151
|
Miyamoto A, Takeshita M, Pan-Hou H, Fujimori H. Hepatic changes in adenine nucleotide levels and adenosine 3'-monophosphate forming enzyme in streptozotocin-induced diabetic mice. J Toxicol Sci 2008; 33:209-17. [PMID: 18544912 DOI: 10.2131/jts.33.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To elucidate the pathophysiological significance of adenosine 3'-monophosphate (3'-AMP) forming enzyme in mice, the effect of streptozotocin (STZ) on the enzyme activities and adenine nucleotide levels in the ICR mice (4-week-old) liver was examined. After 2 weeks, treatment with a single dosage of STZ (100, 150 or 200 mg/kg i.p.) induced a dose-dependent hyperglycemia and hypoinsulinemia but had no effect on serum alanine aminotransferase activity, indicating that STZ generated type 1 diabetes without hepatitis. In the diabetic liver, the activities of superoxide dismutase (SOD), catalase and ATP levels decreased, and the microsomal CYP2E1 activity increased. Changes of these biological activities might disrupt the cellular homeostatic balance of reactive oxygen species (ROS) production. The activities of 3'-AMP forming enzyme, one of the ribonucleases, in hepatic homogenates were not altered. However, in the STZ 200 mg/kg group, the cytosolic forming enzyme activities were enhanced, and inversely, the mitochondrial activity was reduced significantly, indicating that the decrease in the mitochondrial activity may be accelerated by development of diabetes due to the decrease in the antioxidant defense system and/or increase in ROS production. With the decrease in the 3'-AMP forming enzyme activity, the levels of 3'-AMP, a P-site inhibitor of adenylate cyclase, in mitochondrial were significantly reduced. These results obtained suggested that change in the mitochondrial 3'-AMP forming enzyme activity might reflect the pathophysiological change of mitochondrial function with the development of diabetes. Our results also suggested that change in cytosolic enzyme activity might serve as a new biomarker of oxidative stress because significant negative correlation between the activities of cytosolic 3'-AMP forming enzyme and SOD was found in the early stage of diabetes.
Collapse
Affiliation(s)
- Akihiro Miyamoto
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | | | | | | |
Collapse
|
152
|
Cunha JM, Jolivalt CG, Ramos KM, Gregory JA, Calcutt NA, Mizisin AP. Elevated lipid peroxidation and DNA oxidation in nerve from diabetic rats: effects of aldose reductase inhibition, insulin, and neurotrophic factors. Metabolism 2008; 57:873-81. [PMID: 18555826 PMCID: PMC2518323 DOI: 10.1016/j.metabol.2008.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/28/2008] [Indexed: 12/11/2022]
Abstract
We investigated the effect of treatment with an aldose reductase inhibitor, insulin, or select neurotrophic factors on the generation of oxidative damage in peripheral nerve. Rats were either treated with streptozotocin to induce insulin-deficient diabetes or fed with a diet containing 40% d-galactose to promote hexose metabolism by aldose reductase. Initial time course studies showed that lipid peroxidation and DNA oxidation were significantly elevated in sciatic nerve after 1 week or 2 weeks of streptozotocin-induced diabetes, respectively, and that both remained elevated after 12 weeks of diabetes. The increase in nerve lipid peroxidation was completely prevented or reversed by treatment with the aldose reductase inhibitor, ICI 222155, or by insulin, but not by the neurotrophic factors, prosaptide TX14(A) or neurotrophin-3. The increase in nerve DNA oxidation was significantly prevented by insulin treatment. In contrast, up to 16 weeks of galactose feeding did not alter nerve lipid peroxidation or protein oxidation, despite evidence of ongoing nerve conduction deficits. These observations demonstrate that nerve oxidative damage develops early after the onset of insulin-deficient diabetes and that it is not induced by increased hexose metabolism by aldose reductase per se, but rather is a downstream consequence of flux through this enzyme. Furthermore, the beneficial effect of prosaptide TX14(A) and neurotrophin-3 on nerve function and structure in diabetic rats is not due to amelioration of increased lipid peroxidation.
Collapse
Affiliation(s)
- Joice M. Cunha
- Department of Pathology, University of California San Diego, La Jolla, CA
| | | | - Khara M. Ramos
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Joshua A. Gregory
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Nigel A. Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Andrew P. Mizisin
- Department of Pathology, University of California San Diego, La Jolla, CA
| |
Collapse
|
153
|
Cimbaljević B, Vasilijević A, Cimbaljević S, Buzadzić B, Korać A, Petrović V, Janković A, Korać B. Interrelationship of antioxidative status, lipid peroxidation, and lipid profile in insulin-dependent and non-insulin-dependent diabetic patients. Can J Physiol Pharmacol 2008; 85:997-1003. [PMID: 18066100 DOI: 10.1139/y07-088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the interrelationship of plasma lipid profile, lipid peroxidation, and erythrocyte antioxidative defense in patients with insulin-dependent (IDDM) and non-insulin-dependent (NIDDM) diabetes mellitus. Plasma levels of total cholesterol, triglycerides, and lipid peroxides and the activities of copper, zinc superoxide dismutase (CuZnSOD), catalase, glutathione peroxidase (GSH-Px), as well as the amount of glutathione in erythrocytes, were determined in IDDM, NIDDM, and nondiabetic control subjects. Additionally, morphology of erythrocytes in all subjects was examined. Plasma levels of total cholesterol and triglycerides were significantly increased in NIDDM compared with controls. Also, the lipid peroxide level was higher in NIDDM than in either control or IDDM subjects. CuZnSOD activity in erythrocytes was elevated in NIDDM patients compared with the control. In NIDDM patients, more extensive erythrocyte spherocytosis and echinocytosis compared with both control and IDDM subjects were observed. In contrast with the IDDM group, the observed abnormality in lipid metabolism in NIDDM patients is closely associated with increased lipid peroxidation, changes in antioxidative defense, and erythrocyte morphology.
Collapse
Affiliation(s)
- Branko Cimbaljević
- Department of General Medicine, MMA, Pavla Jurisića Sturma 33, 11000 Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Corrêa-Giannella ML, Vieira SM. A predisposição genética para o desenvolvimento da microangiopatia no DM1. ACTA ACUST UNITED AC 2008; 52:375-86. [DOI: 10.1590/s0004-27302008000200026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/18/2007] [Indexed: 11/22/2022]
Abstract
Acredita-se que o controle glicêmico e a duração do diabetes sejam os fatores de risco mais importantes para o desenvolvimento das microangiopatias diabéticas, contudo, as velocidades de progressão da nefropatia, da retinoaptia e da polineuropatia variam consideravelmente entre os pacientes. Além da presença de fatores de risco, como a hipertensão arterial, a dislipidemia e o fumo, existem evidências sugerindo que uma predisposição genética desempenha um papel na susceptibilidade para as complicações microvasculares. Com base na patogênese dessas complicações crônicas do diabetes, polimorfismos de vários genes candidatos que atuam em diferentes vias desse processo têm sido investigados, como os genes relacionados aos mecanismos dos danos induzidos pela hiperglicemia (os produtos finais de glicação avançada, o aumento na formação de espécies reativas de oxigênio e a atividade aumentada da via da aldose-redutase), os genes relacionados ao sistema renina-angiotensina; os genes que codificam a síntese das citoquinas, dos fatores de crescimento e dos seus receptores e dos transportadores de glicose entre muitos outros. Este artigo discute alguns estudos que corroboram com a importância da predisposição genética no desenvolvimento da microangiopatia diabética.
Collapse
|
155
|
Abstract
Erectile dysfunction (ED) aetiology is multifactorial, including endocrine, neurological, vascular, systemic disease, local penile disorders, nutrition, psychogenic factors, and drug-related. This study was performed to compare the relevant comprehensive biochemical parameters as well as the clinical characteristics in diabetic ED and healthy control subjects and to assess the occurrence of penile neuropathy in diabetic patients and thus the relationship between ED and diabetes. A total of 56 patients accepted to undergo assessment for penile vasculature using intracavernosal injection and colour Doppler ultrasonography. Of the 56 diabetic patients, 38 patients were found with normal blood flow and thus they were considered as the diabetic-ED group, whereas, ED diabetic patients with an arteriogenic component were excluded. These patients with an age range between 17 and 58 years, complaining of ED, with duration of diabetic illness ranging from 2 to 15 years. The Control group comprised of 30 healthy subject aged between 19 and 55 years. Peripheral venous levels of testosterone, prolactin, follicle stimulating hormone (FSH), luteinizing hormone (LH), thyroid stimulating hormone (TSH), malondialdehyde and glycosylated haemoglobin (HbA(1)c) were obtained in all subjects. Valsalva manoeuvre and neurophysiological tests were also determined. Testosterone, prolactine, FSH, LH, and TSH hormones of the diabetic patients were not significantly different from those of the control group. Diabetic patients with ED have higher HbA(1)c and oxidative stress levels while the R-R ratio was significantly decreased. Bulbocavernosus reflex latency was significantly prolonged, whereas its amplitude, the conduction velocity and amplitude of dorsal nerve of penis were significantly reduced in the diabetic patients. We concluded that although ED is a multifactorial disorder, yet, the present study revealed that in ED patients without arteriogenic ED a neurogenic component is present. Furthermore, the complex effect of the Valsalva manoeuvre on cardiovascular function is the basis of its usefulness as a measure of autonomic function. Thus, it can be of value in the diagnosis of ED although these hypotheses require follow-up in a large study cohort.
