151
|
Anderson AL, Sporici R, Lambris J, Larosa D, Levinson AI. Pathogenesis of B-cell superantigen-induced immune complex-mediated inflammation. Infect Immun 2006; 74:1196-203. [PMID: 16428769 PMCID: PMC1360360 DOI: 10.1128/iai.74.2.1196-1203.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal protein A (SpA) is representative of a new class of antigens, the B-cell superantigens (SAgs). These antigens bind to the Fab regions of immunoglobulin molecules outside their complementarity-determining regions. SpA, the best-studied B-cell SAg, reacts with the Fabs of most VH3+ immunoglobulins, which are expressed on 30 to 60% of human peripheral B cells. Therefore, B-cell SAgs like SpA have great potential to elicit inflammatory responses in vivo. We previously reported that the interaction of SpA with VH3+ immunoglobulin molecules leads to activation of the complement cascade and produces a histologic pattern of inflammation in the skin of a rabbit indicative of immune complex injury. To elucidate the cellular and molecular events contributing to this type of unconventional immune complex-mediated inflammation, we established a mouse peritoneal Arthus reaction model. Mice treated intravenously with human polyclonal immunoglobulin G (IgG), followed by intraperitoneal injection of SpA, showed neutrophil influx into the peritoneal cavity with peak numbers appearing at 8 h. This inflammatory reaction was dependent on the interaction of SpA with VH3+ IgG. Mast cells, FcgammaRIII, complement components, and tumor necrosis factor alpha play obligatory roles, and the reaction is associated with the local release of the CXC chemokines macrophage inflammatory protein 2 and KC. The data provide further compelling evidence for the induction of immune complex-mediated injury by a B-cell SAg and highlight important factors contributing to the pathogenesis of this novel type of inflammatory reaction.
Collapse
Affiliation(s)
- Amy L Anderson
- Allergy and Immunology Section, University of Pennsylvania School of Medicine, 421 Curie Boulevard, 1014 BRB II/III, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
152
|
Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 2006; 103:2328-33. [PMID: 16452172 PMCID: PMC1413680 DOI: 10.1073/pnas.0408835103] [Citation(s) in RCA: 503] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in industrialized nations, affecting 30-50 million people worldwide. The earliest clinical hallmark of AMD is the presence of drusen, extracellular deposits that accumulate beneath the retinal pigmented epithelium. Although drusen nearly always precede and increase the risk of choroidal neovascularization (CNV), the late vision-threatening stage of AMD, it is unknown whether drusen contribute to the development of CNV. Both in patients with AMD and in a recently described mouse model of AMD, early subretinal pigmented epithelium deposition of complement components C3 and C5 occurs, suggesting a contributing role for these inflammatory proteins in the development of AMD. Here we provide evidence that bioactive fragments of these complement components (C3a and C5a) are present in drusen of patients with AMD, and that C3a and C5a induce VEGF expression in vitro and in vivo. Further, we demonstrate that C3a and C5a are generated early in the course of laser-induced CNV, an accelerated model of neovascular AMD driven by VEGF and recruitment of leukocytes into the choroid. We also show that genetic ablation of receptors for C3a or C5a reduces VEGF expression, leukocyte recruitment, and CNV formation after laser injury, and that antibody-mediated neutralization of C3a or C5a or pharmacological blockade of their receptors also reduces CNV. Collectively, these findings establish a mechanistic basis for the clinical observation that drusen predispose to CNV, revealing a role for immunological phenomena in angiogenesis and providing therapeutic targets for AMD.
Collapse
Affiliation(s)
- Miho Nozaki
- *Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
| | - Brian J. Raisler
- *Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
| | - Eiji Sakurai
- *Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
| | - J. Vidya Sarma
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Scott R. Barnum
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yali Chen
- Department of Ophthalmology and Visual Science, Moran Eye Center and Program in Human Molecular Biology and Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84132; and
| | - Kang Zhang
- Department of Ophthalmology and Visual Science, Moran Eye Center and Program in Human Molecular Biology and Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84132; and
| | | | - Judit Z. Baffi
- *Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
| | - Jayakrishna Ambati
- *Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
153
|
Renckens R, Roelofs JJTH, ter Horst SAJ, van 't Veer C, Havik SR, Florquin S, Wagenaar GTM, Meijers JCM, van der Poll T. Absence of thrombin-activatable fibrinolysis inhibitor protects against sepsis-induced liver injury in mice. THE JOURNAL OF IMMUNOLOGY 2006; 175:6764-71. [PMID: 16272333 DOI: 10.4049/jimmunol.175.10.6764] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI), also known as carboxypeptidase R, has been implicated as an important negative regulator of the fibrinolytic system. In addition, TAFI is able to inactivate inflammatory peptides such as complement factors C3a and C5a. To determine the role of TAFI in the hemostatic and innate immune response to abdominal sepsis, TAFI gene-deficient (TAFI-/-) and normal wild-type mice received an i.p. injection with Escherichia coli. Liver TAFI mRNA and TAFI protein concentrations increased during sepsis. In contrast to the presumptive role of TAFI as a natural inhibitor of fibrinolysis, TAFI-/- mice did not show any difference in E. coli-induced activation of coagulation or fibrinolysis, as measured by plasma levels of thrombin-anti-thrombin complexes and D-dimer and the extent of fibrin depositions in lung and liver tissues. However, TAFI-/- mice were protected from liver necrosis as indicated by histopathology and clinical chemistry. Furthermore, TAFI-/- mice displayed an altered immune response to sepsis, as indicated by an increased neutrophil recruitment to the peritoneal cavity and a transiently increased bacterial outgrowth together with higher plasma TNF-alpha and IL-6 levels. These data argue against an important part for TAFI in the regulation of the procoagulant-fibrinolytic balance in sepsis and reveals a thus far unknown role of TAFI in the occurrence of hepatic necrosis.
Collapse
|
154
|
Mastellos D, Lambris JD. Cross-disciplinary research stirs new challenges into the study of the structure, function and systems biology of complement. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 586:1-16. [PMID: 16893061 DOI: 10.1007/0-387-34134-x_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Dimitrios Mastellos
- National Center for Scientific Research Demokritos, Aghia Paraskevi Attikis, Athens 15310, Greece
| | | |
Collapse
|
155
|
Addis-Lieser E, Köhl J, Chiaramonte MG. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis. THE JOURNAL OF IMMUNOLOGY 2005; 175:1894-902. [PMID: 16034133 DOI: 10.4049/jimmunol.175.3.1894] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms of idiopathic pulmonary fibrosis pathogenesis, a chronic and progressive interstitial lung disease, remain elusive. The complement system, a crucial arm of the innate immune response, plays a pivotal role in several pathological disorders; however, the contribution of individual complement components to lung fibrosis has not yet been examined. Complement factor 5 (C5) and its cleavage product C5a are critical mediators in inflammatory diseases. Thus, to evaluate the role of C5 in lung fibrosis, we compared congenic C5-sufficient and C5-deficient mice in a well-characterized murine model of bleomycin-induced pulmonary fibrosis. C5-deficient mice had an exaggerated inflammatory phenotype compared with C5-sufficient mice during acute bleomycin-induced lung injury. These findings suggest a protective and anti-inflammatory role for C5, which was linked to the regulation of matrix metalloproteinases involved in cell migration. In contrast, C5 had a detrimental effect during chronic stages of bleomycin-induced injury, indicating a profibrotic role for C5. This deleterious activity for C5 was associated with expression of the fibrogenic cytokine TGF-beta1 and matrix metalloproteinase-3, an important mediator in fibroblast contraction. Altogether, our data reveal novel and opposing roles for C5 in both inflammation and tissue repair. Furthermore, these findings provide insight into the development of new therapeutic strategies for idiopathic pulmonary fibrosis patients.
