOI: 10.1186/s40478-014-0156-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder. The neuropathology is characterized by intraneuronal protein aggregates of α-synuclein and progressive degeneration of dopaminergic neurons within the substantia nigra. Previous studies have shown that extracellular α-synuclein aggregates can activate microglial cells, induce inflammation and contribute to the neurodegenerative process in PD. However, the signaling pathways involved in α-synuclein-mediated microglia activation are poorly understood. Galectin-3 is a member of a carbohydrate-binding protein family involved in cell activation and inflammation. Therefore, we investigated whether galectin-3 is involved in the microglia activation triggered by α-synuclein. RESULTS We cultured microglial (BV2) cells and induced cell activation by addition of exogenous α-synuclein monomers or aggregates to the cell culture medium. This treatment induced a significant increase in the levels of proinflammatory mediators including the inducible Nitric Oxide Synthase (iNOS), interleukin 1 Beta (IL-1β) and Interleukin-12 (IL-12). We then reduced the levels of galectin-3 expression using siRNA or pharmacologically targeting galectin-3 activity using bis-(3-deoxy-3-(3-fluorophenyl-1H-1,2,3-triazol-1-yl)-β-D-galactopyranosyl)-sulfane. Both approaches led to a significant reduction in the observed inflammatory response induced by α-synuclein. We confirmed these findings using primary microglial cells obtained from wild-type and galectin-3 null mutant mice. Finally, we performed injections of α-synuclein in the olfactory bulb of wild type mice and observed that some of the α-synuclein was taken up by activated microglia that were immunopositive for galectin-3. CONCLUSIONS We show that α-synuclein aggregates induce microglial activation and demonstrate for the first time that galectin-3 plays a significant role in microglia activation induced by α-synuclein. These results suggest that genetic down-regulation or pharmacological inhibition of galectin-3 might constitute a novel therapeutic target in PD and other synucleinopathies.
Collapse
|
183
|
Mizoguchi Y, Kato TA, Horikawa H, Monji A. Microglial intracellular Ca(2+) signaling as a target of antipsychotic actions for the treatment of schizophrenia. Front Cell Neurosci 2014; 8:370. [PMID: 25414641 PMCID: PMC4220695 DOI: 10.3389/fncel.2014.00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Microglia are resident innate immune cells which release many factors including proinflammatory cytokines, nitric oxide (NO) and neurotrophic factors when they are activated in response to immunological stimuli. Recent reports show that pathophysiology of schizophrenia is related to the inflammatory responses mediated by microglia. Intracellular Ca2+ signaling, which is mainly controlled by the endoplasmic reticulum (ER), is important for microglial functions such as release of NO and cytokines, migration, ramification and deramification. In addition, alteration of intracellular Ca2+ signaling underlies the pathophysiology of schizophrenia, while it remains unclear how typical or atypical antipsychotics affect intracellular Ca2+ mobilization in microglial cells. This mini-review article summarizes recent findings on cellular mechanisms underlying the characteristic differences in the actions of antipsychotics on microglial intracellular Ca2+ signaling and reinforces the importance of the ER of microglial cells as a target of antipsychotics for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University Saga, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; Innovation Center for Medical Redox Navigation, Kyushu University Fukuoka, Japan
| | - Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University Saga, Japan
| |
Collapse
|
184
|
Schwarzmaier SM, Plesnila N. Contributions of the immune system to the pathophysiology of traumatic brain injury - evidence by intravital microscopy. Front Cell Neurosci 2014; 8:358. [PMID: 25408636 PMCID: PMC4219391 DOI: 10.3389/fncel.2014.00358] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) results in immediate brain damage that is caused by the mechanical impact and is non-reversible. This initiates a cascade of delayed processes which cause additional—secondary—brain damage. Among these secondary mechanisms, the inflammatory response is believed to play an important role, mediating actions that can have both protective and detrimental effects on the progression of secondary brain damage. Histological data generated extensive information; however, this is only a snapshot of processes that are, in fact, very dynamic. In contrast, in vivo microscopy provides detailed insight into the temporal and spatial patterns of cellular dynamics. In this review, we aim to summarize data which was generated by in vivo microscopy, specifically investigating the immune response following brain trauma, and its potential effects on secondary brain damage.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- Department of Anesthesiology, University of Munich Medical Center Munich, Germany ; Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center Munich, Germany ; Munich Cluster of Systems Neurology Munich, Germany