Collapse
Affiliation(s)
- Farqad B Hamdan
- Faculty of Pharmacy, Al-Zaytoonah Private University, Amman, Jordan
| | | |
Collapse
|
156
|
Obrosova IG, Drel VR, Oltman CL, Mashtalir N, Tibrewala J, Groves JT, Yorek MA. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab 2007; 293:E1645-55. [PMID: 17911342 DOI: 10.1152/ajpendo.00479.2007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence for important roles of the highly reactive oxidant peroxynitrite in diabetic complications is emerging. We evaluated the role of peroxynitrite in early peripheral neuropathy and vascular dysfunction in STZ-diabetic rats. In the first dose-finding study, control and STZ-diabetic rats were maintained with or without the potent peroxynitrite decomposition catalyst Fe(III)tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) at 3, 5, or 10 mg.kg(-1).day(-1) in the drinking water for 4 wk after an initial 2 wk without treatment for assessment of early neuropathy. In the second study with similar experimental design, control and STZ-diabetic rats were maintained with or without FP15, 5 mg.kg(-1).day(-1), for vascular studies. Rats with 6-wk duration of diabetes developed motor and sensory nerve conduction velocity deficits, mechanical hyperalgesia, and tactile allodynia in the absence of small sensory nerve fiber degeneration. They also had increased nitrotyrosine and poly(ADP-ribose) immunofluorescence in the sciatic nerve and dorsal root ganglia. All these variables were dose-dependently corrected by FP15, with minimal differences between the 5 and 10 mg.kg(-1).day(-1) doses. FP15, 5 mg.kg(-1).day(-1), also corrected endoneurial nutritive blood flow and nitrotyrosine, but not superoxide, fluorescence in aorta and epineurial arterioles. Diabetes-induced decreases in acetylcholine-mediated relaxation by epineurial arterioles and coronary and mesenteric arteries, as well as bradykinin-induced relaxation by coronary and mesenteric arteries, were alleviated by FP15 treatment. The findings reveal the important role of nitrosative stress in early neuropathy and vasculopathy and provide the rationale for further studies of peroxynitrite decomposition catalysts in long-term diabetic models.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | |
Collapse
|
157
|
Foster TS. Efficacy and safety of alpha-lipoic acid supplementation in the treatment of symptomatic diabetic neuropathy. DIABETES EDUCATOR 2007; 33:111-7. [PMID: 17272797 DOI: 10.1177/0145721706297450] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The purpose of this article is to review current evidence available for alpha-lipoic acid (ALA) and its ability to improve symptoms of peripheral diabetic neuropathy (PDN). METHODS This article searched MEDLINE from 1966 to November 2005 to identify clinical trials that supplemented ALA to individuals with type 1 or type 2 diabetes and positive sensory symptoms of PDN. Clinical trials to be included in this review met specific criteria of randomization, double masking, and placebo-controlled design. RESULTS The search results produced 5 clinical trials that met the prerequisites for this review. ALA appears to improve neuropathic symptoms and deficits when administered via parenteral supplementation over a 3-week period. Oral treatment with ALA appears to have more conflicting data whether it improves sensory symptoms or just neuropathic deficits alone. An oral regimen of ALA and optimal length of treatment remains unclear. Both parenteral and up to a 2-year time period of oral supplementation of ALA appears to be safe without affecting glycemic control. CONCLUSIONS Based on these results, ALA should be considered as a treatment option for patients with PDN. When discussing supplementation with patients, it is important to discuss potential side effects; vitamin, mineral, and drug interactions; and current evidence available regarding efficacy.
Collapse
Affiliation(s)
- Tricia Stewart Foster
- University of Medicine and Dentistry of New Jersey, Graduate Program in Clinical Nutrition, Department of Primary Care, Newark, NJ, USA.
| |
Collapse
|
158
|
Vincent AM, Russell JW, Sullivan KA, Backus C, Hayes JM, McLean LL, Feldman EL. SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Exp Neurol 2007; 208:216-27. [PMID: 17927981 DOI: 10.1016/j.expneurol.2007.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/11/2007] [Accepted: 07/21/2007] [Indexed: 11/17/2022]
Abstract
Hyperglycemia-induced oxidative stress is an inciting event in the development of diabetic complications including diabetic neuropathy. Our observations of significant oxidative stress and morphological abnormalities in mitochondria led us to examine manganese superoxide dismutase (SOD2), the enzyme responsible for mitochondrial detoxification of oxygen radicals. We demonstrate that overexpression of SOD2 decreases superoxide (O(2)(-)) in cultured primary dorsal root ganglion (DRG) neurons and subsequently blocks caspase-3 activation and cellular injury. Underexpression of SOD2 in dissociated DRG cultures from adult SOD2(+/-) mice results in increased levels of O2-, activation of caspase-3 cleavage and decreased neurite outgrowth under basal conditions that are exacerbated by hyperglycemia. These profound changes in sensory neurons led us to explore the effects of decreased SOD2 on the development of diabetic neuropathy (DN) in mice. DN was assessed in SOD2(+/-) C57BL/6J mice and their SOD2(+/+) littermates following streptozotocin (STZ) treatment. These animals, while hyperglycemic, do not display any signs of DN. DN was observed in the C57BL/6Jdb/db mouse, and decreased expression of SOD2 in these animals increased DN. Our data suggest that SOD2 activity is an important cellular modifier of neuronal oxidative defense against hyperglycemic injury.
Collapse
MESH Headings
- Animals
- Caspase 3/metabolism
- Cells, Cultured
- Diabetes Mellitus/genetics
- Diabetes Mellitus, Experimental
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diabetic Neuropathies/physiopathology
- Diabetic Neuropathies/prevention & control
- Enzyme Activation
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Membrane Potentials
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitochondrial Membranes
- Neural Conduction
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neuroprotective Agents/metabolism
- Oxidative Stress
- Rats
- Rats, Sprague-Dawley
- Superoxide Dismutase/deficiency
- Superoxide Dismutase/metabolism
- Transfection
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, 5017 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0588, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Zochodne DW. Diabetes mellitus and the peripheral nervous system: manifestations and mechanisms. Muscle Nerve 2007; 36:144-66. [PMID: 17469109 DOI: 10.1002/mus.20785] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes targets the peripheral nervous system with several different patterns of damage and several mechanisms of disease. Diabetic polyneuropathy (DPN) is a common disorder involving a large proportion of diabetic patients, yet its pathophysiology is controversial. Mechanisms considered have included polyol flux, microangiopathy, oxidative stress, abnormal signaling from advanced glycation endproducts and growth factor deficiency. Although some clinical trials have demonstrated modest benefits in disease stabilization or pain therapy in DPN, robust therapy capable of reversing the disease is unavailable. In this review, general aspects of DPN and other diabetic neuropathies are examined, including a summary of recent therapeutic trials. A particular emphasis is placed on the evidence that the neurobiology of DPN reflects a unique yet common and disabling neurodegenerative disorder.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
160
|
Salceda R, Contreras-Cubas C. Ascorbate uptake in normal and diabetic rat retina and retinal pigment epithelium. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:175-179. [PMID: 17395543 DOI: 10.1016/j.cbpc.2007.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 01/09/2007] [Accepted: 02/26/2007] [Indexed: 02/02/2023]
Abstract
Oxidative stress is an important causative factor in the pathogenesis of diabetic retinopathy. Therefore, it becomes important to understand the mechanisms that help maintain appropriate levels of a small molecule antioxidant such as ascorbate in the retina. The outer blood-barrier which results from the tight junctions between the retinal pigment epithelial cells (RPE) restricts the flow of nutrients reaching the retina. In this study, we characterized the transport properties of carboxyl-(14)C ascorbate (AA) in normal rat retina and RPE, and compared them with those in streptozotocin-diabetic rats. Retina and RPE accumulated AA by a temperature-sensitive and energy-dependent kinetic mechanism with an apparent K(M) of 380 and 420 microM, respectively. Accumulation of AA was significantly reduced in a sodium-free medium. Although high glucose concentrations reduced AA uptake by 40%, this was not affected by cytochalasin B. The RPE and retina of diabetic rats presented lower levels of AA accumulation. These findings suggest the presence of the specific vitamin C transporter SVCT in retina and RPE, which may be involved in the manifestation of diabetic retinopathy.
Collapse
Affiliation(s)
- Rocío Salceda
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., México.
| | - Cecilia Contreras-Cubas
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., México
| |
Collapse
|
161
|
Chattopadhyay M, Mata M, Goss J, Wolfe D, Huang S, Glorioso JC, Fink DJ. Prolonged preservation of nerve function in diabetic neuropathy in mice by herpes simplex virus-mediated gene transfer. Diabetologia 2007; 50:1550-1558. [PMID: 17508196 DOI: 10.1007/s00125-007-0702-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 04/03/2007] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine whether prolonged expression of neurotrophin-3 (NT-3) in mice, achieved by herpes simplex virus (HSV)-mediated gene transfer with gene expression under the control of an HSV latency promoter, can provide protection against the progression of diabetic neuropathy over a 6 month period. MATERIALS AND METHODS Mice with diabetes induced by streptozotocin were inoculated s.c. into both hind feet with a non-replicating HSV vector containing the coding sequence for NT-3 under the control of the HSV latency-associated promoter 2 (LAP2) elements or with a control vector. Nerve function was evaluated by electrophysiological and behavioural measures over the course of 6 months after the onset of diabetes. RESULTS Animals inoculated with the NT-3-expressing vector, but not animals inoculated with control vector, showed preservation of sensory and motor nerve amplitude and conduction velocity measured electrophysiologically, small fibre sensory function assessed by withdrawal from heat, autonomic function measured by pilocarpine-induced sweating, skin innervation assessed by protein gene product 9.5 staining of axons, and density of calcitonin gene-related peptide terminals in the spinal cord measured by immunohistochemistry 5.5 months after vector inoculation. CONCLUSIONS/INTERPRETATION These results indicate that the continuous production of NT-3 by LAP2-driven expression of the transgene from an HSV vector over a 6 month period protects against progression of diabetic neuropathy in mice, and provide a proof-of-principle demonstration for the development of a novel therapy for preventing the progression of diabetic neuropathy.