Collapse
Affiliation(s)
- Erin Addis-Lieser
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
156
|
Welch KD, Wen B, Goodlett DR, Yi EC, Lee H, Reilly TP, Nelson SD, Pohl LR. Proteomic identification of potential susceptibility factors in drug-induced liver disease. Chem Res Toxicol 2005; 18:924-33. [PMID: 15962927 DOI: 10.1021/tx050011b] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug-induced liver disease (DILD) causes significant morbidity and mortality and impairs new drug development. Currently, no known criteria can predict whether a drug will cause DILD or what risk factors make an individual susceptible. Although it has been shown in mouse studies that the disruption of key regulatory factors, such as cyclooxygenase-2 (COX-2), interleukin (IL)-6, and IL-10, increased susceptibility to DILD caused by acetaminophen (APAP), no single factor seems to be absolute. As an approach to better understand the multifactorial basis of DILD, we compared the hepatic proteome of mice that are resistant (SJL) and susceptible (C57Bl/6) to APAP-induced liver disease (AILD), using solution-based isotope-coded affinity tag (ICAT) liquid chromatography mass spectrometry. Several novel factors were identified that were more highly expressed in the livers of SJL mice, including those involved in stress response, cell proliferation and tissue regeneration, and protein modification, implicating these proteins as potential hepatoprotective factors. There was also a selective loss of several mitochondrial proteins from the livers of the susceptible C57Bl/6 mice, suggesting that the loss of functional mitochondria may indeed play a role in AILD. These findings indicate that comparative hepatic proteomic analyses of susceptible and resistant mouse strains may provide a global approach for identifying potential risk factors and mechanistic pathways responsible for DILD.
Collapse
Affiliation(s)
- Kevin D Welch
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Cramer DE, Allendorf DJ, Baran JT, Hansen R, Marroquin J, Li B, Ratajczak J, Ratajczak MZ, Yan J. Beta-glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood 2005; 107:835-40. [PMID: 16179370 PMCID: PMC1895628 DOI: 10.1182/blood-2005-07-2705] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelotoxic injury in the bone marrow (BM) as a consequence of total body irradiation (TBI) or granulocyte colony-stimulating factor (G-CSF) mobilization results in the deposition of iC3b on BM stroma (stroma-iC3b). In the present study, we have examined how stroma-iC3b interacts with hematopoietic progenitor cells (HPCs) and the role of complement (C) and complement receptor 3 (CR3) in BM injury/repair. We demonstrate here that stroma-iC3b tethers HPCs via the inserted (I) domain of HPC complement receptor 3 (CR3, CD11b/CD18, Mac-1). Following irradiation, stroma-iC3b was observed in the presence of purified IgM and normal mouse serum (NMS), but not serum from Rag-2(-/-) mice, implicating a role for antibody (Ab) and the classic pathway of C activation. Furthermore, a novel role for soluble yeast beta-glucan, a ligand for the CR3 lectin-like domain (LLD), in the priming of CR3(+) HPC is suggested. Soluble yeast beta-glucan could enhance the proliferation of tethered HPCs, promote leukocyte recovery following sublethal irradiation, and increase the survival of lethally irradiated animals following allogeneic HPC transplantation in a CR3-dependent manner. Taken together, these observations suggest a novel role for C, CR3, and beta-glucan in the restoration of hematopoiesis following injury.
Collapse
Affiliation(s)
- Daniel E Cramer
- Tumor Immunobiology Program, James Graham Brown Cancer Center, University of Louisville, 580 South Preston St, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Complement is part of the innate immune system, acting to protect the host from microorganisms such as bacteria, and other foreign and abnormal cells. Although primarily protective, complement activation can also cause damage to the host. In a number of inflammatory diseases, including rheumatoid arthritis and dermatitis, there is excessive and inappropriate complement activation. Many of the toxic effects seen in these conditions are attributable to the excessive production of the anaphylatoxin C5a, which may contribute to both the initiation and progression of the disease. Therefore, the regulation of C5a production and modulation of its function are good pharmacological targets in these disorders. As yet, there are no effective agents for the therapeutic regulation of C5a in routine clinical practice. This review describes the role of C5a in inflammatory disease, animal models used to study C5a-related effects, and current strategies aimed at regulating C5a. There is also a discussion of the strengths and weaknesses of these approaches, and an outline of the likely progress of this class of drugs in the future.
Collapse
Affiliation(s)
- Masashi Mizuno
- Department of Medical Biochemistry and Immunology, Cardiff University, School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
159
|
Hillebrandt S, Wasmuth HE, Weiskirchen R, Hellerbrand C, Keppeler H, Werth A, Schirin-Sokhan R, Wilkens G, Geier A, Lorenzen J, Köhl J, Gressner AM, Matern S, Lammert F. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 2005; 37:835-43. [PMID: 15995705 DOI: 10.1038/ng1599] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 05/19/2005] [Indexed: 02/06/2023]
Abstract
Fibrogenesis or scarring of the liver is a common consequence of all chronic liver diseases. Here we refine a quantitative trait locus that confers susceptibility to hepatic fibrosis by in silico mapping and show, using congenic mice and transgenesis with recombined artificial chromosomes, that the gene Hc (encoding complement factor C5) underlies this locus. Small molecule inhibitors of the C5a receptor had antifibrotic effects in vivo, and common haplotype-tagging polymorphisms of the human gene C5 were associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse quantitative trait gene led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that C5 has a causal role in fibrogenesis across species.
Collapse
Affiliation(s)
- Sonja Hillebrandt
- Department of Medicine III, University Hospital Aachen, Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Koch CA, Kanazawa A, Nishitai R, Knudsen BE, Ogata K, Plummer TB, Butters K, Platt JL. Intrinsic Resistance of Hepatocytes to Complement-Mediated Injury. THE JOURNAL OF IMMUNOLOGY 2005; 174:7302-9. [PMID: 15905577 DOI: 10.4049/jimmunol.174.11.7302] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When activated on or in the vicinity of cells, complement usually causes loss of function and sometimes cell death. Yet the liver, which produces large amounts of complement proteins, clears activators of complement and activated complexes from portal blood without obvious injury or impaired function. We asked whether and to what extent hepatocytes resist injury and loss of function mediated by exposure to complement. Using cells isolated from porcine livers as a model system, we found that, in contrast to endothelial cells, hepatocytes profoundly resist complement-mediated lysis and exhibit normal synthetic and conjugative functions when complement is activated on their surface. The resistance of hepatocytes to complement-mediated injury was not a function of cell surface control of the complement cascade but rather an intrinsic resistance of the cells dependent on the PI3K/Akt pathway. The resistance of hepatocytes to complement might be exploited in developing approaches to the treatment of hepatic failure or more broadly to the treatment of complement-mediated disease.