| |
Collapse
|
185
|
Guha SK, Tillu R, Sood A, Patgaonkar M, Nanavaty IN, Sengupta A, Sharma S, Vaidya VA, Pathak S. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior. Brain Behav Immun 2014; 42:123-37. [PMID: 24953429 DOI: 10.1016/j.bbi.2014.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 12/26/2022] Open
Abstract
Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial activation and redistribution, and a definitive, but transient, suppression of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Suman K Guha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rucha Tillu
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ankit Sood
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ishira N Nanavaty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arjun Sengupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
186
|
Effect of intermittent hypoxia on neuro-functional recovery post brain ischemia in mice. J Mol Neurosci 2014; 55:923-30. [PMID: 25344154 DOI: 10.1007/s12031-014-0447-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/13/2014] [Indexed: 12/28/2022]
Abstract
Intermittent hypoxia was a simulation of a high-altitude environment. Neuro-inflammation post brain ischemia was considered as a vital impact which contributed to cognitive-functional deficit. The isoform of nitric oxide synthase (iNOS) was an inflammation factor secreted by microglias in neuro-inflammation. In this study, we established a high-altitude environment as the hypoxic condition. Twenty mice were selected and randomized into a hypoxia group (n = 10) or a normoxia group (n = 10) post three vessel occlusion-induced brain ischemia. An enhancement of cognitive-functional recovery was presented in the hypoxia group by survival neuron counting and revealed by the Morris water maze test. Meanwhile, a high level of hypoxia-inducable factor 1 (HIF-1) expression associated with a lower expression of iNOS was observed in the border between infarcts and normal tissue of the hippocampus in the hypoxia group. However, these phenomenons were blocked by HIF-1 inhibition. This suggested that the acceleration of cognitive-functional recovery induced by intermittent hypoxia may depend on HIF-1 activating. An imitation of the hypoxic condition with or without HIF-1 inhibition was operated on the BV-2 cell. A high level of HIF-1 expression associated with a lower-level expression of iNOS was performed in the hypoxic condition. These data suggested that intermittent hypoxia can accelerate cognitive function recovery through attenuating neuro-inflammation.
Collapse
|
187
|
Bamm VV, Lanthier DK, Stephenson EL, Smith GST, Harauz G. In vitro study of the direct effect of extracellular hemoglobin on myelin components. Biochim Biophys Acta Mol Basis Dis 2014; 1852:92-103. [PMID: 25463632 DOI: 10.1016/j.bbadis.2014.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/26/2014] [Accepted: 10/09/2014] [Indexed: 01/04/2023]
Abstract
There is a relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of dilated veins in MS plaques. The sources of this iron can be varied, but capillary and venous hemorrhages leading to blood extravasation have been recorded, and could result in the release of hemoglobin extracellularly. Extracellular hemoglobin oxidizes quickly and is known to become a reactive molecule that triggers low-density lipoprotein oxidation and plays a pivotal role in atherogenesis. In MS, it could lead to local oxidative stress, inflammation, and tissue damage. Here, we investigated whether extracellular hemoglobin and its breakdown products can cause direct oxidative damage to myelin components in a peroxidative environment such as occurs in inflamed tissue. Oxidation of lipids was assessed by the formation of fluorescent peroxidized lipid-protein covalent adducts, by the increase in conjugated diene and malondialdehyde. Oxidation of proteins was analyzed by the change in protein mass. The results suggest that the globin radical could be a trigger of myelin basic protein oxidative cross-linking, and that heme transferred to the lipids is involved in lipid peroxidation. This study provides new insight into the mechanism by which hemoglobin exerts its pathological oxidative activity towards myelin components. This work supports further research into the vascular pathology in MS, to gain insight into the origin and role of iron deposits in disease pathogenesis, or in stimulation of different comorbidities such as cardiovascular disease.
