151
|
In-Cold Exposure to Z-3-Hexenal Provides Protection Against Ongoing Cold Stress in Zea mays. PLANTS 2019; 8:plants8060165. [PMID: 31212596 PMCID: PMC6630476 DOI: 10.3390/plants8060165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 11/30/2022]
Abstract
Green leaf volatiles (GLVs), which have mostly been described as providers of protection against insect herbivory and necrotrophic pathogen infections, were recently shown to provide significant fortification against cold stress damage. It was further demonstrated that cold-damaged maize seedlings released a significant amount of GLVs, in particular, Z-3-hexenal (Z-3-HAL). Here, we report that the in-cold treatment of maize seedlings with Z-3-HAL significantly improved cold stress resistance. The transcripts for cold-protective genes were also significantly increased in the Z-3-HAL treated maize seedlings over those found in only cold stressed plants. Consequently, the maize seedlings treated with HAL during cold showed a significantly increased structural integrity, significantly less damage, and increased growth after cold stress, relative to the non-HAL treated maize seedlings. Together, these results demonstrate the protective effect of in-cold treatment with HAL against cold damage, and suggest that the perception of these compounds during cold episodes significantly improves resistance against this abiotic stress.
Collapse
|
152
|
Hishamuddin MS, Lee SY, Isa NM, Lamasudin DU, Zainal Abidin SA, Mohamed R. Time-based LC-MS/MS analysis provides insights into early responses to mechanical wounding, a major trigger to agarwood formation in Aquilaria malaccensis Lam. RSC Adv 2019; 9:18383-18393. [PMID: 35515211 PMCID: PMC9064782 DOI: 10.1039/c8ra10616a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/04/2019] [Indexed: 01/07/2023] Open
Abstract
Mechanical wounding is the major trigger for the formation of agarwood in the tropical tree taxon Aquilaria. To understand the molecular mechanism by which Aquilaria reacts to wounding, we applied a proteomics approach using liquid chromatography electrospray-ionization coupled with tandem mass spectrometry (LC-MS/MS) coupled with bioinformatics analysis and principal component analysis. Protein samples were extracted from wood tissues collected from drilled wounds on the stems of five-year old Aquilaria malaccensis. Samples were collected at different time-points of 0, 2, 6, 12, and 24 h after mechanical wounding for protein identification. Venn diagram analysis showed that 564 out of 2227 identified proteins were time-point specific proteins. GO analysis using the REViGO software (including functional proteins) supported these findings. In total, 20 wound-response proteins and one unknown protein were identified as having important roles in the signaling response to wounding, response to stress, activation of plant defense systems, and plant regeneration. The detected biological processes include brassinosteroid stimulus, polyamine catabolism, hypersensitive response, response to cadmium ions, response to oxidative stress, and malate metabolism, suggesting that the wounded trees must have undergone major plant cell damage. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that several wound-response proteins were involved in agarwood formation. Our proteomics data thus provide useful information for understanding the wound response mechanisms that trigger agarwood formation. Mechanical wounding triggers agarwood synthesis pathways in Aquilaria malaccensis.![]()
Collapse
Affiliation(s)
- Muhammad Syahmi Hishamuddin
- Forest Biotechnology Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Shiou Yih Lee
- Forest Biotechnology Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Dhilia Udie Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Liquid Chromatography Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Rozi Mohamed
- Forest Biotechnology Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| |
Collapse
|
153
|
Dombrowski JE, Kronmiller BA, Hollenbeck VG, Rhodes AC, Henning JA, Martin RC. Transcriptome analysis of the model grass Lolium temulentum exposed to green leaf volatiles. BMC PLANT BIOLOGY 2019; 19:222. [PMID: 31138172 PMCID: PMC6540478 DOI: 10.1186/s12870-019-1799-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/25/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Forage and turf grasses are routinely cut and grazed upon throughout their lifecycle. When grasses are cut or damaged, they rapidly release a volatile chemical cocktail called green leaf volatiles (GLV). Previously we have shown that mechanical wounding or exposure to GLV released from cut grass, activated a Lt 46 kDa mitogen-activated protein kinase (MAPK) within 3 min and a 44 kDa MAPK within 15-20 min in the model grass species Lolium temulentum (Lt). Currently very little is known concerning the perception, signaling or molecular responses associated with wound stress in grasses. Since GLV are released during wounding, we wanted to investigate what genes and signaling pathways would be induced in undamaged plants exposed to GLV. RESULTS RNA-Seq generated transcriptome of Lolium plants exposed to GLV identified 4308 up- and 2794 down-regulated distinct differentially-expressed sequences (DES). Gene Ontology analysis revealed a strong emphasis on signaling, response to stimulus and stress related categories. Transcription factors and kinases comprise over 13% of the total DES found in the up-regulated dataset. The analysis showed a strong initial burst within the first hour of GLV exposure with over 60% of the up-regulated DES being induced. Specifically sequences annotated for enzymes involved in the biosynthesis of jasmonic acid and other plant hormones, mitogen-activated protein kinases and WRKY transcription factors were identified. Interestingly, eleven DES for ferric reductase oxidase, an enzyme involved in iron uptake and transport, were exclusively found in the down-regulated dataset. Twelve DES of interest were selected for qRT-PCR analysis; all displayed a rapid induction one hour after GLV exposure and were also strongly induced by mechanical wounding. CONCLUSION The information gained from the analysis of this transcriptome and previous studies suggests that GLV released from cut grasses transiently primes an undamaged plant's wound stress pathways for potential oncoming damage, and may have a dual role for inter- as well as intra-plant signaling.
Collapse
Affiliation(s)
- James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, Oregon, 97331-7102 USA
| | - Brent A. Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 USA
| | - Vicky G. Hollenbeck
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, Oregon, 97331-7102 USA
| | - Adelaide C. Rhodes
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 USA
| | - John A. Henning
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, Oregon, 97331-7102 USA
| | - Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, Oregon, 97331-7102 USA
| |
Collapse
|
154
|
Bak A, Patton MF, Perilla-Henao LM, Aegerter BJ, Casteel CL. Ethylene signaling mediates potyvirus spread by aphid vectors. Oecologia 2019; 190:139-148. [DOI: 10.1007/s00442-019-04405-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022]
|
155
|
Nawrocka J, Gromek A, Małolepsza U. Nitric Oxide as a Beneficial Signaling Molecule in Trichoderma atroviride TRS25-Induced Systemic Defense Responses of Cucumber Plants Against Rhizoctonia solani. FRONTIERS IN PLANT SCIENCE 2019; 10:421. [PMID: 31057564 PMCID: PMC6478799 DOI: 10.3389/fpls.2019.00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/20/2019] [Indexed: 05/12/2023]
Abstract
In the present study, Trichoderma atroviride TRS25 is presented as a biological control agent, which significantly limits the development of infection and reduces the disease caused by the pathogenic fungus Rhizoctonia solani in cucumber plants (Cucumis sativus L.). The systemic disease suppression is related to oxidative, signaling, and biochemical changes, that are triggered in response to a pathogen. Induction of systemic defense in cucumber by TRS25 greatly depends on the accumulation of signaling molecules including hydrogen peroxide (H2O2) and nitric oxide (NO) as well as salicylic acid (SA) and its derivatives including methyl salicylate (MeSA) and octyl salicylate (OSA). The study established that NO was accumulated in leaves and shoots of the cucumber plants, especially those pretreated with Trichoderma and inoculated with R. solani, where the compound was accumulated mainly in the cells localized in the vascular bundles and in epidermal tissues. We suggest, for the first time, that in the plants pretreated with TRS25, the accumulation of H2O2 and NO may be related to catalase (CAT) and S-nitrosoglutathione reductase (GSNOR) activity decrease. On the other hand, excessive accumulation of NO and SA may be controlled by forming their inactive forms, S-nitrosothiols (SNO) and salicylic acid glucosylated conjugates (SAGC), respectively. The obtained results suggest that the mentioned molecules may be an important component of the complex signaling network activated by TRS25, which is positively involved in systemic defense responses of cucumber plants against R. solani.
Collapse
Affiliation(s)
- Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
156
|
Jones AC, Seidl-Adams I, Engelberth J, Hunter CT, Alborn H, Tumlinson JH. Herbivorous Caterpillars Can Utilize Three Mechanisms to Alter Green Leaf Volatile Emission. ENVIRONMENTAL ENTOMOLOGY 2019; 48:419-425. [PMID: 30668656 DOI: 10.1093/ee/nvy191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Green plants emit green leaf volatiles (GLVs) as a general damage response. These compounds act as signals for the emitter plant, neighboring plants, and even for insects in the ecosystem. However, when oral secretions from certain caterpillars are applied to wounded leaves, GLV emissions are significantly decreased or modified. We examined four caterpillar species representing two lepidopteran families for their capacity to decrease GLV emissions from Zea mays leaf tissue. We also investigated the source of the GLV modifying components in the alimentary tract of the various caterpillars. In Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), and Manduca sexta (Linnaeus) (Lepidoptera: Sphingidae), we found three distinct mechanisms to modify GLV emission: a heat-stable compound in the gut, a heat-labile enzyme in salivary gland homogenate (previously described in Bombyx mori (Linnaeus) (Lepidoptera: Bombycidae), and an isomerase in the salivary gland homogenate, which catalyzes the conversion of (Z)-3-hexenal to (E)-2-hexenal (previously described in M. sexta). These mechanisms employed by caterpillars to suppress or modify GLV emission suggest a counteraction against the induced indirect volatile defenses of a plant and provides further insights into the ecological functions of GLVs.