Collapse
Affiliation(s)
- Cody A Koch
- Transplantation Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Lappegård KT, Riesenfeld J, Brekke OL, Bergseth G, Lambris JD, Mollnes TE. Differential Effect of Heparin Coating and Complement Inhibition on Artificial Surface-Induced Eicosanoid Production. Ann Thorac Surg 2005; 79:917-23. [PMID: 15734405 DOI: 10.1016/j.athoracsur.2004.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Contact between blood and artificial surfaces induces an inflammatory response including activation of leukocytes and platelets, as well as complement and other plasma cascade systems. In the present study we investigated the roles of complement and surface modification in polyvinyl chloride-induced synthesis of eicosanoids (arachidonic acid metabolites). METHODS Human whole blood was incubated in rotating loops of polyvinyl chloride or heparin-coated polyvinyl chloride tubing for 4 hours. Plasma concentrations of the eicosanoids leukotriene B4, prostaglandin E2 and thromboxane B2 were quantified. RESULTS Polyvinyl chloride induced a substantial increase in leukotriene B4, prostaglandin E2, and thromboxane B2. Inhibition of complement activation by the complement factor 3 binding peptide compstatin or blockade of the complement factor 5a receptor with a specific antagonist significantly and specifically inhibited the synthesis of leukotriene B4, whereas thromboxane B2 and prostaglandin E2 synthesis were apparently complement independent. The increase in all three mediators was significantly reduced by the heparin coating. Indomethacin abolished the increase of the cyclooxygenase products prostaglandin E2 and thromboxane B2, but had no effect on the increase of the lipoxygenase product leukotriene B4, consistent with the specificity of indomethacin for the cyclooxygenase and confirming the specificity of complement inhibition. CONCLUSIONS Polyvinyl chloride-induced increase in all three eicosanoids was attenuated by heparin coating, whereas complement inhibition selectively reduced the synthesis of leukotriene B4.
Collapse
Affiliation(s)
- Knut Tore Lappegård
- Department of Medicine, Nordland Hospital, Bodø and University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
162
|
Hunt JR, Martin CB, Martin BK. Transcriptional regulation of the murine C5a receptor gene: NF-Y is required for basal and LPS induced expression in macrophages and endothelial cells. Mol Immunol 2005; 42:1405-15. [PMID: 15950736 DOI: 10.1016/j.molimm.2005.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The anaphylatoxin receptors of the complement system are important in immune defense but also play a role in autoimmune disease. Reports have demonstrated induced C5a receptor (C5aR) expression in a number of disease states, yet little is known about the regulation of this gene. We have examined sequences in the presumptive promoter-enhancer region in order to study the regulation of this gene. Rapid amplification of cDNA ends (RACE) analyses were used to identify the transcriptional start site, and we then cloned 2278 bp of sequence from this region for use in luciferase assays. Deletion analyses of 5' sequences demonstrated that the majority of this region is dispensable for expression in macrophages and endothelial cells (ECs). A 232 bp region proximal to the transcription start site was fully capable of directing expression in macrophages and ECs, while being minimally active in cells that do not express the receptor. The transcriptional regulatory site most critical for this expression matches the consensus sequence for nuclear factor-Y (NF-Y) at position -96. Site-directed mutagenesis of this site resulted in a 70-90% decrease in luciferase activity depending on the cell type. Electrophoretic mobility shift/supershift assay (EMSA) analyses demonstrated the specific binding of NF-Y to labeled oligonucleotides containing the putative CCAAT site with macrophages and EC nuclear extracts, and antibodies to NF-Y were able to supershift this -96 NF-Y complex. We also demonstrate LPS leads to enhanced C5aR transcription and this is mediated predominantly through the NF-Y site. The data reported in this study might be critical for determination of transcription factors that can be targeted pharmacologically to modulate the expression of the C5aR in infectious disease or autoimmunity.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- CCAAT-Binding Factor/metabolism
- Cell Line
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation/drug effects
- Humans
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Anaphylatoxin C5a/genetics
- Sequence Deletion
- Sequence Homology, Nucleic Acid
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Jason R Hunt
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
163
|
Lange S, Dodds AW, Gudmundsdóttir S, Bambir SH, Magnadóttir B. The ontogenic transcription of complement component C3 and Apolipoprotein A-I tRNA in Atlantic cod (Gadus morhua L.)--a role in development and homeostasis? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:1065-77. [PMID: 15936076 DOI: 10.1016/j.dci.2005.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/15/2005] [Accepted: 03/21/2005] [Indexed: 05/02/2023]
Abstract
The complement system is important both in the innate and adaptive immune response, with C3 as the central protein of all three activation pathways. Apolipoprotein A-I (ApoLP A-I), a high-density lipoprotein (HDL), has been shown to have a regulatory role in the complement system by inhibiting the formation of the membrane attack complex (MAC). Complement has been associated with apoptotic functions, which are important in the immune response and are involved in organ formation and homeostasis. mRNA probes for cod C3 and ApoLP A-I were synthesized and in situ hybridisation used to monitor the ontogenic development of cod from fertilised eggs until 57 days after hatching. Both C3 and ApoLP A-I transcription was detected in the central nervous system (CNS), eye, kidney, liver, muscle, intestines, skin and chondrocytes at different stages of development. Using TUNEL staining, apoptotic cells were identified within the same areas from 4 to 57 days posthatching. The present findings may suggest a role for C3 and ApoLP A-I during larval development and a possible role in the homeostasis of various organs in cod.
Collapse
Affiliation(s)
- Sigrun Lange
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, Reykjavik IS-112, Iceland.
| | | | | | | | | |
Collapse
|
164
|
Nonaka H, Sugano S, Miyajima A. Serial analysis of gene expression in sinusoidal endothelial cells from normal and injured mouse liver. Biochem Biophys Res Commun 2004; 324:15-24. [PMID: 15464976 DOI: 10.1016/j.bbrc.2004.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 01/13/2023]
Abstract
Here we describe gene expression profiles of mouse liver sinusoidal endothelial cells (LSECs) revealed by serial analysis of gene expression (SAGE). We prepared SAGE libraries of LSECs from normal and injured liver by CCl(4) administration, and we obtained 32,867 tags from normal and 37,493 tags from injured liver, representing 6011 unique transcripts. CCl(4) administration upregulated several genes related to cell growth and differentiation (Cdkn1a, Irf1, Il4ra, etc.), whereas it downregulated genes related to cell growth or protein transport (Kdr, Igfbp4, Ap1b1, etc.). To identify genes preferentially expressed in LSEC, we compared our SAGE libraries with 77 publicly available libraries generated from various mouse tissues and cell lines. We identified 23 genes, including Stab2 and uncharacterized genes, as possible markers for LSEC, which will be useful to analyze the specific role for LSECs in normal as well as regenerating liver.
