151
|
|
152
|
Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev 2016; 29:234-248. [PMID: 27841104 DOI: 10.1017/s0954422416000159] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.
Collapse
|
153
|
Ansari A, Bose S, Yadav MK, Wang JH, Song YK, Ko SG, Kim H. CST, an Herbal Formula, Exerts Anti-Obesity Effects through Brain-Gut-Adipose Tissue Axis Modulation in High-Fat Diet Fed Mice. Molecules 2016; 21:1522. [PMID: 27845741 PMCID: PMC6274029 DOI: 10.3390/molecules21111522] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
The brain, gut, and adipose tissue interact to control metabolic pathways, and impairment in the brain-gut-adipose axis can lead to metabolic disorders, including obesity. Chowiseungcheng-tang (CST), a herbal formulation, is frequently used to treat metabolic disorders. Here, we investigated the anti-obesity effect of CST and its link with brain-gut-adipose axis using C57BL/6J mice as a model. The animals were provided with a normal research diet (NRD) or high-fat diet (HFD) in absence or presence of CST or orlistat (ORL) for 12 weeks. CST had a significant anti-obesity effect on a number of vital metabolic and obesity-related parameters in HFD-fed mice. CST significantly decreased the expression levels of genes encoding obesity-promoting neuropeptides (agouti-related peptide, neuropeptide Y), and increased the mRNA levels of obesity-suppressing neuropeptides (proopiomelanocortin, cocaine-and amphetamine-regulated transcript) in the hypothalamus. CST also effectively decreased the expression level of gene encoding obesity-promoting adipokine (retinol-binding protein-4) and increased the mRNA level of obesity-suppressing adipokine (adiponectin) in visceral adipose tissue (VAT). Additionally, CST altered the gut microbial composition in HFD groups, a phenomenon strongly associated with key metabolic parameters, neuropeptides, and adipokines. Our findings reveal that the anti-obesity impact of CST is mediated through modulation of metabolism-related neuropeptides, adipokines, and gut microbial composition.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814-Siksa-dong, Goyang, Gyeonggi-do 10326, South Korea.
| | - Shambhunath Bose
- NosQuest, 463-400 USPACE 1A-1103, Daewang Pangyoro 660, Bundanggu, Seongnamsi, Gyeonggi-do 13494, South Korea.
| | - Mukesh Kumar Yadav
- Department of Otorhinolaryngology Head and Neck Surgery & Institute for Medical Device Clinical Trials, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, South Korea.
| | - Jing-Hua Wang
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814-Siksa-dong, Goyang, Gyeonggi-do 10326, South Korea.
| | - Yun-Kyung Song
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Gachon University, Incheon 22318, South Korea.
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyunghee University, Seoul 02453, South Korea.
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814-Siksa-dong, Goyang, Gyeonggi-do 10326, South Korea.
| |
Collapse
|
154
|
Neyrinck AM, Schüppel VL, Lockett T, Haller D, Delzenne NM. Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models? Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
155
|
Reygner J, Lichtenberger L, Elmhiri G, Dou S, Bahi-Jaber N, Rhazi L, Depeint F, Bach V, Khorsi-Cauet H, Abdennebi-Najar L. Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats. PLoS One 2016; 11:e0164614. [PMID: 27760213 PMCID: PMC5070743 DOI: 10.1371/journal.pone.0164614] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that chlorpyrifos (CPF), an organophosphorus insecticide, is involved in metabolic disorders. We assess the hypothesis whether supplementation with prebiotics from gestation to adulthood, through a modulation of microbiota composition and fermentative activity, alleviates CPF induced metabolic disorders of 60 days old offspring. 5 groups of Wistar rats, from gestation until weaning, received two doses of CPF pesticide: 1 mg/kg/day (CPF1) or 3.5 mg/kg/day (CPF3.5) with free access to inulin (10g/L in drinking water). Then male pups received the same treatment as dams. Metabolic profile, leptin sensitivity, insulin receptor (IR) expression in liver, gut microbiota composition and short chain fatty acid composition (SCFAs) in the colon, were analyzed at postnatal day 60 in the offspring (PND 60). CPF3.5 increased offspring's birth body weight (BW) but decreased BW at PND60. Inulin supplementation restored the BW at PND 60 to control levels. Hyperinsulinemia and decrease in insulin receptor β in liver were seen in CPF1 exposed rats. In contrast, hyperglycemia and decrease in insulin level were found in CPF3.5 rats. Inulin restored the levels of some metabolic parameters in CPF groups to ranges comparable with the controls. The total bacterial population, short chain fatty acid (SCFA) production and butyrate levels were enhanced in CPF groups receiving inulin. Our data indicate that developmental exposure to CPF interferes with metabolism with dose related effects evident at adulthood. By modulating microbiota population and fermentative activity, inulin corrected adult metabolic disorders of rats exposed to CPF during development. Prebiotics supply may be thus considered as a novel nutritional strategy to counteract insulin resistance and diabetes induced by a continuous pesticide exposure.
Collapse
Affiliation(s)
- Julie Reygner
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais, Beauvais, France
- Laboratoire Périnatalité et Risques Toxiques (PERITOX), UMR-I01 INERIS, Jules Verne University of Picardy, Amiens, France
| | - Lydia Lichtenberger
- Laboratoire Périnatalité et Risques Toxiques (PERITOX), UMR-I01 INERIS, Jules Verne University of Picardy, Amiens, France
| | - Ghada Elmhiri
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais, Beauvais, France
| | - Samir Dou
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais, Beauvais, France
| | - Narges Bahi-Jaber
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais, Beauvais, France
| | - Larbi Rhazi
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais, Beauvais, France
| | - Flore Depeint
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais, Beauvais, France
| | - Veronique Bach
- Laboratoire Périnatalité et Risques Toxiques (PERITOX), UMR-I01 INERIS, Jules Verne University of Picardy, Amiens, France
| | - Hafida Khorsi-Cauet
- Laboratoire Périnatalité et Risques Toxiques (PERITOX), UMR-I01 INERIS, Jules Verne University of Picardy, Amiens, France
| | | |
Collapse
|
156
|
Exercise and Prebiotics Produce Stress Resistance: Converging Impacts on Stress-Protective and Butyrate-Producing Gut Bacteria. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:165-191. [PMID: 27793217 DOI: 10.1016/bs.irn.2016.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbial ecosystem can mediate the negative health impacts of stress on the host. Stressor-induced disruptions in microbial ecology (dysbiosis) can lead to maladaptive health effects, while certain probiotic organisms and their metabolites can protect against these negative impacts. Prebiotic diets and exercise are feasible and cost-effective strategies that can increase stress-protective bacteria and produce resistance against the detrimental behavioral and neurobiological impacts of stress. The goal of this review is to describe research demonstrating that both prebiotic diets and exercise produce adaptations in gut ecology and the brain that arm the organism against inescapable stress-induced learned helplessness. The results of this research support the novel hypothesis that some of the stress-protective effects of prebiotics and exercise are due to increases in stress-protective gut microbial species and their metabolites. In addition, new evidence also suggests that prebiotic diet or exercise interventions are most effective if given early in life (juvenile-adolescence) when both the gut microbial ecosystem and the brain are plastic. Based on our new understanding of the mechanistic convergence of these interventions, it is feasible to propose that in adults, both interventions delivered in combination may elevate their efficacy to promote a stress-resistant phenotype.
Collapse
|
157
|
Drougard A, Fournel A, Marlin A, Meunier E, Abot A, Bautzova T, Duparc T, Louche K, Batut A, Lucas A, Le-Gonidec S, Lesage J, Fioramonti X, Moro C, Valet P, Cani PD, Knauf C. Central chronic apelin infusion decreases energy expenditure and thermogenesis in mice. Sci Rep 2016; 6:31849. [PMID: 27549402 PMCID: PMC4994119 DOI: 10.1038/srep31849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
Apelin is a bioactive peptide involved in the control of energy metabolism. In the hypothalamus, chronic exposure to high levels of apelin is associated with an increase in hepatic glucose production, and then contributes to the onset of type 2 diabetes. However, the molecular mechanisms behind deleterious effects of chronic apelin in the brain and consequences on energy expenditure and thermogenesis are currently unknown. We aimed to evaluate the effects of chronic intracerebroventricular (icv) infusion of apelin in normal mice on hypothalamic inflammatory gene expression, energy expenditure, thermogenesis and brown adipose tissue functions. We have shown that chronic icv infusion of apelin increases the expression of pro-inflammatory factors in the hypothalamus associated with an increase in plasma interleukin-1 beta. In parallel, mice infused with icv apelin exhibit a significant lower energy expenditure coupled to a decrease in PGC1alpha, PRDM16 and UCP1 expression in brown adipose tissue which could explain the alteration of thermogenesis in these mice. These data provide compelling evidence that central apelin contributes to the development of type 2 diabetes by altering energy expenditure, thermogenesis and fat browning.