Collapse
Affiliation(s)
- Anne C Jones
- Department of Entomology, Pennsylvania State University, University Park, PA
| | - Irmgard Seidl-Adams
- Department of Entomology, Pennsylvania State University, University Park, PA
| | - Jurgen Engelberth
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX
| | - Charles T Hunter
- Chemistry Research Unit, USDA Agricultural Research Service, Gainesville, FL
| | - Hans Alborn
- Chemistry Research Unit, USDA Agricultural Research Service, Gainesville, FL
| | - James H Tumlinson
- Department of Entomology, Pennsylvania State University, University Park, PA
| |
Collapse
|
157
|
Holighaus G, Rohlfs M. Volatile and non-volatile fungal oxylipins in fungus-invertebrate interactions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
158
|
Goldberg JK, Pintel G, Weiss SL, Martins EP. Predatory lizards perceive plant-derived volatile odorants. Ecol Evol 2019; 9:4733-4738. [PMID: 31031939 PMCID: PMC6476869 DOI: 10.1002/ece3.5076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/21/2022] Open
Abstract
Many lizards are olfactory foragers and prey upon herbivorous arthropods, yet their responses to common herbivore-associated plant volatiles remain unknown. As such, their role in mediating plant indirect defenses also remains largely obscured. In this paper, we use a cotton-swab odor presentation assay to ask whether lizards respond to two arthropod-associated plant-derived volatile compounds: 2-(E)-hexenal and hexanoic acid. We studied the response of two lizard species, Sceloporus virgatusand Aspidoscelis exsanguis, because they differ substantially in their foraging behavior. We found that the actively foraging A. exsanguisresponded strongly to hexanoic acid, whereas the ambush foraging S. virgatus responded to 2-(E)-hexenal-an herbivore-associated plant volatile involved in indirect defense against herbivores. These findings indicate that S. virgatus may contribute to plant indirect defense and that a species' response to specific odorants is linked with foraging mode. Future studies can elucidate how lizards use various compounds to locate prey and how these responses impact plant-herbivore interactions.
Collapse
Affiliation(s)
| | | | - Stacey L. Weiss
- Department of BiologyUniversity of Puget SoundTacomaWashington
| | - Emília P. Martins
- Department of BiologyIndiana UniversityBloomingtonIndiana
- School of Life SciencesArizona State UniversityTempeArizona
| |
Collapse
|
159
|
Jakobs R, Müller C. Volatile, stored and phloem exudate-located compounds represent different appearance levels affecting aphid niche choice. PHYTOCHEMISTRY 2019; 159:1-10. [PMID: 30530039 DOI: 10.1016/j.phytochem.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 05/15/2023]
Abstract
Intraspecific and intra-individual differences in emitted volatile compounds and in surface and phloem sap-related metabolites do not only affect host plant choice of monophagous aphids but may also guide them to the plant part that provides their ideal niche by maximising their fitness. However, little is known about the variation at these different plant appearance levels. We investigated the preferences of the monophagous aphid species Macrosiphoniella tancetaria and Uroleucon tanaceti for different plant parts (inflorescence stems, young and old leaves) of Tanacetum vulgare plants from two chemotypes, testing their reactions towards volatile, surface and phloem sap-related cues. Furthermore, we studied the variation in leaf glandular trichome density as well as in the composition of volatile, stored and phloem exudate-located specialised (secondary) plant compounds from the different plant parts of these chemotypes. Aphid species showed differences in their preferences. Aphids of M. tanacetaria had to assess the entire plant to choose the stem, whereas U. tanaceti only needed volatile cues to locate the old leaves, which are the plant parts representing their respective niches. Volatiles and stored metabolites varied in their composition and concentration between chemotypes. Stored metabolites additionally differed among plant parts, which was reflected in distinct trichome densities. The composition of phloem exudate-located specialised compounds mostly varied among plant parts. These pronounced differences in plant chemistry on multiple levels provide distinct perception levels for aphids probably driving their niche choice. This study demonstrates the importance to consider these multiple levels to elucidate plant-herbivore interactions with high resolution.
Collapse
Affiliation(s)
- Ruth Jakobs
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
160
|
Xin Z, Ge L, Chen S, Sun X. Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z)-3-hexenol. JOURNAL OF PLANT RESEARCH 2019; 132:285-293. [PMID: 30758750 DOI: 10.1007/s10265-019-01094-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 01/31/2019] [Indexed: 05/15/2023]
Abstract
Green leaf volatiles (GLVs) play a vital role in enhancing herbivore-associated defense responses, but the mechanism by which they precisely regulate such responses is not well understood. (Z)-3-Hexenol (z3HOL), an important component of GLVs, effectively activates the defense of tea plants (Camellia sinensis) against a tea geometrid (TG) Ectropis obliqua Prout. To elucidate the molecular mechanisms of defense activation by z3HOL, RNA-Sequencing was employed to investigate the effect of z3HOL on transcriptome responses to TG in tea plants. A total of 318 upregulated genes were identified, and expression of 10 unigenes was validated by quantitative real-time PCR. Among these 318 upregulated genes, 56 were defense-related, including 6 key enzyme genes in jasmonic acid, and ethylene biosynthesis, 24 signal transduction genes, and 12 insect-responsive transcription factors. Most of the defense-related genes are induced by JA, TG, or wounding treatments, suggesting that JA signaling plays a vital role in z3HOL-induced tea defense against TG.
Collapse
Affiliation(s)
- Zhaojun Xin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Lingang Ge
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Shenglong Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China.
| |
Collapse
|
161
|
Hu L, Ye M, Erb M. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. PLANT, CELL & ENVIRONMENT 2019; 42:959-971. [PMID: 30195252 PMCID: PMC6392123 DOI: 10.1111/pce.13443] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/25/2018] [Accepted: 09/02/2018] [Indexed: 05/03/2023]
Abstract
Plants can use induced volatiles to detect herbivore- and pathogen-attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress-related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore-induced volatile priming cues with complementary information content, the green leaf volatile (Z)-3-hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile-exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile-exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual-exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Meng Ye
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
162
|
Behavioural responses of bean flower thrips (Megalurothrips sjostedti) to vegetative and floral volatiles from different cowpea cultivars. CHEMOECOLOGY 2019. [DOI: 10.1007/s00049-019-00278-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
163
|
Ma W, Zhao L, Zhao W, Xie Y. ( E)-2-Hexenal, as a Potential Natural Antifungal Compound, Inhibits Aspergillus flavus Spore Germination by Disrupting Mitochondrial Energy Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1138-1145. [PMID: 30614691 DOI: 10.1021/acs.jafc.8b06367] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fungal contamination imposes threats to agriculture and food production and human health. A method to safely and effectively restrict fungal contamination is still needed. Here, we report the effect and mode of action of ( E)-2-hexenal, one of the green leaf volatiles (GLVs), on the spore germination of Aspergillus flavus, which can contaminate a variety of crops. The EC50 value, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) of ( E)-2-hexenal were 0.26, 1.0, and 4.0 μL/mL, respectively. As observed by scanning electron microscopy (SEM), the surface morphology of A. flavus spores did not change after treatment with the MIC of ( E)-2-hexenal, but the spores were shrunken and depressed upon treatment with the MFC of ( E)-2-hexenal. The MIC and MFC of ( E)-2-hexenal induced evident phosphatidylserine (PS) externalization of A. flavus spores as detected by double staining with Annexin V-FITC and propidium iodide, indicating that early apoptosis was potentially induced. Furthermore, sublethal doses of ( E)-2-hexenal disturbed pyruvate metabolism and reduced the intracellular soluble protein content of A. flavus spores during the early stage of germination, and MIC treatment decreased acetyl-CoA and ATP contents by 65.7 ± 3.7% and 53.9 ± 4.0% ( P < 0.05), respectively. Additionally, the activity of mitochondrial dehydrogenases was dramatically inhibited by 23.8 ± 2.2% ( P < 0.05) at the MIC of ( E)-2-hexenal. Therefore, the disruption of mitochondrial energy metabolism and the induction of early apoptosis are involved in the mechanism of action of ( E)-2-hexenal against A. flavus spore germination.
Collapse
Affiliation(s)
- Weibin Ma
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, College of Food Science and Technology , Henan University of Technology , Zhengzhou 450001 , People's Republic of China
| | - Luling Zhao
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, College of Food Science and Technology , Henan University of Technology , Zhengzhou 450001 , People's Republic of China
| | - Wenhong Zhao
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, College of Food Science and Technology , Henan University of Technology , Zhengzhou 450001 , People's Republic of China
| | - Yanli Xie
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, College of Food Science and Technology , Henan University of Technology , Zhengzhou 450001 , People's Republic of China
| |
Collapse
|
164
|
Zhou Q, Cheng X, Wang S, Liu S, Wei C. Effects of Chemical Insecticide Imidacloprid on the Release of C 6 Green Leaf Volatiles in Tea Plants (Camellia sinensis). Sci Rep 2019; 9:625. [PMID: 30679494 PMCID: PMC6345918 DOI: 10.1038/s41598-018-36556-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/23/2018] [Indexed: 11/27/2022] Open
Abstract
Chemical insecticides are widely used for pest control worldwide. However, the impact of insecticides on indirect plant defense is seldom reported. Here, using tea plants and the pesticide imidacloprid, effects of chemical insecticides on C6-green leaf volatiles (GLVs) anabolism and release were investigated first time. Compared with the non-treated control plants, the treatment of imidacloprid resulted in the lower release amount of key GLVs: (Z)-3-hexenal, n-hexenal, (Z)-3-hexene-1-ol and (Z)-3-Hexenyl acetate. The qPCR analysis revealed a slight higher transcript level of the CsLOX3 gene but a significantly lower transcript level of CsHPL gene. Our results suggest that imidacloprid treatment can have a negative effect on the emission of GLVs due to suppressing the critical GLVs synthesis-related gene, consequently affecting plant indirect defense.