Collapse
Affiliation(s)
- Hidenori Nonaka
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
165
|
Sewell DL, Nacewicz B, Liu F, Macvilay S, Erdei A, Lambris JD, Sandor M, Fabry Z. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J Neuroimmunol 2004; 155:55-63. [PMID: 15342196 PMCID: PMC4766842 DOI: 10.1016/j.jneuroim.2004.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/01/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
The role of complement components in traumatic brain injury is poorly understood. Here we show that secondary damage after acute cryoinjury is significantly reduced in C3-/- or C5-/- mice or in mice treated with C5a receptor antagonist peptides. Injury sizes and neutrophil extravasation were compared. While neutrophil density increased following traumatic brain injury in wild type (C57BL/6) mice, C3-deficient mice demonstrated lower neutrophil extravasation and injury sizes in the brain. RNase protection assay indicated that C3 contributes to the induction of brain inflammatory mediators, MIF, RANTES (CCL5) and MCP-1 (CCL2). Intracranial C3 injection induced neutrophil extravasation in injured brains of C3-/- mice suggesting locally produced C3 is important in brain inflammation. We show that neutrophil extravasation is significantly reduced in both C5-/- mice and C5a receptor antagonist treated cryoinjured mice suggesting that one of the possible mechanisms of C3 effect on neutrophil extravasation is mediated via downstream complement activation products such as C5a. Our data indicates that complement inhibitors may ameliorate traumatic brain injury.
Collapse
Affiliation(s)
- Diane L. Sewell
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Brendon Nacewicz
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Frances Liu
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Sinarack Macvilay
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Anna Erdei
- Department of Immunology, Eotvos L. University, Budapest, Hungary
| | - John D. Lambris
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, 402 Stellar Chance, Philadelphia, PA 19104, USA
| | - Matyas Sandor
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Zsuzsa Fabry
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Corresponding author. Tel.: +1-608-265-8716; fax: +1-608-265-3301. (Z. Fabry)
| |
Collapse
|
166
|
Arumugam TV, Shiels IA, Woodruff TM, Granger DN, Taylor SM. The role of the complement system in ischemia-reperfusion injury. Shock 2004; 21:401-9. [PMID: 15087815 DOI: 10.1097/00024382-200405000-00002] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a common clinical event with the potential to seriously affect, and sometimes kill, the patient. Interruption of blood supply causes ischemia, which rapidly damages metabolically active tissues. Paradoxically, restoration of blood flow to the ischemic tissues initiates a cascade of pathology that leads to additional cell or tissue injury. I/R is a potent inducer of complement activation that results in the production of a number of inflammatory mediators. The use of specific inhibitors to block complement activation has been shown to prevent local tissue injury after I/R. Clinical and experimental studies in gut, kidney, limb, and liver have shown that I/R results in local activation of the complement system and leads to the production of the complement factors C3a, C5a, and the membrane attack complex. The novel inhibitors of complement products may find wide clinical application because there are no effective drug therapies currently available to treat I/R injuries.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | |
Collapse
|
167
|
Abstract
The unusual regenerative properties of the liver are a logical adaptation by organisms, as the liver is the main detoxifying organ of the body and is likely to be injured by ingested toxins. The numerous cytokine- and growth-factor-mediated pathways that are involved in regulating liver regeneration are being successfully dissected using molecular and genetic approaches. So what is known about this process at present and which questions remain?
Collapse
Affiliation(s)
- Rebecca Taub
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19004, USA.
| |
Collapse
|
168
|
Kim AHJ, Dimitriou ID, Holland MCH, Mastellos D, Mueller YM, Altman JD, Lambris JD, Katsikis PD. Complement C5a receptor is essential for the optimal generation of antiviral CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2004; 173:2524-9. [PMID: 15294968 DOI: 10.4049/jimmunol.173.4.2524] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The complement system has been long regarded as an important effector of the innate immune response. Furthermore, complement contributes to various aspects of B and T cell immunity. Nevertheless, the role of complement in CD8(+) T cell antiviral responses has yet to be fully delineated. We examined the CD8(+) T cell response in influenza type A virus-infected mice treated with a peptide antagonist to C5aR to test the potential role of complement components in CD8(+) T cell responses. We show that both the frequency and absolute numbers of flu-specific CD8(+) T cells are greatly reduced in C5aR antagonist-treated mice compared with untreated mice. This reduction in flu-specific CD8(+) T cells is accompanied by attenuated antiviral cytolytic activity in the lungs. These results demonstrate that the binding of the C5a component of complement to the C5a receptor plays an important role in CD8(+) T cell responses.
Collapse
Affiliation(s)
- Alfred H J Kim
- Department of Microbiology and Immunology and Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Daveau M, Benard M, Scotte M, Schouft MT, Hiron M, Francois A, Salier JP, Fontaine M. Expression of a functional C5a receptor in regenerating hepatocytes and its involvement in a proliferative signaling pathway in rat. THE JOURNAL OF IMMUNOLOGY 2004; 173:3418-24. [PMID: 15322206 DOI: 10.4049/jimmunol.173.5.3418] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activation of the complement system generates the anaphylatoxin C5a whose activities are mediated through its binding to the widely expressed C5aR. C5aR mRNA and protein expressions are known to be induced in rat hepatocytes under inflammatory conditions. However, little is known about the role of the C5a/C5aR complex in liver and its involvement during a proliferative process. We have evaluated the expression of C5aR in regenerating rat hepatocytes following a partial hepatectomy and in hepatocyte cultures. C5aR induction was observed in hepatocytes from regenerating liver, as well as in normal hepatocytes under a culture-induced stress. The effect of a stimulation by a C5a agonist upon the synthesis of a growth factor/receptor pair (hepatocyte growth factor/c-Met) was also evaluated. Our data demonstrated an up-regulated expression of hepatocyte growth factor and c-Met mRNAs, but we failed to observe a direct mitogenic effect of C5a in culture. However, a significantly increased expression of cyclin E and D1mRNA levels, as well as an increased BrdU incorporation, were observed in rats given an i.v. C5a agonist injection following an 80% partial hepatectomy. These studies demonstrate for the first time that: 1) C5aR is up-regulated during liver regeneration, 2) the binding of C5a to C5aR promotes a growth response, and 3) C5aR is involved in a cell cycle signaling pathway. Taken together, these findings point to a novel role for the hepatic C5aR implicating this complement system in the context of normal or abnormal proliferative pathways.