Collapse
Affiliation(s)
- M Chattopadhyay
- Department of Neurology, University of Michigan Health System, 1500 East Medical Center Drive, Room 1914 TC, Ann Arbor, MI 48109 0316, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Berent-Spillson A, Russell JW. Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutathione concentration. J Neurochem 2007; 101:342-54. [PMID: 17402968 DOI: 10.1111/j.1471-4159.2006.04373.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
High glucose concentrations cause oxidative injury and programmed cell death in neurons, and can lead to diabetic neuropathy. Activating the type 3 metabotropic glutamate receptor (mGluR3) prevents glucose-induced oxidative injury in dorsal root ganglion neurons co-cultured with Schwann cells. To determine the mechanisms of protection, studies were performed in rat dorsal root ganglion neuron-Schwann cell co-cultures. The mGluR3 agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate prevented glucose-induced inner mitochondrial membrane depolarization, reactive oxygen species accumulation, and programmed cell death, and increased glutathione (GSH) concentration in co-cultured neurons and Schwann cells, but not in neurons cultured without Schwann cells. Protection was diminished in neurons treated with the GSH synthesis inhibitor l-buthionine-sulfoximine, suggesting that mGluR-mediated protection requires GSH synthesis. GSH precursors and the GSH precursor GSH-ethyl ester also protected neurons from glucose-induced injury, indicating that GSH synthesis in Schwann cells, and transport of reaction precursors to neurons, may underlie mGluR-mediated neuroprotection. These results support the conclusions that activating glial mGluR3 protects neurons from glucose-induced oxidative injury by increasing free radical scavenging and stabilizing mitochondrial function, through increased GSH antioxidant defense.
Collapse
|
163
|
Dagon Y, Avraham Y, Link G, Zolotarev O, Mechoulam R, Berry EM. The synthetic cannabinoid HU-210 attenuates neural damage in diabetic mice and hyperglycemic pheochromocytoma PC12 cells. Neurobiol Dis 2007; 27:174-81. [PMID: 17604177 DOI: 10.1016/j.nbd.2007.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/22/2007] [Accepted: 04/07/2007] [Indexed: 12/13/2022] Open
Abstract
Diabetic neuropathy (DN) is a common complication of diabetes mellitus resulting in cognitive dysfunction and synaptic plasticity impairment. Hyperglycemia plays a critical role in the development and progression of DN, through a number of mechanisms including increased oxidative stress. Cannabinoids are a diverse family of compounds which can act as antioxidative agents and exhibit neuroprotective properties. We investigated the effect of the synthetic cannabinoid HU-210 on brain function of streptozotocin (STZ)-induced diabetic mice. These animals exhibit hyperglycemia, increased cerebral oxidative stress and impaired brain function. HU-210, through a receptor independent pathway, alleviates the oxidative damage and cognitive impairment without affecting glycemic control. To study the neuroprotective mechanism(s) involved, we cultured PC12 cells under hyperglycemic conditions. Hyperglycemia enhanced oxidative stress and cellular injuries were all counteracted by HU-210-in a dose dependent manner. These results suggest cannabinoids might have a therapeutic role in the management of the neurological complications of diabetes.
Collapse
Affiliation(s)
- Yossi Dagon
- Department of Human Nutrition and Metabolism, Braun School of Public Health, Faculty of Medicine Hebrew University, Hadassah Medical School, Israel
| | | | | | | | | | | |
Collapse
|
164
|
Saini AK, Kumar H S A, Sharma SS. Preventive and curative effect of edaravone on nerve functions and oxidative stress in experimental diabetic neuropathy. Eur J Pharmacol 2007; 568:164-72. [PMID: 17521626 DOI: 10.1016/j.ejphar.2007.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/05/2007] [Accepted: 04/12/2007] [Indexed: 12/14/2022]
Abstract
Oxidative stress is implicated as a final common pathway in the development of diabetic neuropathy and pharmacological interventions targeted at inhibiting free radical production have shown beneficial effects. In the present study, we have investigated the effects of edaravone (3 mg/kg; 3-Methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger (relatively selective to hydroxyl radicals) in streptozotocin (50 mg/kg i.p.) induced diabetic neuropathy in male Sprague-Dawley rats. Significant reduction (18%) in motor nerve conduction velocity, nerve blood flow (55%) and tail flick latency in cold (53%) and hot (50%) immersion test was observed in diabetic rats compared to age matched non-diabetic rats. Preventive (8 week) and curative (2 week) treatment of edaravone significantly improved the nerve conduction velocity and nociception but not nerve blood flow in diabetic rats. The changes in lipid peroxidation status and anti-oxidant enzymes (Superoxide dismutase and Catalase) levels observed in diabetic rats were significantly restored by edaravone treatment. Increase in blood pressure and vascular resistance was also significantly attenuated by edaravone treatment. This study provides experimental evidence to preventive and curative effect of edaravone on nerve function and oxidative stress in animal model of diabetic neuropathy. Hence edaravone may be tried clinically for the treatment of diabetic neuropathy since it is clinically used in stroke patients.
Collapse
Affiliation(s)
- Anuj Kumar Saini
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar (Mohali), Punjab-160062, India
| | | | | |
Collapse
|
165
|
Ates O, Cayli SR, Yucel N, Altinoz E, Kocak A, Durak MA, Turkoz Y, Yologlu S. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J Clin Neurosci 2007; 14:256-60. [PMID: 17258134 DOI: 10.1016/j.jocn.2005.12.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 10/23/2022]
Abstract
The objective of the present study was to investigate the possible neuroprotective effect of resveratrol against streptozotocin-induced hyperglycaemia in the rat brain and medulla spinalis. Thirty adult male Wistar rats were divided into three groups as follows: control group, streptozotocin-induced diabetic-untreated group, and streptozotocin-induced diabetic resveratrol-treated group. Diabetes was induced by a single injection of streptozotocin (STZ) (60 mg/kg body weight). Three days after streptozotocin injection, resveratrol (10 mg/kg) was injected intraperiteonally daily over 6 weeks to the rats in the treatment group. Six weeks later, seven rats from each group were killed and the brain stem and cervical spinal cord were removed. The hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for biochemical studies (lipid peroxidation measuring malondialdehyde [MDA], xanthine oxidase [XO], nitric oxide [NO] and glutathione). MDA, XO and NO levels in hippocampus, cortex, cerebellum, brain stem and spinal cord in the streptozotocin-induced diabetic-untreated group increased significantly. Treatment with resveratrol significantly reduced MDA, XO and NO production and increased glutathione levels when compared to the streptozotocin-induced diabetic-untreated group. This study demonstrates that resveratrol is a potent neuroprotective agent against diabetic oxidative damage.
Collapse
Affiliation(s)
- Ozkan Ates
- Inonu University, School of Medicine, Department of Neurosurgery, Turgut Ozal Medical Center, 44069 Malatya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Kumar A, Kaundal RK, Iyer S, Sharma SS. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci 2007; 80:1236-44. [PMID: 17289084 DOI: 10.1016/j.lfs.2006.12.036] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/22/2006] [Accepted: 12/20/2006] [Indexed: 12/28/2022]
Abstract
Oxidative stress has been implicated in pathophysiology of diabetic neuropathy. All the pathways responsible for development of diabetic neuropathy are linked to oxidative stress in one way or the other. In the present study, we have targeted oxidative stress in diabetic neuropathy using resveratrol, a potent antioxidant. Eight weeks streptozotocin-diabetic rats developed neuropathy which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and increased thermal hyperalgesia. The 2-week treatment with resveratrol (10 and 20 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, and hyperalgesia. Resveratrol also attenuated enhanced levels of malondialdehyde (MDA), peroxynitrite and produced increase in catalase levels in diabetic rats. There was marked reduction in DNA fragmentation observed after resveratrol treatment in diabetic rats as evident from decrease in Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in sciatic nerve sections. Results of the present study suggest the potential of resveratrol in treatment of diabetic neuropathy and its protective effect may be mediated through reduction in oxidative stress and DNA fragmentation.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India
| | | | | | | |
Collapse
|
167
|
Sharma SS, Sayyed SG. Effects of trolox on nerve dysfunction, thermal hyperalgesia and oxidative stress in experimental diabetic neuropathy. Clin Exp Pharmacol Physiol 2007; 33:1022-8. [PMID: 17042909 DOI: 10.1111/j.1440-1681.2006.04481.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. Diabetic neuropathy is one of the most common complications of diabetes and oxidative stress has been implicated to play a major role in its pathophysiology. 2. In the present study, we targeted oxidative stress using trolox, an anti-oxidant, in streptozotocin-induced diabetic neuropathy in rats. 3. Compared with control rats, diabetic rats showed significant deficits in motor nerve conduction velocity (MNCV; 49.91 +/- 1.94 vs 42.77 +/- 1.39 m/s, respectively) and nerve blood flow (NBF; 107.98 +/- 8.22 vs 38.9 +/- 2.7 arbitarary perfusion units, respectively) after 8 weeks of diabetes. Tail flick latencies for cold and hot immersion tests were also significantly reduced in diabetic rats, indicating thermal hyperalgesia. These observations indicate development of diabetic neuropathy. 4. A significant decrease in the activity of anti-oxidant enzymes (superoxide dismutase and catalase) and an increase in lipid peroxidation were observed in sciatic nerves from diabetic rats compared with age-matched control rats. Alterations in the activity of anti-oxidant enzymes and lipid peroxidation in diabetic rats indicate oxidative stress in diabetic neuropathy. 5. Two weeks treatment with trolox (10 and 30 mg/kg, i.p.) started on completion of the 6th week of diabetes significantly improved MNCV, NBF and inhibited thermal hyperalgesia. Trolox treatment also improved the activity of anti-oxidant enzymes and inhibited lipid peroxidation in sciatic nerves of diabetic rats. 6. The results of the present study suggest the beneficial effects of trolox in experimental diabetic neuropathy.