Collapse
Affiliation(s)
- Qiying Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, Henan, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, Henan, China
| | - Xi Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
165
|
Chen H, Yang R, Chen J, Luo Q, Cui X, Yan X, Gerwick WH. 1-Octen-3-ol, a self-stimulating oxylipin messenger, can prime and induce defense of marine alga. BMC PLANT BIOLOGY 2019; 19:37. [PMID: 30669983 PMCID: PMC6341616 DOI: 10.1186/s12870-019-1642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/09/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Short chain oxylipins in plants as the main volatile organic carbon have been speculated to playing an important role for plant innate immunity, however, not yet intensively studied and far away established as the fully recognized algae defense signals. RESULTS The production of 1-octen-3-ol is self-amplified via the fatty acid-oxylipin metabolic cycle through positive feedback loop. Production of 1-octen-3-ol may act as a messenger that induces P. haitanensis to be in a "primed" state and ready for defense by upregulating the synthesis of methyl jasmonic acid, indole-3-acetic acid, and gibberellin A3. Production of these oxylipins also adjust the redox state in cells, resulting in host defense activation. CONCLUSIONS We provide the first demonstration that 1-octen-3-ol from P. haitanensis, can act as a self-stimulating community messenger. The multiple effects of 1-octen-3-ol may explain why P. haitanensis, a very ancient lineage within plant kingdom, thrives in the niche of intertidal zones.
Collapse
Affiliation(s)
- Haimin Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Rui Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Juanjuan Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Qijun Luo
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Xiaoshan Cui
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|
166
|
Chinnapandi B, Bucki P, Fitoussi N, Kolomiets M, Borrego E, Braun Miyara S. Tomato SlWRKY3 acts as a positive regulator for resistance against the root-knot nematode Meloidogyne javanica by activating lipids and hormone-mediated defense-signaling pathways. PLANT SIGNALING & BEHAVIOR 2019; 14:1601951. [PMID: 31010365 PMCID: PMC6546140 DOI: 10.1080/15592324.2019.1601951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Diseases caused by plant-parasitic nematodes in vegetables, among them Meloidogyne spp. root-knot nematodes (RKNs), lead to extensive yield decline. A molecular understanding of the mechanisms underlying plants' innate resistance may enable developing safe alternatives to harmful chemical nematicides in controlling RKNs. A tight relationship has been revealed between the WRKY transcription factors and RKN parasitism on tomato roots. We investigated the function role of tomato SlWRK3 and SlWRKY35 in regulating nematode disease development. Using promoter-GUS reporter gene fusions, we show that both SlWRKY3 and SlWRKY35 are induced within 5 days of infection and through feeding-site development and gall maturation, with a much stronger response of the former vs. the latter to nematode infection. Histological analysis of nematode-feeding sites indicated a high expression of SlWRKY3 in developing and mature feeding cells and associated vasculature cells, whereas SlWRKY35 expression was only observed in mature feeding sites. Both SlWRKY3 and SlWRKY35 promoters were induced by the defense phytohormones salicylic acid and indole-3-butyric acid, with no response to either jasmonic acid or methyl jasmonate. SlWRKY3 overexpression resulted in lower infection of the RKN Meloidogyne javanica, whereas knocking down SlWRKY3 resulted in increased infection. Phytohormone and oxylipin profiles determined by LC-MS/MS showed that the enhanced resistance in the former is coupled with an increased accumulation of defense molecules from the shikimate and oxylipin pathways. Our results pinpoint SlWRKY3 as a positive regulator of induced resistance in response to nematode invasion and infection, mostly during the early stages of nematode infection.
Collapse
Affiliation(s)
- Bharathiraja Chinnapandi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
| | - Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, the Faculty of Agriculture, Food & Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, TX, USA
| | - Eli Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, TX, USA
| | - Sigal Braun Miyara
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
- CONTACT Sigal Braun Miyara Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
| |
Collapse
|
167
|
Hanley ME, Shannon RWR, Lemoine DG, Sandey B, Newland PL, Poppy GM. Riding on the wind: volatile compounds dictate selection of grassland seedlings by snails. ANNALS OF BOTANY 2018; 122:1075-1083. [PMID: 30418479 PMCID: PMC6266099 DOI: 10.1093/aob/mcy190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/04/2018] [Indexed: 05/15/2023]
Abstract
Background and Aims Seedling herbivory is an important selective filter in many plant communities. The removal of preferred food plants by both vertebrate and, more commonly, invertebrate herbivores can destroy entire seedling cohorts, and consequently dictate plant community assembly. Nevertheless, our understanding of how and why some seedlings are more prone to herbivore attack than their neighbours remains limited. For seedlings, where even minor tissue damage is fatal, avoiding contact with herbivores is probably advantageous and, on this basis, volatile organic compounds (VOCs) are strong candidates to fulfil a primary defensive role. Methods We quantified seedling selection by snails (Cornu aspersum) for 14 common, European grassland species. Seedling acceptability was subsequently compared with species-specific expression of constitutive secondary defence metabolites (CSDMs), and VOCs to determine their relative influence on seedling selection. Results We found no relationship between seedling acceptability and CSDMs, but seedling selection was strongly associated with VOC profiles. Monoterpenes (specifically β-ocimene) were identified as likely attractants, while green leaf volatiles (GLVs) (3-hexen-1-ol acetate) were strongly associated with low seedling acceptability. Conclusions By elucidating a relationship between VOCs and seedling acceptability, we contradict a long-held, but poorly tested, assumption that seedling selection by herbivores in (semi-)natural plant communities centres on CSDMs. Instead, our results corroborate recent work showing how GLVs, including 3-hexen-1-ol acetate, deter crop seedling selection by molluscs. Although our failure to establish any early-ontogenetic relationship between VOCs and CSDMs also suggests that the former do not 'advertise' possession of the latter, we nevertheless reveal the role that VOCs play in defending seedlings against herbivory before lethal damage occurs.
Collapse
Affiliation(s)
- Mick E Hanley
- School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Roger W R Shannon
- School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Damien G Lemoine
- Ecologie des Hydrosystèmes Naturels et Anthropisés, Ecologie, Evolution, Ecosystèmes Souterrains (E3S), Université Lyon, Villeurbanne Cedex, France
| | - Bethan Sandey
- School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Philip L Newland
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Guy M Poppy
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
168
|
Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K. Green leaf volatile production by plants: a meta-analysis. THE NEW PHYTOLOGIST 2018; 220:666-683. [PMID: 28665020 DOI: 10.1111/nph.14671] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
666 I. Introduction 667 II. Biosynthesis 667 III. Meta-analysis 669 IV. The type of stress influences the total amount of GLVs released 669 V. Herbivores can modulate the wound-induced release of GLVs 669 VI. Fungal infection greatly induces GLV production 672 VII. Monocots and eudicots respond differentially to different types of stress 673 VIII. The type of stress does not influence the proportion of GLVs per chemical class 673 IX. The type of stress does influence the isomeric ratio within each chemical class 674 X. GLVs: from signal perception to signal transduction 676 XI. GLVs influence the C/N metabolism 677 XII. Interaction with plant hormones 678 XIII. General conclusions and unanswered questions 678 Acknowledgements 679 References 679 SUMMARY: Plants respond to stress by releasing biogenic volatile organic compounds (BVOCs). Green leaf volatiles (GLVs), which are abundantly produced across the plant kingdom, comprise an important group within the BVOCs. They can repel or attract herbivores and their natural enemies; and they can induce plant defences or prime plants for enhanced defence against herbivores and pathogens and can have direct toxic effects on bacteria and fungi. Unlike other volatiles, GLVs are released almost instantly upon mechanical damage and (a)biotic stress and could thus function as an immediate and informative signal for many organisms in the plant's environment. We used a meta-analysis approach in which data from the literature on GLV production during biotic stress responses were compiled and interpreted. We identified that different types of attackers and feeding styles add a degree of complexity to the amount of emitted GLVs, compared with wounding alone. This meta-analysis illustrates that there is less variation in the GLV profile than we presumed, that pathogens induce more GLVs than insects and wounding, and that there are clear differences in GLV emission between monocots and dicots. Besides the meta-analysis, this review provides an update on recent insights into the perception and signalling of GLVs in plants.