Collapse
Affiliation(s)
- Anne Drougard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Audren Fournel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Alysson Marlin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Etienne Meunier
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70 CH-4056 Basel, Switzerland
| | - Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Tereza Bautzova
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Thibaut Duparc
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Katie Louche
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Aurelie Batut
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Sophie Le-Gonidec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Jean Lesage
- Université de Lille, Unité environnement périnatal et santé, EA 4489, Équipe malnutrition maternelle et programmation des maladies métaboliques, Université de Lille1, Bâtiment SN4, 59655 Villeneuve d'Ascq, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France.,Université catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Av. E. Mounier, 73 B1.73.11, B-1200, Brussels, Belgium.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCLAv. E. Mounier, 73 B1.73.11, B-1200, Brussels, Belgium
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| |
Collapse
|
158
|
Zhang X, Zheng X, Yuan Y. Treatment of insulin resistance: straight from the gut. Drug Discov Today 2016; 21:1284-90. [DOI: 10.1016/j.drudis.2016.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/09/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
|
159
|
Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials 2016; 17:347. [PMID: 27456494 PMCID: PMC4960839 DOI: 10.1186/s13063-016-1486-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/18/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The gut microbiome is increasingly recognized as a contributor to disease states. Patients with type 1 diabetes (DM1) have distinct gut microbiota in comparison to non-diabetic individuals, and it has been linked to changes in intestinal permeability, inflammation and insulin resistance. Prebiotics are non-digestible carbohydrates that alter gut microbiota and could potentially improve glycemic control in children with DM1. This pilot study aims to determine the feasibility of a 12-week dietary intervention with prebiotics in children with DM1. METHODS/DESIGN This pilot study is a single-centre, randomized, double-blind, placebo-controlled trial in children aged 8 to 17 years with DM1 for at least one year. Participants will be randomized to receive either placebo (maltodextrin 3.3 g orally/day) or prebiotics (oligofructose-enriched inulin 8 g orally/day; Synergy1, Beneo, Mannheim, Germany). Measures to be assessed at baseline, 3 months and 6 months include: anthropometric measures, insulin doses/regimens, frequency of diabetic ketoacidosis, frequency of severe hypoglycemia, average number of episodes of hypoglycemia per week, serum C-peptide, HbA1c, serum inflammatory markers (IL-6, IFN-gamma, TNF-alpha, and IL-10), GLP-1 and GLP-2, intestinal permeability using urine assessment after ingestion of lactulose, mannitol and 3-O-methylglucose, and stool sample collection for gut microbiota profiling. DISCUSSION This is a novel pilot study designed to test feasibility for a fully powered study. We hypothesize that consumption of prebiotics will alter gut microbiota and intestinal permeability, leading to improved glycemic control. Prebiotics are a potentially novel, inexpensive, low-risk treatment addition for DM1 that may improve glycemic control by changes in gut microbiota, gut permeability and inflammation. TRIAL REGISTRATION ClinicalTrials.gov: NCT02442544 . Registered on 10 March 2015.
Collapse
|
160
|
Adipose tissue microbiota in humans: an open issue. Int J Obes (Lond) 2016; 40:1643-1648. [PMID: 27297798 DOI: 10.1038/ijo.2016.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND A specific 'adipose tissue' microbiota has been recently identified in mice and hypothesized in humans. The purpose of this study was to verify the presence of microbiota of human whole adipose tissue and isolated adipocytes by combining culture-dependent and independent methods. METHODS Standard microbiological cultural techniques and 16S ribosomal RNA (16S rRNA) gene sequencing (Illumina technology) on DNA and RNA were employed to study (a) whole abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from 14 obese and five normal-weight subjects and (b) mature adipocytes isolated from SAT and VAT after collagenase digestion or mechanical separation. To optimize the 16S rRNA gene detection, we used different DNA extraction methods (lysis with proteinase K, proteinase K+lysozyme and microbeads) and amplification procedures (semi-quantitative standard PCR and real-time quantitative PCR). RESULTS Microbiological cultures were negative in all analyzed samples. In enzymatically isolated adipocytes, 90% of the sequenced bacterial DNA belonged to Clostridium histolyticum, the bacterium from which the collagenase enzyme was isolated. Bacterial 16S rRNA gene was not detected from DNA and RNA of whole SAT and VAT, as well as of mechanically isolated mature adipocytes, even after blocking with a specific primer the nonspecific amplification of human mitochondrial 12S rRNA. CONCLUSIONS Our results do not support the presence of a human adipose tissue microbiota. In addition, they emphasized the technical problems encountered when applying metagenomic studies to human tissues with very low or absent bacterial load.
Collapse
|
161
|
Dairy products and the French paradox: Could alkaline phosphatases play a role? Med Hypotheses 2016; 92:7-11. [DOI: 10.1016/j.mehy.2016.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/17/2016] [Indexed: 12/13/2022]
|
162
|
Affiliation(s)
- Shankar Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas J Talley
- Research and Innovation Division, University of Newcastle, Callaghan, NSW, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
163
|
Parekh PJ, Nayi VR, Johnson DA, Vinik AI. The Role of Gut Microflora and the Cholinergic Anti-inflammatory Neuroendocrine System in Diabetes Mellitus. Front Endocrinol (Lausanne) 2016; 7:55. [PMID: 27375553 PMCID: PMC4896924 DOI: 10.3389/fendo.2016.00055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
The obesity epidemic has drastically impacted the state of health care in the United States. Paralleling this epidemic is the incidence of diabetes mellitus, with a notable shift toward a much younger age of onset. While central to the pathogenesis of diabetes associated with obesity is the role of inflammation attributed to "adiposopathy." Emerging data suggest that changes in sympathetic/parasympathetic balance regulated by the brain precede changes in the inflammatory cascade. It has now been established that the gut microflora contributes significantly to the activation and inhibition of autonomic control and impact the set of the neuroinflammatory inhibitory reflex mediated by the cholinergic nervous system. There has been a paradigm shift toward further investigating commensal bacteria in the pathogenesis of obesity and diabetes mellitus and its complications, as dysbiosis is thought to play a pivotal role in diabetic-associated disorders. This paper is intended to evaluate the role of intestinal dysbiosis in the pathogenesis of diabetes mellitus and examine the potential for restoration of balance via use of probiotics.
Collapse
Affiliation(s)
- Parth J. Parekh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tulane University, New Orleans, LA, USA
| | - Vipul R. Nayi
- Department of Internal Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David A. Johnson
- Division of Gastroenterology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Aaron I. Vinik
- Division of Endocrinology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
164
|
Younossi Z, Henry L. Contribution of Alcoholic and Nonalcoholic Fatty Liver Disease to the Burden of Liver-Related Morbidity and Mortality. Gastroenterology 2016; 150:1778-85. [PMID: 26980624 DOI: 10.1053/j.gastro.2016.03.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/15/2016] [Accepted: 03/02/2016] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are common causes of chronic liver disease. NAFLD is associated with obesity and metabolic syndrome whereas ALD is associated with excessive alcohol consumption. Both diseases can progress to cirrhosis, hepatocellular carcinoma, and liver-related death. A higher proportion of patients with NAFLD die from cardiovascular disorders than patients with ALD, whereas a higher proportion of patients with ALD die from liver disease. NAFLD and ALD each are associated with significant morbidity, impairment to health-related quality of life, and economic costs to society.
Collapse
Affiliation(s)
- Zobair Younossi
- Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, Falls Church, Virginia; Beatty Liver and Obesity Program, Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia.