Collapse
Affiliation(s)
- Maryvonne Daveau
- Institut National de la Santé et de la Recherche Médicale, Unit 519, Faculté de Médecine-Pharmacie, Rouen, France
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Markiewski MM, Mastellos D, Tudoran R, DeAngelis RA, Strey CW, Franchini S, Wetsel RA, Erdei A, Lambris JD. C3a and C3b Activation Products of the Third Component of Complement (C3) Are Critical for Normal Liver Recovery after Toxic Injury. THE JOURNAL OF IMMUNOLOGY 2004; 173:747-54. [PMID: 15240660 DOI: 10.4049/jimmunol.173.2.747] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the complement system has been implicated in liver regeneration after toxic injury and partial hepatectomy, the mechanism or mechanisms through which it participates in these processes remains ill-defined. In this study, we demonstrate that complement activation products (C3a, C3b/iC3b) are generated in the serum of experimental mice after CCl(4) injection and that complement activation is required for normal liver regeneration. Decomplementation by cobra venom factor resulted in impaired entry of hepatocytes into S phase of the cell cycle. In addition, livers from C3-deficient (C3(-/-)) mice showed similarly impaired proliferation of hepatocytes, along with delayed kinetics of both hepatocyte hyperplasia and removal of injured liver parenchyma. Restoration of hepatocyte proliferative capabilities of C3(-/-) mice through C3a reconstitution, as well as the impaired regeneration of C3a receptor-deficient mice, demonstrated that C3a promotes liver cell proliferation via the C3a receptor. These findings, together with data showing two waves of complement activation, indicate that C3 activation is a pivotal mechanism for liver regeneration after CCl(4) injury, which fulfills multiple roles; C3a generated early after toxin injection is relevant during the priming of hepatocytes, whereas C3 activation at later times after CCl(4) treatment contributes to the clearance of injured tissue.
Collapse
Affiliation(s)
- Maciej M Markiewski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Pekny M, Pekna M, Wilhelmsson U, Chen DF. Response to Quinlan and Nilsson: Astroglia sitting at the controls? Trends Neurosci 2004; 27:243-4. [PMID: 15111004 DOI: 10.1016/j.tins.2004.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Milos Pekny
- Department of Medical Biochemistry, Sahlgrenska Academy at Göteborg University, Medicinaregatan 9A, SE-413 90 Göteborg, Sweden.
| | | | | | | |
Collapse
|
172
|
Lappegård KT, Fung M, Bergseth G, Riesenfeld J, Lambris JD, Videm V, Mollnes TE. Effect of complement inhibition and heparin coating on artificial surface-induced leukocyte and platelet activation. Ann Thorac Surg 2004; 77:932-41. [PMID: 14992902 DOI: 10.1016/s0003-4975(03)01519-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND Exposure of blood to artificial surfaces, as in cardiopulmonary bypass, induces an inflammatory response involving complement, leukocyte and platelet activation. To elucidate the specific role of complement in this process, studies were performed on blood circulated in polyvinyl chloride tubing in the absence and presence of complement inhibitors. Parallel experiments were performed with heparin-coated polyvinyl chloride tubing, which is known to prevent complement and cell activation. METHODS A novel experimental model was used, based on human whole blood anticoagulated with lepirudin. Complement activation products, myeloperoxidase, lactoferrin, and thrombospondin were quantified in enzyme immunoassays. Leukocyte CD11b expression and leukocyte-platelet conjugates were detected by flow cytometry. RESULTS Increased levels of C3 activation products, alternative pathway convertase, and the terminal SC5b-9 complex, combined with unchanged levels of C1rs-C1-inhibitor complexes and marginal changes in C4 activation demonstrated that complement was activated through the alternative pathway. Granulocyte and monocyte CD11b expression and granulocyte-platelet conjugate formation were efficiently attenuated by blocking either factor D, C3, C5, or C5a receptor. In contrast, monocyte-platelet conjugate formation and release of myeloperoxidase, lactoferrin, and thrombospondin were not reduced by complement inhibition. Heparin-coated polyvinyl chloride tubing efficiently reduced all inflammatory markers studied, except for C1rs-C1-inhibitor complexes, which increased, consistent with the enhancing effect of heparin on C1-inhibitor function. This effect did not, however, reduce fluid-phase classic pathway activation induced by heat-aggregated immunoglobulin G. CONCLUSIONS Leukocyte and platelet activation in response to artificial materials occur by mechanisms that vary in their dependence on complement. Heparin coating precludes both the complement-dependent and complement-independent reactions.
Collapse
Affiliation(s)
- Knut Tore Lappegård
- Department of Medicine, Nordland Hospital, Bodø, and University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
173
|
Mastellos D, Morikis D, Isaacs SN, Holland MC, Strey CW, Lambris JD. Complement: structure, functions, evolution, and viral molecular mimicry. Immunol Res 2004; 27:367-86. [PMID: 12857982 DOI: 10.1385/ir:27:2-3:367] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The complement (C') system has long been recognized as an important mediator of innate immune defense and inflammation. In recent years there is increasing evidence suggesting that complement components may also participate in non-inflammatory and developmental processes. Here we review our current work on the structural-functional aspects of C3-ligand interactions and the rational design of small-sized complement inhibitors. We present a novel, proteomics-based, approach to studying protein-protein interactions within the C' system and discuss our progress in the study of viral immune evasion strategies. Furthermore we discuss the involvement of complement proteins in organ regeneration and hematopoietic development.
Collapse
Affiliation(s)
- Dimitrios Mastellos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
174
|
Lange S, Bambir S, Dodds AW, Magnadóttir B. The ontogeny of complement component C3 in Atlantic cod (Gadus morhua L.)--an immunohistochemical study. FISH & SHELLFISH IMMUNOLOGY 2004; 16:359-367. [PMID: 15123303 DOI: 10.1016/j.fsi.2003.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2003] [Revised: 06/16/2003] [Accepted: 06/27/2003] [Indexed: 05/24/2023]
Abstract
The complement system in fish is well developed and plays an important role in the immune response. Very little is known about the ontogeny of C3 in fish and no study has previously been done on the development of C3 in teleosts. In this study we have detected the presence of C3 in cod larvae from the age of 1 day post hatching (p.h.) till 57 days p.h., using immunohistochemistry. The specific primary antibodies used, were produced against the beta-chain of cod C3. Immunostaining on cod larvae sections revealed that C3 is detectable in the yolksac membrane from day 1 p.h., and in liver, brain, kidney and muscle from day 2 p.h. C3 was also detected in other organs such as eye, notochord, stomach, intestines, pancreas, heart and gills at different stages of cod larval development. These findings suggest that complement is not only important in immune defence against invading pathogens but may also play a role in the formation and generation of different organs.