Collapse
Affiliation(s)
- Maarten Ameye
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Silke Allmann
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Jan Verwaeren
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Kris Audenaert
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| |
Collapse
|
169
|
Cofer TM, Seidl-Adams I, Tumlinson JH. From Acetoin to ( Z)-3-Hexen-1-ol: The Diversity of Volatile Organic Compounds that Induce Plant Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11197-11208. [PMID: 30293420 DOI: 10.1021/acs.jafc.8b03010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Evidence that plants can respond to volatile organic compounds (VOCs) was first presented 35 years ago. Since then, over 40 VOCs have been found to induce plant responses. These include VOCs that are produced not only by plants but also by microbes and insects. Here, we summarize what is known about how these VOCs are produced and how plants detect and respond to them. In doing so, we highlight notable observations we believe are worth greater consideration. For example, the VOCs that induce plant responses appear to have little in common. They are derived from many different biosynthetic pathways and have few distinguishing chemical or structural features. Likewise, plants appear to use several mechanisms to detect VOCs rather than a single dedicated "olfactory" system. Considering these observations, we advocate for more discovery-oriented experiments and propose that future research take a fresh look at the ways plants detect and respond to VOCs.
Collapse
Affiliation(s)
- Tristan M Cofer
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - James H Tumlinson
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
170
|
Altmann S, Muino JM, Lortzing V, Brandt R, Himmelbach A, Altschmied L, Hilker M. Transcriptomic basis for reinforcement of elm antiherbivore defence mediated by insect egg deposition. Mol Ecol 2018; 27:4901-4915. [PMID: 30329187 DOI: 10.1111/mec.14900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022]
Abstract
Plant responses to insect egg depositions are known to shape subsequent defensive responses to larvae hatching from the eggs. Elm (Ulmus minor) leaves, on which elm leaf beetles laid their eggs, mount a more efficient defence against larvae hatching from the eggs. However, the molecular mechanisms of this egg-mediated, improved defence are insufficiently understood and have so far only been studied in annual plants. We analysed the dynamics of transcriptomic changes in larval feeding-damaged elm leaves with and without prior egg deposition using de novo assembled RNA-seq data. Compared to egg-free leaves, egg deposition-treated leaves showed earlier and/or faster transcriptional regulations, as well as slightly enhanced differential transcriptional regulation after the onset of larval feeding. These early responding transcripts were overrepresented in gene ontology terms associated with post-translational protein modification, signalling and stress (defence) responses. We found evidence of transcriptional memory in initially egg deposition-induced transcripts whose differential expression was reset prior to larval hatching, but was more rapidly induced again by subsequent larval feeding. This potential memory effect of prior egg deposition, as well as the earlier/faster and enhanced feeding-induced differential regulation of transcripts in egg deposition-treated leaves, may contribute to the egg-mediated reinforcing effect on the elm's defence against larvae. Hence, our study shows that a plant's experience of a stress-indicating environmental cue (here: insect eggs) can push the dynamics of the plant's transcriptomic response to subsequent stress (here: larval feeding). Such experience-mediated acceleration of a stress-induced plant response may result in improved stress resistance.
Collapse
Affiliation(s)
- Simone Altmann
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jose M Muino
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Vivien Lortzing
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Ronny Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
171
|
Mochizuki S, Matsui K. Green leaf volatile-burst in Arabidopsis is governed by galactolipid oxygenation by a lipoxygenase that is under control of calcium ion. Biochem Biophys Res Commun 2018; 505:939-944. [PMID: 30309649 DOI: 10.1016/j.bbrc.2018.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022]
Abstract
Plants form green leaf volatiles (GLVs) almost instantly after tissue disruption caused by damages, such as herbivore damage. This rapid formation of GLVs, namely GLV-burst, is an essential factor for the plants' GLV-dependent direct and indirect defenses. However, mechanism of GLV-burst remains unknown. We observed that the formation of monogalactosyldiacylglycerol hydroperoxides (MGDG-OOHs) by Arabidopsis lipoxygenase 2 (AtLOX2) governs GLV-burst in Arabidopsis. Addition of a Ca2+ selective chelating reagent, BAPTA, during tissue disruption effectively suppressed the formation of MGDG-OOHs as well as GLV-burst. This suppression was relieved by the addition of Ca2+. Therefore, we propose that Ca2+-dependent activation of AtLOX2 facilitates GLV-burst formation as observed in leukotriene formation, which is regulated by Ca2+-dependent activation of LOXs in animal cells.
Collapse
Affiliation(s)
- Satoshi Mochizuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
172
|
Tanaka T, Ikeda A, Shiojiri K, Ozawa R, Shiki K, Nagai-Kunihiro N, Fujita K, Sugimoto K, Yamato KT, Dohra H, Ohnishi T, Koeduka T, Matsui K. Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles. PLANT PHYSIOLOGY 2018; 178:552-564. [PMID: 30126866 PMCID: PMC6181032 DOI: 10.1104/pp.18.00632] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 05/19/2023]
Abstract
Green leaf volatiles (GLVs), including six-carbon (C6) aldehydes, alcohols, and esters, are formed when plant tissues are damaged. GLVs play roles in direct plant defense at wound sites, indirect plant defense via the attraction of herbivore predators, and plant-plant communication. GLV components provoke distinctive responses in their target recipients; therefore, the control of GLV composition is important for plants to appropriately manage stress responses. The reduction of C6-aldehydes into C6-alcohols is a key step in the control of GLV composition and also is important to avoid a toxic buildup of C6-aldehydes. However, the molecular mechanisms behind C6-aldehyde reduction remain poorly understood. In this study, we purified an Arabidopsis (Arabidopsis thaliana) NADPH-dependent cinnamaldehyde and hexenal reductase encoded by At4g37980, named here CINNAMALDEHYDE AND HEXENAL REDUCTASE (CHR). CHR T-DNA knockout mutant plants displayed a normal growth phenotype; however, we observed significant suppression of C6-alcohol production following partial mechanical wounding or herbivore infestation. Our data also showed that the parasitic wasp Cotesia vestalis was more attracted to GLVs emitted from herbivore-infested wild-type plants compared with GLVs emitted from chr plants, which corresponded with reduced C6-alcohol levels in the mutant. Moreover, chr plants were more susceptible to exogenous high-dose exposure to (Z)-3-hexenal, as indicated by their markedly lowered photosystem II activity. Our study shows that reductases play significant roles in changing GLV composition and, thus, are important in avoiding toxicity from volatile carbonyls and in the attraction of herbivore predators.
Collapse
Affiliation(s)
- Toshiyuki Tanaka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Ayana Ikeda
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kaori Shiojiri
- Department of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Kazumi Shiki
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Naoko Nagai-Kunihiro
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kenya Fujita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koichi Sugimoto
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Toshiyuki Ohnishi
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka 422-8529, Japan
| | - Takao Koeduka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kenji Matsui
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
173
|
Garbowicz K, Liu Z, Alseekh S, Tieman D, Taylor M, Kuhalskaya A, Ofner I, Zamir D, Klee HJ, Fernie AR, Brotman Y. Quantitative Trait Loci Analysis Identifies a Prominent Gene Involved in the Production of Fatty Acid-Derived Flavor Volatiles in Tomato. MOLECULAR PLANT 2018; 11:1147-1165. [PMID: 29960108 DOI: 10.1016/j.molp.2018.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
To gain insight into the genetic regulation of lipid metabolism in tomato, we conducted metabolic trait loci (mQTL) analysis following the lipidomic profiling of fruit pericarp and leaf tissue of the Solanum pennellii introgression lines (IL). To enhance mapping resolution for selected fruit-specific mQTL, we profiled the lipids in a subset of independently derived S. pennellii backcross inbred lines, as well as in a near-isogenic sub-IL population. We identified a putative lecithin:cholesterol acyltransferase that controls the levels of several lipids, and two members of the class III lipase family, LIP1 and LIP2, that were associated with decreased levels of diacylglycerols (DAGs) and triacylglycerols (TAGs). Lipases of this class cleave fatty acids from the glycerol backbone of acylglycerols. The released fatty acids serve as precursors of flavor volatiles. We show that LIP1 expression correlates with fatty acid-derived volatile levels. We further confirm the function of LIP1 in TAG and DAG breakdown and volatile synthesis using transgenic plants. Taken together, our study extensively characterized the genetic architecture of lipophilic compounds in tomato and demonstrated at molecular level that release of free fatty acids from the glycerol backbone can have a major impact on downstream volatile synthesis.
Collapse
Affiliation(s)
- Karolina Garbowicz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zhongyuan Liu
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Denise Tieman
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Mark Taylor
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | | | - Itai Ofner
- Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Harry J Klee
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.
| |
Collapse
|
174
|
Portillo-Estrada M, Niinemets Ü. Massive release of volatile organic compounds due to leaf midrib wounding in Populus tremula. PLANT ECOLOGY 2018; 219:1021-1028. [PMID: 30395658 PMCID: PMC6047731 DOI: 10.1007/s11258-018-0854-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/16/2018] [Indexed: 05/13/2023]
Abstract
We investigated the rapid initial response to wounding damage generated by straight cuts to the leaf lamina and midrib transversal cuts in mature aspen (Populus tremula) leaves that can occur upon herbivore feeding. Wound-induced volatile emission time-courses of 24 compounds were continuously monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). After the mechanical wounding, an emission cascade was rapidly elicited, resulting in emissions of key stress volatiles methanol, acetaldehyde and volatiles of the lipoxygenase pathway, collectively constituting ca. 99% of the total emission. For the same wounding magnitude, midrib cuts lead to six-fold greater emissions of volatiles per mm2 of surface cut than lamina cuts during the first emission burst (shorter than seven minutes), and exhibited a particularly high methanol emission compared to the emissions of other volatiles. This evidence suggests that feeding by herbivores capable of consuming the leaf midrib can result in disproportionally greater volatile release than feeding by smaller herbivores incapable of biting through the major veins.