Collapse
Affiliation(s)
- Shyam S Sharma
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India.
| | | |
Collapse
|
168
|
Inkster ME, Cotter MA, Cameron NE. Treatment with the xanthine oxidase inhibitor, allopurinol, improves nerve and vascular function in diabetic rats. Eur J Pharmacol 2007; 561:63-71. [PMID: 17291486 DOI: 10.1016/j.ejphar.2006.12.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/14/2006] [Accepted: 12/21/2006] [Indexed: 12/12/2022]
Abstract
Several putative sources of reactive oxygen species could potentially contribute to diabetic neuropathy and vasculopathy. The aim was to assess the involvement of elevated xanthine oxidase activity. After 6 weeks of streptozotocin-diabetes, groups of rats were given 2 weeks of high-dose allopurinol treatment (50 and 250 mg/kg) to gauge the effect of maximal blockade of xanthine oxidase. In the final experiments, rats were subjected to sensory testing and, under butabarbital anaesthesia, measurements were made on nerve conduction velocities and neural tissue blood flow estimated by hydrogen clearance microelectrode polarography. Further groups were used to study detailed responses of the isolated mesenteric vascular bed after 4 weeks of diabetes and allopurinol (150 mg/kg) treatment. Diabetes caused 20% and 14% reduction in motor and sensory conduction velocity, which were 78% and 81% corrected by allopurinol treatment respectively, both doses giving similar results. Diabetic rats showed tactile allodynia and thermal hyperalgesia, which were completely corrected by allopurinol, whereas mechanical hyperalgesia was only 45% ameliorated. Sciatic nerve and superior cervical ganglion blood flow was halved by diabetes and allopurinol corrected this by approximately 63%. Mesenteric endothelium-dependent vascular responses to acetylcholine, which depend upon nitric oxide and endothelium derived hyperpolarizing factor, were attenuated by diabetes. Allopurinol treatment gave approximately 50% protection for both components. Thus, xanthine oxidase is an important source of reactive oxygen species that contributes to neurovascular dysfunction in experimental diabetes. Inhibition of xanthine oxidase could be a potential therapeutic approach to diabetic neuropathy and vasculopathy.
Collapse
Affiliation(s)
- Melanie E Inkster
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| | | | | |
Collapse
|
169
|
Kuzumoto Y, Kusunoki S, Kato N, Kihara M, Low PA. Effect of the aldose reductase inhibitor fidarestat on experimental diabetic neuropathy in the rat. Diabetologia 2006; 49:3085-93. [PMID: 17063327 DOI: 10.1007/s00125-006-0400-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Accepted: 06/30/2006] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Fidarestat, an aldose reductase inhibitor (ARI), has been reported to improve clinical symptoms and nerve conduction deficits in human diabetic neuropathy. We evaluated the dose-dependency and some of the mechanisms of the drug action in experimental diabetic neuropathy (EDN). METHODS Control rats and rats with EDN were fed on normal pellets or pellets containing 0.00066% (1 mg/kg) or 0.00263% (4 mg/kg) fidarestat for 10 weeks. We evaluated the effect of fidarestat on nerve blood flow (NBF), electrophysiology, and sorbitol and fructose content in sciatic nerve in control and diabetic rats. For detection of oxidative stress in peripheral nerve, we measured sciatic nerve reduced glutathione (GSH) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunolabelling of dorsal root ganglion (DRG) neurons. RESULTS NBF, compound muscle action potential and amplitude of C-potential were significantly improved in diabetic rats fed on the diet supplemented with fidarestat. Fidarestat suppressed the increase in sorbitol and fructose, normalised GSH in sciatic nerve, and reduced the number of 8-OHdG-positive cells in DRG. CONCLUSIONS/INTERPRETATION Fidarestat improves neuropathy, presumably via an improvement in oxidative stress. This study supports a role for fidarestat in the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Y Kuzumoto
- Department of Neurology, Kinki University, School of Medicine, 377-2 Ohno-Higashi Osaka-Sayama, Osaka, Japan.
| | | | | | | | | |
Collapse
|
170
|
Meyer LE, Machado LB, Santiago APSA, da-Silva WS, De Felice FG, Holub O, Oliveira MF, Galina A. Mitochondrial Creatine Kinase Activity Prevents Reactive Oxygen Species Generation. J Biol Chem 2006; 281:37361-71. [PMID: 17028195 DOI: 10.1074/jbc.m604123200] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As recently demonstrated by our group (da-Silva, W. S., Gómez-Puyou, A., Gómez-Puyou, M. T., Moreno-Sanchez, R., De Felice, F. G., de Meis, L., Oliveira, M. F., and Galina, A. (2004) J. Biol. Chem. 279, 39846-39855) mitochondrial hexokinase activity (mt-HK) plays a preventive antioxidant role because of steady-state ADP re-cycling through the inner mitochondrial membrane in rat brain. In the present work we show that ADP re-cycling accomplished by the mitochondrial creatine kinase (mt-CK) regulates reactive oxygen species (ROS) generation, particularly in high glucose concentrations. Activation of mt-CK by creatine (Cr) and ATP or ADP, induced a state 3-like respiration in isolated brain mitochondria and prevention of H(2)O(2) production obeyed the steady-state kinetics of the enzyme to phosphorylate Cr. The extension of the preventive antioxidant role of mt-CK depended on the phosphocreatine (PCr)/Cr ratio. Rat liver mitochondria, which lack mt-CK activity, only reduced state 4-induced H(2)O(2) generation when 1 order of magnitude more exogenous CK activity was added to the medium. Simulation of hyperglycemic conditions, by the inclusion of glucose 6-phosphate in mitochondria performing 2-deoxyglucose phosphorylation via mt-HK, induced H(2)O(2) production in a Cr-sensitive manner. Simulation of hyperglycemia in embryonic rat brain cortical neurons increased both DeltaPsi(m) and ROS production and both parameters were decreased by the previous inclusion of Cr. Taken together, the results presented here indicate that mitochondrial kinase activity performed a key role as a preventive antioxidant against oxidative stress, reducing mitochondrial ROS generation through an ADP-recycling mechanism.
Collapse
Affiliation(s)
- Laudiene Evangelista Meyer
- Instituto de Bioquímica Médica, Programa de Biofísica e Bioquímica Celular and Programa de Biologia Molecular e Biotecnologia
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Gibson TM, Cotter MA, Cameron NE. Effects of poly(ADP-ribose) polymerase inhibition on dysfunction of non-adrenergic non-cholinergic neurotransmission in gastric fundus in diabetic rats. Nitric Oxide 2006; 15:344-50. [PMID: 16644248 DOI: 10.1016/j.niox.2006.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 03/15/2006] [Accepted: 03/17/2006] [Indexed: 02/02/2023]
Abstract
Diabetes mellitus compromises nitric oxide (NO)-mediated endothelium-dependent relaxation of blood vessels, which has been linked to the excessive generation of reactive oxygen species. There are also deleterious effect on nitrergic innervation, contributing to autonomic neuropathy symptoms such as impotence and gastroporesis. Poly(ADP-ribose) polymerase (PARP) is a nuclear protein stimulated by DNA damage, caused, for example, by oxidative stress. Activation has been linked to impaired endothelial nitric oxide synthase (eNOS)-mediated vasodilation in experimental diabetes. There is no information on the potential role of PARP in nitrergic nerve dysfunction, therefore, the aim was to examine the effects of PARP inhibition, using 3-aminobenzamide (3-AB) on neurally mediated gastric fundus relaxation in streptozotocin-induced diabetic rats. Eight weeks of diabetes caused a 42.5% deficit in maximum relaxation of in vitro gastric fundus strips to electrical stimulation of the non-adrenergic non-cholinergic innervation. This was largely prevented or corrected (4 weeks of treatment following 4 weeks of untreated diabetes) by 3-AB. Diabetes also markedly attenuated the maintenance of relaxation responses to prolonged stimulation, and this was partially corrected by 3-AB treatment. Experiments in the presence of the NOS inhibitor, N(G)-nitro-L-arginine, and/or blockade of the co-transmitter, vasoactive intestinal polypeptide, by alpha-chymotrypsin, showed that the beneficial effects of 3-AB were primarily due to improved nitrergic neurotransmission. Thus, PARP plays an important role in defective nitrergic neurotransmission in experimental diabetes, which may have therapeutic implications for treatment of aspects of diabetic autonomic neuropathy.
Collapse
Affiliation(s)
- T Michael Gibson
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | |
Collapse
|
172
|
Hoeldtke RD, Bryner KD, Hoeldtke ME, Christie I, Ganser G, Hobbs G, Riggs J. Sympathetic sudomotor disturbance in early type 1 diabetes mellitus is linked to lipid peroxidation. Metabolism 2006; 55:1524-31. [PMID: 17046556 DOI: 10.1016/j.metabol.2006.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/07/2006] [Indexed: 11/24/2022]
Abstract
The present study was performed to determine whether increased lipid peroxidation, as assessed from malondialdehyde (MDA) excretion, is associated with deterioration in peripheral nerve function in early type 1 diabetes mellitus. These parameters were measured annually for 3 years in 36 patients who entered the study less than 2 years after the diagnosis of diabetes. Malondialdehyde excretion was 1.51 +/- 0.20 micromol/g creatinine in the controls, and 2.43 +/- 0.21, 2.39 +/- 0.22, and 1.93 +/- 0.21 micromol/g creatinine at the first, second, and third evaluations, respectively (P < .005). The increased MDA was seen only in the female participants. Malondialdehyde excretion was increased in those with high vs low hemoglobin Alc across all years (P < .05). Malondialdehyde excretion correlated negatively with sudomotor function below the waist. The mean sweat production from the 3 evaluations correlated with mean MDA excretion across all years in the proximal leg (r = -0.42, P < .005) and distal leg (r = -0.40, P < .01). Below the waist, sweating correlated with MDA (r = -0.40, P < .01) as did total sweat (r = -0.38, P < .01). The response amplitudes of the peroneal nerves correlated negatively with MDA excretion (for the mean values at the second 2 evaluations, P < .005, r = -0.45). Tests of sensory function correlated inconsistently with MDA excretion. In summary, lipid peroxidation, as assessed from malondialdehyde excretion, is associated with sudomotor dysfunction in early diabetes.