| | - Linda Henry
- Center for Outcomes Research in Liver Diseases, Washington, District of Columbia
| |
Collapse
|
165
|
Mayorga Reyes L, González Vázquez R, Cruz Arroyo SM, Melendez Avalos A, Reyes Castillo PA, Chavaro Pérez DA, Ramos Terrones I, Ramos Ibáñez N, Rodríguez Magallanes MM, Langella P, Bermúdez Humarán L, Azaola Espinosa A. Correlation between diet and gut bacteria in a population of young adults. Int J Food Sci Nutr 2016; 67:470-8. [DOI: 10.3109/09637486.2016.1162770] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lino Mayorga Reyes
- Laboratory of Biotechnology, Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, México City
| | - Raquel González Vázquez
- Laboratory of Biotechnology, Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, México City
| | - Schahrasad M. Cruz Arroyo
- Laboratory of Biotechnology, Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, México City
| | - Araceli Melendez Avalos
- Laboratory of Biotechnology, Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, México City
| | - Pedro A. Reyes Castillo
- Laboratory of Biotechnology, Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, México City
| | - David A. Chavaro Pérez
- Laboratory of Biotechnology, Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, México City
| | - Idalia Ramos Terrones
- Laboratory of Nutrition, Body Composition and Energy Expenditure, Universidad Autónoma Metropolitana-Xochimilco, Atención a la Salud, Coyoacán, México City
| | - Norma Ramos Ibáñez
- Laboratory of Nutrition, Body Composition and Energy Expenditure, Universidad Autónoma Metropolitana-Xochimilco, Atención a la Salud, Coyoacán, México City
| | - Magdalena M. Rodríguez Magallanes
- Laboratory of Nutrition, Body Composition and Energy Expenditure, Universidad Autónoma Metropolitana-Xochimilco, Atención a la Salud, Coyoacán, México City
| | - Philippe Langella
- Laboratory of Commensal and Probiotics-Host Interactions, INRA, Jouy-en-Josas, France
- AgroParisTech, Jouy-en-Josas, France
| | - Luis Bermúdez Humarán
- Laboratory of Commensal and Probiotics-Host Interactions, INRA, Jouy-en-Josas, France
| | - Alejandro Azaola Espinosa
- Laboratory of Biotechnology, Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, México City
| |
Collapse
|
166
|
Hamet M, Medrano M, Pérez P, Abraham A. Oral administration of kefiran exerts a bifidogenic effect on BALB/c mice intestinal microbiota. Benef Microbes 2016; 7:237-46. [DOI: 10.3920/bm2015.0103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activity of kefiran, the exopolysaccharide present in kefir grains, was evaluated on intestinal bacterial populations in BALB/c mice. Animals were orally administered with kefiran and Eubacteria, lactobacilli and bifidobacteria populations were monitored in faeces of mice at days 0, 2, 7, 14 and 21. Profiles obtained by Denaturing Gradient Gel Electrophoresis (DGGE) with primers for Eubacteria were compared by principal component analysis and clearly defined clusters, correlating with the time of kefiran consumption, were obtained. Furthermore, profile analysis of PCR products amplified with specific oligonucleotides for bifidobacteria showed an increment in the number of DGGE bands in the groups administered with kefiran. Fluorescent In Situ Hybridisation (FISH) with specific probes for bifidobacteria showed an increment of this population in faeces, in accordance to DGGE results. The bifidobacteria population was also studied on distal colon content after 0, 2 and 7 days of kefiran administration. Analysis of PCR products by DGGE with Eubacteria primers showed an increment in the number and intensity of bands with high GC content of mice administered with kefiran. Sequencing of DGGE bands confirmed that bifidobacteria were one of the bacterial populations modified by kefiran administration. DGGE profiles of PCR amplicons obtained by using Bifidobacterium or Lactobacillus specific primers confirmed that kefiran administration enhances bifidobacteria, however no changes were observed in Lactobacillus populations. The results of the analysis of bifidobacteria populations assessed on different sampling sites in a murine model support the use of this exopolysaccharide as a bifidogenic functional ingredient.
Collapse
Affiliation(s)
- M.F. Hamet
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata 1900, Argentina
| | - M. Medrano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata 1900, Argentina
| | - P.F. Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata 1900, Argentina
- Cátedra de Microbiología, Facultad de Ciencias Exactas, UNLP, 47 y 115, La Plata 1900, Argentina
| | - A.G. Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata 1900, Argentina
- Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
167
|
Principi N, Esposito S. Antibiotic administration and the development of obesity in children. Int J Antimicrob Agents 2016; 47:171-7. [DOI: 10.1016/j.ijantimicag.2015.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/19/2015] [Accepted: 12/27/2015] [Indexed: 12/22/2022]
|
168
|
Collins B, Hoffman J, Martinez K, Grace M, Lila MA, Cockrell C, Nadimpalli A, Chang E, Chuang CC, Zhong W, Mackert J, Shen W, Cooney P, Hopkins R, McIntosh M. A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice. J Nutr Biochem 2016; 31:150-65. [PMID: 27133434 DOI: 10.1016/j.jnutbio.2015.12.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/07/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022]
Abstract
The objective of this study was to determine if consuming an extractable or nonextractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or an HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a nonextractable, polyphenol-poor (HF-NEP) fraction or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming an HF diet.
Collapse
Affiliation(s)
- Brian Collins
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Jessie Hoffman
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | | | - Mary Grace
- Plants for Human Health Institute, NCSU-NCRC, Kannapolis, NC
| | - Mary Ann Lila
- Plants for Human Health Institute, NCSU-NCRC, Kannapolis, NC
| | - Chase Cockrell
- Department of Medicine, University of Chicago, Chicago, IL
| | | | - Eugene Chang
- Department of Medicine, University of Chicago, Chicago, IL
| | - Chia-Chi Chuang
- Department of Internal Medicine/Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Wei Zhong
- Center for Translational Biomedical Research, UNCG-NCRC, Kannapolis, NC
| | - Jessica Mackert
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Wan Shen
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Paula Cooney
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Robin Hopkins
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Michael McIntosh
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC.
| |
Collapse
|
169
|
Abstract
This report summarises talks given at the 8th International Yakult Symposium, held on 23-24 April 2015 in Berlin. Two presentations explored different aspects of probiotic intervention: the small intestine as a probiotic target and inclusion of probiotics into integrative approaches to gastroenterology. Probiotic recommendations in gastroenterology guidelines and current data on probiotic efficacy in paediatric patients were reviewed. Updates were given on probiotic and gut microbiota research in obesity and obesity-related diseases, the gut-brain axis and development of psychobiotics, and the protective effects of equol-producing strains for prostate cancer. Recent studies were presented on probiotic benefit for antibiotic-associated diarrhoea and people with HIV, as well as protection against the adverse effects of a short-term high-fat diet. Aspects of probiotic mechanisms of activity were discussed, including immunomodulatory mechanisms and metabolite effects, the anti-inflammatory properties of Faecalibacterium prausnitzii, the relationship between periodontitis, microbial production of butyrate in the oral cavity and ageing, and the pathogenic mechanisms of Campylobacter. Finally, an insight was given on a recent expert meeting, which re-examined the probiotic definition, advised on the appropriate use and scope of the term and outlined different probiotic categories and the prevalence of different mechanisms of activity.
Collapse
|
170
|
Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M, Nazertehrani S, Moore ME, Marco ML, Martin RJ, Adams SH. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol 2016; 310:F857-71. [PMID: 26841824 DOI: 10.1152/ajprenal.00513.2015] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function.
Collapse
Affiliation(s)
- Dorothy A Kieffer
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California; Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, California
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Shuman Liu
- Division of Nephrology, University of California, Irvine, California
| | - Wei L Lau
- Division of Nephrology, University of California, Irvine, California
| | - Mahyar Khazaeli
- Division of Nephrology, University of California, Irvine, California
| | | | - Mary E Moore
- Department of Food Science and Technology, University of California, Davis, California; and
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, California; and
| | - Roy J Martin
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Sean H Adams
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, California; Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
171
|
Yang J, Bindels LB, Segura Munoz RR, Martínez I, Walter J, Ramer-Tait AE, Rose DJ. Disparate Metabolic Responses in Mice Fed a High-Fat Diet Supplemented with Maize-Derived Non-Digestible Feruloylated Oligo- and Polysaccharides Are Linked to Changes in the Gut Microbiota. PLoS One 2016; 11:e0146144. [PMID: 26731528 PMCID: PMC4701460 DOI: 10.1371/journal.pone.0146144] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Studies have suggested links between colonic fermentation of dietary fibers and improved metabolic health. The objectives of this study were to determine if non-digestible feruloylated oligo- and polysaccharides (FOPS), a maize-derived dietary fiber, could counteract the deleterious effects of high-fat (HF) feeding in mice and explore if metabolic benefits were linked to the gut microbiota. C57BL/6J mice (n = 8/group) were fed a low-fat (LF; 10 kcal% fat), HF (62 kcal% fat), or HF diet supplemented with FOPS (5%, w/w). Pronounced differences in FOPS responsiveness were observed: four mice experienced cecal enlargement and enhanced short chain fatty acid production, indicating increased cecal fermentation (F-FOPS). Only these mice displayed improvements in glucose metabolism compared with HF-fed mice. Blooms in the gut microbial genera Blautia and Akkermansia were observed in three of the F-FOPS mice; these shifts were associated with reductions in body and adipose tissue weights compared with the HF-fed control mice. No improvements in metabolic markers or weights were detected in the four mice whose gut microbiota did not respond to FOPS. These findings demonstrate that FOPS-induced improvements in weight gain and metabolic health in mice depended on the ability of an individual's microbiota to ferment FOPS.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Laure B. Bindels
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Rafael R. Segura Munoz
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Inés Martínez
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jens Walter
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Amanda E. Ramer-Tait
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Devin J. Rose
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- * E-mail:
| |
Collapse
|
172
|
Xu X, Yang J, Ning Z, Zhang X. Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides. Food Funct 2016; 7:250-61. [DOI: 10.1039/c5fo00904a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lentinula edodes-derived polysaccharides induce the differential proteins in abundance in mouse colon and small intestine.