Collapse
Affiliation(s)
- Miguel Portillo-Estrada
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
175
|
Sharifi R, Ryu CM. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. ANNALS OF BOTANY 2018; 122:349-358. [PMID: 29982345 PMCID: PMC6110341 DOI: 10.1093/aob/mcy108] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/02/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bacterial volatile compounds (BVCs) are important mediators of beneficial plant-bacteria interactions. BVCs promote above-ground plant growth by stimulating photosynthesis and sugar accumulation and by modulating phytohormone signalling. These compounds also improve below-ground mineral uptake and modify root system architecture. SCOPE We review advances in our understanding of the mode of action and practical applications of BVCs since the discovery of BVC-mediated plant growth promotion in 2003. We also discuss unanswered questions about the identity of plant receptors, the effectiveness of combination of two or more BVCs on plant growth, and the potential side effects of these compounds for human and animal health. CONCLUSION BVCs have good potential for use as biostimulants and protectants to improve plant health. Further advances in the development of suitable technologies and preparing standards and guidelines will help in the application of BVCs in crop protection and health.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon, South Korea
- For correspondence. E-mail
| |
Collapse
|
176
|
Yamauchi Y, Matsuda A, Matsuura N, Mizutani M, Sugimoto Y. Transcriptome analysis of Arabidopsis thaliana treated with green leaf volatiles: possible role of green leaf volatiles as self-made damage-associated molecular patterns. JOURNAL OF PESTICIDE SCIENCE 2018; 43:207-213. [PMID: 30363142 PMCID: PMC6140709 DOI: 10.1584/jpestics.d18-020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/23/2018] [Indexed: 05/10/2023]
Abstract
Green leaf volatiles (GLVs), which include C6 aldehydes, alcohols, and their esters, are emitted by damaged plants and are, therefore, thought to be involved in stress responses. However, the effects of GLVs on gene expression are not fully understood. Thus, the aim of the present study was to analyze the early transcriptional responses of Arabidopsis to the major GLVs-(Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and (Z)-3-hexenyl acetate-using comprehensive microarray gene expression analysis. All of the GLVs induced changes in gene expression, and (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate commonly triggered the expression of defense-related genes, whereas (E)-2-hexenal mainly induced genes responsible for responding to abiotic stress, such as heat and oxidative stress. These results suggest that GLVs can function as airborne infochemicals that regulate the rapid expression of defense response-related genes and that GLVs might play a physiological role as self-made damage-associated molecular patterns (DAMPs) in damaged leaves.
Collapse
Affiliation(s)
- Yasuo Yamauchi
- Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodai, Nada-ku, Kobe 657–8501, Japan
| | - Aya Matsuda
- Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodai, Nada-ku, Kobe 657–8501, Japan
| | - Nagisa Matsuura
- Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodai, Nada-ku, Kobe 657–8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodai, Nada-ku, Kobe 657–8501, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodai, Nada-ku, Kobe 657–8501, Japan
| |
Collapse
|
177
|
Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets. Sci Rep 2018; 8:11942. [PMID: 30093702 PMCID: PMC6085349 DOI: 10.1038/s41598-018-30328-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
In response to herbivory, plants emit a blend of volatile organic compounds that includes green leaf volatiles (GLVs) and terpenoids. These volatiles are known to attract natural enemies of herbivores and are therefore considered to function as an indirect defense. Selection should favor herbivores that are able to suppress these volatile emissions, and thereby make themselves less conspicuous to natural enemies. We tested this possibility for silkworms, which were observed to leave secretions from their spinnerets while feeding on mulberry leaves. When we ablated the spinnerets of silkworms, no secretions were observed. Leaves infested by intact silkworms released smaller amounts of GLVs than leaves infested by ablated silkworms, indicating that the spinneret secretion suppressed GLV production. This difference in GLV emissions was also reflected in the behavioral response of Zenillia dolosa (Tachinidae), a parasitoid fly of silkworms. The flies laid fewer eggs when exposed to the volatiles from intact silkworm-infested leaves than when exposed to the volatiles from ablated silkworm-infested leaves. We identified a novel enzyme in the secretion from the spinneret that is responsible for the GLV suppression. The enzyme converted 13(S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid, an intermediate in the biosynthetic pathway of GLVs, into its keto-derivative in a stereospecific manner. Taken together, this study shows that silkworms are able to feed on mulberry in a stealthy manner by suppressing GLV production with an enzyme in secretions of their spinnerets, which might be a countermeasure against induced indirect defense by mulberry plants.
Collapse
|
178
|
Beck JJ, Alborn HT, Block AK, Christensen SA, Hunter CT, Rering CC, Seidl-Adams I, Stuhl CJ, Torto B, Tumlinson JH. Interactions Among Plants, Insects, and Microbes: Elucidation of Inter-Organismal Chemical Communications in Agricultural Ecology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6663-6674. [PMID: 29895142 DOI: 10.1021/acs.jafc.8b01763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The last 2 decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe, and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e., plant-insect-microbe), and the study of a ternary system requires nontrivial planning. This planning can include an experimental design that factors in potential overarching ecological interactions regarding the binary or ternary system, correctly identifying and understanding unexpected observations that may occur during the experiment and thorough interpretation of the resultant data. This challenge of planning, performing, and interpreting a plant's defensive response to multiple biotic stressors will be even greater when abiotic stressors (i.e., temperature or water) are factored into the system. To fully understand the system, we need to not only continue to investigate and understand the volatile profiles but also include and understand the biochemistry of the plant's response to these stressors. In this review, we provide examples and discuss interaction considerations with respect to how readers and future authors of the Journal of Agricultural and Food Chemistry can contribute their expertise toward the extraction and interpretation of chemical information exchanged between agricultural commodities and their associated pests. This holistic, multidisciplinary, and thoughtful approach to interactions of plants, insects, and microbes, and the resultant response of the plants can lead to a better understanding of agricultural ecology, in turn leading to practical and viable solutions to agricultural problems.
Collapse
Affiliation(s)
- John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Hans T Alborn
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Anna K Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Shawn A Christensen
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Charles T Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology , Penn State University , University Park , Pennsylvania 16802 , United States
| | - Charles J Stuhl
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe) , 30772-00100 , Nairobi , Kenya
| | - James H Tumlinson
- Center for Chemical Ecology , Penn State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
179
|
Cofer TM, Engelberth M, Engelberth J. Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress. PLANT, CELL & ENVIRONMENT 2018; 41:1673-1682. [PMID: 29601632 DOI: 10.1111/pce.13204] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/22/2023]
Abstract
Although considerable evidence has accumulated on the defensive activity of plant volatile organic compounds against pathogens and insect herbivores, less is known about the significance of volatile organic compounds emitted by plants under abiotic stress. Here, we report that green leaf volatiles (GLVs), which were previously shown to prime plant defences against insect herbivore attack, also protect plants against cold stress (4 °C). We show that the expression levels of several cold stress-related genes are significantly up-regulated in maize (Zea mays) seedlings treated with physiological concentrations of the GLV, (Z)-3-hexen-1-yl acetate (Z-3-HAC), and that seedlings primed with Z-3-HAC exhibit increased growth and reduced damage after cold stress relative to unprimed seedlings. Together, these data demonstrate the protective and priming effect of GLVs against cold stress and suggest an activity of GLVs beyond the activation of typical plant defence responses against herbivores and pathogens.
Collapse
Affiliation(s)
- Tristan M Cofer
- Department of Environmental Science and Ecology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
- Center for Chemical Ecology, Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Marie Engelberth
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Jurgen Engelberth
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
180
|
Niinemets Ü, Bravo LA, Copolovici L. Changes in photosynthetic rate and stress volatile emissions through desiccation-rehydration cycles in desiccation-tolerant epiphytic filmy ferns (Hymenophyllaceae). PLANT, CELL & ENVIRONMENT 2018; 41:1605-1617. [PMID: 29603297 PMCID: PMC6047733 DOI: 10.1111/pce.13201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 05/25/2023]
Abstract
Exposure to recurrent desiccation cycles carries a risk of accumulation of reactive oxygen species that can impair leaf physiological activity upon rehydration, but changes in filmy fern stress status through desiccation and rewatering cycles have been poorly studied. We studied foliage photosynthetic rate and volatile marker compounds characterizing cell wall modifications (methanol) and stress development (lipoxygenase [LOX] pathway volatiles and methanol) through desiccation-rewatering cycles in lower-canopy species Hymenoglossum cruentum and Hymenophyllum caudiculatum, lower- to upper-canopy species Hymenophyllum plicatum and upper-canopy species Hymenophyllum dentatum sampled from a common environment and hypothesized that lower canopy species respond more strongly to desiccation and rewatering. In all species, rates of photosynthesis and LOX volatile emission decreased with progression of desiccation, but LOX emission decreased with a slower rate than photosynthesis. Rewatering first led to an emission burst of LOX volatiles followed by methanol, indicating that the oxidative burst was elicited in the symplast and further propagated to cell walls. Changes in LOX emissions were more pronounced in the upper-canopy species that had a greater photosynthetic activity and likely a greater rate of production of photooxidants. We conclude that rewatering induces the most severe stress in filmy ferns, especially in the upper canopy species.
