151
|
Hamasaki K, Imai K, Nakachi K, Takahashi N, Kodama Y, Kusunoki Y. Short-term culture and gammaH2AX flow cytometry determine differences in individual radiosensitivity in human peripheral T lymphocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:38-47. [PMID: 17163504 DOI: 10.1002/em.20273] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Histone H2AX, a subfamily of histone H2A, is phosphorylated and forms proteinaceous repair foci at the sites of DNA double-strand breaks in response to genotoxic insults, such as ionizing radiation. This process is believed to play a key role in the repair of DNA damage. In this study, we established a flow cytometry (FCM) system for measuring radiation-induced phosphorylated histone H2AX (gammaH2AX) in cultured human T lymphocytes to evaluate individual radiation sensitivity in vitro. Irradiation of short-term ( approximately 7 days) cultured T lymphocytes exhibited significant interindividual, but not interexperimental, differences in the cellular content of gammaH2AX 6 hr after 4 Gy of X-irradiation in three independent experiments using peripheral blood lymphocytes from six healthy donors. However, these differences were not as marked in uncultured lymphocytes, or lymphocytes that were cultured for a prolonged period ( approximately 13 days). The variation of gammaH2AX focus formation in lymphocytes of individuals was reproducible, with differences reaching about 1.5-fold following 7 days of culture. Therefore, the FCM-based gammaH2AX measurement appeared to reflect both the temporal course and the amount of DNA damage within the irradiated lymphocytes. Further, we confirmed that the differences in residual lymphocyte subsets were not involved in individual radiosensitivity. These results suggest that the FCM-based gammaH2AX assay using cultured T lymphocytes might be useful for the rapid and reliable assessment of individual radiation sensitivity involved in DNA damage repair.
Collapse
Affiliation(s)
- Kanya Hamasaki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
152
|
Kataoka Y, Bindokas VP, Duggan RC, Murley JS, Grdina DJ. Flow cytometric analysis of phosphorylated histone H2AX following exposure to ionizing radiation in human microvascular endothelial cells. JOURNAL OF RADIATION RESEARCH 2006; 47:245-57. [PMID: 16960336 DOI: 10.1269/jrr.0628] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We applied a flow cytometric method to quantify IR-induced histone H2AX phosphorylation at serine 139 (gammaH2AX) and compared those values to those obtained using a standard microscopy based foci counting method. After PFA fixation, methanol permeabilization was suitable for both FITC- or Alexa647-gammaH2AX. In contrast, Alexa647-gammaH2AX was not suitable for ethanol permeabilization. Antibody concentrations at 1-2 microg/ml yielded the highest gammaH2AX positive percentage for both antibodies. Without DAPI staining, gammaH2AX formation can be measured as a relative fold increase. Values determined by bivariant flow cytometric analysis and those obtained using microscopic foci formation exhibited a good quantitative correlation. Values obtained by both methods could vary according to the gating or threshold setting used. gammaH2AX positive cells increased as a function of radiation dose (2-16 Gy) followed by a dose-dependent decay. The free radical scavenger N-acetyl-L-cysteine (NAC), if administered at a concentration of 4 mM 30 min before IR, was effective in reducing IR-induced gammaH2AX formation in all phases of the cell cycle. We have developed a simplified and quantitative flow cytometry based method to measure IR-induced gammaH2AX in cells and demonstrated strong correlation to values obtained by a standard automated digital microscopic foci analysis along with NIH ImageJ custom macro software.
Collapse
Affiliation(s)
- Yasushi Kataoka
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
153
|
Ishiguro K, Seow HA, Penketh PG, Shyam K, Sartorelli AC. Mode of action of the chloroethylating and carbamoylating moieties of the prodrug cloretazine. Mol Cancer Ther 2006; 5:969-76. [PMID: 16648568 PMCID: PMC2680221 DOI: 10.1158/1535-7163.mct-05-0532] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cloretazine is an antitumor sulfonylhydrazine prodrug that generates both chloroethylating and carbamoylating species. The cytotoxic potency of these species was analyzed in L1210 leukemia cells using analogues with chloroethylating or carbamoylating function only. Clonogenic assays showed that the chloroethylating-only agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) produced marked differential cytotoxicity against wild-type and O6-alkylguanine-DNA alkyltransferase-transfected L1210 cells (LC10, 1.4 versus 31 micromol/L), indicating that a large portion of the cytotoxicity was due to alkylation of DNA at the O-6 position of guanine. Consistent with the concept that O-6 chloroethylation of DNA guanine progresses to interstrand cross-links, the comet assay, in which DNA cross-links were measured by a reduction in DNA migration induced by strand breaks, showed that cloretazine and 90CE, but not the carbamoylating-only agent 1,2-bis(methylsulfonyl)-1-[(methylamino)carbonyl]hydrazine (101MDCE), produced DNA cross-links and that cloretazine caused more DNA cross-links than 90CE at equimolar concentrations. Cell cycle analyses showed that 90CE and 101MDCE at concentrations of 5 and 80 micromol/L, respectively, produced similar degrees of G2-M arrest. 90CE produced selective inhibition of DNA synthesis after overnight incubation, whereas 101MDCE caused rapid and nonselective inhibition of RNA, DNA, and protein syntheses. Both 90CE and 101MDCE induced phosphorylation of histone H2AX, albeit with distinct kinetics. These results indicate that (a) differential expression of O6-alkylguanine-DNA alkyltransferase in tumor and host cells seems to be responsible for tumor selectivity exerted by cloretazine; (b) 101MDCE enhances DNA cross-linking activity; and (c) 90CE induces cell death at concentrations lower than those causing alterations in the cell cycle and macromolecular syntheses.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
154
|
Tanaka T, Kurose A, Huang X, Traganos F, Dai W, Darzynkiewicz Z. Extent of constitutive histone H2AX phosphorylation on Ser-139 varies in cells with different TP53 status. Cell Prolif 2006; 39:313-23. [PMID: 16872365 PMCID: PMC6496136 DOI: 10.1111/j.1365-2184.2006.00387.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In response to DNA damage by genotoxic agents, histone H2AX is phosphorylated on Ser-139. However, during the cell cycle, predominantly in S and G(2)M phase, histone H2AX is also phosphorylated in untreated normal and tumour cells. This constitutive H2AX phosphorylation is markedly reduced by exposure of cells to the reactive oxygen species scavenger N-acetyl-L-cysteine. Therefore, it appears likely that constitutive H2AX phosphorylation reflects the ongoing oxidative DNA damage induced by the reactive oxygen species during progression through the cell cycle. Because the tumour suppressor p53 (tumour protein p53) is known to induce transcription of genes associated with cell response to oxidative stress, we have compared the intensity of constitutive H2AX phosphorylation, and the effect of N-acetyl-L-cysteine on it, in cells with different tumour protein p53 status. These were human lymphoblastoid cell lines derived from WIL2 cells: TK6, a p53 wt line, NH32, a tumour protein p53 knock-out derived from TK6, and WTK1, a WIL2-derived line that expresses a homozygous mutant of tumour protein p53. Also tested were the tumour protein p53-null promyelocytic HL-60 cells. The degree of constitutive H2AX phosphorylation was distinctly lower in NH32, WTK1 and HL-60 compared to TK6 cells in all phases of the cell cycle. Also, the degree of attenuation of constitutive H2AX phosphorylation by N-acetyl-L-cysteine was less pronounced in NH32, WTK1, and HL-60, compared to TK6 cells. However, the level of reactive oxygen species detected by the cells' ability to oxidize carboxyl-dichlorodihydrofluorescein diacetate was not significantly different in the cell lines studied, which would suggest that regardless of tumour protein p53 status, the level of oxidative DNA damage was similar. The observed higher level of constitutive H2AX phosphorylation in cells harbouring wt tumour protein p53 may thus indicate that tumour protein p53 plays a role in facilitating histone H2AX phosphorylation, an important step in the mobilization of the DNA repair machinery at the site of DNA double-strand breaks.
Collapse
Affiliation(s)
- T. Tanaka
- Brander Cancer Research Institute and
- First Department of Surgery, Yamaguchi University School of Medicine 1‐1‐1 Minami‐kogushi, Ube, Yamaguchi 755‐8505, Japan
| | - A. Kurose
- Brander Cancer Research Institute and
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
- Department of Pathology, Iwate Medical University, 19‐1 Uchimaru, Morioka, Iwate, 020‐8505, Japan
| | - X. Huang
- Brander Cancer Research Institute and
| | | | - W. Dai
- Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Valhalla, N.Y., 10595
| | | |
Collapse
|
155
|
Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z. Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle 2006; 5:1940-5. [PMID: 16940754 PMCID: PMC3488278 DOI: 10.4161/cc.5.17.3191] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA in live cells undergoes continuous oxidative damage caused by metabolically generated endogenous as well as external oxidants and oxidant-inducers. The cumulative oxidative DNA damage is considered the key factor in aging and senescence while the effectiveness of anti-aging agents is often assessed by their ability to reduce such damage. Oxidative DNA damage also preconditions cells to neoplastic transformation. Sensitive reporters of DNA damage, particularly the induction of DNA double-strand breaks (DSBs), are activation of ATM, through its phosphorylation on Ser 1981, and phosphorylation of histone H2AX on Ser 139; the phosphorylated form of H2AX has been named gammaH2AX. We review the observations that constitutive ATM activation (CAA) and H2AX phosphorylation (CHP) take place in normal cells as well in the cells of tumor lines untreated by exogenous genotoxic agents. We postulate that CAA and CHP, which have been measured by multiparameter cytometry in relation to the cell cycle phase, are triggered by oxidative DNA damage. This review also presents the findings on differences in CAA and CHP in various cell lines as well as on the effects of several agents and growth conditions that modulate the extent of these histone and ATM modifications. Specifically, described are effects of the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC), and the glutathione synthetase inhibitor buthionine sulfoximine (BSO) as well as suppression of cell metabolism by growth at higher cell density or in the presence of the glucose antimetabolite 2-deoxy-D-glucose. Collectively, the reviewed data indicate that multiparameter cytometric measurement of the level of CHP and/or CAA allows one to estimate the extent of ongoing oxidative DNA damage and to measure the DNA protective-effects of antioxidants or agents that reduce or amplify generation of endogenous ROS.