Collapse
Affiliation(s)
- Xiaofei Xu
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
- Treerly Women's Nutrition and Health Institute
| | - Jiguo Yang
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| | - Zhengxiang Ning
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| | - Xuewu Zhang
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
173
|
Foditsch C, Pereira RVV, Ganda EK, Gomez MS, Marques EC, Santin T, Bicalho RC. Oral Administration of Faecalibacterium prausnitzii Decreased the Incidence of Severe Diarrhea and Related Mortality Rate and Increased Weight Gain in Preweaned Dairy Heifers. PLoS One 2015; 10:e0145485. [PMID: 26710101 PMCID: PMC4692552 DOI: 10.1371/journal.pone.0145485] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/24/2015] [Indexed: 01/18/2023] Open
Abstract
Probiotics are a promising alternative to improve food animal productivity and health. However, scientific evidence that specific microbes can be used to benefit animal health and performance is limited. The objective of this study was to evaluate the effects of administering a live culture of Faecalibacterium prausnitzii to newborn dairy calves on subsequent growth, health, and fecal microbiome. Initially, a safety trial was conducted using 30 newborn bull calves to assess potential adverse effects of the oral and rectal administration of F. prausnitzii to neonatal calves. No adverse reactions, such as increased body temperature or heart and respiratory rates, were observed after the administration of the treatments. All calves survived the experimental period, and there was no difference in fecal consistency score, attitude, appetite or dehydration between the treatment groups. The rectal route was not an efficient practice while the oral route ensures that the full dose is administered to the treated calves. Subsequently, a randomized field trial was completed in a commercial farm with preweaned calves. A total of 554 Holstein heifers were assigned to one of two treatment groups: treated calves (FPTRT) and non-treated calves (control). Treated calves received two oral doses of F. prausnitzii, one at treatment assignment (1st week) and another one week later. The FPTRT group presented significantly lower incidence of severe diarrhea (3.1%) compared with the control group (6.8%). Treated calves also had lower mortality rate associated with severe diarrhea (1.5%) compared to control calves (4.4%). Furthermore, FPTRT calves gained significantly more weight, 4.4 kg over the preweaning period, than controls calves. The relative abundance of F. prausnitzii in the fecal microbiota was significantly higher in the 3rd and 5th weeks of life of FPTRT calves than of the control calves, as revealed by sequencing of the 16S rRNA gene. Our findings showed that oral administration of F. prausnitzii improves gastrointestinal health and growth of preweaned calves, supporting its use as a potential probiotic.
Collapse
Affiliation(s)
- Carla Foditsch
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Richard Van Vleck Pereira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Erika Korzune Ganda
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Marilia Souza Gomez
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Eduardo Carvalho Marques
- Department of Clinical Science, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo—SP, Brazil
| | - Thiago Santin
- Department of Clinical Science, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo—SP, Brazil
| | - Rodrigo Carvalho Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
174
|
Karimi G, Sabran MR, Jamaluddin R, Parvaneh K, Mohtarrudin N, Ahmad Z, Khazaai H, Khodavandi A. The anti-obesity effects of Lactobacillus casei strain Shirota versus Orlistat on high fat diet-induced obese rats. Food Nutr Res 2015; 59:29273. [PMID: 26699936 PMCID: PMC4689799 DOI: 10.3402/fnr.v59.29273] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 01/14/2023] Open
Abstract
Background Obesity and overweight are major public health problems. Various factors, such as daily nutritional habits, physical inactivity, and genetic, are related to the prevalence of obesity. Recently, it was revealed that the gut microflora may also play an important role in weight management. Thus, this study aimed to determine the anti-obesity effects of Lactobacillus casei strain Shirota (LcS) compared with those of orlistat in an animal model fed a high-fat diet (HFD). Design Thirty-two male Sprague-Dawley rats were assigned to four groups fed various diets as follows: a standard diet group, HFD group, HFD supplemented with LcS (108109 colony-forming units (HFD-LcS) group, and HFD group treated with Orlistat (10 mg/kg body weight)). After 15 weeks, the weights of organs, body weight, body fat mass and serological biomarkers were measured. In addition, histological analysis of the liver and adipose tissue was performed. Results Body weight, body mass index, fat mass, leptin and glucose levels were lower, and high-density lipoprotein and adiponectin levels were higher in the HFD-LcS and HFD-orlistat groups than in the HFD group. In addition a significant difference in body fat mass was observed between HFD-LcS group with HFD-orlistat group (19.19±5.76 g vs. 30.19±7.98 g). Although the interleukin-6 level was significantly decreased in the HFD-LcS and HFD-orlistat groups compared with the HFD group, no significant change was observed in other inflammatory biomarkers. Conclusion The results of the present study show that LcS supplementation improves body weight management and the levels of some related biomarkers. In addition, LcS supplementation showed a better result in fat mass and alanine aminotransferase reduction than Orlistat. Further studies are needed to elucidate the anti-obesity effects of LcS, with a longer period of supplementation.
Collapse
Affiliation(s)
- Golgis Karimi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Redzwan Sabran
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Rosita Jamaluddin
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia;
| | - Kolsoom Parvaneh
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zuraini Ahmad
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Huzwah Khazaai
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Alireza Khodavandi
- Department of Paramedical Sciences, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| |
Collapse
|
175
|
Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: Potential therapeutic implications. Dig Liver Dis 2015; 47:1007-12. [PMID: 26257129 PMCID: PMC7185617 DOI: 10.1016/j.dld.2015.07.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/06/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
Abstract
Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Department of Pediatrics, Umberto I University Hospital, “Sapienza” University of Rome, Italy
| | - Gianluca Ianiro
- Division of Internal Medicine and Gastroenterology, Gemelli University Hospital, Catholic University of Sacred Heart, Italy
| | - Fabia Attili
- Division of Endoscopy, Gemelli University Hospital, Catholic University of Sacred Heart, Italy
| | - Chiara Bassanelli
- Gastroenterology Division, Umberto I University Hospital, “Sapienza” University of Rome, Italy
| | - Adriano De Santis
- Gastroenterology Division, Umberto I University Hospital, “Sapienza” University of Rome, Italy
| | - Antonio Gasbarrini
- Division of Internal Medicine and Gastroenterology, Gemelli University Hospital, Catholic University of Sacred Heart, Italy,Corresponding author at: Gastroenterology and Internal Medicine Division, Catholic University of Sacred Heart, Largo Gemelli 1, 00168 Rome, Italy. Tel.: +39 06 3015 6265; fax: +39 06 3015 6265.
| |
Collapse
|
176
|
Abstract
PURPOSE OF REVIEW Recent clinical trials and animal studies indicate that resistant starches may be beneficial therapeutic tools for the management of metabolic diseases. The purpose of this review is to summarize these findings and discuss the established and proposed mechanisms by which resistant starches exert their benefits. We also examine open questions regarding how resistant starches improve metabolism and propose future research directions for the field. RECENT FINDINGS Data from both humans and animal models clearly support a role for resistant starches in improving a variety of metabolic features; however, discrepancies do exist regarding specific effects. Concomitant improvements in both insulin levels and body fat depots are often reported in rodents fed resistant starches, whereas resistant starch feeding in humans improves insulin sensitivity without having a major impact on fat mass. These differences could be explained by the coexistence of several mechanisms (both gut microbiota-dependent and gut microbiota-independent) underpinning the metabolic benefits of resistant starches. SUMMARY Together, the studies presented in this review offer new insights into the potential pathways by which resistant starches enhance metabolic health, including modulation of the gut microbiota, gut peptides, circulating inflammatory mediators, innate immune cells, and the bile acid cycle.
Collapse
Affiliation(s)
- Laure B. Bindels
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Corresponding author (). Department of Food Science and Technology, University of Nebraska-Lincoln, 260 Food Innovation Center, 1901 North 21st Street, Lincoln, NE 68588, USA. Phone: 402-472-7293
| |
Collapse
|
177
|
Delzenne NM, Cani PD, Everard A, Neyrinck AM, Bindels LB. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia 2015. [PMID: 26224102 DOI: 10.1007/s00125-015-3712-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Each human intestine harbours not only hundreds of trillions of bacteria but also bacteriophage particles, viruses, fungi and archaea, which constitute a complex and dynamic ecosystem referred to as the gut microbiota. An increasing number of data obtained during the last 10 years have indicated changes in gut bacterial composition or function in type 2 diabetic patients. Analysis of this 'dysbiosis' enables the detection of alterations in specific bacteria, clusters of bacteria or bacterial functions associated with the occurrence or evolution of type 2 diabetes; these bacteria are predominantly involved in the control of inflammation and energy homeostasis. Our review focuses on two key questions: does gut dysbiosis truly play a role in the occurrence of type 2 diabetes, and will recent discoveries linking the gut microbiota to host health be helpful for the development of novel therapeutic approaches for type 2 diabetes? Here we review how pharmacological, surgical and nutritional interventions for type 2 diabetic patients may impact the gut microbiota. Experimental studies in animals are identifying which bacterial metabolites and components act on host immune homeostasis and glucose metabolism, primarily by targeting intestinal cells involved in endocrine and gut barrier functions. We discuss novel approaches (e.g. probiotics, prebiotics and faecal transfer) and the need for research and adequate intervention studies to evaluate the feasibility and relevance of these new therapies for the management of type 2 diabetes.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium.