Collapse
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
| | - León A Bravo
- Departamento de Ciencias, Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, and Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 1145, Chile
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute of Research, Innovation and Development in Technical and Natural Sciences, "Aurel Vlaicu" University, Romania, 2 Elena Dragoi, Arad, 310330, Romania
| |
Collapse
|
181
|
Bibbiani S, Colzi I, Taiti C, Guidi Nissim W, Papini A, Mancuso S, Gonnelli C. Smelling the metal: Volatile organic compound emission under Zn excess in the mint Tetradenia riparia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:1-8. [PMID: 29650146 DOI: 10.1016/j.plantsci.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
This work investigated the effect of Zn excess on growth, metal accumulation and photosynthetic changes in Tetradenia riparia, in relation to possible variations in the composition of the plant volatilome. Experiments were carried out in hydroponics exposing plants to a range of Zn concentrations. Zinc excess negatively affected plant growth in a dose-dependent manner. The metal was accumulated proportionally to its concentration in the medium and preferentially allocated to roots. All the photosynthetic parameters and the concentration of some photosynthetic pigments were negatively affected by Zn, whereas the level of leaf total soluble sugars remained unchanged. Twenty-three different VOCs were identified in the plant volatilome. Each compound was emitted at a different level and intensity of emission was manifold increased by the presence of Zn in the growth medium. The Zn-induced compounds could represent both an adaptive response (f.i. methanol, acetylene, C6-aldehydes, isoprene, terpenes) and a damage by-product (f.i. propanal, acetaldehyde, alkyl fragments) of the metal presence in the culture medium. Given that the Zn-mediated induction of those VOCs, considered protective, occurred even under a Zn-limited photosynthetic capacity, our work supports the hypothesis of an active role of such molecules in an adaptive plant response to trace metal stress.
Collapse
Affiliation(s)
- Susanna Bibbiani
- Department of Agrifood Production and Environmental Sciences - Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy.
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Cosimo Taiti
- Department of Agrifood Production and Environmental Sciences - Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy.
| | - Werther Guidi Nissim
- Department of Agrifood Production and Environmental Sciences - Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy.
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences - Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy.
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| |
Collapse
|
182
|
Shared weapons in fungus-fungus and fungus-plant interactions? Volatile organic compounds of plant or fungal origin exert direct antifungal activity in vitro. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
183
|
Kostromytska OS, Rodriguez-Saona C, Alborn HT, Koppenhöfer AM. Role of Plant Volatiles in Host Plant Recognition by Listronotus maculicollis (Coleoptera: Curculionidae). J Chem Ecol 2018; 44:580-590. [PMID: 29740738 DOI: 10.1007/s10886-018-0964-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022]
Abstract
The annual bluegrass weevil (ABW), Listronotus maculicollis Kirby, is an economically important pest of short cut turfgrass. Annual bluegrass, Poa annua L., is the most preferred and suitable host for ABW oviposition, larval survival and development. We investigated the involvement of grass volatiles in ABW host plant preference under laboratory and field conditions. First, ovipositional and feeding preferences of ABW adults were studied in a sensory deprivation experiment. Clear evidence of involvement of olfaction in host recognition by ABW was demonstrated. Poa annua was preferred for oviposition over three bentgrasses, Agrostis spp., but weevils with blocked antennae did not exhibit significant preferences. ABW behavioral responses to volatiles emitted by Agrostis spp. and P. annua were examined in Y-tube olfactometer assays. Poa annua was attractive to ABW females and preferred to Agrostis spp. cultivars in Y-tube assays. Headspace volatiles emitted by P. annua and four cultivars of Agrostis stolonifera L. and two each of A. capillaris L. and A. canina L. were extracted, identified and compared. No P. annua specific volatiles were found, but Agrostis spp. tended to have larger quantities of terpenoids than P. annua. (Z)-3-hexenyl acetate, phenyl ethyl alcohol and their combination were the most attractive compounds to ABW females in laboratory Y-tube assays. The combination of these compounds as a trap bait in field experiments attracted adults during the spring migration, but was ineffective once the adults were on the short-mown turfgrass. Hence, their usefulness for monitoring weevil populations needs further investigation.
Collapse
Affiliation(s)
- Olga S Kostromytska
- Department of Entomology, Rutgers University, 96 Lipman Dr., New Brunswick, NJ, 08901, USA.
| | - Cesar Rodriguez-Saona
- Department of Entomology, Philip E. Marucci Blueberry and Cranberry Research Center, Rutgers University, 125a Lake Oswego, Chatsworth, NJ, 08019, USA
| | - Hans T Alborn
- USDA, ARS, SEA, CMAVE, 1600-1700 SW 23rd Dr., Gainesville, FL, 32608, USA
| | - Albrecht M Koppenhöfer
- Department of Entomology, Rutgers University, 96 Lipman Dr., New Brunswick, NJ, 08901, USA
| |
Collapse
|
184
|
Anastasaki E, Drizou F, Milonas PG. Electrophysiological and Oviposition Responses of Tuta absoluta Females to Herbivore-Induced Volatiles in Tomato Plants. J Chem Ecol 2018; 44:288-298. [PMID: 29404818 DOI: 10.1007/s10886-018-0929-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/10/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
In response to attack by herbivorous insects, plants produce semiochemicals for intra- and interspecific communication. The perception of these semiochemicals by conspecifics of the herbivore defines their choice for oviposition and feeding. We aimed to investigate the role of herbivore-induced plant volatiles (HIPVs) by Tuta absoluta larvae on the oviposition choice of conspecific females on tomato plants. We performed two- choice and non-choice bioassays with plants damaged by larvae feeding and intact control plants. We also collected headspace volatiles of those plants and tested the response of female antennae on those blends with Gas Chromatography- Electro-Antennographical Detection (GC-EAD). In total 55 compounds were collected from the headspace of T. absoluta larvae-infested plants. Our results show that female moths preferred to oviposit on intact control plants instead of damaged ones. Herbivory induced the emission of hexanal, (Ζ)-3-hexen-1-ol, (E)-β-ocimene, linalool, (Z)-3-hexenyl butanoate, methyl salicylate, indole, nerolidol, guaidiene-6,9, β-pinene, β-myrcene, α-terpinene, hexenyl hexanoate, β-elemene, β-caryophyllene and (Ε-Ε)- 4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), one unidentified sesquiterpene and three unknown compounds. In Electroantennographic (EAG) assays, the antennae of T. absoluta females responded to hexanal, (Ζ)-3-hexen-1-ol, methyl salicylate and indole. The antennae of T. absoluta females exhibited a dose-response in EAG studies with authentic samples. Strong EAG responses were obtained for compounds induced on damaged tomato plants, as well as in nonanal, a compound emitted by both infested and control plants. These compounds could be utilized in integrated pest management of T. absoluta.
Collapse
Affiliation(s)
- Eirini Anastasaki
- Laboratory of Biological Control, Department of Entomology, Benaki Phytopathological Institute, 8 S. Delta street, 14561, Kifissia, Greece
| | - Fryni Drizou
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Panagiotis G Milonas
- Laboratory of Biological Control, Department of Entomology, Benaki Phytopathological Institute, 8 S. Delta street, 14561, Kifissia, Greece.
| |
Collapse
|
185
|
Foliar Terpene Chemotypes and Herbivory Determine Variation in Plant Volatile Emissions. J Chem Ecol 2018; 44:51-61. [PMID: 29376212 DOI: 10.1007/s10886-017-0919-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/05/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023]
Abstract
Plants that synthesize and store terpenes in specialized cells accumulate large concentrations of these compounds while avoiding autotoxicity. Stored terpenes may influence the quantity and profile of volatile compounds that are emitted into the environment and the subsequent role of those volatiles in mediating the activity of herbivores. The Australian medicinal tea tree, Melaleuca alternifolia, occurs as several distinct terpene chemotypes. We studied the profile of its terpene emissions to understand how variations in stored foliar terpenes influenced emissions, both constitutive and when damaged either by herbivores or mechanically. We found that foliar chemistry influenced differences in the composition of terpene emissions, but those emissions were minimal in intact plants. When plants were damaged by herbivores or mechanically, the emissions were greatly increased and the composition corresponded to the constitutive terpenes and the volatility of each compound, suggesting the main origin of emissions is the stored terpenes and not de novo biosynthesized volatiles. However, herbivores modified the composition of the volatile emissions in only one chemotype, probably due to the oxidative metabolism of 1,8-cineole by the beetles. We also tested whether the foliar terpene blend acted as an attractant for the specialized leaf beetles Paropsisterna tigrina and Faex sp. and a parasitoid fly, Anagonia zentae. None of these species responded to extracts of young leaves in an olfactometer, so we found no evidence that these species use plant odor cues for host location in laboratory conditions.