Collapse
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Danielle K Lanthier
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Erin L Stephenson
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Graham S T Smith
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
188
|
Leckman JF, Vaccarino FM. Editorial commentary: "What does immunology have to do with brain development and neuropsychiatric disorders?". Brain Res 2014; 1617:1-6. [PMID: 25283746 DOI: 10.1016/j.brainres.2014.09.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Affiliation(s)
- James F Leckman
- Child Study Center and the Departments of Psychiatry, Pediatrics, and Psychology, Yale University, New Haven, CT, USA
| | - Flora M Vaccarino
- Program in Neurodevelopment and Regeneration, Yale Kavli Institute for Neuroscience, Child Study Center and Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
189
|
Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O. Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 2014; 34:1573-1584. [PMID: 25074747 PMCID: PMC4269726 DOI: 10.1038/jcbfm.2014.130] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022]
Abstract
This review covers the pathogenesis of ischemic stroke and future directions regarding therapeutic options after injury. Ischemic stroke is a devastating disease process affecting millions of people worldwide every year. The mechanisms underlying the pathophysiology of stroke are not fully understood but there is increasing evidence demonstrating the contribution of inflammation to the drastic changes after cerebral ischemia. This inflammation not only immediately affects the infarcted tissue but also causes long-term damage in the ischemic penumbra. Furthermore, the interaction between inflammation and subsequent neurogenesis is not well understood but the close relationship between these two processes has garnered significant interest in the last decade or so. Current approved therapy for stroke involving pharmacological thrombolysis is limited in its efficacy and new treatment strategies need to be investigated. Research aimed at new therapies is largely about transplantation of neural stem cells and using endogenous progenitor cells to promote brain repair. By understanding the interaction between inflammation and neurogenesis, new potential therapies could be developed to further establish brain repair mechanisms.
Collapse
Affiliation(s)
- Matthew K Tobin
- Medical Scientist Training Program, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jacqueline A Bonds
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dale A Pelligrino
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
190
|
Liu J, Buisman-Pijlman F, Hutchinson MR. Toll-like receptor 4: innate immune regulator of neuroimmune and neuroendocrine interactions in stress and major depressive disorder. Front Neurosci 2014; 8:309. [PMID: 25324715 PMCID: PMC4179746 DOI: 10.3389/fnins.2014.00309] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/13/2014] [Indexed: 01/06/2023] Open
Abstract
Major depressive disorder (MDD) poses one of the highest disease burdens worldwide. Yet, current treatments targeting serotonergic and noradrenaline reuptake systems are insufficient to provide long-term relief from depressive symptoms in most patients, indicating the need for new treatment targets. Having the ability to influence behavior similar to depressive symptoms, as well as communicate with neuronal and neuroendocrine systems, the innate immune system is a strong candidate for MDD treatments. Given the complex nature of immune signaling, the main question becomes: What is the role of the innate immune system in MDD? The current review presents evidence that toll-like receptor 4 (TLR4), via driving both peripheral and central immune responses, can interact with serotonergic neurotransmission and cause neuroendocrine disturbances, thus integrating with widely observed hallmarks of MDD. Additionally, through describing the multi-directional communication between immune, neural and endocrine systems in stress, TLR4—related mechanisms can mediate stress-induced adaptations, which are necessary for the development of MDD. Therefore, apart from exogenous pathogenic mechanisms, TLR4 is involved in immune changes as a result of endogenous stress signals, playing an integral part in the pathophysiology, and could be a potential target for pharmacological treatments to improve current interventions for MDD.
Collapse
Affiliation(s)
- JiaJun Liu
- Neuroimmunopharmacology Group, Discipline of Physiology, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Femke Buisman-Pijlman
- Discipline of Pharmacology, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Mark R Hutchinson
- Neuroimmunopharmacology Group, Discipline of Physiology, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
191
|
Wooden J, Ciborowski P. Chromatin immunoprecipitation for human monocyte derived macrophages. Methods 2014; 70:89-96. [PMID: 25220915 DOI: 10.1016/j.ymeth.2014.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 08/21/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022] Open
Abstract
The importance of Chromatin Immunoprecipitation (ChIP) technology has grown exponentially along with an increased interest in epigenetic regulation. The correlation of transcription factors with histone marks is now well established as the center of epigenetic studies; therefore, precise knowledge about histone marks is critical to unravel their molecular function and to understand their role in biological systems. This knowledge constantly accumulates and is provided openly in the expanding hubs of information such as the USCS Genome Browser. Nevertheless, as we gain more knowledge, we realize that the DNA-protein interactions are not driven by a "one size fits all" rule. Also, the diversity of interactions between DNA, histones, and transcriptional regulators is much bigger than previously considered. Besides a detailed protocol of sample preparation for the ChIP assay from primary human monocyte-derived macrophages (MDM) [an acceptable in vitro model for primary, human macrophage cells], we show that differences between various types of cells exist. Furthermore, we can postulate that such variations exist between transformed macrophage-like cell lines and primary macrophages obtained from healthy volunteers. We found that the most efficient fixation time for MDM is 10min. Finally, to perform multiple analytical assays, we showed that even with thorough methodology, the yield of material obtained from primary cells is the major challenge.