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
- Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
| |
Collapse
|
178
|
Bertoia ML, Mukamal KJ, Cahill LE, Hou T, Ludwig DS, Mozaffarian D, Willett WC, Hu FB, Rimm EB. Changes in Intake of Fruits and Vegetables and Weight Change in United States Men and Women Followed for Up to 24 Years: Analysis from Three Prospective Cohort Studies. PLoS Med 2015; 12:e1001878. [PMID: 26394033 PMCID: PMC4578962 DOI: 10.1371/journal.pmed.1001878] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Current dietary guidelines recommend eating a variety of fruits and vegetables. However, based on nutrient composition, some particular fruits and vegetables may be more or less beneficial for maintaining or achieving a healthy weight. We hypothesized that greater consumption of fruits and vegetables with a higher fiber content or lower glycemic load would be more strongly associated with a healthy weight. METHODS AND FINDINGS We examined the association between change in intake of specific fruits and vegetables and change in weight in three large, prospective cohorts of 133,468 United States men and women. From 1986 to 2010, these associations were examined within multiple 4-y time intervals, adjusting for simultaneous changes in other lifestyle factors, including other aspects of diet, smoking status, and physical activity. Results were combined using a random effects meta-analysis. Increased intake of fruits was inversely associated with 4-y weight change: total fruits -0.53 lb per daily serving (95% CI -0.61, -0.44), berries -1.11 lb (95% CI -1.45, -0.78), and apples/pears -1.24 lb (95% CI -1.62, -0.86). Increased intake of several vegetables was also inversely associated with weight change: total vegetables -0.25 lb per daily serving (95% CI -0.35, -0.14), tofu/soy -2.47 lb (95% CI, -3.09 to -1.85 lb) and cauliflower -1.37 lb (95% CI -2.27, -0.47). On the other hand, increased intake of starchy vegetables, including corn, peas, and potatoes, was associated with weight gain. Vegetables having both higher fiber and lower glycemic load were more strongly inversely associated with weight change compared with lower-fiber, higher-glycemic-load vegetables (p < 0.0001). Despite the measurement of key confounders in our analyses, the potential for residual confounding cannot be ruled out, and although our food frequency questionnaire specified portion size, the assessment of diet using any method will have measurement error. CONCLUSIONS Increased consumption of fruits and non-starchy vegetables is inversely associated with weight change, with important differences by type suggesting that other characteristics of these foods influence the magnitude of their association with weight change.
Collapse
Affiliation(s)
- Monica L. Bertoia
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Kenneth J. Mukamal
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Leah E. Cahill
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Tao Hou
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - David S. Ludwig
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Dariush Mozaffarian
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States of America
| | - Walter C. Willett
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Frank B. Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Eric B. Rimm
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
179
|
Cani PD, Everard A. Talking microbes: When gut bacteria interact with diet and host organs. Mol Nutr Food Res 2015; 60:58-66. [PMID: 26178924 PMCID: PMC5014210 DOI: 10.1002/mnfr.201500406] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
Obesity and diabetes have reached epidemic proportions. Evidence suggests that besides dietary habits and physical activity, other environmental factors, such as gut microbes, are recognized as additional partners implicated in the control of energy homeostasis. Studies on the human gut microbiota have shown that the general population can be stratified on the sole basis of three dominant bacteria (i.e., the concept of enterotypes), while some others have suggested categorizing the population according to their microbiome gene richness. Both aspects have been strengthened by recent studies investigating the impact of nutrients (e.g., dietary fibers, fat feeding) and dietary habits (i.e., vegans versus omnivores) of different populations. Using preclinical models, quite a few novel mechanisms have been proposed in these gut microbiota–host interactions, including the role of novel bacteria, the regulation of antimicrobial peptide production, the maintenance of the gut barrier function and intestinal innate immunity. In this review, we discuss several of the aforementioned aspects. Nonetheless, determining the overall mechanisms by which microbes dialogue with host cells will require further investigations before anticipating the development of next‐generation nutritional interventions using prebiotics, probiotics, synbiotics, or even specific nutrients for promoting health benefits.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
180
|
Testerman TL. Fulfilling the Promise of Microbiomics to Revolutionize Medicine. JOURNAL OF MICROBIOLOGY & EXPERIMENTATION 2015; 2:00050. [PMID: 27030825 PMCID: PMC4809425 DOI: 10.15406/jmen.2015.02.00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Traci L Testerman
- Corresponding author: Traci L Testerman, University of South Carolina School of Medicine, Columbia, SC 29209, USA,
| |
Collapse
|
181
|
Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome. Diabetes 2015; 64:2847-58. [PMID: 25845659 PMCID: PMC4512228 DOI: 10.2337/db14-1916] [Citation(s) in RCA: 477] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/28/2015] [Indexed: 12/12/2022]
Abstract
Dietary polyphenols protect against metabolic syndrome, despite limited absorption and digestion, raising questions about their mechanism of action. We hypothesized that one mechanism may involve the gut microbiota. To test this hypothesis, C57BL/6J mice were fed a high-fat diet (HFD) containing 1% Concord grape polyphenols (GP). Relative to vehicle controls, GP attenuated several effects of HFD feeding, including weight gain, adiposity, serum inflammatory markers (tumor necrosis factor [TNF]α, interleukin [IL]-6, and lipopolysaccharide), and glucose intolerance. GP lowered intestinal expression of inflammatory markers (TNFα, IL-6, inducible nitric oxide synthase) and a gene for glucose absorption (Glut2). GP increased intestinal expression of genes involved in barrier function (occludin) and limiting triglyceride storage (fasting-induced adipocyte factor). GP also increased intestinal gene expression of proglucagon, a precursor of proteins that promote insulin production and gut barrier integrity. 16S rRNA gene sequencing and quantitative PCR of cecal and fecal samples demonstrated that GP dramatically increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes, consistent with prior reports that similar changes in microbial community structure can protect from diet-induced obesity and metabolic disease. These data suggest that GP act in the intestine to modify gut microbial community structure, resulting in lower intestinal and systemic inflammation and improved metabolic outcomes. The gut microbiota may thus provide the missing link in the mechanism of action of poorly absorbed dietary polyphenols.
Collapse
Affiliation(s)
- Diana E Roopchand
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ Nutrasorb, LLC, North Brunswick, NJ
| | - Rachel N Carmody
- G.W. Hooper Research Foundation, University of California, San Francisco, San Francisco, CA
| | - Peter Kuhn
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | | | - Patricio Rojas-Silva
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Peter J Turnbaugh
- G.W. Hooper Research Foundation, University of California, San Francisco, San Francisco, CA
| | - Ilya Raskin
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| |
Collapse
|
182
|
Blatchford P, Bentley-Hewitt KL, Stoklosinski H, McGhie T, Gearry R, Gibson G, Ansell J. In vitro characterisation of the fermentation profile and prebiotic capacity of gold-fleshed kiwifruit. Benef Microbes 2015; 6:829-39. [PMID: 26123782 DOI: 10.3920/bm2015.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new Actinidia chinensis gold-fleshed kiwifruit cultivar 'Zesy002' was tested to investigate whether it could positively modulate the composition of the human colonic microbiota. Digested Zesy002 kiwifruit was added to in vitro pH-controlled anaerobic batch fermenters that were inoculated with representative human faecal microbiota. Alterations to the gut microbial ecology were determined by 16S rRNA gene sequencing and metabolic end products were measured using gas chromatography and liquid chromatography - mass spectrometry. Results indicated a substantial shift in the composition of bacteria within the gut models caused by kiwifruit supplementation. Zesy002 supplemented microbiota had a significantly higher abundance of Bacteroides spp., Parabacteroides spp. and Bifidobacterium spp. after 48 h of fermentation compared with the start of the fermentation. Organic acids from kiwifruit were able to endure simulated gastrointestinal digestion and were detectable in the first 10 h of fermentation. The fermentable carbohydrates were converted to beneficial organic acids with a particular predilection for propionate production, corresponding with the rise in Bacteroides spp. and Parabacteroides spp. These results support the claim that Zesy002 kiwifruit non-digestible fractions can effect favourable changes to the human colonic microbial community and primary metabolites, and demonstrate a hitherto unknown effect of Zesy002 on colonic microbiota under in vitro conditions.