Collapse
|
186
|
Activation of MAP kinases by green leaf volatiles in grasses. BMC Res Notes 2018; 11:79. [PMID: 29378628 PMCID: PMC5789745 DOI: 10.1186/s13104-017-3076-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/08/2017] [Indexed: 01/02/2023] Open
Abstract
Objective Previously we have shown that mechanical wounding and volatiles released from cut grass, activated a 46 and 44 kDa mitogen-activated protein kinase (MAPK) in the model grass species Lolium temulentum (Lt). MAPKs play an important role as signal relays that connect incoming stress signals and stress responses. Since green leaf volatiles (GLV) are released during wounding, we wanted determine if specific compounds contained in the GLV mixture or if GLV generated from other plant species could activate these Lt MAPKs. Results Our analysis found that just a 1-min exposure to GLV was enough to activate the Lt 46 kDa MAPK within 3 min and the 44 kDa MAPK within 15 min. This activation pattern showed similar kinetics to those observed after wounding, and the GLV and wound activated bands associated with these MAPKs displayed identical migration on sodium dodecyl sulfate polyacrylamide gels. Thirteen different commercially available plant volatiles (alcohols, aldehydes and ketones) were tested and all thirteen volatile compounds were able to activate these same Lt MAPKs. Furthermore, GLV derived from three other grass species as well as tomato, a dicot, were also shown to activate these MAPKs in Lt. Electronic supplementary material The online version of this article (10.1186/s13104-017-3076-9) contains supplementary material, which is available to authorized users.
Collapse
|
187
|
Turlings TCJ, Erb M. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:433-452. [PMID: 29324043 DOI: 10.1146/annurev-ento-020117-043507] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tritrophic interactions between plants, herbivores, and their natural enemies are an integral part of all terrestrial ecosystems. Herbivore-induced plant volatiles (HIPVs) play a key role in these interactions, as they can attract predators and parasitoids to herbivore-attacked plants. Thirty years after this discovery, the ecological importance of the phenomena is widely recognized. However, the primary function of HIPVs is still subject to much debate, as is the possibility of using these plant-produced cues in crop protection. In this review, we summarize the current knowledge on the role of HIPVs in tritrophic interactions from an ecological as well as a mechanistic perspective. This overview focuses on the main gaps in our knowledge of tritrophic interactions, and we argue that filling these gaps will greatly facilitate efforts to exploit HIPVs for pest control.
Collapse
Affiliation(s)
- Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland;
| |
Collapse
|
188
|
Hernández-Zepeda OF, Razo-Belman R, Heil M. Reduced Responsiveness to Volatile Signals Creates a Modular Reward Provisioning in an Obligate Food-for-Protection Mutualism. FRONTIERS IN PLANT SCIENCE 2018; 9:1076. [PMID: 30087690 PMCID: PMC6066664 DOI: 10.3389/fpls.2018.01076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 05/07/2023]
Abstract
Plants in more than 100 families secrete extrafloral nectar (EFN) to establish food-for-protection mutualisms with ants. Facultative ant-plants secrete EFN as a jasmonic acid (JA)-dependent response to attract generalist ants. In contrast, obligate ant-plants like the Central American "Swollen-Thorn Acacias" are colonized by specialized ants, although an individual host can carry ant colonies from different species that differ in the degree of protection they provide. We hypothesized that hosts that associate simultaneously with various partners should produce rewards in a modular manner to preferentially reward high quality partners. To test this hypothesis, we applied JA to distinct leaves and quantified cell wall invertase activity (CWIN; a regulator of nectar secretion) and EFN secretion by these "local" (i.e., treated) and the "systemic" (i.e., non-treated) leaves of the same branch. Both CWIN activity and EFN secretion increased in local and systemic leaves of the facultative ant-plant Acacia cochliacantha, but only in the local leaves of the obligate ant-plant, A. cornigera. The systemic EFN secretion in A. cochliacantha was associated with an enhanced emission of volatile organic compounds (VOCs). Such VOCs function as "external signals" that control systemic defense responses in diverse plant species. Indeed, the headspace of JA-treated branches of A. cochliacantha induced EFN secretion in both plant species, whereas the headspace of A. cornigera caused no detectable induction effect. Analyses of the headspace using GC-MS identified six VOCs in the headspace of A. cochliacantha that were not emitted by A. cornigera. Among these VOCs, β-caryophyllene and (cis)-hexenyl isovalerate have already been reported in other plant species to induce defense traits, including EFN secretion. Our observations underline the importance of VOCs as systemic within-plant signals and show that the modular rewarding in A. cornigera is likely to result from a reduced emission of the systemic signal, rather than from a reduced responsiveness to the signal. We suggest that modular rewarding allows hosts to restrict the metabolic investment to specific partners and to efficiently sanction potential exploiters.
Collapse
|
189
|
Nawrocka J, Małolepsza U, Szymczak K, Szczech M. Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. PROTOPLASMA 2018; 255:359-373. [PMID: 28879466 PMCID: PMC5756291 DOI: 10.1007/s00709-017-1157-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/16/2017] [Indexed: 05/07/2023]
Abstract
In the present study, the spread of Rhizoctonia solani-induced disease was limited when cucumber plants were pretreated with Trichoderma atroviride TRS25. The systemic disease suppression was related to TRS25-induced resistance (TISR) induction with simultaneous plant growth promotion. Protection of cucumber was related to enhanced activity of defense enzymes, e.g., guaiacol peroxidase (GPX), syringaldazine peroxidase (SPX), phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) as well as phenolic (PC) concentration increases in the conditions of hydrogen peroxide (H2O2) accumulation, resulting in thiobarbituric acid reactive substance (TBARS) decrease. Moreover, the obtained results indicated that TISR might depend on accumulation of salicylic acid derivatives, that is methyl salicylate (MeSA), ethylhexyl salicylate (EHS), salicylic acid glucosylated conjugates (SAGC), and β-cyclocitral as well as volatile organic compounds (VOC) such as Z-3-hexanal, Z-3-hexenol, and E-2-hexenal. The results point to important, not previously documented, roles of these VOC in TISR signaling with up-regulation of PR1 and PR5 gene characteristic of systemic acquired resistance (SAR) and of PR4 gene, marker of induced systemic resistance (ISR). The study established that TRS25 enhanced deposition of callose and lignin in specialized plant cells, which protected vascular system in cucumber shoots and roots as well as assimilation cells and dermal tissues in shoots and leaves. These compounds protected cucumber organs against R. solani influence and made them more flexible and resilient, which contributed to better nutrition and hydration of plants. The growth promotion coupled with systemic mobilization of biochemical and mechanical strengthening might be involved in multilayer protection of cucumber against R. solani activated by TRS25.
Collapse
Affiliation(s)
- Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - U Małolepsza
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - K Szymczak
- Institute of General Food Chemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-237, Lodz, Poland
| | - M Szczech
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland
| |
Collapse
|
190
|
Roles of C-Repeat Binding Factors-Dependent Signaling Pathway in Jasmonates-Mediated Improvement of Chilling Tolerance of Postharvest Horticultural Commodities. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8517018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
C-repeat binding factor- (CBF-) dependent signaling pathway is proposed to be a key responder to low temperature stress in plant. Jasmonates (JAs), the endogenous signal molecules in plant, participate in plant defense against (a)biotic stresses; however, the mechanism has not been fully clarified so far. With the progress made in JAs biopathway, signal transduction, and their relationship with CBF-dependent signaling pathway, our knowledge of the roles of the CBF-dependent signaling pathway in JAs-mediated improvement of chilling tolerance accumulates. In this review, we firstly briefly review the chilling injury (CI) characteristics of postharvest horticultural commodities, then introduce the biopathway and signal transduction of JAs, subsequently summarize the roles of the CBF-dependent signaling pathway under low temperature stress, and finally describe the linkage between JAs signal transduction and the CBF-dependent signaling pathway.