Collapse
Affiliation(s)
- Sigrun Lange
- Institute for Experimental Pathology, University of Iceland, Keldur, IS-112 Reykjavík, Iceland.
| | | | | | | |
Collapse
|
175
|
Girardi G, Berman J, Redecha P, Spruce L, Thurman JM, Kraus D, Hollmann TJ, Casali P, Caroll MC, Wetsel RA, Lambris JD, Holers VM, Salmon JE. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 2003. [DOI: 10.1172/jci200318817] [Citation(s) in RCA: 488] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
176
|
Girardi G, Berman J, Redecha P, Spruce L, Thurman JM, Kraus D, Hollmann TJ, Casali P, Caroll MC, Wetsel RA, Lambris JD, Holers VM, Salmon JE. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 2003; 112:1644-54. [PMID: 14660741 PMCID: PMC281643 DOI: 10.1172/jci18817] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Accepted: 09/23/2003] [Indexed: 02/01/2023] Open
Abstract
Antiphospholipid syndrome (APS) is defined by recurrent pregnancy loss and thrombosis in the presence of antiphospholipid (aPL) Ab's. Currently, therapy for pregnant women with APS is focused on preventing thrombosis, but anticoagulation is only partially successful in averting miscarriage. We hypothesized that complement activation is a central mechanism of pregnancy loss in APS and tested this in a model in which pregnant mice receive human IgG containing aPL Ab's. Here we identify complement component C5 (and particularly its cleavage product C5a) and neutrophils as key mediators of fetal injury, and we show that Ab's or peptides that block C5a-C5a receptor interactions prevent pregnancy complications. The fact that F(ab)'2 fragments of aPL Ab's do not mediate fetal injury and that C4-deficient mice are protected from fetal injury suggests that activation of the complement cascade is initiated via the classical pathway. Studies in factor B-deficient mice, however, indicate that alternative pathway activation is required and amplifies complement activation. In contrast, activating Fc gamma Rs do not play an important role in mediating aPL Ab-induced fetal injury. Our findings identify the key innate immune effectors engaged by pathogenic autoantibodies that mediate poor pregnancy outcomes in APS and provide novel and important targets for prevention of pregnancy loss in APS.
Collapse
Affiliation(s)
- Guillermina Girardi
- Department of Medicine, Hospital for Special Surgery-Weill Medical College, Cornell University, 535 East 70th Street, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Fleming SD, Mastellos D, Karpel-Massler G, Shea-Donohue T, Lambris JD, Tsokos GC. C5a causes limited, polymorphonuclear cell-independent, mesenteric ischemia/reperfusion-induced injury. Clin Immunol 2003; 108:263-73. [PMID: 14499250 DOI: 10.1016/s1521-6616(03)00160-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
C5 is critical in the development of local mucosal damage and inflammation as well as in the development of remote organ injury after mesenteric ischemia/reperfusion (IR). To define the role of C5a in tissue injury, we treated wild-type mice with a cyclic hexapeptide C5a receptor antagonist (C5aRa) and administered recombinant C5a to C5 deficient (C5(-/-)) mice subjected to mesenteric IR. We demonstrate that at 2-h postreperfusion, C5a administered to C5-/- mice during IR induces limited intestinal mucosal injury but failed to cause remote lung injury despite the fact that it upregulated adhesion molecule expression. C5aRa treatment of C5+/+ mice undergoing IR limited local injury and prevented distant organ injury. We conclude that although C5a can trigger certain components of the IR induced injury, other mediators such as C5b-9 and local factors are needed for the complete expression of IR tissue damage.
Collapse
Affiliation(s)
- Sherry D Fleming
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | |
Collapse
|
178
|
Otto M, Hawlisch H, Monk PN, Müller M, Klos A, Karp CL, Köhl J. C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J Biol Chem 2003; 279:142-51. [PMID: 14570896 DOI: 10.1074/jbc.m310078200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anaphylatoxin C5a exerts a plethora of biologic activities critical in the pathogenesis of systemic inflammatory diseases. Recently, we reported on a C5a mutant, jun/fos-A8, as a potent antagonist for the human and mouse C5a receptor (CD88). Addressing the molecular mechanism accounting for CD88 receptor antagonism by site-directed mutagenesis, we found that a positively charged amino acid at position 69 is crucial. Replacements by either hydrophobic or negatively charged amino acids switched the CD88 antagonist jun/fos-A8 to a CD88 agonist. In addition to CD88, the seven-transmembrane receptor C5L2 has recently been found to provide high affinity binding sites for C5a and its desarginated form, C5adesArg74. A jun/fos-A8 mutant in which the jun/ fos moieties and amino acids at positions 71-73 were deleted, A8Delta71-73, blocked C5a and C5adesArg74 binding to CD88 and C5L2. In contrast, the cyclic C5a C-terminal analog peptide AcF-[OP-d-ChaWR] inhibited binding of the two anaphylatoxins to CD88 but not to C5L2, suggesting that the C5a core segment is important for high affinity binding to C5L2. Both receptors are coexpressed on human monocytes and the human mast cell line HMC-1; however, C5L2 expression on monocytes is weaker as compared with HMC-1 cells and highly variable. In contrast, no C5L2 expression was found on human neutrophils. A8Delta71-73 is the first antagonist that blocks C5a and C5adesArg74 binding to both C5a receptors, CD88 and C5L2, making it a valuable tool for studying C5L2 functions and for blocking the biological activities of C5a and C5adesArg74 in mice and humans.
Collapse
Affiliation(s)
- Magnus Otto
- Institute of Medical Microbiology, Medical School Hannover, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
179
|
Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA, Greenbaum LE, Lambris JD. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 2003; 198:913-23. [PMID: 12975457 PMCID: PMC2194207 DOI: 10.1084/jem.20030374] [Citation(s) in RCA: 325] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complement has been implicated in liver repair after toxic injury. Here, we demonstrate that complement components are essential for liver regeneration, and mediate their effect by interacting with key signaling networks that promote hepatocyte proliferation. C3- or C5-deficient mice exhibited high mortality, parenchymal damage, and impaired liver regeneration after partial hepatectomy. Mice with dual C3 and C5 deficiency had a more exacerbated phenotype that was reversed by combined C3a and C5a reconstitution. Interception of C5a receptor signaling resulted in suppression of IL-6/TNFalpha induction and lack of C3 and C5a receptor stimulation attenuated nuclear factor-kappaB/STAT-3 activation after hepatectomy. These data indicate that C3a and C5a, two potent inflammatory mediators of the innate immune response, contribute essentially to the early priming stages of hepatocyte regeneration.
Collapse
Affiliation(s)
- Christoph W Strey
- Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Kalant D, Cain SA, Maslowska M, Sniderman AD, Cianflone K, Monk PN. The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg77/acylation-stimulating protein. J Biol Chem 2003; 278:11123-9. [PMID: 12540846 DOI: 10.1074/jbc.m206169200] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orphan receptor C5L2 has recently been described as a high affinity binding protein for complement fragments C5a and C3a that, unlike the previously described C5a receptor (CD88), couples only weakly to G(i)-like G proteins (Cain, S. A., and Monk, P. N. (2002) J. Biol. Chem. 277, 7165-7169). Here we demonstrate that C5L2 binds the metabolites of C4a and C3a, C4a des-Arg(77), and C3a des-Arg(77) (also known as the acylation-stimulating protein or ASP) at a site distinct from the C5a binding site. The binding of these metabolites to C5L2 does not stimulate the degranulation of transfected rat basophilic leukemia cells either through endogenous rat G proteins or when co-transfected with human G(alpha 16). C3a des-Arg(77)/ASP and C3a can potently stimulate triglyceride synthesis in human skin fibroblasts and 3T3-L1 preadipocytes. Here we show that both cell types and human adipose tissue express C5L2 mRNA and that the human fibroblasts express C5L2 protein at the cell surface. This is the first demonstration of the expression of C5L2 in cells that bind and respond to C3a des-Arg(77)/ASP and C3a. Thus C5L2, a promiscuous complement fragment-binding protein with a high affinity site that binds C3a des-Arg(77)/ASP, may mediate the acylation-stimulating properties of this peptide.