Collapse
Affiliation(s)
- Jessica Wooden
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, United States
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, United States.
| |
Collapse
|
192
|
Doty KR, Guillot-Sestier MV, Town T. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive? Brain Res 2014; 1617:155-73. [PMID: 25218556 DOI: 10.1016/j.brainres.2014.09.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases share common features, including catastrophic neuronal loss that leads to cognitive or motor dysfunction. Neuronal injury occurs in an inflammatory milieu that is populated by resident and sometimes, infiltrating, immune cells - all of which participate in a complex interplay between secreted inflammatory modulators and activated immune cell surface receptors. The importance of these immunomodulators is highlighted by the number of immune factors that have been associated with increased risk of neurodegeneration in recent genome-wide association studies. One of the more difficult tasks for designing therapeutic strategies for immune modulation against neurodegenerative diseases is teasing apart beneficial from harmful signals. In this regard, learning more about the immune components of these diseases has yielded common themes. These unifying concepts should eventually enable immune-based therapeutics for treatment of Alzheimer׳s and Parkinson׳s diseases and amyotrophic lateral sclerosis. Targeted immune modulation should be possible to temper maladaptive factors, enabling beneficial immune responses in the context of neurodegenerative diseases. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Kevin R Doty
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
193
|
Scholtzova H, Chianchiano P, Pan J, Sun Y, Goñi F, Mehta PD, Wisniewski T. Amyloid β and Tau Alzheimer's disease related pathology is reduced by Toll-like receptor 9 stimulation. Acta Neuropathol Commun 2014; 2:101. [PMID: 25178404 PMCID: PMC4171548 DOI: 10.1186/s40478-014-0101-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/11/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia, and currently, there is no effective treatment. The major neuropathological lesions in AD are accumulation of amyloid β (Aβ) as amyloid plaques and congophilic amyloid angiopathy, as well as aggregated tau in the form of neurofibrillary tangles (NFTs). In addition, inflammation and microglia/macrophage function play an important role in AD pathogenesis. We have hypothesized that stimulation of the innate immune system via Toll-like receptor 9 (TLR9) agonists, such as type B CpG oligodeoxynucleotides (ODNs), might be an effective way to ameliorate AD related pathology. We have previously shown in the Tg2576 AD model that CpG ODN can reduce amyloid deposition and prevent cognitive deficits. In the present study, we used the 3xTg-AD mice with both Aβ and tau related pathology. The mice were divided into 2 groups treated from 7 to 20 months of age, prior to onset of pathology and from 11 to 18 months of age, when pathology is already present. We demonstrated that immunomodulatory treatment with CpG ODN reduces both Aβ and tau pathologies, as well as levels of toxic oligomers, in the absence of any apparent inflammatory toxicity, in both animal groups. This pathology reduction is associated with a cognitive rescue in the 3xTg-AD mice. Our data indicate that modulation of microglial function via TLR9 stimulation is effective at ameliorating all the cardinal AD related pathologies in an AD mouse model mice suggesting such an approach would have a greater chance of achieving clinical efficacy.
Collapse
|
194
|
Low-grade inflammation disrupts structural plasticity in the human brain. Neuroscience 2014; 275:81-8. [DOI: 10.1016/j.neuroscience.2014.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023]
|
195
|
Smile--It's in your blood! Biochem Pharmacol 2014; 91:287-92. [PMID: 25107703 DOI: 10.1016/j.bcp.2014.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 01/28/2023]
Abstract
Emotions and feelings are the bricks of our social life and yet we often forget that they have a significant impact on our physical wellbeing. Indeed, a growing number of studies have shown that both an imbalanced or improved emotional state can significantly influence the way our immune system responds. In this commentary, we have summarized the most recent studies on the effects of different types of emotional states on the immune system and we have also explored the effects of mood modulator approaches on the immune response. We hope this commentary will prompt scientists and clinicians to think about the therapeutic value and potential of emotions and feelings in immune-related diseases. At the same time, we think that this commentary will shed some light on the scientific truth behind the very famous expression "It's in my blood" when we talk about feelings and personality.
Collapse
|
196
|
Cantera R, Barrio R. Do the genes of the innate immune response contribute to neuroprotection in Drosophila? J Innate Immun 2014; 7:3-10. [PMID: 25115549 DOI: 10.1159/000365195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/12/2014] [Indexed: 12/23/2022] Open
Abstract
A profound debate exists on the relationship between neurodegeneration and the innate immune response in humans. Although it is clear that such a relation exists, the causes and consequences of this complex association remain to be determined in detail. Drosophila is being used to investigate the mechanisms involved in neurodegeneration, and all genomic studies on this issue have generated gene catalogues enriched in genes of the innate immune response. We review the data reported in these publications and propose that the abundance of immune genes in studies of neurodegeneration reflects at least two phenomena: (i) some proteins have functions in both immune and nervous systems, and (ii) immune genes might also be of neuroprotective value in Drosophila. This review opens this debate in Drosophila, which could thus be used as an instrumental model to elucidate this question.