Collapse
Affiliation(s)
- Toshiki Tanaka
- Brander Cancer Research Institute and Department of Pathology; New York Medical College; Valhalla, New York USA
- First Department of Surgery; Yamaguchi University School of Medicine; Ube, Yamaguchi Japan
| | - H. Dorota Halicka
- Brander Cancer Research Institute and Department of Pathology; New York Medical College; Valhalla, New York USA
| | - Xuan Huang
- Brander Cancer Research Institute and Department of Pathology; New York Medical College; Valhalla, New York USA
| | - Frank Traganos
- Brander Cancer Research Institute and Department of Pathology; New York Medical College; Valhalla, New York USA
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology; New York Medical College; Valhalla, New York USA
- Correspondence to: Zbigniew Darzynkiewicz; Brander Cancer Research Institute at New York Medical College; Department of Pathology; Valhalla, New York 10595 USA; Tel:. 914.594.3780; Fax: 914.594.3790;
| |
Collapse
|
156
|
Klokov D, MacPhail SM, Banáth JP, Byrne JP, Olive PL. Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiother Oncol 2006; 80:223-9. [PMID: 16905207 DOI: 10.1016/j.radonc.2006.07.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/17/2006] [Accepted: 07/19/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Human tumor cell lines grown as monolayers or xenograft tumors were exposed to single or multiple fractions of X-rays and the ability to use residual gammaH2AX to identify radiosensitive cells was assessed. MATERIALS AND METHODS Twenty-four hour after exposure to single or daily fractions of X-rays, human tumor cells from monolayers or xenografts were analyzed for clonogenic surviving fraction. Cells were also fixed and labeled with anti-gammaH2AX antibodies for analysis by flow and image cytometry. The relative amount of residual gammaH2AX and the percentage of cells with <3 foci were compared with the clonogenic surviving fraction measured for the same population. RESULTS The fraction of gammaH2AX remaining 24h after X-irradiation relative to peak levels 1h after exposure was correlated with radiosensitivity (SF2) for 18 human tumor cell lines. The fraction of SiHa, C33A and WiDr cells with <3 gammaH2AX foci was predictive of clonogenic surviving fraction for both monolayer cells exposed to either single doses or up to 5 fractions. Similar results were obtained using cells from xenograft tumors of irradiated mice. CONCLUSION The percentage of tumor cells that retain gammaH2AX foci 24h after single or fractionated doses appears to be a useful measure of cellular radiosensitivity that is potentially applicable in the clinic.
Collapse
Affiliation(s)
- Dmitry Klokov
- Medical Biophysics Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
157
|
Léonce S, Kraus-Berthier L, Golsteyn RM, David-Cordonnier MH, Tardy C, Lansiaux A, Poindessous V, Larsen AK, Pierré A. Generation of Replication-Dependent Double-Strand Breaks by the Novel N2-G-Alkylator S23906-1. Cancer Res 2006; 66:7203-10. [PMID: 16849567 DOI: 10.1158/0008-5472.can-05-3946] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
S23906-1, a new DNA alkylating agent that reacts with the exocyclic 2-NH2 group of guanine residues yielding monofunctional adducts, is currently under clinical evaluation in phase I trials. To investigate the mechanism of action of S23906-1, we compared parental KB-3-1 cells and KB/S23-500 cells that are 15-fold resistant to S23906-1. Cell death induced by 1 micromol/L S23906-1 in KB-3-1 cells was associated with their irreversible arrest in the G2-M phases of the cell cycle followed by apoptosis, whereas a proportion of the resistant KB/S23-500 cells were able to exit from the G2 arrest and divide, leading to a significantly lower rate of apoptosis. The attenuated apoptotic response was associated with decreased Chk2 protein phosphorylation, indicating that the DNA damage signaling pathways are more potently activated in the sensitive cells. However, similar rates of adduct formation and repair were measured in both cell lines. Exposure to S23906-1 induced a higher formation of DNA breaks, measured by the comet assay, in sensitive cells. In agreement, a histone H2AX phosphorylation assay revealed that S23906-1 induced double-strand breaks (DSB) in a dose- and time-dependent manner and that these were more persistent in the parental cells. These DSBs were found mainly in S-phase cells and inhibited by aphidicolin, suggesting that they are DNA replication-mediated DSBs. These results suggest that secondary DNA lesions play an important role in the cytotoxicity of this compound and make histone H2AX phosphorylation an attractive marker for monitoring the efficacy of S23906-1.
Collapse
Affiliation(s)
- Stéphane Léonce
- Institut de Recherches Servier, Cancer Drug Discovery, Croissy sur Seine, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Yu T, MacPhail SH, Banáth JP, Klokov D, Olive PL. Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair (Amst) 2006; 5:935-46. [PMID: 16814620 DOI: 10.1016/j.dnarep.2006.05.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/21/2006] [Accepted: 05/24/2006] [Indexed: 10/24/2022]
Abstract
Microscopically visible gammaH2AX foci signify the presence of DNA double-strand breaks (dsbs) in irradiated cells. However, large foci are also observed in untreated tumour cells, and high numbers reduce the sensitivity for detecting drug or radiation-induced DNA breaks. SW756 cervical carcinoma cells that express about 50 gammaH2AX foci per cell (i.e., equivalent to the number of breaks produced by about 2Gy) showed similar numbers of dsbs as C33A cells that exhibit fewer than three foci per cell. The possibility that differences in numbers of these endogenous foci could be explained by genomic instability perhaps related to misrepair was examined. For 17cell lines selected from the panel of NCI-60 tumor cells previously characterized for karyotypic complexity [A.V. Roschke, G. Tonon, K.S. Gehlhaus, N. McTyre, K.J. Bussey, S. Lababidi, D.A. Scudiero, J.N. Weinstein, I.R. Kirsch, Karyotypic complexity of the NCI-60 drug-screening panel, Cancer Res. 63 (2003) 8634-8647], there was a significant trend (r=0.6) for cell lines with greater numbers of structural or numerical chromosomal rearrangements to show a higher background expression of gammaH2AX. Moreover, cells from this panel with wild-type p53 showed a significantly lower background level of gammaH2AX than cells with mutant p53. To confirm the importance of p53 expression, endogenous and radiation-induced gammaH2AX expression were analyzed using four isogenic SKOV3 cell lines varying in p53 function. Again, higher gammaH2AX expression was found in SKOV3 cell lines expressing mutant p53 compared to wild-type p53. HFL-1 primary lung fibroblasts showed a progressive increase in gammaH2AX as they moved towards senescence, confirming the importance of telomere instability in the development of at least some gammaH2AX foci. Therefore, the explanation for high endogenous levels of gammaH2AX in some tumor cells appears to be multifactorial and may be best described as a consequence of chromatin instability.
Collapse
Affiliation(s)
- T Yu
- Medical Biophysics Department, British Columbia Cancer Research Centre, 675 W. 10th Ave., Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | |
Collapse
|
159
|
Costes SV, Boissière A, Ravani S, Romano R, Parvin B, Barcellos-Hoff MH. Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiat Res 2006; 165:505-15. [PMID: 16669704 DOI: 10.1667/rr3538.1] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study, we investigated the formation of radiation-induced foci in normal human fibroblasts exposed to X rays or 130 keV/mum nitrogen ions using antibodies to phosphorylated protein kinase ataxia telangiectasia mutated (ATMp) and histone H2AX (gamma-H2AX). High-content automatic image analysis was used to quantify the immunofluorescence of radiation-induced foci. The size of radiation-induced foci increased for both proteins over a 2-h period after nitrogen-ion irradiation, while the size of radiation-induced foci did not change after exposure to low-LET radiation. The number of radiation-induced ATMp foci showed a more rapid rise and greater frequency after X-ray exposure and was resolved more rapidly such that the frequency of radiation-induced foci decreased by 90% compared to 60% after exposure to high-LET radiation 2 h after 30 cGy. In contrast, the kinetics of radiation-induced gamma-H2AX focus formation was similar for high- and low-LET radiation in that it reached a plateau early and remained constant for up to 2 h. High-resolution 3D images of radiation-induced gamma-H2AX foci and dosimetry computation suggest that multiple double-strand breaks from nitrogen ions are encompassed within large nuclear domains of 4.4 Mbp. Our work shows that the size and frequency of radiation-induced foci vary as a function of radiation quality, dose, time and protein target. Thus, even though double-strand breaks and radiation-induced foci are correlated, the dynamic nature of both contradicts their accepted equivalence for low doses of different radiation qualities.