Collapse
Affiliation(s)
- Robert D Hoeldtke
- Department of Medicine, West Virginia University, Morgantown, WV 26506-9159, USA.
| | | | | | | | | | | | | |
Collapse
|
173
|
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| |
Collapse
|
174
|
Semra YK, Wang M, Peat NJ, Smith NCE, Shotton HR, Lincoln J. Selective susceptibility of different populations of sympathetic neurons to diabetic neuropathy in vivo is reflected by increased vulnerability to oxidative stress in vitro. Neurosci Lett 2006; 407:199-204. [PMID: 16973273 DOI: 10.1016/j.neulet.2006.08.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/16/2006] [Accepted: 08/20/2006] [Indexed: 11/30/2022]
Abstract
Diabetes is the major cause of autonomic neuropathy in humans. Sympathetic neurons from the celiac/superior mesenteric ganglia (CG/SMG) develop neuropathic changes in diabetes whereas sympathetic superior cervical ganglion (SCG) neurons do not. Glucose-induced oxidative stress is proposed as a major factor in the development of diabetic neuropathy. The aim of this study was to investigate whether sympathetic neurons that develop neuropathy in diabetes are more susceptible to oxidative stress. Explants of CG/SMG and SCG from control adult rats were cultured in media free of serum and NGF, exposed to menadione for 48 h to induce oxidative stress and assessed for neuronal viability, TUNEL-positive nuclei and tyrosine hydroxylase- (TH)-immunoreactivity. TH-immunoreactivity was also assessed in ganglia from control and 8 week streptozotocin-diabetic rats. Menadione caused a concentration-dependent loss of neuronal viability and increase in TUNEL staining in both ganglia. However, at low concentrations, menadione had a significantly greater effect (p<0.01) on CG/SMG neurons than SCG neurons. At 1 nM, menadione caused a significant increase (p<0.05) in the number of CG/SMG neurons containing intense TH-immunoreactivity without affecting SCG neurons. Similarly, 8 weeks streptozotocin-induced diabetes resulted in a significant increase (p<0.05) in intensely fluorescent TH-containing CG/SMG neurons but not SCG neurons. This is the first demonstration that oxidative stress in vitro causes the same accumulation of TH in CG/SMG neurons as is observed following streptozotocin-induced diabetes in vivo. Furthermore, the selective vulnerability of CG/SMG neurons to diabetes is reflected by increased sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Yemane K Semra
- Department of Anatomy and Developmental Biology, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
175
|
Abstract
This review will focus on the impact of hyperglycemia-induced oxidative stress in the development of diabetes-related neural dysfunction. Oxidative stress occurs when the balance between the production of reactive oxygen species (ROS) and the ability of cells or tissues to detoxify the free radicals produced during metabolic activity is tilted in the favor of the former. Although hyperglycemia plays a key role in inducing oxidative stress in the diabetic nerve, the contribution of other factors, such as endoneurial hypoxia, transition metal imbalances, and hyperlipidemia have been also suggested. The possible sources for the overproduction of ROS in diabetes are widespread and include enzymatic pathways, auto-oxidation of glucose, and mitochondrial superoxide production. Increase in oxidative stress has clearly been shown to contribute to the pathology of neural and vascular dysfunction in diabetes. Potential therapies for preventing increased oxidative stress in diabetic nerve dysfunction will be discussed.
Collapse
Affiliation(s)
- Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
176
|
Ates O, Yucel N, Cayli SR, Altinoz E, Yologlu S, Kocak A, Cakir CO, Turkoz Y. Neuroprotective effect of etomidate in the central nervous system of streptozotocin-induced diabetic rats. Neurochem Res 2006; 31:777-83. [PMID: 16794861 DOI: 10.1007/s11064-006-9076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
It is well known that hyperglycaemia due to diabetes mellitus leads to oxidative stress in the central nervous system. Oxidative stress plays important role in the pathogenesis of neurodegenerative changes. In the present study we investigated the possible neuroprotective effect of etomidate against streptozotocin-induced (STZ-induced) hyperglycaemia in the rat brain and spinal cord. A total of 40 rats were used in this study. Rats were divided into four groups: sham-control, diabetic, diabetic-etomidate treated and vehicle for etomidate treatment group. Diabetes mellitus was induced by a single injection of streptozotocin (60 mg/kg body weight). Three days after streptozotocin injection, etomidate (2 mg/kg) was injected intraperitoneally for etomidate group and lipid emulsion (10%) for vehicle group was injected with corresponding amount intraperitoneally every day for 6 weeks. Six weeks after streptozotocin injection, seven rats from each group were killed and brain, brain stem and cervical spinal cord were removed. The hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for the biochemical analysis (the level of malondialdehyde [MDA], total nitrite, reduced glutathione [GSH], and xanthine oxidase [XO] activity). STZ-induced diabetes resulted in significantly elevation of MDA, XO and nitrite levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the rats (P < 0.05) while etomidate treatment provided significantly lower values (P < 0.05). This study demonstrated that etomidate have neuroprotective effect on the neuronal tissue against the diabetic oxidative damage.
Collapse
Affiliation(s)
- Ozkan Ates
- Department of Neurosurgery, Turgut Ozal Medical Center, Inonu University, School of Medicine, 44069 Malatya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Ahn T, Yun CH, Oh DB. Tissue-specific effect of ascorbic acid supplementation on the expression of cytochrome P450 2E1 and oxidative stress in streptozotocin-induced diabetic rats. Toxicol Lett 2006; 166:27-36. [PMID: 16820274 DOI: 10.1016/j.toxlet.2006.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Here, we investigated the effect of l-ascorbic acid (AA) supplementation on the CYP2E1 expression level and oxidative stress in various tissues such as the liver, kidney, pancreas, and brain of streptozotocin (STZ)-induced diabetic rats. An increased cytochrome P450 2E1 (CYP2E1) expression level with a concomitant increase in the production of reactive oxygen species were found in all the tissues of STZ-induced diabetic rats tested compared with an untreated control, suggesting the possible diabetes-induced tissue injury. In contrast, the AA supplementation to the diabetic rats alleviated these experimental parameters in a tissue-specific manner. AA affected the liver most severely followed by the kidney. There was little or no effect of AA supplementation on the brain and pancreas. The circulation level of the ketone bodies, inducers of CYP2E1, was also decreased by AA supplementation compared with those of the diabetic rats. Therefore, the suppression of ketone production by AA can be one of the mechanisms of a reduction in CYP2E1. These results suggest that AA plays an important role in reducing elevated CYP2E1 expression level and the oxidative stress mediated by type 1 diabetes with a tissue-specific variation.
Collapse
Affiliation(s)
- Taeho Ahn
- Department of Biochemistry, College of Veterinary Medicine, Chonnam National University, Buk-gu, Gwangju 500-757, Republic of Korea.
| | | | | |
Collapse
|
178
|
Wang Y, Schmeichel AM, Iida H, Schmelzer JD, Low PA. Enhanced inflammatory response via activation of NF-kappaB in acute experimental diabetic neuropathy subjected to ischemia-reperfusion injury. J Neurol Sci 2006; 247:47-52. [PMID: 16631800 DOI: 10.1016/j.jns.2006.03.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 03/03/2006] [Accepted: 03/06/2006] [Indexed: 02/06/2023]
Abstract
Reperfusion following ischemia increases ischemic fiber degeneration (IFD) in diabetic nerves compared to control normoglycemic nerves. The mechanism of this excessive susceptibility is unclear. Since reperfusion injury results in an inflammatory response, we tested the hypothesis that the diabetic state increases the inflammatory cascade. We used an animal model of unilateral ischemia-reperfusion (IR) injury to streptozotocin (STZ)-induced diabetic nerve to evaluate the density and localization of mediators of the inflammatory response using selective immunolabeling methods (for nuclear factor kappa B (NF-kappaB), intercellular adhesion molecule-1 (ICAM-1), cytokines and inflammatory cells). We studied a 1-month diabetic group and an age-matched control group (n=6 each). The right limb underwent 3 h ischemia at 35 degrees C and 7 days reperfusion. This was achieved by ligating the supplying arteries and collaterals to the right sciatic-tibial nerve for 3 h, followed by releasing the ties. Immunohistochemistry was performed on proximal sciatic and mid tibial nerves. NF-kappaB expression in diabetic sciatic endothelial cell and Schwann cell (SC) was significantly increased over that of controls subjected to identical IR injury. We observed a nearly 2-fold increase in density of NF-kappaB and ICAM-1 expression in microvessels of diabetic nerve compared with control nerve. Extensive infiltration of monocyte macrophages (1C7) was observed in the endoneurium of diabetic nerves, while only mild infiltration of granulocytes (HIS 48) occurred in the endoneurium of diabetic tibial nerves. This study provides evidence for an enhanced inflammatory response in diabetic nerves subjected to IR injury apparently via NF-kappaB activation.
Collapse
Affiliation(s)
- Yanping Wang
- Mayo Clinic, Department of Neurology, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
179
|
Li F, Abatan OI, Kim H, Burnett D, Larkin D, Obrosova IG, Stevens MJ. Taurine reverses neurological and neurovascular deficits in Zucker diabetic fatty rats. Neurobiol Dis 2006; 22:669-76. [PMID: 16624563 DOI: 10.1016/j.nbd.2006.01.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 01/08/2006] [Accepted: 01/15/2006] [Indexed: 01/27/2023] Open
Abstract
Increased oxidative stress is implicated in the pathogenesis of diabetic peripheral neuropathy (DPN). However, the efficacy of antioxidant therapy on DPN complicating type 2 diabetes remains unexplored. We therefore determined the ability of the antioxidant taurine to reverse deficits of hind limb sciatic motor and digital sensory nerve conduction velocity (NCV), nerve blood flow (NBF), and sensory thresholds in hyperglycemic Zucker diabetic fatty (ZDF) rats. Experimental groups comprised lean nondiabetic (ND), ND treated with taurine (ND + T), untreated ZDF diabetic (D), and D rats treated with taurine (D + T). Compared to ND rats, 23%, 15% and 56% deficits of motor NCV, sensory NCV and NBF, respectively as well as thermal and mechanical hyperalgesia were reversed by taurine. An 84% deficit of dorsal root ganglion neuron calcitonin gene-related peptide in D rats was prevented by taurine. In summary, the antioxidant taurine reverses neurological and neurovascular deficits in experimental type 2 diabetes.