Collapse
Affiliation(s)
- Rafael Cantera
- Zoology Department, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
197
|
Lee K, Kim SJ, Kim D, Jo SH, Joong Lee S, Choi SY. Prostaglandin modulates TLR3-induced cytokine expression in human astroglioma cells. Brain Res 2014; 1589:54-60. [PMID: 25014275 DOI: 10.1016/j.brainres.2014.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022]
Abstract
Cyclooxygenase (COX) products and pattern recognition receptors are important modulators of neuroinflammation; however, the role of prostaglandins and toll-like receptor (TLR) signaling and the functional crosstalk between COX modulators remains unclear, especially in astrocytes that closely modulate neuronal functions. Here, we studied the effect of prostaglandins on toll-like receptor 3 (TLR3)-induced cytokine expression in human astroglioma CRT-MG cells. Prostaglandin E2 (PGE2) was shown to increase cytosolic cAMP levels in an EP2 receptor dependent manner. Interestingly, the TLR3 agonist polyinosinic:polycytidylic acid (poly(I:C)) mediated phosphorylation of NF-κB and extracellular stress-related kinase 1/2 (ERK1/2), which significantly decreased following PGE2 treatment. In addition, PGE2 increased the phosphorylation and inactivation of glycogen synthesis kinase-3β (GSK-3β), whereas poly(I:C) decreased it. We observed that PGE2 decreased tumor necrosis factor-α (TNF-α) production evoked by poly(I:C), whereas PGE2 potentiated poly(I:C)-triggered interleukin-8 (IL-8) production. These results suggest that prostaglandin modulates the TLR3-mediated cytokine profile in astrocytes via EP2 receptors and regulates the NF-κB, ERK1/2 and GSK-3β signaling pathways.
Collapse
Affiliation(s)
- Keimin Lee
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, Republic of Korea
| | - Soo-Jeong Kim
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, Republic of Korea
| | - Donghoon Kim
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, Republic of Korea
| | - Se-Young Choi
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, Republic of Korea.
| |
Collapse
|
198
|
Amor S, Peferoen LAN, Vogel DYS, Breur M, van der Valk P, Baker D, van Noort JM. Inflammation in neurodegenerative diseases--an update. Immunology 2014; 142:151-66. [PMID: 24329535 DOI: 10.1111/imm.12233] [Citation(s) in RCA: 385] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well-known in Alzheimer's and Parkinson's diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, VU University Medical Centre, Amsterdam, the Netherlands; Neuroimmunology Unit, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | |
Collapse
|
199
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2014; 66:815-68. [PMID: 24958636 PMCID: PMC4081729 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
200
|
Forlenza OV, De-Paula VJR, Diniz BSO. Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders. ACS Chem Neurosci 2014; 5:443-50. [PMID: 24766396 DOI: 10.1021/cn5000309] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lithium is a well-established therapeutic option for the acute and long-term management of bipolar disorder and major depression. More recently, based on findings from translational research, lithium has also been regarded as a neuroprotective agent and a candidate drug for disease-modification in certain neurodegenerative disorders, namely, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and, more recently, Parkinson's disease (PD). The putative neuroprotective effects of lithium rely on the fact that it modulates several homeostatic mechanisms involved in neurotrophic response, autophagy, oxidative stress, inflammation, and mitochondrial function. Such a wide range of intracellular responses may be secondary to two key effects, that is, the inhibition of glycogen synthase kinase-3 beta (GSK-3β) and inositol monophosphatase (IMP) by lithium. In the present review, we revisit the neurobiological properties of lithium in light of the available evidence of its neurotrophic and neuroprotective properties, and discuss the rationale for its use in the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- O. V. Forlenza
- Laboratory
of Neuroscience (LIM-27), Department and Institute of Psychiatry,
Faculty of Medicine, University of Sao Paulo, SP, Brazil
| | - V. J. R. De-Paula
- Laboratory
of Neuroscience (LIM-27), Department and Institute of Psychiatry,
Faculty of Medicine, University of Sao Paulo, SP, Brazil
| | - B. S. O. Diniz
- Department
of Mental Health and National Institute of Science and Technology,
Molecular Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|