Collapse
Affiliation(s)
- Sylvain V Costes
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
160
|
Kurose A, Tanaka T, Huang X, Traganos F, Dai W, Darzynkiewicz Z. Effects of hydroxyurea and aphidicolin on phosphorylation of ataxia telangiectasia mutated on Ser 1981 and histone H2AX on Ser 139 in relation to cell cycle phase and induction of apoptosis. Cytometry A 2006; 69:212-21. [PMID: 16528719 DOI: 10.1002/cyto.a.20241] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND DNA replication stress often induces DNA damage. The antitumor drug hydroxyurea (HU), a potent inhibitor of ribonucleotide reductase that halts DNA replication through its effects on cellular deoxynucleotide pools, was shown to damage DNA inducing double-strand breaks (DSBs). Aphidicolin (APH), an inhibitor of alpha-like DNA polymerases, was also reported to cause DNA damage, but the evidence for induction of DSBs by APH is not straightforward. Histone H2AX is phosphorylated on Ser 139 in response to DSBs and one of the protein kinases that phosphorylate H2AX is ataxia telangiectasia mutated (ATM); activation of ATM is through its phosphorylation of Ser 1981. The present study was undertaken to reveal whether H2AX is phosphorylated in cells exposed to HU or APH and whether its phosphorylation is mediated by ATM. MATERIALS AND METHODS HL-60 cells were treated in cultures with 0.1-5.0 mM HU or 1-4 muM APH for up to 5 h. Activation of ATM and H2AX phosphorylation was detected immunocytochemically using Ab specific to Ser1981-ATM or Ser 139-H2AX epitopes, respectively, concurrent with measurement of cellular DNA content. RESULTS While exposure of cells to HU led to H2AX phosphorylation selectively during S phase and the cells progressing through the early portion of S (DI = 1.1-1.4) were more affected than late-S phase (DI = 1.6-1.9) cells, ATM was not activated by HU. In fact, the level of constitutive ("programmed") ATM phosphorylation was distinctly suppressed, in all phases of the cell cycle, at 0.1-5.0 mM HU. Cells' exposure to APH also resulted in H2AX phosphorylation at Ser139 with no evidence of ATM activation, and as in the case of HU, the early-S cells were more affected than the late-S phase cells. The rise in frequency of apoptotic cells became apparent after 2 h of exposure to HU or APH, and all apoptotic cells had markedly elevated levels of both H2AX-Ser139 and ATM-Ser1981 phosphorylation. CONCLUSIONS The lack of correlation between H2AX phosphorylation and ATM activation indicates that protein kinase(s) other than ATM (ATR and/or DNA-dependent protein kinase) are activated by DSBs induced by replication stress. Interestingly, HU inhibits the constitutive ("programmed") level of ATM phosphorylation in untreated cells. However, DNA fragmentation during apoptosis activates ATM and dramatically increases level of H2AX phosphorylation.
Collapse
Affiliation(s)
- Akira Kurose
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | |
Collapse
|
161
|
Zhou C, Li Z, Diao H, Yu Y, Zhu W, Dai Y, Chen FF, Yang J. DNA damage evaluated by gammaH2AX foci formation by a selective group of chemical/physical stressors. Mutat Res 2006; 604:8-18. [PMID: 16423555 PMCID: PMC2756993 DOI: 10.1016/j.mrgentox.2005.12.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 11/11/2005] [Accepted: 12/01/2005] [Indexed: 05/06/2023]
Abstract
It has been reported that the phosphorylated form of histone variant H2AX (gammaH2AX) plays an important role in the recruitment of DNA repair and checkpoint proteins to sites of DNA damage, particularly at double strand breaks (DSBs). Using gammaH2AX foci formation as an indicator for DNA damage, several chemicals/stress factors were chosen to assess their ability to induce gammaH2AX foci in a 24h time frame in a human amnion FL cell line. Two direct-acting genotoxins, methyl methanesulfonate (MMS) and N-ethyl-N-nitrosourea (ENU), can induce gammaH2AX foci formation in a time- and dose-dependent manner. Similarly, an indirect-acting genotoxin, benzo[a]pyrene (BP), also induced the formation of gammaH2AX foci in a time- and dose-dependent manner. Another indirect genotoxin, 2-acetyl-aminofluorene (AAF), did not induce gammaH2AX foci formation in FL cells; however, AAF can induce gammaH2AX foci formation in Chinese hamster CHL cells. Neutral comet assays also revealed the induction of DNA strand breaks by these agents. In contrast, epigenetic carcinogens azathioprine and cyclosporine A, as well as non-carcinogen dimethyl sulfoxide, did not induce gammaH2AX foci formation in FL cells. In addition, heat shock and hypertonic saline did not induce gammaH2AX foci. Cell survival analyses indicated that the induction of gammaH2AX is not correlated with the cytotoxic effects of these agents/factors. Taken together, these results suggest that gammaH2AX foci formation could be used for evaluating DNA damage; however, the different cell types used may play an important role in determining gammaH2AX foci formation induced by a specific agent.
Collapse
Affiliation(s)
- Chunxian Zhou
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Zhongxiang Li
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Huiling Diao
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Yanke Yu
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Wen Zhu
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Yayun Dai
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Fanqing F. Chen
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94210, USA
| | - Jun Yang
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
- Corresponding author. Tel.: +86 571 8721 7199; fax: +86 571 8721 7199. E-mail address: (J. Yang)
| |
Collapse
|
162
|
Mahrhofer H, Bürger S, Oppitz U, Flentje M, Djuzenova CS. Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation. Int J Radiat Oncol Biol Phys 2006; 64:573-80. [PMID: 16414372 DOI: 10.1016/j.ijrobp.2005.09.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/08/2005] [Accepted: 09/06/2005] [Indexed: 11/22/2022]
Abstract
PURPOSE To analyze the radiation-induced levels of gammaH2AX and its decay kinetics in 10 human cell lines covering a wide range of cellular radiosensitivity (SF2, 0.06-0.63). METHODS AND MATERIALS Five tumor cell lines included Colo-800 melanoma, two glioblastoma (MO59J and MO59K), fibrosarcoma HT 1080, and breast carcinoma MCF7. Five primary skin fibroblasts lines included two normal strains, an ataxia telangiectasia strain, and two fibroblast strains from breast cancer patients with an adverse early skin reaction to radiotherapy. Cellular radiosensitivity was assessed by colony-forming test. Deoxyribonucleic acid damage and repair were analyzed according to nuclear gammaH2AX foci intensity, with digital image analysis. RESULTS The cell lines tested showed a wide degree of variation in the background intensity of immunostained nuclear histone gammaH2AX, which was higher for the tumor cell lines compared with the fibroblast strains. It was not possible to predict clonogenic cell survival (SF2) for the 10 cell lines studied from the radiation-induced gammaH2AX intensity. In addition, the slopes of the dose-response (0-4 Gy) curves, the rates of gammaH2AX disappearance, and its residual expression (<or=18 h after irradiation) did not correlate with SF2 values. CONCLUSIONS The results from 10 cell lines showed that measurements of immunofluorescence intensity by digital image analysis of phosphorylated histone H2AX as a surrogate marker of DNA double-strand breaks did not allow reliable ranking of cell strains according to their clonogenic survival after irradiation.
Collapse
Affiliation(s)
- Hartmut Mahrhofer
- Klinik für Strahlentherapie der Universität Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
163
|
Tanaka T, Kurose A, Huang X, Dai W, Darzynkiewicz Z. ATM activation and histone H2AX phosphorylation as indicators of DNA damage by DNA topoisomerase I inhibitor topotecan and during apoptosis. Cell Prolif 2006; 39:49-60. [PMID: 16426422 PMCID: PMC6496121 DOI: 10.1111/j.1365-2184.2006.00364.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Damage that engenders DNA double-strand breaks (DSBs) activates ataxia telangiectasia mutated (ATM) kinase through its auto- or trans-phosphorylation on Ser1981 and activated ATM is one of the mediators of histone H2AX phosphorylation on Ser139. The present study was designed to explore: (i) whether measurement of ATM activation combined with H2AX phosphorylation provides a more sensitive indicator of DSBs than each of these events alone, and (ii) to reveal possible involvement of ATM activation in H2AX phosphorylation during apoptosis. Activation of ATM and/or H2AX phosphorylation in HL-60 or Jurkat cells treated with topotecan (Tpt) was detected immunocytochemically in relation to cell cycle phase, by multiparameter cytometry. Exposure to Tpt led to concurrent phosphorylation of ATM and H2AX in S-phase cells, whereas G1 cells were unaffected. Immunofluorescence (IF) of the S-phase cells immunostained for ATM-S1981P and gammaH2AX combined was distinctly stronger compared to that of the cells stained for each of these proteins alone. However, because of the relatively high ATM-S1981P IF of G1 cells, the ratio of IF of S to G1 cells, that is, the factor that determines competence of the assay in distinction of cells with DSBs, was 2- to 3-fold lower for ATM-S1981P alone, or for ATM-S1981P and gammaH2AX IF combined, than for gammaH2AX alone. ATM activation concurrent with H2AX phosphorylation, likely triggered by induction of DSBs during DNA fragmentation, occurred during apoptosis. The data suggest that frequency of activated ATM and phosphorylated H2AX molecules, per apoptotic cell, is comparable.