Collapse
Affiliation(s)
- Fei Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Sayyed SG, Kumar A, Sharma SS. Effects of U83836E on nerve functions, hyperalgesia and oxidative stress in experimental diabetic neuropathy. Life Sci 2006; 79:777-83. [PMID: 16581090 DOI: 10.1016/j.lfs.2006.02.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 02/17/2006] [Accepted: 02/22/2006] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been implicated to play an important role in the pathogenesis of diabetic neuropathy, which is the most common complication of diabetes mellitus affecting more than 50% of diabetic patients. In the present study, we have investigated the effect of U83836E [(-)-2-((4-(2,6-Di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl)methyl)-3,4-dihydro-2,3,7,8-tetramethyl-2H-1-benzopyran-6-ol, 2HCl], a potent free radical scavenger in streptozotocin (STZ)-induced diabetic neuropathy in rats. STZ-induced diabetic rats showed significant deficit in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and thermal hyperalgesia after 8 weeks of diabetes induction, indicating development of diabetic neuropathy. Antioxidant enzyme (superoxide dismutase and catalase) levels were reduced and malondialdehyde (MDA) levels were significantly increased in diabetic rats as compared to the age-matched control rats, this indicates the involvement of oxidative stress in diabetic neuropathy. The 2-week treatment with U83836E (3 and 9 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, hyperalgesia, MDA levels and antioxidant enzymes in diabetic rats. Results of the present study suggest the potential of U83836E in treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Sufyan G Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sec-67, S.A.S. Nagar (Mohali), Punjab-160062, India
| | | | | |
Collapse
|
181
|
Tuzcu M, Baydas G. Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. Eur J Pharmacol 2006; 537:106-10. [PMID: 16626697 DOI: 10.1016/j.ejphar.2006.03.024] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 03/07/2006] [Accepted: 03/13/2006] [Indexed: 11/30/2022]
Abstract
Previous studies indicate that diabetes mellitus might be accompanied by a certain erosion of brain function such as cognitive impairment. The aim of this study was to examine and compare the effects of melatonin and vitamin E on cognitive functions in diabetic rats. Diabetes was induced in male albino rats via intraperitoneal streptozotocin injection. Learning and memory behaviors were investigated using a spatial version of the Morris water maze test. The levels of lipid peroxidation and glutathione were detected in hippocampus and frontal cortex. The diabetic rats developed significant impairment in learning and memory behaviors as indicated by the deficits in water maze tests as compared to control rats. Furthermore, lipid peroxidation levels increased and glutathione concentration decreased in diabetic rats. Treatment with melatonin and vitamin E significantly ameliorated learning and memory performance. Furthermore, both antioxidants reversed lipid peroxidation and glutathione levels toward their control values. These results suggest that oxidative stress may contribute to learning and memory deficits in diabetes and further suggest that antioxidant melatonin and vitamin E can improve cognitive impairment in streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | |
Collapse
|
182
|
Ates O, Cayli SR, Altinoz E, Yucel N, Kocak A, Tarim O, Durak A, Turkoz Y, Yologlu S. Neuroprotective effect of mexiletine in the central nervous system of diabetic rats. Mol Cell Biochem 2006; 286:125-31. [PMID: 16541198 DOI: 10.1007/s11010-005-9102-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 12/02/2005] [Indexed: 10/24/2022]
Abstract
Both experimental and clinical studies suggests that oxidative stress plays an important role in the pathogenesis of diabetes mellitus type 1 and type 2. Hyperglycaemia leads to free radical generation and causes neural degeneration. In the present study we investigated the possible neuroprotective effect of mexiletine against streptozotocin-induced hyperglycaemia in the rat brain and spinal cord. 30 adult male Wistar rats were divided into three groups: control, diabetic, and diabetic-mexiletine treated group. Diabetes mellitus was induced by a single injection of streptozotocin (60 mg/kg body weight). Mexiletine (50 mg/kg) was injected intraperitoneally every day for six weeks. After 6 weeks the brain, brain stem and cervical spinal cord of the rats were removed and the hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for biochemical analysis (the level of Malondialdehide [MDA], Nitric Oxide [NO], Reduced Glutathione [GSH], and Xanthine Oxidase [XO] activity). MDA, XO and NO levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group increased significantly, when compared with control and mexiletine groups (P < 0.05). GSH levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group decreased significantly when compared with control and mexiletine groups (P < 0.05). This study demonstrates that mexiletine protects the neuronal tissue against the diabetic oxidative damage.
Collapse
Affiliation(s)
- Ozkan Ates
- Inonu University, School of Medicine, Department of Neurosurgery, Malatya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
Small-fiber neuropathy is a peripheral nerve disease that most commonly presents in middle-aged and older people, who develop burning pain in their feet. Although it can be caused by disorders of metabolism such as diabetes, chronic infections (such as with human immunodeficiency virus), genetic abnormalities, toxicity from various drugs, and autoimmune diseases, the cause often remains a mystery because standard electrophysiologic tests for nerve injury do not detect small-fiber function. Inadequate ability to test for and diagnose small-fiber neuropathies has impeded patient care and research, but new tools offer promise. Infrequently, the underlying cause of small-fiber dysfunction is identified and disease-modifying therapy can be instituted. More commonly, the treatments for small-fiber neuropathy involve symptomatic treatment of neuropathic pain.
Collapse
Affiliation(s)
- Ezekiel Fink
- Department of Anesthesiology, Neurology, and Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
184
|
Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 2006; 55:798-805. [PMID: 16505246 DOI: 10.2337/diabetes.55.03.06.db05-1039] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported damage and elevated biogenesis in cardiac mitochondria of a type 1 diabetic mouse model and proposed that mitochondria are one of the major targets of oxidative stress. In this study, we targeted overexpression of the mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) to the heart to protect cardiac mitochondria from oxidative damage. Transgenic hearts had a 10- to 20-fold increase in superoxide dismutase (SOD) activity, and the transgenic SOD was located in mitochondria. The transgene caused a twofold increase in cardiac catalase activity. MnSOD transgenic mice demonstrated normal cardiac morphology, contractility, and mitochondria, and their cardiomyocytes were protected from exogenous oxidants. Crossing MnSOD transgenic mice with our type 1 model tested the benefit of eliminating mitochondrial reactive oxygen species. Overexpression of MnSOD improved respiration and normalized mass in diabetic mitochondria. MnSOD also protected the morphology of diabetic hearts and completely normalized contractility in diabetic cardiomyocytes. These results showed that elevating MnSOD provided extensive protection to diabetic mitochondria and provided overall protection to the diabetic heart.
Collapse
Affiliation(s)
- Xia Shen
- Department of Pathology, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
185
|
Cho EJ, Lee YA, Yoo HH, Yokozawa T. Protective Effects of Broccoli (Brassica oleracea) against Oxidative Damage in Vitro and in Vivo. J Nutr Sci Vitaminol (Tokyo) 2006; 52:437-44. [PMID: 17330507 DOI: 10.3177/jnsv.52.437] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antioxidative effect and protective potential against diabetes of the broccoli flower were investigated both in vitro and in a diabetic rat model. Among fractions of MeOH, CH2Cl2, BuOH, and H2O, the BuOH fraction exerted the strongest inhibitory activities on 1,1-diphenyl-2-picrylhydrazyl radical, radical-induced protein oxidation, and nitric oxide generation by sodium nitroprusside. The in vitro results suggest that the BuOH fraction from the broccoli flower has a protective potential against oxidative stress. The rat model with diabetes induced by streptozotocin was employed to evaluate the protective effect of the BuOH fraction in vivo. Diabetic rats showed reduced body weight gain and heavier kidney and liver weights than normal rats, while oral administration of the BuOH fraction at an oral dose of 100 or 200 mg/kg body weight/d for 20 d attenuated the physiological changes induced by diabetes. In addition, oral administration of the BuOH fraction to diabetic rats led to significant decreases in serum glucose and glycosylated protein, while it resulted in the increase of serum albumin, implying that the BuOH fraction improves the abnormal metabolism of glucose and protein that leads to oxidative stress. Moreover, it significantly reduced thiobarbituric acid-reactive substance levels in serum, hepatic and renal mitochondria. This suggests that the BuOH fraction would alleviate the oxidative stress associated with diabetes through the inhibition of lipid peroxidation. The present study demonstrates that the BuOH fraction has an antioxidative effect in vitro and it protects against oxidative stress induced by diabetes in an in vivo model.
Collapse
Affiliation(s)
- Eun Ju Cho
- Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea
| | | | | | | |
Collapse
|
186
|
Michalak S, Adamczewska-Goncerzewicz Z, Szczech J. ATPases and lipid peroxidation in the rat sciatic nerve in the course of experimental neoplastic disease. Exp Mol Pathol 2005; 81:92-9. [PMID: 16386245 DOI: 10.1016/j.yexmp.2005.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/11/2005] [Accepted: 10/27/2005] [Indexed: 01/12/2023]
Abstract
Peripheral nerve involvement in the course of neoplastic disease represents a clinically significant complication, with clinical uncertainties raising questions as to its pathophysiology. The aim of this study was the analysis of ATPase activities, lipid peroxidation and sulfhydryl groups in the sciatic nerve of tumor-bearing rats. We investigated also morphometric features of the sciatic nerve of experimental animals. An increase was noted in Na+/K+-ATPase and Mg+2-ATPase activities and elevation of conjugated diene and malonyldialdehyde contents, associated with a decrease in sulfhydryl groups in Morris-hepatoma-bearing rats. The morphometric evaluation revealed myelin sheath thickening, associated with an increase in axon cross-section area and degenerative changes in dorsal horns. In this study, the moderate lipid peroxidation in experimental neoplastic disease was demonstrated to lead to depletion of sulfhydryl groups in the degenerating rat sciatic nerve which was associated with stimulation of ATPase activities.