Collapse
Affiliation(s)
- P Blatchford
- 1 The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand.,2 Department of Food and Nutritional Sciences, The University of Reading, Reading RG6 6AP, United Kingdom
| | - K L Bentley-Hewitt
- 1 The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - H Stoklosinski
- 1 The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - T McGhie
- 1 The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - R Gearry
- 3 Department of Gastroenterology, Christchurch Hospital, Private Bag 4710, Christchurch, New Zealand
| | - G Gibson
- 2 Department of Food and Nutritional Sciences, The University of Reading, Reading RG6 6AP, United Kingdom
| | - J Ansell
- 4 Zespri International Limited, 400 Maunganui Road, P.O. Box 4043, Mt Maunganui 3149, New Zealand
| |
Collapse
|
183
|
Hollan I, Dessein PH, Ronda N, Wasko MC, Svenungsson E, Agewall S, Cohen-Tervaert JW, Maki-Petaja K, Grundtvig M, Karpouzas GA, Meroni PL. Prevention of cardiovascular disease in rheumatoid arthritis. Autoimmun Rev 2015; 14:952-69. [PMID: 26117596 DOI: 10.1016/j.autrev.2015.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
The increased risk of cardiovascular disease (CVD) in rheumatoid arthritis (RA) has been recognized for many years. However, although the characteristics of CVD and its burden resemble those in diabetes, the focus on cardiovascular (CV) prevention in RA has lagged behind, both in the clinical and research settings. Similar to diabetes, the clinical picture of CVD in RA may be atypical, even asymptomatic. Therefore, a proactive screening for subclinical CVD in RA is warranted. Because of the lack of clinical trials, the ideal CVD prevention (CVP) in RA has not yet been defined. In this article, we focus on challenges and controversies in the CVP in RA (such as thresholds for statin therapy), and propose recommendations based on the current evidence. Due to the significant contribution of non-traditional, RA-related CV risk factors, the CV risk calculators developed for the general population underestimate the true risk in RA. Thus, there is an enormous need to develop adequate CV risk stratification tools and to identify the optimal CVP strategies in RA. While awaiting results from randomized controlled trials in RA, clinicians are largely dependent on the use of common sense, and extrapolation of data from studies on other patient populations. The CVP in RA should be based on an individualized evaluation of a broad spectrum of risk factors, and include: 1) reduction of inflammation, preferably with drugs decreasing CV risk, 2) management of factors associated with increased CV risk (e.g., smoking, hypertension, hyperglycemia, dyslipidemia, kidney disease, depression, periodontitis, hypothyroidism, vitamin D deficiency and sleep apnea), and promotion of healthy life style (smoking cessation, healthy diet, adjusted physical activity, stress management, weight control), 3) aspirin and influenza and pneumococcus vaccines according to current guidelines, and 4) limiting use of drugs that increase CV risk. Rheumatologists should take responsibility for the education of health care providers and RA patients regarding CVP in RA. It is immensely important to incorporate CV outcomes in testing of anti-rheumatic drugs.
Collapse
Affiliation(s)
- I Hollan
- Lillehammer Hospital for Rheumatic Diseases, Norway
| | - P H Dessein
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - N Ronda
- Department of Pharmacy, University of Parma, Italy
| | - M C Wasko
- Department of Rheumatology, West Penn Hospital Allegheny Health Network, USA
| | - E Svenungsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - S Agewall
- Department of Cardiology, Oslo University Hospital Ullevål, University of Oslo, Oslo, Norway; Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - J W Cohen-Tervaert
- Clinical and Experimental Immunology, Maastricht University, Maastricht, The Netherlands
| | - K Maki-Petaja
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom
| | - M Grundtvig
- Department of Medicine, Innlandet Hospital Trust, Lillehammer, Norway
| | - G A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center, Torrance, USA; Los Angeles Biomedical Research Institute, Torrance, USA
| | - P L Meroni
- Department of Clinical Sciences and Community Health, University of Milan, Italy; IRCCS Istituto Auxologico Italiano, Italy
| |
Collapse
|
184
|
Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, Nauta A, Raes J, van Tol EAF, Tuohy KM. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 2015; 28:42-66. [PMID: 26156216 PMCID: PMC4501371 DOI: 10.1017/s0954422415000037] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Available evidence on the bioactive, nutritional and putative detrimental properties of gut microbial metabolites has been evaluated to support a more integrated view of how prebiotics might affect host health throughout life. The present literature inventory targeted evidence for the physiological and nutritional effects of metabolites, for example, SCFA, the potential toxicity of other metabolites and attempted to determine normal concentration ranges. Furthermore, the biological relevance of more holistic approaches like faecal water toxicity assays and metabolomics and the limitations of faecal measurements were addressed. Existing literature indicates that protein fermentation metabolites (phenol, p-cresol, indole, ammonia), typically considered as potentially harmful, occur at concentration ranges in the colon such that no toxic effects are expected either locally or following systemic absorption. The endproducts of saccharolytic fermentation, SCFA, may have effects on colonic health, host physiology, immunity, lipid and protein metabolism and appetite control. However, measuring SCFA concentrations in faeces is insufficient to assess the dynamic processes of their nutrikinetics. Existing literature on the usefulness of faecal water toxicity measures as indicators of cancer risk seems limited. In conclusion, at present there is insufficient evidence to use changes in faecal bacterial metabolite concentrations as markers of prebiotic effectiveness. Integration of results from metabolomics and metagenomics holds promise for understanding the health implications of prebiotic microbiome modulation but adequate tools for data integration and interpretation are currently lacking. Similarly, studies measuring metabolite fluxes in different body compartments to provide a more accurate picture of their nutrikinetics are needed.
Collapse
Affiliation(s)
- Kristin A. Verbeke
- Translational Research in Gastrointestinal Disorders (TARGID), KU Leuven and Leuven Food Science and Nutrition Research Center (LFoRCe), Leuven, Belgium
| | - Alan R. Boobis
- Department of Medicine, Imperial College London, London, UK
| | - Alessandro Chiodini
- Formerly ILSI Europe, Box 6, Avenue Emmanuel Mounier 83, BE-1200, Brussels, Belgium; now European Commission, Research Executive Agency (REA) Unit B2, Brussels, Belgium
| | - Christine A. Edwards
- Human Nutrition School of Medicine, College of MVLS, University of Glasgow, Glasgow, Scotland
| | | | - Michiel Kleerebezem
- Host Microbe Interactomics, Wageningen University, Wageningen, The Netherlands
| | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Jeroen Raes
- Microbiology and Immunology, Rega Institute, KU Leuven, Leuven; VIB, Leuven; DBIT, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Kieran M. Tuohy
- Nutrition and Nutrigenomics, Research and Innovation Centre-Fondazione Edmund Mach, Trento, Italy
| | | |
Collapse
|
185
|
Cooper DN, Martin RJ, Keim NL. Does Whole Grain Consumption Alter Gut Microbiota and Satiety? Healthcare (Basel) 2015; 3:364-92. [PMID: 27417768 PMCID: PMC4939539 DOI: 10.3390/healthcare3020364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022] Open
Abstract
This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Studies comparing whole grains to their refined grain counterparts were considered, as were studies comparing different grain types. Possible mechanisms linking microbial metabolism and satiety are described. Clinical trials show that whole grain wheat, maize, and barley alter the human gut microbiota, but these findings are based on a few studies that do not include satiety components, so no functional claims between microbiota and satiety can be made. Ten satiety trials were evaluated and provide evidence that whole oats, barley, and rye can increase satiety, whereas the evidence for whole wheat and maize is not compelling. There are many gaps in the literature; no one clinical trial has examined the effects of whole grains on satiety and gut microbiota together. Once understanding the impact of whole grains on satiety and microbiota is more developed, then particular grains might be used for better appetite control. With this information at hand, healthcare professionals could make individual dietary recommendations that promote satiety and contribute to weight control.
Collapse
Affiliation(s)
- Danielle N Cooper
- Department of Nutrition, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | - Roy J Martin
- Department of Nutrition, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA.
- USDA-ARS, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| | - Nancy L Keim
- Department of Nutrition, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA.
- USDA-ARS, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
186
|
Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015; 39:567-91. [PMID: 25940667 PMCID: PMC4487407 DOI: 10.1093/femsre/fuv013] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines. Atopobiosis of microbes (the term describing microbes that appear in places other than where they should be), as well as the products of their metabolism, seems to correlate with, and may contribute to, the dynamics of a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| |
Collapse
|
187
|
Fallucca F, Fontana L, Fallucca S, Pianesi M. Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World J Diabetes 2015; 6:403-11. [PMID: 25897351 PMCID: PMC4398897 DOI: 10.4239/wjd.v6.i3.403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/10/2015] [Accepted: 01/30/2015] [Indexed: 02/05/2023] Open
Abstract
In the past 10 years the prevalence of type 2 diabetes mellitus (T2DM) has increased hugely worldwide, driven by a rise in the numbers of overweight and obese individuals. A number of diets have been shown to be effective for the management of T2DM: the Mediterranean diet, the vegetarian diet and the low-calorie diet. Results of studies clearly indicate, however, that the efficacy of these diets is not solely related to the biochemical structure of the individual nutrients they contain. This review discusses this point with reference to the potential role of the intestinal microbiota in diabetes. The macrobiotic Ma-Pi 2 diet is rich in carbohydrates, whole grains and vegetables, with no animal fat or protein or added sugar. In short- and medium-term trials conducted in patients with T2DM, the Ma-Pi 2 diet has been found to significantly improve indicators of metabolic control, including fasting blood glucose, glycosylated hemoglobin, the serum lipid profile, body mass index, body weight and blood pressure. The diet may also alter the gut microbiota composition, which could additionally affect glycemic control. As a result, the Ma-Pi 2 diet could be considered a valid additional short- to medium-term treatment for T2DM.