Collapse
Affiliation(s)
- T. Tanaka
- Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA
- First Department of Surgery, Yamaguchi University School of Medicine, Yamaguchi Japan
| | - A. Kurose
- Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA
- Department of Pathology, Iwate Medical University, Iwate, Japan
- Department of Pathology, New York Medical College, Valhalla, NY, USA, and
| | - X. Huang
- Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA
| | - W. Dai
- Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA
- Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Valhalla, NY. USA
| | - Z. Darzynkiewicz
- Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
164
|
Kurose A, Tanaka T, Huang X, Halicka HD, Traganos F, Dai W, Darzynkiewicz Z. Assessment of ATM phosphorylation on Ser-1981 induced by DNA topoisomerase I and II inhibitors in relation to Ser-139-histone H2AX phosphorylation, cell cycle phase, and apoptosis. Cytometry A 2006; 68:1-9. [PMID: 16184611 DOI: 10.1002/cyto.a.20186] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The ATM kinase regulates cell-cycle checkpoints by phosphorylating multiple proteins, including histone H2AX, CHK1, and CHK2 kinases and p53. ATM is activated through auto- or trans- phosphorylation of Ser-1981 in response to DNA damage, particularly induction of DNA double-strand breaks (DSBs). The aim of the present study was to reveal a possible correlation between activation of ATM vis-à-vis H2AX phosphorylation, cell cycle phase, and apoptosis in cells treated with DNA topoisomerase (topo) I (topotecan; Tpt) or topo2 (mitoxantrone; Mtx) inhibitor. MATERIALS AND METHODS Cultures of HL-60 cells were treated with Tpt or Mtx for various time intervals. ATM or H2AX phosphorylation was detected immunocytochemically, using Ab specific for ATM phosphorylated on Ser-1981 (ATM-S1981(P)) or for H2AX (gammaH2AX) phosphorylated on Ser-139, respectively, concurrent with the analysis of cellular DNA content. Cellular fluorescence was measured by flow cytometry. RESULTS Untreated cells showed a modest but variable level of labeling with ATM-S1981(P) Ab across the cell cycle, with exception of mitotic cells that were strongly labeled. Exposure of cells to 150 nM Tpt induced ATM phosphorylation concurrent with phosphorylation of H2AX within 10 min; phosphorylation of both proteins was essentially limited to S-phase and was suppressed by caffeine and wortmannin, inhibitors of PI-3-like kinases. Exposure of cells to Mtx also led to ATM and H2AX phosphorylation, which, compared to Tpt, occurred later and was not cell-cycle-phase specific. Apoptosis of HL-60 cells in Tpt or Mtx treated cultures was detected after 2 or 4 h, respectively, and was limited to S-phase cells. CONCLUSIONS The data are consistent with the role of ATM as a mediator of H2AX phosphorylation in response to DNA damage by topo1 (Tpt) or topo 2 (Mtx) inhibitor. The observed cell-cycle-phase related differences in response to Tpt vs Mtx suggest that while the collisions of DNA replication forks with the "cleavable complexes" stabilized by topo1 inhibitor are the primary cause of DSBs induced by Tpt, the collisions of RNA polymerase molecules with the complexes stabilized by the topo2 inhibitor play a major role for induction of DSBs by Mtx. The present report is the first that (i) describes cytometric analysis of ATM activation and (ii) demonstrates activation of the enzyme (kinase) and its consequence (substrate phoshorylation), both in relation to cell-cycle phase and onset of apoptosis within the same cells.
Collapse
Affiliation(s)
- Akira Kurose
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10532, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Cattoretti G, Büttner M, Shaknovich R, Kremmer E, Alobeid B, Niedobitek G. Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood 2006; 107:3967-75. [PMID: 16439679 DOI: 10.1182/blood-2005-10-4170] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is necessary for immunoglobulin somatic hypermutation (SHM) and class switch recombination (CSR) in T-dependent immune response in germinal centers (GCs). The structural similarity of AID with RNA-editing enzymes and its largely cytoplasmic location have fueled controversial views of its mode of interaction with DNA. We show that AID, a mature B-cell-restricted cytoplasmic antigen, is relocated into the nucleus in 2.5% of CDKN1B(-), CCNB1(-) GC cells. The GC dark zone and the outer zone (OZ), but not the light zone, contain nuclear and cytoplasmic AID(+) blasts. AID(+) cells in the OZ are in contact with T cells and CD23(-) follicular dendritic cells. In addition, AID is expressed in extrafollicular large proliferating B cells, 14% of which have nuclear AID. GC and extrafollicular AID(+) cells express E47 but not the inhibiting BHLH protein Id2. Outside the GC, AID(+) B cells are in contact with T cells and show partial evidence of CD40 plus bcr stimulation-dependent signature (CCL22, JunB, cMYC, CD30) but lack early and late plasma cell markers. The distribution of nuclear AID is consistent with the topography of SHM and CSR inside the GC and in extrafollicular activated B cells.
Collapse
Affiliation(s)
- Giorgio Cattoretti
- Institute for Cancer Genetics, 1150 St Nicholas Avenue, Russ Berrie Science Pavilion, Rm 301, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
166
|
Reitsema T, Klokov D, Banáth JP, Olive PL. DNA-PK is responsible for enhanced phosphorylation of histone H2AX under hypertonic conditions. DNA Repair (Amst) 2006; 4:1172-81. [PMID: 16046194 DOI: 10.1016/j.dnarep.2005.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/08/2005] [Accepted: 06/13/2005] [Indexed: 01/01/2023]
Abstract
Exposure of cells to hypertonic medium after X-irradiation results in a 3-4-fold increase in the phosphorylation of histone H2AX (gammaH2AX) at sites of radiation-induced DNA double-strand breaks. This increase was previously associated with salt-induced radiosensitization and inhibition of repair of DNA double-strand breaks. To examine possible mechanisms for the increase in foci size, chemical inhibitors of kinase and phosphatase activity and cell lines deficient in ATM and DNA-PK, two kinases known to phosphorylate H2AX, were examined. H2AX kinase and phosphatase activity were maintained in the presence of high salt. ATM mutant HT144 melanoma cells showed the expected 3-4-fold increase in H2AX phosphorylation in the presence of 0.5M Na(+). However, DNA-PKcs deficient M059J cells failed to respond to hypertonic treatment and M059J Fus1 cells corrected for this deficiency showed the expected increase in foci size. Although the active phosphoform of ATM, phosphoserine-1981, increased after irradiation, the level was unaffected by the addition of 0.5M Na(+). Instead, 0.5M Na(+) caused a partial redistribution of serine-1981-ATM to perinuclear regions. Hypertonic medium added after irradiation was effective in inhibiting rejoining of the radiation-induced double-strand breaks even in DNA-PK deficient M059J cells. We suggest that hypertonic treatment following irradiation inhibits double-strand break rejoining that in turn maintains DNA-PK activity at the site of the break, enhancing the size of the gammaH2AX foci.
Collapse
Affiliation(s)
- Tarren Reitsema
- Medical Biophysics Department, British Columbia Cancer Research Centre, 675 W. 10th Ave., Vancouver, BC V5Z 1L3, Canada
| | | | | | | |
Collapse
|
167
|
Böcker W, Iliakis G. Computational Methods for Analysis of Foci: Validation for Radiation-Induced γ-H2AX Foci in Human Cells. Radiat Res 2006; 165:113-24. [PMID: 16392969 DOI: 10.1667/rr3486.1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Observation and counting of gamma-H2AX foci in untreated cells as well as in cells exposed to cytotoxic agents is a widely used method for documenting the presence of double-strand breaks (DSBs) in the DNA and for analysis of their repair. Similar methods are employed to analyze formation of foci by a variety of proteins implicated in the cellular responses to DNA damage. Despite the wide application of the approach, the manual counting that is frequently used is prone to inaccuracies and investigator-related biases and artifacts. To alleviate this limitation, we developed and describe here personal computer-based algorithms, operating as utilities on available software, that allow an objective and quantitative analysis of foci from confocal images. The algorithms allow focus counting as well as size definition and correct for focus coincidence due to the overlap normally occurring with an increasing number of foci per nucleus. Furthermore, the software allows measurement of the integrated optical density (IOD) of each individual focus, which enables analysis of properties of foci as a function of time. Finally, the information generated by the above analysis algorithms can be employed to evaluate colocalization between foci formed by different proteins. A validation of the software is presented for radiation-induced gamma-H2AX foci in three widely used human cell lines and colocalization tested with RAD51 and gamma-H2AX foci. The computational methods presented extend to images generated by digital cameras.
Collapse
Affiliation(s)
- Wilfried Böcker
- Institute of Medical Radiation Biology, University Duisburg-Essen Medical School, Essen, Germany
| | | |
Collapse
|
168
|
Banáth JP, Sinnott L, Larrivée B, MacPhail SH, Olive PL. Growth of V79 Cells as Xenograft Tumors Promotes Multicellular Resistance but does not Increase Spontaneous or Radiation-Induced Mutant Frequency. Radiat Res 2005; 164:733-44. [PMID: 16296879 DOI: 10.1667/3474.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A Chinese hamster V79 xenograft model was developed to determine whether cells subjected to a hypoxic tumor microenvironment would be more likely to undergo mutation at the HPRT locus. V79-171b cells stably transfected with VEGF and EGFP were grown subcutaneously in immunodeficient NOD/ SCID mice. V79-VE tumors were characterized for host cell infiltration, doubling time, hypoxic fraction, vascular perfusion, and response to ionizing radiation. When irradiated in vitro, the mutant frequency for a given surviving fraction did not differ for cells grown in vivo or in vitro. Similar results were obtained using HCT116 human colorectal carcinoma cells grown as xenografts. However, V79-VE cells grown as xenografts were significantly more resistant to killing than monolayers. The background mutant frequency and the radiation-induced mutant frequency did not differ for tumor cells close to or distant from blood vessels. Similarly, tumor cells from well-perfused regions showed the same rate of strand break rejoining and the same rate of loss of phosphorylated histone H2AX as cells sorted from poorly perfused regions. Therefore, deleterious effects of the tumor microenvironment on DNA repair efficiency or mutation induction could not be demonstrated in these tumors. Rather, development of multicellular resistance in V79-VE tumors acted to reduce mutant frequency for a given dose of radiation.
