151
|
Expression Level of miR-34a in Tumor Tissue from Patients with Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2018; 50:304-307. [DOI: 10.1007/s12029-018-0060-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
The tumor suppressive miR-200b subfamily is an ERG target gene in human prostate tumors. Oncotarget 2018; 7:37993-38003. [PMID: 27191272 PMCID: PMC5122366 DOI: 10.18632/oncotarget.9366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
The TMPRSS2-ERG fusion occurs in approximately 50% of prostate cancer (PCa), resulting in expression of the oncogenic ERG in the prostate. Because ERG is a transcriptional activator, we hypothesized that ERG-regulated genes contribute to PCa development. Since microRNA (miRNA) has crucial functions in cancer, we searched for miRNAs regulated by ERG in PCas. We mined published datasets based on the MSKCC Prostate Oncogene Project, in which a comprehensive analysis defined the miRNA transcriptomes in 113 PCas. We retrieved the miRNA expression datasets, and identified miRNAs differentially expressed between ERG-positive and ERG-negative samples. Out of 369 miRNAs, miR-200a, −200b, −429 and −205 are the only miRNAs significantly increased in ERG-positive tumors. Strikingly, miR-200a, −200b and −429 are transcribed as a single polycistronic transcript, suggesting they are regulated at the transcriptional level. With ChIP-qPCR and in vitro binding assay, we identified two functional ETS motifs in the miR-200b/a/429 gene promoter. Knockdown of ERG in PCa cells reduced expression of these three miRNAs. In agreement with the well-established tumor suppressor function, overexpression of the miR-200b/a/429 gene inhibited PCa cell growth and invasion. In summary, our study reveals that miR-200b/a/429 is an ERG target gene, which implicates an important role in TMPRSS2/ERG-dependent PCa development. Although induction of the tumor suppressive miR-200b subfamily by oncogenic ERG appears to be counterintuitive, it is consistent with the observation that the vast majority of primary prostate cancers are slow-growing and indolent.
Collapse
|
153
|
Jiang ZQ, Li MH, Qin YM, Jiang HY, Zhang X, Wu MH. Luteolin Inhibits Tumorigenesis and Induces Apoptosis of Non-Small Cell Lung Cancer Cells via Regulation of MicroRNA-34a-5p. Int J Mol Sci 2018; 19:ijms19020447. [PMID: 29393891 PMCID: PMC5855669 DOI: 10.3390/ijms19020447] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Luteolin (LTL) exerts remarkable tumor suppressive activity on various types of cancers, including non-small cell lung cancer (NSCLC). However, it is not completely understood whether the mechanism of its action against NSCLC is related to microRNAs (miRNAs). In the present study, we investigated the anti-tumor effects of LTL on NSCLC in vitro and in vivo. The results revealed that LTL could inhibit cell proliferation and induce apoptosis in both A549 and H460 cells. In a H460 xenograft tumor model of nude mice, LTL significantly suppressed tumor growth, inhibited cell proliferation, and induced apoptosis. miRNA microarray and quantitative PCR (qPCR) analysis indicated that miR-34a-5p was dramatically upregulated upon LTL treatment in tumor tissues. Furthermore, MDM4 was proved to be a direct target of miR-34a-5p by luciferase reporter gene assay. LTL treatment was associated with increased p53 and p21 protein expressions and decreased MDM4 protein expression in both NSCLC cells and tumor tissues. When miR-34a-5p was inhibited in vitro, the protein expressions of Bcl-2 and MDM4 were recovered, while that of p53, p21, and Bax were attenuated. Moreover, caspase-3 and caspase-9 activation induced by LHL treatment in vitro were also suppressed by miR-34a-5p inhibition. Overall, LTL could inhibit tumorigenesis and induce apoptosis of NSCLC cells by upregulation of miR-34a-5p via targeting MDM4. These findings provide novel insight into the molecular functions of LTL that suggest its potential as a therapeutic agent for human NSCLC.
Collapse
Affiliation(s)
- Ze-Qun Jiang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Mu-Han Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Yue-Mu Qin
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Hai-Ying Jiang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Xu Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Mian-Hua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
154
|
Chen JF, Luo X, Xiang LS, Li HT, Zha L, Li N, He JM, Xie GF, Xie X, Liang HJ. EZH2 promotes colorectal cancer stem-like cell expansion by activating p21cip1-Wnt/β-catenin signaling. Oncotarget 2018; 7:41540-41558. [PMID: 27172794 PMCID: PMC5173077 DOI: 10.18632/oncotarget.9236] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 02/05/2023] Open
Abstract
Because colorectal cancer (CRC) stem-like cells (CCS-like cells) contribute to poor patient prognosis, these cells are a potential target for CRC therapy. However, the mechanism underlying the maintenance of CCS-like cell properties remains unclear. Here, we found that patients with advanced stage CRC expressed high levels of polycomb group protein enhancer of zeste homologue 2 (EZH2). High expression of EZH2 in tumor tissues correlated with poor patient prognosis. Conversely, silencing EZH2 reduced CRC cell proliferation. Surprisingly, EZH2 was more highly expressed in the CCS-like cell subpopulation than in the non-CCS-like cell subpopulation. EZH2 knockdown significantly reduced the CD133+/CD44+ subpopulation, suppressed mammosphere formation, and decreased the expression of self-renewal-related genes and strongly impaired tumor-initiating capacity in a re-implantation mouse model. Gene expression data from 433 human CRC specimens from TCGA database and in vitro results revealed that EZH2 helped maintain CCS-like cell properties by activating the Wnt/β-catenin pathway. We further revealed that p21cip1–mediated arrest of the cell cycle at G1/S phase is required for EZH2 activation of the Wnt/β-catenin pathway. Moreover, the specific EZH2 inhibitor EPZ-6438, a clinical trial drug, prevented CRC progression. Collectively, these findings revealed EZH2 maintaining CCS-like cell characteristics by arresting the cell cycle at the G1/S phase. These results indicate a new approach to CRC therapy.