Collapse
Affiliation(s)
- David Kalant
- Mike Rosenbloom Laboratory for Cardiovascular Research, Division of Medicine, McGill University Health Centre, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
181
|
Kimura Y, Madhavan M, Call MK, Santiago W, Tsonis PA, Lambris JD, Del Rio-Tsonis K. Expression of complement 3 and complement 5 in newt limb and lens regeneration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2331-9. [PMID: 12594255 DOI: 10.4049/jimmunol.170.5.2331] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Some urodele amphibians possess the capacity to regenerate their body parts, including the limbs and the lens of the eye. The molecular pathway(s) involved in urodele regeneration are largely unknown. We have previously suggested that complement may participate in limb regeneration in axolotls. To further define its role in the regenerative process, we have examined the pattern of distribution and spatiotemporal expression of two key components, C3 and C5, during limb and lens regeneration in the newt Notophthalmus viridescens. First, we have cloned newt cDNAs encoding C3 and C5 and have generated Abs specifically recognizing these molecules. Using these newt-specific probes, we have found by in situ hybridization and immunohistochemical analysis that these molecules are expressed during both limb and lens regeneration, but not in the normal limb and lens. The C3 and C5 proteins were expressed in a complementary fashion during limb regeneration, with C3 being expressed mainly in the blastema and C5 exclusively in the wound epithelium. Similarly, during the process of lens regeneration, C3 was detected in the iris and cornea, while C5 was present in the regenerating lens vesicle as well as the cornea. The distinct expression profile of complement proteins in regenerative tissues of the urodele lens and limb supports a nonimmunologic function of complement in tissue regeneration and constitutes the first systematic effort to dissect its involvement in regenerative processes of lower vertebrate species.
Collapse
Affiliation(s)
- Yuko Kimura
- Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Fukuoka Y, Strainic M, Medof ME. Differential cytokine expression of human retinal pigment epithelial cells in response to stimulation by C5a. Clin Exp Immunol 2003; 131:248-53. [PMID: 12562384 PMCID: PMC1808636 DOI: 10.1046/j.1365-2249.2003.02087.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human retinal pigment epithelial (RPE) cells form part of the blood-retina barrier where they potentially can regulate leucocyte function. RPE cells are known to secrete several cytokines in response to stimulation by other cytokines. Anaphylatoxin C5a, a potent inflammatory mediator produced during complement activation, binds to G-protein coupled C5a receptors (C5aR) on monocytes/macrophages and releases various cytokines from the cells. We previously reported that the human RPE cell line ARPE-19 possesses C5aR and expresses IL-8 mRNA in response to C5a stimulation. In this study, we used a primary human RPE cell line (RPE43) and found that C5a induces increased expression of IL-1beta, IL-6, MCP-1 and GM-CSF mRNAs as well as IL-8 mRNA. ARPE-19 cells showed similar increases in the same cytokines. Interestingly, the kinetics of expression of the various cytokines differed. These results provide further evidence that C5a stimulation of RPE cells may play a role in regulating leucocyte function during ocular inflammation in which there is complement activation.
Collapse
Affiliation(s)
- Y Fukuoka
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
183
|
Fleming SD, Anderson J, Wilson F, Shea-Donohue T, Tsokos GC. C5 is required for CD49d expression on neutrophils and VCAM expression on vascular endothelial cells following mesenteric ischemia/reperfusion. Clin Immunol 2003; 106:55-64. [PMID: 12584052 DOI: 10.1016/s1521-6616(02)00021-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Complement activation is critical in the development of local mucosal damage and inflammation as well as of remote organ injury after mesenteric ischemia/reperfusion. To further define the role of C5 activation in local and remote tissue injury, C5 deficient (C5(-/-)) and wild-type control (C5(+/+)) mice treated with an anti-C5 mAb were subjected to sham or ischemia followed by up to 4 h of reperfusion. The development of local (intestinal) and remote (lung) injury was associated with the expression of CD49d on the surface of circulating blood neutrophils and with VCAM on the endothelial cells of intestinal and lung vessels. Because CD49d heterodimerizes with integrin beta1 on the surface of neutrophils and can bind VCAM on the endothelium, we propose that complement activation causes organ damage by upregulating molecules that lead to inappropriate homing of neutrophils.
Collapse
Affiliation(s)
- Sherry D Fleming
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | | | |
Collapse
|
184
|
Abstract
Recent studies have indicated that complement proteins might exert novel functions that are distinct from their well-established inflammatory role, by modulating cellular responses and cell-cell interactions that are crucial to early development and cell differentiation. Accumulating evidence suggests that complement might have important roles in diverse biologic processes, ranging from early hematopoiesis to skeletal and vascular development and normal reproduction. Furthermore, it is now becoming evident that complement-regulated pathways interact with other signaling networks and influence the outcome of complex developmental programs, such as limb regeneration in lower vertebrates and organ regeneration in mammals. These findings highlight a previously under-appreciated role of complement and might have important implications in the context of normal development by helping to elucidate the rather obscure role of innate immunity in such cell modulatory pathways.
Collapse
Affiliation(s)
- Dimitrios Mastellos
- The Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar-Chance Laboratories, Philadelphia, PA 19104, USA
| | | |
Collapse
|
185
|
Davidson B, Swalla BJ. A molecular analysis of ascidian metamorphosis reveals activation of an innate immune response. Development 2002; 129:4739-51. [PMID: 12361966 DOI: 10.1242/dev.129.20.4739] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ascidian metamorphosis represents a powerful model for comparative work on chordate development that has remained largely unexplored. We isolated transcripts differentially expressed during metamorphosis in the ascidian Boltenia villosa by suppressive PCR subtractions of staged larval and juvenile cDNAs. We employed a series of three subtractions to dissect gene expression during metamorphosis. We have isolated 132 different protein coding sequences, and 65 of these transcripts show significant matches to GenBank proteins. Some of these genes have putative functions relevant to key metamorphic events including the differentiation of smooth muscle, blood cells, heart tissue and adult nervous system from larval rudiments. In addition, a significant fraction of the differentially expressed transcripts match identified genes from the innate immune system. Innate immunity confers a rapid response to pathogen-specific molecules and/or compromised self-tissues. The activation of innate immunity genes during metamorphosis may represent the programmed maturation of the adult immune system. In addition, this immune response may be necessary for phagocytosis and re-structuring of larval tissues. An innate immune-related inflammatory response may also underlie two waves of trans-epidermal blood cell migration that occur during the swimming larval period and immediately upon settlement. We characterized these trans-epidermal migrations and discovered that some migratory cells leave the animal entirely through an anterior tunnel in the tunic. We show that these cells are positioned to detect external settlement cues and hypothesize that the innate immune system may also be employed to detect and rapidly respond to environmental settlement cues.