Collapse
Affiliation(s)
- J P Banáth
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada, V5Z 1L3
| | | | | | | | | |
Collapse
|
169
|
Sokolov MV, Smilenov LB, Hall EJ, Panyutin IG, Bonner WM, Sedelnikova OA. Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts. Oncogene 2005; 24:7257-65. [PMID: 16170376 DOI: 10.1038/sj.onc.1208886] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
That irradiated cells affect their unirradiated 'bystander' neighbors is evidenced by reports of increased clonogenic mortality, genomic instability, and expression of DNA-repair genes in the bystander cell populations. The mechanisms underlying the bystander effect are obscure, but genomic instability suggests DNA double-strand breaks (DSBs) may be involved. Formation of DSBs induces the phosphorylation of the tumor suppressor protein, histone H2AX and this phosphorylated form, named gamma-H2AX, forms foci at DSB sites. Here we report that irradiation of target cells induces gamma-H2AX focus formation in bystander cell populations. The effect is manifested by increases in the fraction of cells in a population that contains multiple gamma-H2AX foci. After 18 h coculture with cells irradiated with 20 alpha-particles, the fraction of bystander cells with multiple foci increased 3.7-fold. Similar changes occurred in bystander populations mixed and grown with cells irradiated with gamma-rays, and in cultures containing media conditioned on gamma-irradiated cells. DNA DSB repair proteins accumulated at gamma-H2AX foci, indicating that they are sites of DNA DSB repair. Lindane, which blocks gap-junctions, prevented the bystander effect in mixing but not in media transfer protocols, while c-PTIO and aminoguanidine, which lower nitric oxide levels, prevented the bystander effect in both protocols. Thus, multiple mechanisms may be involved in transmitting bystander effects. These studies show that H2AX phosphorylation is an early step in the bystander effect and that the DNA DSBs underlying gamma-H2AX focus formation may be responsible for its downstream manifestations.
Collapse
Affiliation(s)
- Mykyta V Sokolov
- Department of Nuclear Medicine, Clinical Center, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
170
|
Desai N, Davis E, O'Neill P, Durante M, Cucinotta FA, Wu H. Immunofluorescence detection of clustered gamma-H2AX foci induced by HZE-particle radiation. Radiat Res 2005; 164:518-22. [PMID: 16187760 DOI: 10.1667/rr3431.1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We studied the spatial and temporal distributions of foci of the phosphorylated form of the histone protein H2AX (gamma-H2AX), which is known to be activated by double-strand breaks after irradiation of human fibroblast cells with high-energy silicon (54 keV/microm) and iron (176 keV/microm) ions. Here we present data obtained with the ion path parallel to a monolayer of human fibroblast cells that leads to gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/y plane, thus enabling the analysis of the fluorescence distributions along the ion trajectories. Qualitative analyses of these distributions provide insights into DNA damage processing kinetics for high charge and energy (HZE) ions, including evidence of increased clustering of DNA damage and slower processing with increasing LET.
Collapse
Affiliation(s)
- N Desai
- Wyle Laboratories, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
171
|
Darzynkiewicz Z, Huang X, Okafuji M. Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis. Cell Prolif 2005; 314:81-93. [PMID: 16673876 PMCID: PMC1458375 DOI: 10.1385/1-59259-973-7:081] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Reviewed are the methods aimed to detect DNA damage in individual cells, estimate its extent and relate it to cell cycle phase and induction of apoptosis. They include the assays that reveal DNA fragmentation during apoptosis, as well as DNA damage induced by genotoxic agents. DNA fragmentation that occurs in the course of apoptosis is detected by selective extraction of degraded DNA. DNA in chromatin of apoptotic cells shows also increased propensity to undergo denaturation. The most common assay of DNA fragmentation relies on labelling DNA strand breaks with fluorochrome-tagged deoxynucleotides. The induction of double-strand DNA breaks (DSBs) by genotoxic agents provides a signal for histone H2AX phosphorylation on Ser139; the phosphorylated H2AX is named gammaH2AX. Also, ATM-kinase is activated through its autophosphorylation on Ser1981. Immunocytochemical detection of gammaH2AX and/or ATM-Ser1981(P) are sensitive probes to reveal induction of DSBs. When used concurrently with analysis of cellular DNA content and caspase-3 activation, they allow one to correlate the extent of DNA damage with the cell cycle phase and with activation of the apoptotic pathway. The presented data reveal cell cycle phase-specific patterns of H2AX phosphorylation and ATM autophosphorylation in response to induction of DSBs by ionizing radiation, topoisomerase I and II inhibitors and carcinogens. Detection of DNA damage in tumour cells during radio- or chemotherapy may provide an early marker predictive of response to treatment.
Collapse
|
172
|
Huang X, Halicka HD, Traganos F, Tanaka T, Kurose A, Darzynkiewicz Z. Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis. Cell Prolif 2005; 38:223-43. [PMID: 16098182 PMCID: PMC1360473 DOI: 10.1111/j.1365-2184.2005.00344.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Reviewed are the methods aimed to detect DNA damage in individual cells, estimate its extent and relate it to cell cycle phase and induction of apoptosis. They include the assays that reveal DNA fragmentation during apoptosis, as well as DNA damage induced by genotoxic agents. DNA fragmentation that occurs in the course of apoptosis is detected by selective extraction of degraded DNA. DNA in chromatin of apoptotic cells shows also increased propensity to undergo denaturation. The most common assay of DNA fragmentation relies on labelling DNA strand breaks with fluorochrome-tagged deoxynucleotides. The induction of double-strand DNA breaks (DSBs) by genotoxic agents provides a signal for histone H2AX phosphorylation on Ser139; the phosphorylated H2AX is named gammaH2AX. Also, ATM-kinase is activated through its autophosphorylation on Ser1981. Immunocytochemical detection of gammaH2AX and/or ATM-Ser1981(P) are sensitive probes to reveal induction of DSBs. When used concurrently with analysis of cellular DNA content and caspase-3 activation, they allow one to correlate the extent of DNA damage with the cell cycle phase and with activation of the apoptotic pathway. The presented data reveal cell cycle phase-specific patterns of H2AX phosphorylation and ATM autophosphorylation in response to induction of DSBs by ionizing radiation, topoisomerase I and II inhibitors and carcinogens. Detection of DNA damage in tumour cells during radio- or chemotherapy may provide an early marker predictive of response to treatment.
Collapse
Affiliation(s)
- Xuan Huang
- Brander Cancer Research Institute, New York Medical College, Valhalla, NY 10532, USA
| | | | | | | | | | | |
Collapse
|
173
|
Cramers P, Atanasova P, Vrolijk H, Darroudi F, van Zeeland AA, Huiskamp R, Mullenders LHF, Kleinjans JCS. Pre-exposure to Low Doses: Modulation of X-Ray-Induced DNA Damage and Repair? Radiat Res 2005; 164:383-90. [PMID: 16187740 DOI: 10.1667/rr3430.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The adaptive response to ionizing radiation may be mediated by the induction of antioxidant defense mechanisms, accelerated repair or altered cell cycle progression after the conditioning dose. To gain new insight into the mechanism of the adaptive response, nondividing lymphocytes and fibroblasts were used to eliminate possible contributions of cell cycle effects. The effect of conditioning doses of 0.05 or 0.1 Gy followed by challenging doses up to 8 Gy (with a 4-h interval between exposures) on induction and repair of DNA damage was determined by single-cell gel electrophoresis (comet assay), premature chromosome condensation, and immunofluorescence labeling for gamma-H2AX. The conditioning dose reduced the induction of DNA strand breaks, but the kinetics of strand break rejoining was not influenced by the conditioning dose in nondividing cells of either cell type. We conclude that adaptation in nondividing cells is not mediated by enhanced strand break rejoining and that protection against the induction of DNA damage is rather small. Therefore, the adaptive response is most likely a reflection of perturbation of cell cycle progression.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Takahashi A, Ohnishi T. Does gammaH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett 2005; 229:171-9. [PMID: 16129552 DOI: 10.1016/j.canlet.2005.07.016] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 07/10/2005] [Indexed: 10/25/2022]
Abstract
H2AX is a histone variant that is systematically found and ubiquitously distributed throughout the genome. Since it has been reported that DNA double-strand breaks (DSBs) induce phosphorylation of H2AX at serine 139 (gammaH2AX), an immunocytochemical assay with antibodies recognizing gammaH2AX has become the gold standard for the detection of DSBs. This assay is quite sensitive and is a specific indicator for the existence of a DSB. Until now, it has been reported that various kinds of physical, chemical, and biological factors induce the formation of the gammaH2AX foci detected using this assay. Even when gammaH2AX foci were detected, it was not always possible to conclude that the detected DSBs were produced by environmental stresses in the absence of any known radiation. In this review, emphasis is on discussing whether gammaH2AX foci formation depends on the formation of DSBs.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Department of Biology, Nara Medical University School of Medicine, Shijo-cho 840, Kashihara, Nara 634-8521, Japan
| | | |
Collapse
|
175
|
McManus KJ, Hendzel MJ. ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol Biol Cell 2005; 16:5013-25. [PMID: 16030261 PMCID: PMC1237100 DOI: 10.1091/mbc.e05-01-0065] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
H2AX is a core histone H2A variant that contains an absolutely conserved serine/glutamine (SQ) motif within an extended carboxy-terminal tail. H2AX phosphorylation at the SQ motif (gamma-H2AX) has been shown to increase dramatically upon exogenously introduced DNA double-strand breaks (DSBs). In this study, we use quantitative in situ approaches to investigate the spatial patterning and cell cycle dynamics of gamma-H2AX in a panel of normally growing (unirradiated) mammalian cell lines and cultures. We provide the first evidence for the existence of two distinct yet highly discernible gamma-H2AX focal populations: a small population of large amorphous foci that colocalize with numerous DNA DSB repair proteins and previously undescribed but much more abundant small foci. These small foci do not recruit proteins involved in DNA DSB repair. Cell cycle analyses reveal unexpected dynamics for gamma-H2AX in unirradiated mammalian cells that include an ATM-dependent phosphorylation that is maximal during M phase. Based upon similarities drawn from other histone posttranslational modifications and previous observations in haplo-insufficient (H2AX-/+) and null mice (H2AX-/-), gamma-H2AX may contribute to the fidelity of the mitotic process, even in the absence of DNA damage, thereby ensuring the faithful transmission of genetic information from one generation to the next.