Collapse
Affiliation(s)
- Sławomir Michalak
- Department of Neurochemistry and Neuropathology, University of Medical Sciences, 49, Przybyszewskiego str., 60-355 Poznań, Poland.
| | | | | |
Collapse
|
187
|
Kellogg AP, Pop-Busui R. Peripheral nerve dysfunction in experimental diabetes is mediated by cyclooxygenase-2 and oxidative stress. Antioxid Redox Signal 2005; 7:1521-9. [PMID: 16356116 DOI: 10.1089/ars.2005.7.1521] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose-mediated oxidative stress and alterations in cyclooxygenase (COX) pathway activity with secondary deficits of endoneurial perfusion have been implicated in the pathogenesis of experimental diabetic neuropathy (EDN). We have previously reported that activation of the COX-2 pathway is an important mediator of neurochemical and neurovascular defects in EDN in a rat model. Considering that chemical COX inhibition may exert other pharmacological effects in addition to inhibition of COX activity, the aim of this study was to explore the role of COX-2 in experimental diabetic neuropathy, using a COX-2 knockout mouse model. Here we provide evidence that COX-2 inactivation had a protective effect against diabetes-induced motor and sensory nerve conduction slowing and impaired nerve antioxidative defense that were clearly manifest in the wild-type (COX-2(+/+)) diabetic mice. These preliminary data support the role of the activation of the COX-2 pathway in mediating sensory and motor nerve conduction velocity deficits in EDN. These findings also suggest that the COX-2 pathway seems to be an important modulator of oxidative stress in EDN.
Collapse
Affiliation(s)
- Aaron P Kellogg
- Medical College of Ohio, Department of Medicine and Physiology, Toledo, OH, USA
| | | |
Collapse
|
188
|
Wang Y, Schmeichel AM, Iida H, Schmelzer JD, Low PA. Ischemia-reperfusion injury causes oxidative stress and apoptosis of Schwann cell in acute and chronic experimental diabetic neuropathy. Antioxid Redox Signal 2005; 7:1513-20. [PMID: 16356115 DOI: 10.1089/ars.2005.7.1513] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mild ischemia-reperfusion (IR) injury to diabetic peripheral nerve is known to cause severe ischemic fiber degeneration. Little information is available on its effects on Schwann cell (SC). In this study, we evaluated oxidative stress and apoptosis of SC following mild IR, using immunohistochemistry in streptozotocin (STZ)- induced diabetic rats. Twenty-six rats were divided into four groups according to the duration of diabetes: 1- month STZ-induced diabetic group (n=7) and age-matched control group (n=7); 4-month STZ-induced diabetic group (n=6) and age-matched control group (n=6). Using our established IR model of 3 h of ischemia followed by 7 days of reperfusion, sciatic and tibial nerves were harvested and labeled with 8-hydroxydeoxyguanosine (8-OHdG; oxidative stress marker), caspase-3 (apoptotic executor), and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) activity (apoptotic indicator). Marked positive staining with 8-OHdG, caspase-3, and TUNEL were found in diabetic ischemic nerves (right side) following IR in both 1-month and 4-month groups. Only mild positive staining or no staining was seen in the nonischemic side (left side) of diabetic and age-matched control groups. Co-labeling with S-100 confirmed that the cells labeled with 8-OHdG, caspase3, and TUNEL were SC. SC was susceptible to oxidative injury and apoptosis in experimental diabetic neuropathy when subjected to mild IR injury.
Collapse
Affiliation(s)
- Yanping Wang
- Mayo Clinic, Department of Neurology, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
189
|
Mirza N, Cornblath DR, Hasan S, Hussain U. Alpha-lipoic acid for diabetic peripheral neuropathy. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2005. [DOI: 10.1002/14651858.cd005492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
190
|
Kang KA, Chae S, Koh YS, Kim JS, Lee JH, You HJ, Hyun JW. Protective effect of puerariae radix on oxidative stress induced by hydrogen peroxide and streptozotocin. Biol Pharm Bull 2005; 28:1154-60. [PMID: 15997089 DOI: 10.1248/bpb.28.1154] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the protective effect of Puerariae radix against the oxidative stress induced by hydrogen peroxide (H2O2) and streptozotocin in vitro and in vivo, respectively. The ethanol extract scavenged intracellular reactive oxygen species (ROS), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and prevented lipid peroxidation. This radical scavenging activity of the ethanol extract protected the cell viability of Chinese hamster lung fibroblast (V79-4) cells exposed to H2O2. Furthermore, this extract reduced the formation of apoptotic cells induced by H2O2, which was demonstrated by the decreased number of sub G(1) hypo-diploid cells and apoptotic cell body formation. The extract increased the activities of the cellular antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). Administration of the extract to the streptozotocin induced diabetic rats decreased the blood glucose levels. The diabetic rats showed low activities of superoxide dismutase and catalase in the liver, and the ethanol extract increased the CAT activity. The increased level of lipid peroxidation in the diabetic rats reverted to near normal levels after being treated with the extract. This study showed that Puerariae radix was effective in the amelioration of diabetes, which may be a consequence of its antioxidant potential.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University, Korea
| | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
Diabetes mellitus impairs peripheral nerve regeneration. Regenerative failure likely exacerbates deficits from polyneuropathy or focal neuropathies in patients who might otherwise exhibit spontaneous improvement. Some focal neuropathies, like carpal tunnel syndrome, are common, yet render ongoing disability because of their delayed recovery. Why diabetic nerves fail to regenerate is an interesting question to consider because several mechanisms likely contribute. In this review, we examine a number of these causes. These causes include microangiopathy or disease of small blood vessels, failure to provide proper metabolic support for repair, defects in the entry and actions of inflammatory cells within the injury milieu, less robust support of axons by their Schwann cells, and lack of a full repertoire of trophic factors. A number of the mechanisms that generate neuropathy in the first place also likely contribute to failed regenerative programs, but how they do so is not clear.
Collapse
Affiliation(s)
- James M Kennedy
- Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
192
|
Li F, Obrosova IG, Abatan O, Tian D, Larkin D, Stuenkel EL, Stevens MJ. Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am J Physiol Endocrinol Metab 2005; 288:E29-36. [PMID: 15585600 DOI: 10.1152/ajpendo.00168.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The etiology of painful diabetic neuropathy is poorly understood, but may result from neuronal hyperexcitability secondary to alterations of Ca2+ signaling in sensory neurons. The naturally occurring amino acid taurine functions as an osmolyte, antioxidant, Ca2+ modulator, inhibitory neurotransmitter, and analgesic such that its depletion in diabetes may predispose one to neuronal hyperexcitability and pain. This study reports the effects of taurine replacement on hyperalgesia and sensory neuron Ca2+ homeostasis in streptozotocin-diabetic (STZ-D) rats. Nondiabetic and STZ-D rats were treated with a 2% taurine-supplemented diet for 6-12 wk. Thermal hyperalgesia and mechanical allodynia were determined by measuring hindpaw withdrawal latency to radiant heat and the withdrawal threshold to the von Frey anesthesiometer. Intracellular Ca2+ signaling was explored in neurons from L4-L6 dorsal root ganglia (DRG), using fura 2 fluorescence. Taurine replacement of diabetic rats attenuated deficits of nerve conduction and prevented reductions of mechanical and thermal withdrawal threshold and latency, respectively. In small DRG sensory neurons from diabetic rats, recovery of intracellular Ca2+ concentration ([Ca2+]i) in response to KCl was slowed and 73% corrected by taurine. The amplitudes of caffeine and ATP-induced [Ca2+]i transients were decreased by 47 and 27% (P < 0.05), respectively, in diabetic rat DRG sensory neurons and corrected by 74 and 93% (P < 0.05), respectively, by taurine replacement. These data indicate that taurine is important in the regulation of neuronal Ca2+ signaling and that taurine deficiency may predispose one to nerve hyperexcitability and pain, complicating diabetes.
Collapse
Affiliation(s)
- Fei Li
- Department of Internal Medicine, Michigan Diabetes Research and Training Center, University of Michigan, Ann Arbor Veterans Administration Hospitals, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Berryman AM, Maritim AC, Sanders RA, Watkins JB. Influence of treatment of diabetic rats with combinations of pycnogenol, ?-carotene, and ?-lipoic acid on parameters of oxidative stress. J Biochem Mol Toxicol 2005; 18:345-52. [PMID: 15674846 DOI: 10.1002/jbt.20046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, beta-carotene, and alpha-lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague-Dawley rats, normal and streptozotocin-induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, beta-carotene, pycnogenol + beta-carotene, or pycnogenol + beta-carotene + alpha-lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with beta-carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) beta-carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects.
Collapse
Affiliation(s)
- Abbie M Berryman
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
194
|
Hoitsma E, Reulen JPH, de Baets M, Drent M, Spaans F, Faber CG. Small fiber neuropathy: a common and important clinical disorder. J Neurol Sci 2004; 227:119-30. [PMID: 15546602 DOI: 10.1016/j.jns.2004.08.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/27/2004] [Accepted: 08/30/2004] [Indexed: 11/21/2022]
Abstract
Small fiber neuropathy (SFN) is a neuropathy selectively involving small diameter myelinated and unmyelinated nerve fibers. Interest in this disorder has considerably increased during the past few years. It is often idiopathic and typically presents with peripheral pain and/or symptoms of autonomic dysfunction. Diagnosis is made on the basis of the clinical features, normal nerve conduction studies (NCS) and abnormal specialized tests of small nerve fibers. Among others, these tests include assessment of epidermal nerve fiber density, temperature sensation tests for sensory fibers and sudomotor and cardiovagal testing (QSART) for autonomic fibers. Unless an underlying disease is identified, treatment is usually symptomatic and directed towards alleviation of neuropathic pain.