Collapse
Affiliation(s)
- Jian-Fang Chen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Luo
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li-Sha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong-Tao Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Zha
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ni Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Ming He
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gan-Feng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiong Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hou-Jie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
155
|
Liu Y, Zhang X, Chen J, Li T. Inhibition of mircoRNA-34a Enhances Survival of Human Bone Marrow Mesenchymal Stromal/Stem Cells Under Oxidative Stress. Med Sci Monit 2018; 24:264-271. [PMID: 29331104 PMCID: PMC5775729 DOI: 10.12659/msm.904618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/29/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) are broadly used for many diseases, but the efficacy of MSC engraftment is very low due to low viability and high cell death rate under a stressful microenvironment. The present study aimed to investigate whether microRNA-34a (miR-34a), which is a downstream target of P53, is involved in H2O2-induced MSC cell death. MATERIAL AND METHODS Human bone marrow MSCs (hMSCs) were purchased from Lonza and were cultured as previously described. hMSCs were transfected with miR-34a inhibitor and exposed to H2O2. Cell proliferation assay was used to assess the survival rate of hMSCs. Real-time PCR and Western blot analysis were used to examine proliferation and survival ability of hMSCs. RESULTS H2O2 exposure significantly increased miR-34a expression in human bone marrow MSCs. H2O2 challenge induced massive MSC cell death along with reduction of expression of proliferation marker Ki67 and survival-related genes Bcl-2 and Survivin. Transfection of miR-34a inhibitor anti-34a led to a significant protective effect and rescued MSC cell death triggered by H2O2 exposure by 50%. Moreover, anti-34a dramatically increased Bcl-2 and Ki67 mRNA expression levels by over 10-fold compared to the mock control group under H2O2 exposure. The protein levels of Bcl-2 and Survivin were also rescued by anti-34a treatment by 50%. CONCLUSIONS Our results suggest that miR-34a plays a key role in oxidative stress-induced MSC cell death, and targeting miR-34a might be a promising strategy to enhance the survival rate of engrafted stem cells, which may improve therapeutic outcome.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Sichuan University – The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Xiaohu Zhang
- Sichuan University – The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Jie Chen
- Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Tingyu Li
- Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
156
|
Wang P, Zhai G, Bai Y. Values of miR-34a and miR-218 expression in the diagnosis of cervical cancer and the prediction of prognosis. Oncol Lett 2018; 15:3580-3585. [PMID: 29456728 PMCID: PMC5795828 DOI: 10.3892/ol.2018.7791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
Abstract
The expression levels of microribonucleic acid 34a (miR-34a) and miR-218 in the serum and tumor tissues of patients with cervical cancer were investigated to explore their relationship with the diagnosis of cervical cancer. Fifty patients with cervical cancer were selected, and 30 normal patients were selected as the control group. The expression levels of miR-34a and miR-218 were detected by quantitative real-time polymerase chain reaction. The relationship between the expression of miR-34a and miR-218 was analyzed using Pearson's correlation coefficient, and the receiver operating characteristic (ROC) curve was plotted for the analysis of values of the expression of miR-34a and miR-218. The correlation of the expressions of miR-34a and miR-218 in the serum with pathological parameters and the prognosis was analyzed. The expression levels of miR-34a and miR-218 in cervical cancer patients were significantly lower than those in normal patients. The ROC curve showed the area under curve (AUC) of miR-34a was 0.893, and miR-218 was 0.794. The low expression of miR-34a in patients with cervical cancer was correlated with the degree of tumor differentiation, lymph node metastasis and the International Federation of Gynecology and Obstetrics staging. The low expression of miR-218 was related to the degree of differentiation as well as invasion and metastasis. The 5-year overall survival rate of patients was 66%, and the low expression of miR-34a and miR-218 indicated a worse survival prognosis. The low expression of miR-34a in patients with cervical cancer is related to the degree of tumor differentiation as well as invasion and metastasis, and the low expression of miR-218 is related to the degree of tumor differentiation, invasion and metastasis and clinical staging. miR-34a and miR-218 in the serum can be used as markers for the diagnosis of cervical cancer and reference indicators for the evaluation of prognosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Obstetrics and Gynecology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Guanyun Zhai
- Department of Laboratory Medicine, The Maternity and Child Health Family Planning Service Center of Decheng District, Dezhou, Shandong 253000, P.R. China
| | - Yunyan Bai
- Department of Laboratory Medicine, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| |
Collapse
|
157
|
Abstract
MicroRNA (miRNA) biogenesis is regulated intricately at multiple levels. In addition to transcriptional control of pri-miRNA loci, sequence as well as structural features of the pri-miRNA-stem loop determine its processing efficiency by the endonucleases Drosha and Dicer. On the one hand, general features are necessary to allow a hairpin to be recognized by the processing machinery; on the other hand, specific sequence motifs of individual miRNA precursors can be read by RNA binding proteins (RBPs) that regulate processing, leading to increased or decreased levels of functional miRNAs. In a pulldown experiment using the pri-miRNA hairpin as immobilized bait, cognate RBPs can be isolated and analyzed by immunoblotting or mass spectrometry, allowing for the discovery or analysis of protein regulators of miRNA biogenesis.