Collapse
Affiliation(s)
- Kirk J McManus
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | | |
Collapse
|
176
|
Abstract
The single-cell gel electrophoresis or "comet" assay was developed many years ago to analyze DNA damage in individual cells. It is a powerful and versatile technique that relies on microscopic visualization or imaging of DNA after single cells are embedded in agarose, lysed, and electrophoresed. In addition, the basic methodology has been extended to permit the detection of a variety of classes of DNA damage with good sensitivity in virtually any single-cell type. A unique but understudied property of the comet assay is its ability to detect and quantify cellular heterogeneity in response to DNA-damaging agents. This review outlines the considerations in producing and analyzing comet data when heterogeneity in induction of or cellular response to DNA damage is the major consideration. Examples are presented to emphasize the heterogeneity of tumor response to ionizing radiation and cytotoxic drugs.
Collapse
Affiliation(s)
- Peggy L Olive
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
177
|
Gorgoulis VG, Vassiliou LVF, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434:907-13. [PMID: 15829965 DOI: 10.1038/nature03485] [Citation(s) in RCA: 1584] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 02/18/2005] [Indexed: 12/19/2022]
Abstract
DNA damage checkpoint genes, such as p53, are frequently mutated in human cancer, but the selective pressure for their inactivation remains elusive. We analysed a panel of human lung hyperplasias, all of which retained wild-type p53 genes and had no signs of gross chromosomal instability, and found signs of a DNA damage response, including histone H2AX and Chk2 phosphorylation, p53 accumulation, focal staining of p53 binding protein 1 (53BP1) and apoptosis. Progression to carcinoma was associated with p53 or 53BP1 inactivation and decreased apoptosis. A DNA damage response was also observed in dysplastic nevi and in human skin xenografts, in which hyperplasia was induced by overexpression of growth factors. Both lung and experimentally-induced skin hyperplasias showed allelic imbalance at loci that are prone to DNA double-strand break formation when DNA replication is compromised (common fragile sites). We propose that, from its earliest stages, cancer development is associated with DNA replication stress, which leads to DNA double-strand breaks, genomic instability and selective pressure for p53 mutations.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens GR-11527, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Warters RL, Adamson PJ, Pond CD, Leachman SA. Melanoma Cells Express Elevated Levels of Phosphorylated Histone H2AX Foci. J Invest Dermatol 2005; 124:807-17. [PMID: 15816840 DOI: 10.1111/j.0022-202x.2005.23674.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When human cells sustain a DNA double-strand break (dsb), histone H2AX in chromatin surrounding the DNA break is phosphorylated, marking repair foci. The number of phosphorylated histone H2AX (gammaH2AX) foci approximates the number of dsb present in the cell's nuclear DNA. We observed 0.4 gammaH2AX foci per nucleus in primary human melanocytes. In contrast, in four melanoma cell lines, we detected 7-17 gammaH2AX foci per nucleus, a 17-42 times increase in the basal level of gammaH2AX foci in melanoma cells relative to melanocytes (MC). Thus, untreated melanoma cells express significantly greater numbers of gammaH2AX foci than do untreated MC. Detection and rejoining of ionizing radiation-induced DNA dsb proceeded as rapidly in melanoma cells as in MC. Melanoma cells, however, reduced the number of radiation-induced gammaH2AX foci down only to pre-irradiation levels. Co-localization of the majority of gammaH2AX foci with ataxia telangiectasia mutated, BRCA1, 53BP1, and Nbs1 foci in untreated melanoma cells indicated that the additional foci in melanoma cells were associated with a DNA change that the cells interpret as DNA dsb. Co-localization of gammaH2AX foci with the telomere replication factor 1 protein in untreated melanoma cells indicates that the additional foci in untreated melanoma cells are associated with dysfunctional telomeres that induce a DNA damage stress response.
Collapse
Affiliation(s)
- Raymond L Warters
- Department of Radiation Oncology, University of Utah Health Sciences Center, Salt Lake City, Utah 85132, USA.
| | | | | | | |
Collapse
|
179
|
Hart LS, Yannone SM, Naczki C, Orlando JS, Waters SB, Akman SA, Chen DJ, Ornelles D, Koumenis C. The Adenovirus E4orf6 Protein Inhibits DNA Double Strand Break Repair and Radiosensitizes Human Tumor Cells in an E1B-55K-independent Manner. J Biol Chem 2005; 280:1474-81. [PMID: 15507430 DOI: 10.1074/jbc.m409934200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The adenoviral protein E4orf6 has been shown to inhibit both in vitro V(D)J recombination and adenoviral DNA concatenation, two processes that rely on cellular DNA double strand break repair (DSBR) proteins. Most of the known activities of E4orf6 during adenoviral infection require its interaction with another adenoviral protein, E1B-55K. Here we report that E4orf6, stably expressed in RKO human colorectal carcinoma cells or transiently expressed by adenoviral vector in U251 human glioblastoma cells, inhibits DSBR and induces significant radiosensitization in the absence of E1B-55K. Expression of a mutant form of E4orf6 (L245P) failed to radiosensitize RKO cells. E4orf6 reduced DSBR capacity in transfected and infected cells, as measured by sublethal DNA damage repair assay and phosphorylated H2AX (gamma-H2AX) levels, respectively. Consistent with the inhibitory effect of E4orf6 on DSBR, expression of wild-type but not mutant E4orf6 reduced recovery of a transfected, replicating reporter plasmid (pSP189) in 293 cells but did not increase the mutation frequency measured in the reporter plasmid. The kinase activity of DNA-PKcs (the DNA-dependent protein kinase catalytic subunit) toward heterologous substrates was not affected by expression of E4orf6; however, autophosphorylation of DNA-PKcs at Thr-2609 following ionizing radiation was prolonged in the presence of E4orf6 when compared with control-infected cells. Our results demonstrate for the first time that E4orf6 expression hinders the cellular DNA repair process in mammalian cells in the absence of E1B-55K or other adenoviral genes and suggest that viral-mediated delivery of E4orf6, combined with localized external beam radiation, could be a useful approach for the treatment of radioresistant solid tumors such as glioblastomas.
Collapse
Affiliation(s)
- Lori S Hart
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Banáth JP, Macphail SH, Olive PL. Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res 2004; 64:7144-9. [PMID: 15466212 DOI: 10.1158/0008-5472.can-04-1433] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Six human cervical cancer cell lines [five human papillomavirus (HPV) positive, one HPV negative] for induction and rejoining of DNA strand breaks and for kinetics of formation and loss of serine 139 phosphorylated histone H2AX (gammaH2AX). X-rays induced the same level of DNA breakage for all cell lines. By 8 hours after 20 Gy, <2% of the initial single-strand breaks remained and no double-strand breaks could be detected. In contrast, 24 hours after irradiation, gammaH2AX representing up to 30% of the initial signal still present. SW756 cells showed almost four times higher background levels of gammaH2AX and no residual gammaH2AX compared with the most radiosensitive HPV-negative C33A cells that showed the lowest background and retained 30% of the maximum level of gammaH2AX. Radiation sensitivity, measured as clonogenic-surviving fraction after 2 Gy, was correlated with the fraction of gammaH2AX remaining 24 hours after irradiation. A substantial correlation with gammaH2AX loss half-time measured over the first 4 hours was seen only when cervical cell lines were included in a larger series of p53-deficient cell lines. Interestingly, p53 wild-type cell lines consistently showed faster gammaH2AX loss half-times than p53-deficient cell lines. We conclude that cell line-dependent differences in loss of gammaH2AX after irradiation are related in part to intrinsic radiosensitivity. The possibility that the presence of gammaH2AX foci may not always signify the presence of a physical break, notably in some tumor cell lines, is also supported by these results.