Collapse
|
188
|
|
189
|
Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, Plovier H, Castel J, Denis RGP, Bergiers M, Druart C, Alhouayek M, Delzenne NM, Muccioli GG, Demoulin JB, Luquet S, Cani PD. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun 2015; 6:6495. [PMID: 25757720 PMCID: PMC4382707 DOI: 10.1038/ncomms7495] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. Endocannabinoids are bioactive lipid molecules produced in the body. Here, Geurts et al. create mice lacking the endocannabinoid-producing enzyme NAPE-PLD in adipocytes and report defects in adipose-induced browning, which are mediated by alterations in the gut microbiome.
Collapse
Affiliation(s)
- Lucie Geurts
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Ahmed Essaghir
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium
| | - Thibaut Duparc
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Sébastien Matamoros
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Julien Castel
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Raphael G P Denis
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Marie Bergiers
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Céline Druart
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 72 B1.72.11, 1200 Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 72 B1.72.11, 1200 Brussels, Belgium
| | - Jean-Baptiste Demoulin
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| |
Collapse
|
190
|
Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin. Proc Nutr Soc 2015; 74:258-67. [PMID: 25721052 DOI: 10.1017/s0029665115000087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alterations in the composition and metabolic activity of the gut microbiota appear to contribute to the development of obesity and associated metabolic diseases. However, the extent of this relationship remains unknown. Modulating the gut microbiota with non-digestible carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic pathways including changes to appetite regulation, glucose and lipid metabolism and inflammation. The NDC vary in physicochemical structure and this may govern their physical properties and fermentation by specific gut bacterial populations. Much research in this area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligosaccharides); however, there is increasing interest in the metabolic effects of other NDC, such as resistant dextrin. Data presented in this review provide evidence from mechanistic and intervention studies that certain fermentable NDC, including resistant dextrin, are able to modulate the gut microbiota and may alter metabolic process associated with obesity, including appetite regulation, energy and lipid metabolism and inflammation. To confirm these effects and elucidate the responsible mechanisms, further well-controlled human intervention studies are required to investigate the impact of NDC on the composition and function of the gut microbiota and at the same time determine concomitant effects on host metabolism and physiology.
Collapse
|
191
|
Laval L, Martin R, Natividad JN, Chain F, Miquel S, de Maredsous CD, Capronnier S, Sokol H, Verdu EF, van Hylckama Vlieg JET, Bermúdez-Humarán LG, Smokvina T, Langella P. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 2015; 6:1-9. [PMID: 25517879 PMCID: PMC4615674 DOI: 10.4161/19490976.2014.990784] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impaired gut barrier function has been reported in a wide range of diseases and syndromes and in some functional gastrointestinal disorders. In addition, there is increasing evidence that suggests the gut microbiota tightly regulates gut barrier function and recent studies demonstrate that probiotic bacteria can enhance barrier integrity. Here, we aimed to investigate the effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal barrier function. In vitro results using a Caco-2 monolayer cells stimulated with TNF-α confirmed the anti-inflammatory nature of the strain CNCM I-3690 and pointed out a putative role for the protection of the epithelial function. Next, we tested the protective effects of L. rhamnosus CNCM I-3690 in a mouse model of increased colonic permeability. Most importantly, we compared its performance to that of the well-known beneficial human commensal bacterium Faecalibacterium prauznitzii A2-165. Increased colonic permeability was normalized by both strains to a similar degree. Modulation of apical tight junction proteins expression was then analyzed to decipher the mechanism underlying this effect. We showed that CNCM I-3690 partially restored the function of the intestinal barrier and increased the levels of tight junction proteins Occludin and E-cadherin. The results indicate L. rhamnosus CNCM I-3690 is as effective as the commensal anti-inflammatory bacterium F. prausnitzii to treat functional barrier abnormalities.
Collapse
Affiliation(s)
- L Laval
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France,Danone Nutricia Research; Palaiseau, France
| | - R Martin
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France
| | - JN Natividad
- FarncombeFamily Digestive Health Research Institute; McMaster University; Hamilton, Canada
| | - F Chain
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France
| | - S Miquel
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France
| | | | | | - H Sokol
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France,ERL INSERM U 1057/UMR7203; Faculté de Médecine Saint-Antoine; Université Pierre et Marie Curie (UPMC); Paris, France,Service de Gastroentérologie; Hôpital Saint-Antoine; Assistance Publique – Hôpitaux de Paris (APHP); Paris, France
| | - EF Verdu
- FarncombeFamily Digestive Health Research Institute; McMaster University; Hamilton, Canada
| | | | - LG Bermúdez-Humarán
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France
| | - T Smokvina
- Danone Nutricia Research; Palaiseau, France
| | - P Langella
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France,Correspondence to: Philippe Langella;
| |
Collapse
|
192
|
Gut microbiota, the immune system, and diet influence the neonatal gut-brain axis. Pediatr Res 2015; 77:127-35. [PMID: 25303278 DOI: 10.1038/pr.2014.161] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/22/2014] [Indexed: 02/08/2023]
Abstract
The conceptual framework for a gut-brain axis has existed for decades. The Human Microbiome Project is responsible for establishing intestinal dysbiosis as a mediator of inflammatory bowel disease, obesity, and neurodevelopmental disorders in adults. Recent advances in metagenomics implicate gut microbiota and diet as key modulators of the bidirectional signaling pathways between the gut and brain that underlie neurodevelopmental and psychiatric disorders in adults. Evidence linking intestinal dysbiosis to neurodevelopmental disease outcomes in preterm infants is emerging. Recent clinical studies show that intestinal dysbiosis precedes late-onset neonatal sepsis and necrotizing enterocolitis in intensive care nurseries. Moreover, strong epidemiologic evidence links late-onset neonatal sepsis and necrotizing enterocolitis in long-term psychomotor disabilities of very-low-birth-weight infants. The notion of the gut-brain axis thereby supports that intestinal microbiota can indirectly harm the brain of preterm infants. In this review, we highlight the anatomy and physiology of the gut-brain axis and describe transmission of stress signals caused by immune-microbial dysfunction in the gut. These messengers initiate neurologic disease in preterm infants. Understanding neural and humoral signaling through the gut-brain axis will offer insight into therapeutic and dietary approaches that may improve the outcomes of very-low-birth-weight infants.
Collapse
|
193
|
Zhang D, Zhang L, Zheng Y, Yue F, Russell RD, Zeng Y. Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res Clin Pract 2014; 106:312-8. [PMID: 25238913 DOI: 10.1016/j.diabres.2014.08.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/30/2014] [Accepted: 08/22/2014] [Indexed: 01/20/2023]
Abstract
AIMS Studies suggest that type 2 diabetes mellitus is associated with increased gut permeability. Human zonulin is the only physiological mediator discovered to date that is known to regulate gut permeability reversibly by disassembling intestinal tight junctions. However, the relationship between zonulin and type 2 diabetes remains to be defined, and no Chinese population-based data were reported. The aim of this study was to investigate the association between serum zonulin levels and type 2 diabetes in a Chinese Han population. METHODS 143 newly diagnosed type 2 diabetes patients, 124 patients with impaired glucose tolerance and 121 subjects with normal glucose tolerance were enrolled in this study. Serum zonulin was measured by ELISA. RESULTS Patients with type 2 diabetes had higher serum zonulin levels than impaired or normal glucose tolerant subjects. Serum zonulin correlated with body mass index, waist-to-hip ratio, triglyceride, total cholesterol, HDL-C, fasting plasma glucose, 2h plasma glucose, HbA1c, tumor necrosis factor α, interleukin 6, HOMA-IR and QUICK index using correlation analysis (p < 0.05 for all). Multivariate stepwise regression analysis showed that zonulin levels were independently associated with insulin resistance (β = 0.024, p = 0.005). In logistic regression analysis, zonulin levels were an independent predictor of type 2 diabetes (OR = 1.080, p = 0.037). CONCLUSIONS Serum zonulin levels are significantly elevated in newly diagnosed Chinese Type 2 diabetes patients, and are associated with dyslipidemia, inflammation and insulin resistance, indicating a potential role of zonulin in the pathophysiology of type 2 diabetes in Chinese.
Collapse
Affiliation(s)
- D Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China.
| | - L Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Y Zheng
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - F Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - R D Russell
- School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Y Zeng
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| |
Collapse
|
194
|
Abstract
A large body of evidence suggests that the regulation of energy balance and glucose homeostasis by fermentable carbohydrates induces specific changes in the gut microbiota. Among the mechanisms, our research group and others have demonstrated that the gut microbiota fermentation (i.e., bacterial digestion of specific compounds) of specific prebiotics or other non-digestible carbohydrates is associated with the secretion of enteroendocrine peptides, such as the glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), produced by L-cells. In this review, we highlight past and recent results describing how dietary manipulation of the gut microbiota, using nutrients or specific microbes, can stimulate GLP-1 secretion in rodents and humans. Furthermore, the purpose of this review is to discuss the putative mechanisms by which specific bacterial metabolites, such as short chain fatty acids, trigger GLP-1 secretion through GPR41/43-dependent mechanisms. Moreover, we conclude by discussing the molecular advance showing that the endocannabinoid system or related bioactive lipids modulated by the gut microbiota may contribute to the regulation of glucose, lipid and energy homeostasis.