Collapse
|
191
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
192
|
Jiang Y, Veromann-Jürgenson LL, Ye J, Niinemets Ü. Oak gall wasp infections of Quercus robur leaves lead to profound modifications in foliage photosynthetic and volatile emission characteristics. PLANT, CELL & ENVIRONMENT 2018; 41:160-175. [PMID: 28776716 PMCID: PMC6047732 DOI: 10.1111/pce.13050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 05/18/2023]
Abstract
Oak trees (Quercus) are hosts of diverse gall-inducing parasites, but the effects of gall formation on the physiology and biochemistry on host oak leaves is poorly understood. The influence of infection by four species from two widespread gall wasp genera, Neuroterus (N. anthracinus and N. albipes) and Cynips (C. divisa and C. quercusfolii), on foliage morphology, chemistry, photosynthetic characteristics, constitutive isoprene, and induced volatile emissions in Q. robur was investigated. Leaf dry mass per unit area (MA ), net assimilation rate per area (AA ), stomatal conductance (gs ), and constitutive isoprene emissions decreased with the severity of infection by all gall wasp species. The reduction in AA was mainly determined by reduced MA and to a lower extent by lower content of leaf nitrogen and phosphorus in gall-infected leaves. The emissions of lipoxygenase pathway volatiles increased strongly with increasing infection severity for all 4 species with the strongest emissions in major vein associated species, N. anthracinus. Monoterpene and sesquiterpene emissions were strongly elicited in N. albipes and Cynips species, but not in N. anthracinus. These results provide valuable information for diagnosing oak infections using ambient air volatile fingerprints and for predicting the impacts of infections on photosynthetic productivity and whole tree performance.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- College of Art, Changzhou University, Gehu 1, Changzhou, 213164, Jiangsu, China
| | - Linda-Liisa Veromann-Jürgenson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
- Corresponding author:
| |
Collapse
|
193
|
López-Gresa MP, Payá C, Ozáez M, Rodrigo I, Conejero V, Klee H, Bellés JM, Lisón P. A New Role For Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe pv. tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1855. [PMID: 30619420 PMCID: PMC6305539 DOI: 10.3389/fpls.2018.01855] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
The volatile esters of (Z)-3-hexenol with acetic, propionic, isobutyric, or butyric acids are synthesized by alcohol acyltransferases (AAT) in plants. These compounds are differentially emitted when tomato plants are efficiently resisting an infection with Pseudomonas syringae pv. tomato. We have studied the defensive role of these green leaf volatile (GLV) esters in the tomato response to bacterial infection, by analyzing the induction of resistance mediated by these GLVs and the phenotype upon bacterial infection of tomato plants impaired in their biosynthesis. We observed that treatments of plants with (Z)-3-hexenyl propionate (HP) and, to a greater extent with (Z)-3-hexenyl butyrate (HB), resulted in stomatal closure, PR gene induction and enhanced resistance to the bacteria. HB-mediated stomatal closure was also effective in several plant species belonging to Nicotiana, Arabidopsis, Medicago, Zea and Citrus genus, and both stomatal closure and resistance were induced in HB-treated NahG tomato plants, which are deficient in salicylic acid (SA) accumulation. Transgenic antisense AAT1 tomato plants, which displayed a reduction of ester emissions upon bacterial infection in leaves, exhibited a lower ratio of stomatal closure and were hyper-susceptible to bacterial infection. Our results confirm the role of GLV esters in plant immunity, uncovering a SA-independent effect of HB in stomatal defense. Moreover, we identified HB as a natural stomatal closure compound with potential agricultural applications.
Collapse
Affiliation(s)
- María Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Celia Payá
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Miguel Ozáez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Conejero
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Harry Klee
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
- *Correspondence: Purificación Lisón
| |
Collapse
|
194
|
Jud W, Winkler JB, Niederbacher B, Niederbacher S, Schnitzler JP. Volatilomics: a non-invasive technique for screening plant phenotypic traits. PLANT METHODS 2018; 14:109. [PMID: 30568721 PMCID: PMC6297985 DOI: 10.1186/s13007-018-0378-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/03/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Climate change represents a grand challenge for agricultural productivity. Understanding complex plant traits such as stress tolerance, disease resistance or crop yield is thus essential for breeding and the development of sustainable agriculture strategies. When screening for the most robust plant phenotypes, fast, high-throughput phenotyping represents the means of choice. RESULTS We have developed a plant phenotyping platform to measure the emission of volatile organic compounds (VOCs), photosynthetic gas exchange and transpiration under ambient, or abiotic and biotic stress conditions. These parameters are highly suitable markers to non-invasively and dynamically study plant growth and plant stress status, making them perfect test variables for long-term, online plant monitoring. Here we introduce the new phenotyping platform, termed VOC-SCREEN, and present results of a first case study with three barley cultivars, demonstrating that the plant's volatilome can be successfully applied to discriminate different barley varieties. CONCLUSION Volatilomics is a promising technique to non-invasively screen for plant phenotypic traits.
Collapse
Affiliation(s)
- Werner Jud
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - J. Barbro Winkler
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Bishu Niederbacher
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Present Address: Ionicon Analytic GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck, Austria
| | - Simon Niederbacher
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Present Address: Ionicon Analytic GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck, Austria
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
195
|
Losvik A, Beste L, Glinwood R, Ivarson E, Stephens J, Zhu LH, Jonsson L. Overexpression and Down-Regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-Regulated Genes and Aphid Fecundity. Int J Mol Sci 2017; 18:ijms18122765. [PMID: 29257097 PMCID: PMC5751364 DOI: 10.3390/ijms18122765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L.) on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L.) and a generalist, green peach aphid (Myzus persicae Sulzer) were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA)-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses.
Collapse
Affiliation(s)
- Aleksandra Losvik
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; (A.L.); (L.B.)
| | - Lisa Beste
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; (A.L.); (L.B.)
| | - Robert Glinwood
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden; (E.I.); (L.-H.Z.)
| | - Jennifer Stephens
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden; (E.I.); (L.-H.Z.)
| | - Lisbeth Jonsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; (A.L.); (L.B.)
- Correspondence: ; Tel.: +46-8-161-211
| |
Collapse
|
196
|
Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens. Talanta 2017; 175:9-20. [DOI: 10.1016/j.talanta.2017.06.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/22/2022]
|
197
|
Scala A, Mirabella R, Goedhart J, de Vries M, Haring MA, Schuurink RC. Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness. PLANT MOLECULAR BIOLOGY 2017; 95:399-409. [PMID: 28918565 PMCID: PMC5688203 DOI: 10.1007/s11103-017-0659-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/12/2017] [Indexed: 05/20/2023]
Abstract
This work adds a new player, HER2, downstream of the perception of E-2-hexenal, a green leaf volatile, and shows that E-2-hexenal specifically changes the redox status of the mitochondria. It is widely accepted that plants produce and respond to green leaf volatiles (GLVs), but the molecular components involved in transducing their perception are largely unknown. The GLV E-2-hexenal inhibits root elongation in seedlings and, using this phenotype, we isolated E-2-hexenal response (her) Arabidopsis thaliana mutants. Using map-based cloning we positioned the her2 mutation to the At5g63620 locus, resulting in a phenylalanine instead of serine on position 223. Knockdown and overexpression lines of HER2 confirmed the role of HER2, which encodes an oxidoreductase, in the responsiveness to E-2-hexenal. Since E-2-hexenal is a reactive electrophile species, which are known to influence the redox status of cells, we utilized redox sensitive GFP2 (roGFP2) to determine the redox status of E-2-hexenal-treated root cells. Since the signal peptide of HER2 directed mCherry to the mitochondria, we targeted the expression of roGFP2 to this organelle besides the cytosol. E-2-hexenal specifically induced a change in the redox status in the mitochondria. We did not see a difference in the redox status in her2 compared to wild-type Arabidopsis. Still, the mitochondrial redox status did not change with Z-3-hexenol, another abundant GLV. These results indicate that HER2 is involved in transducing the perception of E-2-hexenal, which changes the redox status of the mitochondria.
Collapse
Affiliation(s)
- Alessandra Scala
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rossana Mirabella
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Department of Molecular Cytology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michel de Vries
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
198
|
Sherman E, Harbertson JF, Greenwood DR, Villas-Bôas SG, Fiehn O, Heymann H. Reference samples guide variable selection for correlation of wine sensory and volatile profiling data. Food Chem 2017; 267:344-354. [PMID: 29934177 DOI: 10.1016/j.foodchem.2017.10.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/27/2022]
Abstract
The relationship between wine flavour and wine volatile composition is well recognised, however with thousands of compounds in wine the exact nature of individual contributions may be hard to determine due to synergistic and masking effects. Untargeted chemical analyses coupled with descriptive sensory and partial least squares regression modelling can help unravel interactions to identify groups of compounds that contribute to sensory properties. Variable selection is often applied prior to modelling to eliminate irrelevant variables. In this study, sensory references used to train the sensory panel were chemically analysed and employed to reduce the number of variables used to construct the models. This novel variable selection approach was compared against the inclusion of all variables and the most commonly applied variable selection method - analysis of variance. Models constructed from variables present in sensory references performed similarly to other models and identified interesting groups of compounds to investigate further.
Collapse
Affiliation(s)
- Emma Sherman
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand; The New Zealand Institute for Plant & Food Research Limited, Auckland 1025, New Zealand; West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; Department of Viticulture and Enology, University of California, Davis, CA 95616, USA.
| | - James F Harbertson
- School of Food Science, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - David R Greenwood
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand; The New Zealand Institute for Plant & Food Research Limited, Auckland 1025, New Zealand
| | - Silas G Villas-Bôas
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Hildegarde Heymann
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
199
|
Finnerty PB, Stutz RS, Price CJ, Banks PB, McArthur C. Leaf odour cues enable non‐random foraging by mammalian herbivores. J Anim Ecol 2017; 86:1317-1328. [DOI: 10.1111/1365-2656.12748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick B. Finnerty
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Rebecca S. Stutz
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
- Department of ZoologyStockholm University Stockholm Sweden
| | - Catherine J. Price
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Peter B. Banks
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Clare McArthur
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| |
Collapse
|
200
|
Gust AA, Pruitt R, Nürnberger T. Sensing Danger: Key to Activating Plant Immunity. TRENDS IN PLANT SCIENCE 2017; 22:779-791. [PMID: 28779900 DOI: 10.1016/j.tplants.2017.07.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
In both plants and animals, defense against pathogens relies on a complex surveillance system for signs of danger. Danger signals may originate from the infectious agent or from the host itself. Immunogenic plant host factors can be roughly divided into two categories: molecules which are passively released upon cell damage ('classical' damage-associated molecular patterns, DAMPs), and peptides which are processed and/or secreted upon infection to modulate the immune response (phytocytokines). We highlight the ongoing challenge to understand how plants sense various danger signals and integrate this information to produce an appropriate immune response to diverse challenges.
Collapse
Affiliation(s)
- Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| | - Rory Pruitt
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|