Collapse
Affiliation(s)
- Judit P Banáth
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
181
|
Huang X, Halicka HD, Darzynkiewicz Z. Detection of Histone H2AX Phosphorylation on Ser‐139 as an Indicator of DNA Damage (DNA Double‐Strand Breaks). ACTA ACUST UNITED AC 2004; Chapter 7:Unit 7.27. [DOI: 10.1002/0471142956.cy0727s30] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuan Huang
- Brander Cancer Research Institute New York Medical College Valhalla New York
| | - H. Dorota Halicka
- Brander Cancer Research Institute New York Medical College Valhalla New York
| | | |
Collapse
|
182
|
Rapp A, Greulich KO. After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available. J Cell Sci 2004; 117:4935-45. [PMID: 15367581 DOI: 10.1242/jcs.01355] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
After induction of DNA double-strand breaks (DSB) two repair systems, the error-prone 'nonhomologous end joining' (NHEJ) and the more accurate 'homologous recombination repair' (HRR) can compete for the same individual DSB site. In the human keratinocyte cell line, HaCaT, we have tested the spatial co-localisation and the temporal sequence of events. We used UV-A (365 nm) as a damaging agent, which can be applied in clearly defined doses and can lead to rare DSBs via propagation of clustered single-strand breaks (SSBs). DNA fragmentation and repair was measured by the Comet assay and persisting DSBs were quantified by the micronucleus assay. Direct DSB detection was performed by immunohistochemical labelling of gamma-H2AX, a phosphorylated histone that is assumed to form one foci per DSB. Intra- and inter-pathway interactions were quantified by co-localisation, FRET imaging and by co-immunoprecipitation (Co-IP) of XRCC4, DNA-PK and Ku70 as representatives of NHEJ, Rad51 and Rad52 for HRR and gamma-H2AX, Mre11 and Rad50 as representatives of both pathways. In G2 cells, where both systems are available, the temporal sequence after irradiation is: (1) gamma-H2AX (2) Mre11 (3) DNA-PK Rad51 (4) XRCC4. That is, the first two proteins involved in both pathways 'label' the damaged site and initiate repair, followed by the NHEJ, which is temporally overlapping with HRR activity. Taking all these observations together we suggest that a cell tries to repair DSBs with a combination of both HRR and NHEJ, if available.
Collapse
Affiliation(s)
- Alexander Rapp
- Institute of Molecular Biotechnology Jena, Beutenbergstr. 11, 07745, Germany.
| | | |
Collapse
|
183
|
Olive PL, Banáth JP, Sinnott LT. Phosphorylated histone H2AX in spheroids, tumors, and tissues of mice exposed to etoposide and 3-amino-1,2,4-benzotriazine-1,3-dioxide. Cancer Res 2004; 64:5363-9. [PMID: 15289343 DOI: 10.1158/0008-5472.can-04-0729] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We reported recently that exposure of hamster V79 fibroblasts to 6 drugs that varied in their ability to produce DNA double-strand breaks stimulated formation of phosphorylated histone H2AX (serine 139 phosphorylated histone H2AX; gammaH2AX). Using flow cytometry to analyze gammaH2AX antibody-stained cells 1 h after a 30-min drug treatment, the fraction of cells that showed the control levels of gammaH2AX correlated well with the fraction of cells that survived to form colonies. This observation is now extended to V79 and SiHa human cervical carcinoma cells grown as multicell spheroids and SiHa xenografts and SCCVII tumors in mice. Animals were injected with etoposide, a topoisomerase-II inhibitor that targets proliferating cells or 3-amino-1,2,4-benzotriazine-1,3-dioxide (tirapazamine), a bioreductive cytotoxin that targets hypoxic cells. For spheroids, gammaH2AX intensity predicted clonogenic cell survival for cells recovered 90 min after drug injection, regardless of position of the cells within the spheroid. Similar results were obtained for etoposide in tumors; however, the gammaH2AX signal for tirapazamine was smaller than expected for the observed amount of cell killing. Frozen sections of tumors confirmed the greater intensity of gammaH2AX staining in cells close to blood vessels of tumors soon after treatment with etoposide and the opposite pattern for tumors exposed to tirapazamine. Analysis of cells or frozen sections from mouse spleen and kidney suggests that information can also be obtained on initial damage in normal tissues. These results support the possibility of using gammaH2AX antibody staining as a method to aid in prediction of tumor and normal tissue response to treatment.
Collapse
Affiliation(s)
- Peggy L Olive
- Medical Biophysics Department, British Columbia Cancer Research Centre, 601 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| | | | | |
Collapse
|
184
|
Reitsema TJ, Banáth JP, MacPhail SH, Olive PL. Hypertonic saline enhances expression of phosphorylated histone H2AX after irradiation. Radiat Res 2004; 161:402-8. [PMID: 15038772 DOI: 10.1667/rr3153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phosphorylation of histone H2AX at serine 139 occurs at sites surrounding DNA double-strand breaks, producing discrete spots called "foci" that are visible with a microscope after antibody staining. This modification is believed to create changes in chromatin structure and assemble various repair proteins at sites of DNA damage. To examine the role of chromatin structure, human SiHa cells were exposed to hypertonic salt solutions that are known to condense chromatin and sensitize cells to chromosome damage and killing by ionizing radiation. Postirradiation incubation in 0.5 M Na(+) increased gammaH2AX expression about fourfold as measured by flow cytometry and immunoblotting, and loss of gammaH2AX was inhibited in the presence of high salt. Focus size rather than the number of radiation-induced gammaH2AX foci was also increased about fourfold. When high-salt treatment was delayed for 1 h after irradiation, effects on focus size and retention were reduced. The increase in focus size was associated with a decrease in the rate of rejoining of double-strand breaks as measured using the neutral comet assay. We conclude that gammaH2AX expression after irradiation is sensitive to salt-induced changes in chromatin structure during focus formation, and that a large focus size may be an indication of a reduced ability to repair DNA damage.
Collapse
Affiliation(s)
- Tarren J Reitsema
- Medical Biophysics Department, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | | | | | | |
Collapse
|
185
|
Camphausen K, Burgan W, Cerra M, Oswald KA, Trepel JB, Lee MJ, Tofilon PJ. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004; 64:316-21. [PMID: 14729640 DOI: 10.1158/0008-5472.can-03-2630] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are undergoing clinical evaluation for cancer therapy. Because HDAC modulates chromatin structure and gene expression, parameters considered to influence radioresponse, we have investigated the effects of the HDAC inhibitor MS-275 on the radiosensitivity of two human tumor cell lines (DU145 prostate carcinoma and U251 glioma). Acetylation status of histones H3 and H4 was determined as a function of time after MS-275 addition to and removal from culture medium. Histone acetylation increased by 6 h after MS-275 addition, reaching a maximum between 24 and 48 h of exposure; providing fresh drug-free medium then resulted in a decrease in histone acetylation that began by 6 h and approached untreated levels by 16 h. Treatment of cells with MS-275 for 48 h followed by irradiation had little or no effect on radiation-induced cell death. However, exposure to MS-275 before and after irradiation resulted in an increase in radiosensitivity with dose enhancement factors of 1.9 and 1.3 for DU145 and U251 cells, respectively. This MS-275 treatment protocol did not result in a redistribution of the cells into a more radiosensitive phase of the cell cycle or in an increase in apoptosis. However, MS-275 did modify the time course of gammaH2AX expression in irradiated cells. Whereas there was no significant difference in radiation-induced gammaH2AX foci at 6 h, the number of cells expressing gammaH2AX foci was significantly greater in the MS-275-treated cells at 24 h after irradiation. These results indicate that MS-275 can enhance radiosensitivity and suggest that this effect may involve an inhibition of DNA repair.
Collapse
Affiliation(s)
- Kevin Camphausen
- Radiation Oncology Branch and Molecular Radiation Therapeutics Branch, Radiation Oncology Sciences Program, Medicine Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Camphausen K, Brady KJ, Burgan WE, Cerra MA, Russell JS, Bull EE, Tofilon PJ. Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of γH2AX foci. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.409.3.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Flavopiridol is a cyclin-dependent kinase (CDK) inhibitor, which has recently entered clinical trials. However, when administered as a single agent against solid tumors, the antitumor actions of flavopiridol have been primarily cytostatic. Given its reported effects on cell cycle regulation, transcription, and apoptosis, flavopiridol may also influence cellular radioresponse. Thus, to evaluate the potential for combining this cyclin-dependent kinase inhibitor with radiation as a cancer treatment strategy, we have investigated the effects of flavopiridol on the radiation sensitivity of two human prostate cancer cell lines (DU145 and PC3). The data presented here indicate that exposure to flavopiridol (60–90 nm) after irradiation enhanced the radiosensitivity of both DU145 and PC3 cells. This sensitization occurred in the absence of significant reductions in cell proliferation, retinoblastoma protein phosphorylation, or P-TEFb activity. Moreover, the post-irradiation addition of flavopiridol had no effect on radiation-induced apoptosis or the activation of the G2 cell cycle checkpoint. However, flavopiridol did modify the time course of γH2AX expression in irradiated cells. Whereas there was no significant difference in radiation-induced γH2AX foci at 6 h, at 24 h after irradiation, the number of cells expressing γH2AX foci was significantly greater in the flavopiridol-treated cells. These results indicate that flavopiridol can enhance radiosensitivity of human tumor cells and suggest that this effect may involve an inhibition of DNA repair.