Collapse
Affiliation(s)
- E Hoitsma
- Department of Clinical Neurophysiology, Maastricht University Hospital, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
195
|
Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM, Klein JB, Epstein PN. Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 2004; 287:E896-905. [PMID: 15280150 DOI: 10.1152/ajpendo.00047.2004] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetic cardiomyopathy is a common complication leading to heightened risk of heart failure and death. In the present report, we performed proteomic analysis on total cardiac proteins from the OVE26 mouse model of type 1 diabetes to identify protein changes that may contribute to diabetic cardiomyopathy. This analysis revealed that a surprising high proportion (12 of 20) of the altered proteins that could be identified by mass spectrometry were of mitochondrial origin. All but one of these proteins were upregulated by diabetes. Quantitative RT-PCR, performed for two of these proteins, indicated that part of the upregulation was attributed to increased messenger RNA levels. Morphological study of diabetic hearts showed significantly increased mitochondrial area and number as well as focal regions with severe damage to mitochondria. Diabetic mitochondria also showed reduced respiratory control ratio (9.63 +/- 0.20 vs. 6.13 +/- 0.41, P < 0.0001), apparently due to reduced state 3 rate, and diminished GSH level (5.5 +/- 0.9 vs. 8.2 +/- 2.5 micromol/mg protein, P < 0.05), indicating impaired mitochondrial function and increased oxidative stress. Further examination revealed increased mitochondrial DNA (1.03 +/- 0.18 vs. 0.69 +/- 0.13 relative copy number, P < 0.001) and a tendency to higher protein yield in OVE26 cardiac mitochondria, as well as increased mRNA level for mitochondrial transcription factor A and two mitochondrial encoded proteins. Taken together, these results show that mitochondria are a primary target in the diabetic heart, probably due to oxidative stress, and that this damage coincides with and may stimulate mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xia Shen
- Dept. of Pharmacology and Toxicology, University of Louisville, 570 S. Preston St., Suite 304, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Ziegler D, Sohr CGH, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care 2004; 27:2178-83. [PMID: 15333481 DOI: 10.2337/diacare.27.9.2178] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Oxidative stress resulting from enhanced free-radical formation and/or a defect in antioxidant defenses has been implicated in the pathogenesis of experimental diabetic neuropathy. The objective of this study was to evaluate plasma levels of various biomarkers of oxidative stress in diabetic subjects in relation to the presence or absence of polyneuropathy (PN) and/or cardiovascular autonomic neuropathy (CAN). RESEARCH DESIGN AND METHODS Plasma 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), superoxide anion (O(2)(.-)) generation, lag phase to peroxidation by peroxynitrite (ONOO(-)), vitamin E-to-lipid ratio, and vitamin C were measured in nonsmoking diabetic patients without PN and CAN (PN(-)/CAN(-) group; n = 62), in a group with PN but without CAN (PN(+)/CAN(-) group; n = 105), in those with both PN and CAN (PN(+)/CAN(+) group; n = 22), and in healthy control subjects (n = 85). RESULTS All three markers of oxidative stress were significantly increased, and both markers of antioxidant defense were decreased in the PN(+)/CAN(-) group compared with the control group (all P < 0.05). PN(-)/CAN(-) subjects showed a significant increase compared with control subjects for 8-iso-PGF(2alpha), O(2)(.-), and ONOO(-) and a decrease for the vitamin E-to-lipid ratio (all P < 0.05). In the PN(+)/CAN(-) group, a significant increase compared with the PN(-)/CAN(-) group was noted for O(2)(.-), whereas the vitamin E-to-lipid ratio and vitamin C were reduced (all P < 0.05). No significant differences were noted between the PN(+)/CAN(-) and PN(+)/CAN(+) groups for each of the five markers of oxidative stress. In multivariate models, O(2)(.-) and ONOO(-) were independently associated with neuropathic deficits, but diabetes duration and triglyceride levels were also independent determinants. CONCLUSIONS Oxidative stress is enhanced in diabetic patients before the development of PN but to an even higher degree in those with PN, without further significant increase in relation to superimposed autonomic neuropathy. However, apart from oxidative stress, diabetes duration and triglyceride levels are also related to the severity of PN.
Collapse
Affiliation(s)
- Dan Ziegler
- German Diabetes Research Institute, Heinrich Heine University, Düsseldorf, Germany.
| | | | | |
Collapse
|
197
|
Stevens MJ, Zhang W, Li F, Sima AAF. C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 2004; 287:E497-505. [PMID: 15126237 DOI: 10.1152/ajpendo.00048.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxidative stress and neurovascular dysfunction have emerged as contributing factors to the development of experimental diabetic neuropathy (EDN) in streptozotocin-diabetic rodents. Additionally, depletion of C-peptide has been implicated in the pathogenesis of EDN, but the mechanisms of these effects have not been fully characterized. The aims of this study were therefore to explore the effects of diabetes on neurovascular dysfunction and indexes of nerve oxidative stress in type 1 bio-breeding Worcester (BB/Wor) rats and type 2 BB Zucker-derived (ZDR)/Wor rats and to determine the effects of C-peptide replacement in the former. Motor and sensory nerve conduction velocities (NCVs), hindlimb thermal thresholds, endoneurial blood flow, and indicators of oxidative stress were evaluated in nondiabetic control rats, BB/Wor rats, BB/Wor rats with rat II C-peptide replacement (75 nmol C-peptide.kg body wt(-1).day(-1)) for 2 mo, and diabetes duration-matched BBZDR/Wor rats. Endoneurial perfusion was decreased and oxidative stress increased in type 1 BB/Wor rats. C-peptide prevented NCV and neurovascular deficits and attenuated thermal hyperalgesia. Inhibition of nitric oxide (NO) synthase, but not cyclooxygenase, reversed the C-peptide-mediated effects on NCV and nerve blood flow. Indexes of oxidative stress were unaffected by C-peptide. In type 2 BBZDR/Wor rats, neurovascular deficits and increased oxidative stress were unaccompanied by sensory NCV slowing or hyperalgesia. Therefore, nerve oxidative stress is increased and endoneurial perfusion decreased in type 1 BB/Wor and type 2 BBZDR/Wor rats. NO and neurovascular mechanisms, but not oxidative stress, appear to contribute to the effects of C-peptide in type 1 EDN. Sensory nerve deficits are not an inevitable consequence of increased oxidative stress and decreased nerve perfusion in a type 2 diabetic rodent model.
Collapse
Affiliation(s)
- Martin J Stevens
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA.
| | | | | | | |
Collapse
|
198
|
Suzuki Y, Taniyama M, Muramatsu T, Higuchi S, Ohta S, Atsumi Y, Matsuoka K. ALDH2/ADH2 Polymorphism Associated with Vasculopathy and Neuropathy in Type 2 Diabetes. Alcohol Clin Exp Res 2004. [DOI: 10.1111/j.1530-0277.2004.tb03227.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
199
|
Shotton HR, Broadbent S, Lincoln J. Prevention and partial reversal of diabetes-induced changes in enteric nerves of the rat ileum by combined treatment with alpha-lipoic acid and evening primrose oil. Auton Neurosci 2004; 111:57-65. [PMID: 15109939 DOI: 10.1016/j.autneu.2004.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 02/20/2004] [Accepted: 02/20/2004] [Indexed: 11/25/2022]
Abstract
Treatment with alpha-lipoic acid (LA) or evening primrose oil (EPO), individually, fails to prevent diabetes-induced changes in enteric nerves. Since synergy between these treatments has been reported, the aim was to investigate the effectiveness of combined LA/EPO treatment. LA and EPO were administered in the diet (approximately 80 and 200 mg/kg/day, respectively) to control and diabetic (induced by streptozotocin, 65 mg/kg, i.p.) rats. For prevention, treatment started after 1 week and lasted 7 weeks. For reversal, treatment lasted 4 weeks and was initiated after 8 weeks. Nerves supplying the ileum containing vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) and noradrenaline (NA) were examined immunohistochemically or biochemically. Diabetes caused a significant increase in VIP-containing cell bodies (p<0.001), decrease in NA content (p<0.01) and loss of CGRP-immunoreactivity. LA/EPO treatment totally prevented diabetes-induced changes in VIP (p<0.001) and CGRP and partially reversed (p<0.05) these changes once they had been allowed to develop. In contrast, treatment had no effect on diabetes-induced changes in NA-containing nerves. Therefore, LA and EPO are only effective at treating diabetes-induced changes in some enteric nerves when administered in combination. However, diabetes-induced changes in NA-containing nerves are resistant to treatment.
Collapse
Affiliation(s)
- Hannah R Shotton
- Department of Anatomy and Developmental Biology, Autonomic Neuroscience Institute, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|
200
|
da-Silva WS, Gómez-Puyou A, de Gómez-Puyou MT, Moreno-Sanchez R, De Felice FG, de Meis L, Oliveira MF, Galina A. Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 2004; 279:39846-55. [PMID: 15247300 DOI: 10.1074/jbc.m403835200] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain hexokinase is associated with the outer membrane of mitochondria, and its activity has been implicated in the regulation of ATP synthesis and apoptosis. Reactive oxygen species (ROS) are by-products of the electron transport chain in mitochondria. Here we show that the ADP produced by hexokinase activity in rat brain mitochondria (mt-hexokinase) controls both membrane potential (Deltapsi(m)) and ROS generation. Exposing control mitochondria to glucose increased the rate of oxygen consumption and reduced the rate of hydrogen peroxide generation. Mitochondrial associated hexokinase activity also regulated Deltapsi(m), because glucose stabilized low Deltapsi(m) values in state 3. Interestingly, the addition of glucose 6-phosphate significantly reduced the time of state 3 persistence, leading to an increase in the Deltapsi(m) and in H(2)O(2) generation. The glucose analogue 2-deoxyglucose completely impaired H(2)O(2) formation in state 3-state 4 transition. In sharp contrast, the mt-hexokinase-depleted mitochondria were, in all the above mentioned experiments, insensitive to glucose addition, indicating that the mt-hexokinase activity is pivotal in the homeostasis of the physiological functions of mitochondria. When mt-hexokinase-depleted mitochondria were incubated with exogenous yeast hexokinase, which is not able to bind to mitochondria, the rate of H(2)O(2) generation reached levels similar to those exhibited by control mitochondria only when an excess of 10-fold more enzyme activity was supplemented. Hyperglycemia induced in embryonic rat brain cortical neurons increased ROS production due to a rise in the intracellular glucose 6-phosphate levels, which were decreased by the inclusion of 2-deoxyglucose, N-acetyl cysteine, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Taken together, the results presented here indicate for the first time that mt-hexokinase activity performed a key role as a preventive antioxidant against oxidative stress, reducing mitochondrial ROS generation through an ADP-recycling mechanism.
Collapse
Affiliation(s)
- Wagner Seixas da-Silva
- Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|