Collapse
Affiliation(s)
- Amandine Everard
- WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Université catholique de Louvain, Louvain Drug Research Institute, Av. E. Mounier, 73, Box B1.73.11, 1200, Brussels, Belgium
| | | |
Collapse
|
195
|
Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression. Nutr Res 2014; 34:789-96. [DOI: 10.1016/j.nutres.2014.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
|
196
|
Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr 2014; 112 Suppl 1:S1-18. [PMID: 24953670 PMCID: PMC4077244 DOI: 10.1017/s0007114514001275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present report describes the presentations delivered at the 7th International Yakult Symposium, ‘The Intestinal Microbiota and Probiotics: Exploiting Their Influence on Health’, in London on 22–23 April 2013. The following two themes associated with health risks were covered: (1) the impact of age and diet on the gut microbiota and (2) the gut microbiota's interaction with the host. The strong influence of the maternal gut microbiota on neonatal colonisation was reported, as well as rapid changes in the gut microbiome of older people who move from community living to residential care. The effects of dietary changes on gut metabolism were described and the potential influence of inter-individual microbiota differences was noted, in particular the presence/absence of keystone species involved in butyrate metabolism. Several speakers highlighted the association between certain metabolic disorders and imbalanced or less diverse microbiota. Data from metagenomic analyses and novel techniques (including an ex vivo human mucosa model) provided new insights into the microbiota's influence on coeliac, obesity-related and inflammatory diseases, as well as the potential of probiotics. Akkermansia muciniphila and Faecalibacterium prausnitzii were suggested as targets for intervention. Host–microbiota interactions were explored in the context of gut barrier function, pathogenic bacteria recognition, and the ability of the immune system to induce either tolerogenic or inflammatory responses. There was speculation that the gut microbiota should be considered a separate organ, and whether analysis of an individual's microbiota could be useful in identifying their disease risk and/or therapy; however, more research is needed into specific diseases, different population groups and microbial interventions including probiotics.
Collapse
|
197
|
Solga SF. Breath volatile organic compounds for the gut-fatty liver axis: Promise, peril, and path forward. World J Gastroenterol 2014; 20:9017-9025. [PMID: 25083075 PMCID: PMC4112861 DOI: 10.3748/wjg.v20.i27.9017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/15/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
The worldwide interest in the gut microbiome and its impact on the upstream liver highlight a critical upside to breath research: it can uniquely measure otherwise unmeasurable biology. Bacteria make gases [volatile organic compounds (VOCs)] that are directly relevant to pathophysiology of the fatty liver and associated conditions, including obesity. Measurement of these VOCs and their metabolites in the exhaled breath, therefore, present an opportunity to safely and easily evaluate, on both a personal and a population level, some of our most pressing public health threats. This is an opportunity that must be pursued. To date, however, breath analysis remains a slowly evolving field which only occasionally impacts clinical research or patient care. One major obstacle to progress is that breath analysis is inherently and emphatically mutli-disciplinary: it connects engineering, chemistry, breath mechanics, biology and medicine. Unbalanced or incomplete teams may produce inconsistent and often unsatisfactory results. A second impediment is the lack of a well-known stepwise structure for the development of non-invasive diagnostics. As a result, the breath research landscape is replete with orphaned single-center pilot studies. Often, important hypotheses and key observations have not been pursued to maturation. This paper reviews the rationale and requirements for breath VOC research applied to the gut-fatty liver axis and offers some suggestions for future development.
Collapse
|
198
|
Vogt LM, Meyer D, Pullens G, Faas MM, Venema K, Ramasamy U, Schols HA, de Vos P. Toll-like receptor 2 activation by β2→1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length-dependent manner. J Nutr 2014; 144:1002-8. [PMID: 24790027 DOI: 10.3945/jn.114.191643] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that β2→1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2 (TLR2), and we studied whether β2→1-fructan chain-length differences affect this process. T84 human intestinal epithelial cell monolayers were incubated with 4 β2→1-fructan formulations of different chain-length compositions and were stimulated with the proinflammatory phorbol 12-myristate 13-acetate (PMA). Transepithelial electrical resistance (TEER) was analyzed by electric cell substrate impedance sensing (ECIS) as a measure for tight junction-mediated barrier function. To confirm TLR2 involvement in barrier modulation by β2→1-fructans, ECIS experiments were repeated using TLR2 blocking antibody. After preincubation of T84 cells with short-chain β2→1-fructans, the decrease in TEER as induced by PMA (62.3 ± 5.2%, P < 0.001) was strongly attenuated (15.2 ± 8.8%, P < 0.01). However, when PMA was applied first, no effect on recovery was observed during addition of the fructans. By blocking TLR2 on the T84 cells, the protective effect of short-chain β2→1-fructans was substantially inhibited. Stimulation of human embryonic kidney human TLR2 reporter cells with β2→1-fructans induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells, confirming that β2→1-fructans are specific ligands for TLR2. To conclude, β2→1-fructans exert time-dependent and chain length-dependent protective effects on the T84 intestinal epithelial cell barrier mediated via TLR2. These results suggest that TLR2 located on intestinal epithelial cells could be a target of β2→1-fructan-mediated health effects.
Collapse
Affiliation(s)
- Leonie M Vogt
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands;
| | | | - Gerdie Pullens
- Cosun Food Technology Centre, Roosendaal, The Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Koen Venema
- TNO Quality of Life, Department of Biosciences, Zeist, The Netherlands; and
| | - Uttara Ramasamy
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
199
|
Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 2014; 19:447-64. [PMID: 24523032 PMCID: PMC4041942 DOI: 10.1007/s12192-014-0493-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 01/06/2023] Open
Abstract
Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease.
Collapse
Affiliation(s)
- Philip L. Hooper
- />Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Gabor Balogh
- />Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Eric Rivas
- />Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center, Dallas, TX USA
- />Department of Kinesiology, Texas Woman’s University, Denton, TX USA
| | - Kylie Kavanagh
- />Department of Pathology, Wake Forest School of Medicine, Winston–Salem, NC USA
| | - Laszlo Vigh
- />Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
200
|
Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 2014; 9:e92193. [PMID: 24670791 PMCID: PMC3966766 DOI: 10.1371/journal.pone.0092193] [Citation(s) in RCA: 419] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Background Diet-induced obesity (DIO) is a significant health concern which has been linked to structural and functional changes in the gut microbiota. Exercise (Ex) is effective in preventing obesity, but whether Ex alters the gut microbiota during development with high fat (HF) feeding is unknown. Objective Determine the effects of voluntary Ex on the gastrointestinal microbiota in LF-fed mice and in HF-DIO. Methods Male C57BL/6 littermates (5 weeks) were distributed equally into 4 groups: low fat (LF) sedentary (Sed) LF/Sed, LF/Ex, HF/Sed and HF/Ex. Mice were individually housed and LF/Ex and HF/Ex cages were equipped with a wheel and odometer to record Ex. Fecal samples were collected at baseline, 6 weeks and 12 weeks and used for bacterial DNA isolation. DNA was subjected both to quantitative PCR using primers specific to the 16S rRNA encoding genes for Bacteroidetes and Firmicutes and to sequencing for lower taxonomic identification using the Illumina MiSeq platform. Data were analyzed using a one or two-way ANOVA or Pearson correlation. Results HF diet resulted in significantly greater body weight and adiposity as well as decreased glucose tolerance that were prevented by voluntary Ex (p<0.05). Visualization of Unifrac distance data with principal coordinates analysis indicated clustering by both diet and Ex at week 12. Sequencing demonstrated Ex-induced changes in the percentage of major bacterial phyla at 12 weeks. A correlation between total Ex distance and the ΔCt Bacteroidetes: ΔCt Firmicutes ratio from qPCR demonstrated a significant inverse correlation (r2 = 0.35, p = 0.043). Conclusion Ex induces a unique shift in the gut microbiota that is different from dietary effects. Microbiota changes may play a role in Ex prevention of HF-DIO.
Collapse
Affiliation(s)
- Christian C. Evans
- Department of Physical Therapy, College of Health Sciences, Midwestern University, Downers Grove, Illinois, United States of America
- * E-mail:
| | - Kathy J. LePard
- Department of Physiology, College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Jeff W. Kwak
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, Illinois, United States of America
| | - Mary C. Stancukas
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, Illinois, United States of America
| | - Samantha Laskowski
- College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Joseph Dougherty
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, Illinois, United States of America
- Department of Dental Medicine, College of Dental Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Laura Moulton
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, Illinois, United States of America
| | - Adam Glawe
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, Illinois, United States of America
| | - Yunwei Wang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Vanessa Leone
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Dionysios A. Antonopoulos
- Institute for Genomics and Systems Biology, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Dan Smith
- Institute for Genomics and Systems Biology, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Mae J. Ciancio
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, Illinois, United States of America
| |
Collapse
|