Collapse
Affiliation(s)
- Brad Davidson
- Box 351800, Zoology Department and Center for Developmental Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | |
Collapse
|
186
|
Grisham JW, Coleman WB. Molecular regulation of hepatocyte generation in adult animals. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1107-10. [PMID: 12368183 PMCID: PMC1867302 DOI: 10.1016/s0002-9440(10)64386-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joe W Grisham
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
187
|
Abstract
Regenerative biology has now been recognized as a new field with certain aims and goals. One direction of this new field is to understand the basic mechanisms by which tissues can be repaired and restored. The other direction examines the possibility of using this basic knowledge to apply it to medicine with the goal to clinically repair damaged tissues. Regeneration of tissues can occur by the differentiation of stem cells (local or non-local) or by the transdifferentiation of local terminally differentiated cells. While the transdifferentiation aspects are old, during the past few years many data have accumulated regarding the existence of stem cells and their participation in tissue renewal. This review will present an overview of the potential of all vertebrate organs to regenerate and of the basic mechanisms involved.
Collapse
Affiliation(s)
- Panagiotis A Tsonis
- Laboratory of Molecular Biology, Department of Biology, University of Dayton, Dayton, OH 45469-2320, USA.
| |
Collapse
|
188
|
Koleva M, Schlaf G, Landmann R, Götze O, Jungermann K, Schieferdecker HL. Induction of anaphylatoxin C5a receptors in rat hepatocytes by lipopolysaccharide in vivo: mediation by interleukin-6 from Kupffer cells. Gastroenterology 2002; 122:697-708. [PMID: 11875003 DOI: 10.1053/gast.2002.31883] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS In normal rat liver, anaphylatoxin C5a induces glucose output from hepatocytes indirectly via prostanoids released from Kupffer cells. Correspondingly, it was found that hepatocytes, in contrast to Kupffer cells, did not express C5a receptors. Lipopolysaccharide (LPS) has been reported to enhance C5a receptor expression in murine livers. This might be the result of de novo expression in hepatocytes. METHODS C5a receptor expression was investigated in hepatocytes after in vivo treatment of rats with LPS and in vitro stimulation of isolated cells with LPS and proinflammatory cytokines on messenger RNA (mRNA) and protein level, and functionally in isolated hepatocytes and perfused liver. RESULTS In vivo treatment of rats with LPS induced C5a receptor mRNA and protein in hepatocytes with a maximum after 8-10 hours. At this time-point, C5a directly activated glycogen phosphorylase in isolated hepatocytes and enhanced glucose output in perfused livers without the involvement of prostanoids. LPS failed to induce C5a receptors in cultured hepatocytes in vitro, whereas interleukin (IL) 6 and IL-1beta, which are known to be released from Kupffer cells on stimulation with LPS, did so. In cocultures of hepatocytes with Kupffer cells, LPS induced C5a receptors in hepatocytes in an IL-6-dependent manner. CONCLUSIONS Thus, IL-6 from Kupffer cells appears to be the main mediator of LPS-induced de novo expression of C5a receptors in hepatocytes.
Collapse
Affiliation(s)
- Milena Koleva
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
189
|
Cain SA, Monk PN. The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J Biol Chem 2002; 277:7165-9. [PMID: 11773063 DOI: 10.1074/jbc.c100714200] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The substantial variations in the responses of cells to the anaphylatoxin C5a and its desarginated form, C5adR(74), suggest that more than one type of cell surface receptor for these ligands might exist. However, only a single receptor for C5a and C5adR(74), CD88, has been characterized to date. Here we report that the orphan receptor C5L2/gpr77, which shares 35% amino acid identity with CD88, binds C5a with high affinity but has a 10-fold higher affinity for C5adR(74) than CD88. C5L2 also has a moderate affinity for anaphylatoxin C3a, but cross-competition studies suggest that C3a binds to a distinct site from C5a. C4a was able to displace C3a, suggesting that C5L2, like the C3a receptor, may have a low binding affinity for this anaphylatoxin. Unlike CD88 and C3a receptor, C5L2 transfected into RBL-2H3 cells does not support degranulation or increases in intracellular [Ca(2+)] and is not rapidly internalized in response to ligand binding. However, ligation of C5L2 by anaphylatoxin did potentiate the degranulation response to cross-linkage of the high affinity IgE receptor by a pertussis toxin-sensitive mechanism. These results suggest that C5L2 is an anaphylatoxin-binding protein with unique ligand binding and signaling properties.
Collapse
MESH Headings
- Amino Acid Sequence
- Anaphylatoxins
- Animals
- Antigens, CD/chemistry
- Binding Sites
- Binding, Competitive
- Cloning, Molecular
- Complement C5a/chemistry
- Complement C5a, des-Arginine/chemistry
- Humans
- Inhibitory Concentration 50
- Ligands
- Membrane Proteins
- Molecular Sequence Data
- Protein Binding
- Rats
- Receptor, Anaphylatoxin C5a
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/metabolism
- Receptors, Complement/chemistry
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Stuart A Cain
- Department of Neurology, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | | |
Collapse
|
190
|
Dumestre-Perard C, Ponard D, Drouet C, Leroy V, Zarski JP, Dutertre N, Colomb MG. Complement C4 monitoring in the follow-up of chronic hepatitis C treatment. Clin Exp Immunol 2002; 127:131-6. [PMID: 11882043 PMCID: PMC1906298 DOI: 10.1046/j.1365-2249.2002.01729.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The overall role of complement in the host--pathogen relationship is now well understood. However, its involvement at a chronic stage of infection, such as chronic hepatitis C, is less well documented. Here, results are reported which point to the use of specific C4 monitoring in the follow-up of HCV patients. This study concerns 66 patients with chronic HCV infection, treated with interferon alpha 2b alone or with interferon alpha 2b + ribavirin, and 50 healthy adults as controls. Complement blood tests were performed to measure C1q, C3, C4, mannan binding lectin (MBL), C1s-C1 inhibitor complexes, total (CH50) and C4 (C4H) haemolytic activity; specific C4 activity was taken as the C4H/C4 protein ratio. Rheumatoid factor (RF) levels were also measured. A significant reduction in CH50 and specific C4 activity in HCV patients, compared with the healthy controls, was observed before the onset of treatment; the other parameters were not affected and no C1s-C1 inhibitor complexes were detected. At the same time, a significant reduction in specific C4 activity was observed in relapsers compared with sustained responders. These results point to a potential predictive function of C4 specific activity to monitor the response to therapy. Restoration of specific C4 activity at 6 months was better in responders than in non-responders. Complement activation in chronic hepatitis C does not seem to involve the C1 stage of the classical pathway. A negative correlation between specific C4 activity and RF titres suggests a possible involvement of RF in C4 activation, via the lectin pathway. Specific C4 monitoring appears to be a valuable tool for the follow-up of chronic hepatitis C treatment, together with the other conventional investigations.
Collapse
|