Collapse
Affiliation(s)
| | - Kristin J. Brady
- 2Molecular Radiation Therapeutics Branch, National Cancer Institute, Bethesda, MD
| | - William E. Burgan
- 2Molecular Radiation Therapeutics Branch, National Cancer Institute, Bethesda, MD
| | - Michael A. Cerra
- 2Molecular Radiation Therapeutics Branch, National Cancer Institute, Bethesda, MD
| | | | - Elizabeth E.A. Bull
- 2Molecular Radiation Therapeutics Branch, National Cancer Institute, Bethesda, MD
| | - Philip J. Tofilon
- 2Molecular Radiation Therapeutics Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
187
|
Abstract
PURPOSE Phosphorylation of histone H2AX (gammaH2AX) occurs rapidly in response to the presence of DNA double-strand breaks and is thought to recruit repair enzymes to these sites. We examined the possibility that expression of phosphorylated H2AX could provide information on tumor and/or normal tissue sensitivity to radiation. METHODS Flow cytometry of gammaH2AX antibody-stained single cells was used to measure gammaH2AX intensity in cultured cell lines, tumor cells, and normal tissues. RESULTS The rate of disappearance of gammaH2AX during the first few hours after irradiation was generally faster in more radioresistant tumor and normal cell lines, but slower in radiosensitive cells and normal tissues from C3H mice. An exception was testis, which showed a high background and rapid loss rate. Levels of gammaH2AX were at least three times higher in well-oxygenated cells than in anoxic cells, and the oxygen concentration that produced a half-maximal response was 0.55%. Hypoxic cells could be detected in SiHa xenografts as a subpopulation with lower expression of gammaH2AX. CONCLUSIONS Analysis of gammaH2AX has the potential to provide useful information on tumor and normal cell response to ionizing radiation after exposure to clinically relevant doses of radiation.
Collapse
Affiliation(s)
- Peggy L Olive
- Department of Medical Biophysics, British Columbia Cancer Research Centre, 601 W. 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | |
Collapse
|
188
|
Bosco EE, Mayhew CN, Hennigan RF, Sage J, Jacks T, Knudsen ES. RB signaling prevents replication-dependent DNA double-strand breaks following genotoxic insult. Nucleic Acids Res 2004; 32:25-34. [PMID: 14704340 PMCID: PMC373257 DOI: 10.1093/nar/gkg919] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell cycle checkpoints induced by DNA damage play an integral role in preservation of genomic stability by allowing cells to limit the propagation of deleterious mutations. The retinoblastoma tumor suppressor (RB) is crucial for the maintenance of the DNA damage checkpoint function because it elicits cell cycle arrest in response to a variety of genotoxic stresses. Although sporadic loss of RB is characteristic of most cancers and results in the bypass of the DNA damage checkpoint, the consequence of RB loss upon chemotherapeutic responsiveness has been largely uninvestigated. Here, we employed a conditional knockout approach to ablate RB in adult fibroblasts. This system enabled us to examine the DNA damage response of adult cells following acute RB deletion. Using this system, we demonstrated that loss of RB disrupted the DNA damage checkpoint elicited by either cisplatin or camptothecin exposure. Strikingly, this bypass was not associated with enhanced repair, but rather the accumulation of phosphorylated H2AX (gammaH2AX) foci, which indicate DNA double-strand breaks. The formation of gammaH2AX foci was due to ongoing replication following chemotherapeutic treatment in the RB-deficient cells. Additionally, peak gammaH2AX accumulation occurred in S-phase cells undergoing DNA replication in the presence of damage, and these gammaH2AX foci co-localized with replication foci. These results demonstrate that acute RB loss abrogates DNA damage-induced cell cycle arrest to induce gammaH2AX foci formation. Thus, secondary genetic lesions induced by RB loss have implications for the chemotherapeutic response and the development of genetic instability.
Collapse
Affiliation(s)
- Emily E Bosco
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
189
|
Olive PL. Detection of DNA damage in individual cells by analysis of histone H2AX phosphorylation. Methods Cell Biol 2004; 75:355-73. [PMID: 15603433 DOI: 10.1016/s0091-679x(04)75014-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peggy L Olive
- Department of Medical Biophysics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| |
Collapse
|
190
|
Affiliation(s)
- Frank Traganos
- Brander Cancer Research Institute, New York Medical College, Hawthorne, New York 10532, USA
| |
Collapse
|
191
|
Huang X, Okafuji M, Traganos F, Luther E, Holden E, Darzynkiewicz Z. Assessment of histone H2AX phosphorylation induced by DNA topoisomerase I and II inhibitors topotecan and mitoxantrone and by the DNA cross-linking agent cisplatin. ACTA ACUST UNITED AC 2004; 58:99-110. [PMID: 15057963 DOI: 10.1002/cyto.a.20018] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND DNA double-strand breaks (DSBs) in chromatin, whether induced by radiation, antitumor drugs, or by apoptosis-associated (AA) DNA fragmentation, provide a signal for histone H2AX phosphorylation on Ser-139; the phosphorylated H2AX is denoted gammaH2AX. The intensity of immunofluorescence (IF) of gammaH2AX was reported to reveal the frequency of DSBs in chromatin induced by radiation or by DNA topoisomerase I (topo 1) and II (topo 2) inhibitors. The purpose of this study was to further characterize the drug-induced (DI) IF of gammaH2AX, and in particular to distinguish it from AA gammaH2AX IF triggered by DNA breaks that occur in the course of AA DNA fragmentation. METHODS HL-60 cells in cultures were treated with topotecan (TPT), mitoxantrone (MTX), or with DNA cross-linking drug cisplatin (CP); using multiparameter flow and laser-scanning cytometry, induction of gammaH2AX was correlated with: 1) caspase-3 activation; 2) chromatin condensation, 3) cell cycle phase, and 4) AA DNA fragmentation. The intensity of gammaH2AX IF was compensated for by an increase in histone/DNA content, which doubles during the cell cycle, and for the "programmed" H2AX phosphorylation, which occurs in untreated cells. RESULTS In cells treated with TPT or MTX, the increase in DI-gammaH2AX IF peaked at 1.5 or 2 h, and was maximal in S- or G(1)-phase cells, respectively, for each drug. In cells treated with CP, compared with TPT, the gammaH2AX IF was less intense, peaked later (3 h) and showed no cell cycle-phase specificity. In the presence of phosphatase inhibitor calyculin A, a continuous increase in the TPT-induced gammaH2AX IF was still seen past 1.5 h, and after 3 h gammaH2AX IF was 2.7- to 3.4-fold higher than in the absence of the inhibitor. The AA gammaH2AX IF was distinguished from the DI-gammaH2AX IF by: 1) its greater intensity; 2) its prevention by caspase inhibitor zVAD-FMK; and 3) the concurrent activation of caspase-3 in the same cells. A decrease in AA gammaH2AX IF coinciding with AA chromatin condensation was seen in the late stages of apoptosis. CONCLUSIONS Multiparameter analysis of gammaH2AX IF, caspase-3 activation, cellular DNA content, and chromatin condensation allowed us to distinguish the DI from AA H2AX phosphorylation and relate them to the cell cycle phase and stage of apoptosis. With a comparable degree of ds DNA breaks, the cells arrested at the G1 or G2/M checkpoint were less prone to undergo apoptosis than the cells replicating DNA. H2AX phosphorylation seen in CP-treated cells may be associated with DNA repair that involves nucleotide excision repair (NER) and nonhomologous end joining (NHEJ). When the primary drug-induced lesions do not involve ds DNA breaks, but ds DNA breaks are formed during DNA repair, as in the case of CP, analysis of H2AX phosphorylation may reflect extent of the repair process.
Collapse
Affiliation(s)
- Xuan Huang
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10532, USA
| | | | | | | | | | | |
Collapse
|
192
|
MacPhail SH, Banáth JP, Yu TY, Chu EHM, Lambur H, Olive PL. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol 2003; 79:351-8. [PMID: 12943243 DOI: 10.1080/0955300032000093128] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Exposure to ionizing radiation results in phosphorylation of histone H2AX (gammaH2AX) at sites of DNA double-strand breaks. To determine the relationship between gammaH2AX formation and radiosensitivity, the rate of formation and loss of gammaH2AX were examined in several cultured cell lines following exposure to 253 kV X-rays. MATERIALS AND METHODS Flow and image cytometry were both performed using a mouse monoclonal antibody against gammaH2AX. Immunoblotting was used to confirm cell line-dependent differences in antibody staining. Cell lines examined included V79 and CHO-K1 hamster cells, the human tumour cell lines SiHa, WiDr, DU145, WIL-2NS, HT144, HCC1937 and U87, and the normal cell strain HFL1. Radiosensitivity was measured using a standard clonogenic assay. RESULTS Using flow cytometry, gammaH2AX formation was detected 1 h after doses as low as 20 cGy. Peak levels of gammaH2AX were observed within 15-30 min after irradiation and both the rate of radiation-induced gammaH2AX formation and loss were cell type dependent. Maximum levels of gammaH2AX formation were lower for HT144 cells mutant for the ataxia telangiectasia gene. Half-times of loss after irradiation ranged from 1.6 to 7.2 h and were associated with a decrease in the total number of foci per cell. The half-time of loss of gammaH2AX was correlated with clonogenic survival for 10 cell lines (r2=0.66). CONCLUSIONS GammaH2AX can be detected with excellent sensitivity using both flow and image analysis. The rate of gammaH2AX loss may be an important factor in the response of cells to ionizing radiation, with more rapid loss and less retention associated with more radioresistant cell lines.
Collapse
Affiliation(s)
- S H MacPhail
- Columbia Cancer Research Centre, 601 W. 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | | | | | | | | | | |
Collapse
|