Collapse
Affiliation(s)
- Thomas Treiber
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Nora Treiber
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany.
| |
Collapse
|
158
|
Olejniczak M, Kotowska-Zimmer A, Krzyzosiak W. Stress-induced changes in miRNA biogenesis and functioning. Cell Mol Life Sci 2018; 75:177-191. [PMID: 28717872 PMCID: PMC5756259 DOI: 10.1007/s00018-017-2591-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in the regulation of cellular homeostasis in eukaryotic organisms. There is emerging evidence that some of these processes are influenced by various forms of cellular stresses, including DNA damage, pathogen invasion or chronic stress associated with diseases. Many reports over the last decade demonstrate examples of stress-induced miRNA deregulation at the level of transcription, processing, subcellular localization and functioning. Moreover, core miRNA biogenesis proteins and their interactions with partners can be selectively regulated in response to stress signaling. However, little is known about the role of isomiRs and the interactions of miRNA with non-canonical targets in the context of the stress response. In this review, we summarize the current knowledge on miRNA functions under various stresses, including chronic stress and miRNA deregulation in the pathogenesis of age-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Marta Olejniczak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| | - Anna Kotowska-Zimmer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Wlodzimierz Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
159
|
Fang LL, Sun BF, Huang LR, Yuan HB, Zhang S, Chen J, Yu ZJ, Luo H. Potent Inhibition of miR-34b on Migration and Invasion in Metastatic Prostate Cancer Cells by Regulating the TGF-β Pathway. Int J Mol Sci 2017; 18:E2762. [PMID: 29257105 PMCID: PMC5751361 DOI: 10.3390/ijms18122762] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
The importance of miRNAs in the progression of prostate cancer (PCa) has further been supported by the finding that miRNAs have been identified as potential oncogenes or tumor suppressors in PCa. Indeed, in eukaryotes, miRNAs have been found to regulate and control gene expression by degrading mRNA at the post-transcriptional level. In this study, we investigated the expression of miR-34 family members, miR-34b and miR-34c, in different PCa cell lines, and discussed the molecular mechanism of miR-34b in the invasion and migration of PCa cells in vitro. The difference analyses of the transcriptome between the DU145 and PC3 cell lines demonstrated that both miR-34b and -34c target critical pathways that are involved in metabolism, such as proliferation, and migration, and invasion. The molecular expression of miR-34b/c were lower in PC3 cells. Moreover, over-expression of miR-34b/c in PC3 cells caused profound phenotypic changes, including decreased cell proliferation, migration and invasion. Moreover, the players that regulate expression levels of transforming growth factor-β (TGF-β), TGF-β receptor 1 (TGF-βR1), and p53 or phosphorylation levels of mothers against decapentaplegic 3 (SMAD3) in the TGF-β/Smad3 signaling pathway have yet to be elucidated, and will provide novel tools for diagnosis and treatment of metastatic PCa.
Collapse
Affiliation(s)
- Li-Li Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Bao-Fei Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Li-Rong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China.
| | - Hai-Bo Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China.
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Jing Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Zi-Jiang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Department of Anatomy, Guizhou Medical University, Guiyang 550000, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China.
| |
Collapse
|
160
|
Chmara J, Browning JWL, Atkins H, Sabloff M, McKay BC. Rapid Decrease in KRT14 and TP53 mRNA Expression in the Buccal Mucosa of Patients Receiving Total-Body Irradiation for Allogeneic Stem Cell Transplantation. Radiat Res 2017; 189:213-218. [PMID: 29232178 DOI: 10.1667/rr14897.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The only curative treatment option for relapsed patients with acute myeloid leukemia (AML) is allogeneic stem cell transplantation. Depletion of hematopoietic stem cells and leukemic blast cells is achieved through the systemic administration of DNA damaging agents, including total-body irradiation (TBI) prior to transplantation. Since other tissues are radiosensitive, the identification of biomarkers could facilitate the management of additional toxicities. Buccal keratinocytes are readily accessible and could provide a source of cells for RNA analysis. In this study, we obtained miRNAs and mRNAs from daily buccal swabs collected from patients undergoing allogeneic stem cell transplantation. Unexpectedly, there was no prominent p53-induced mRNA or miRNA response in these samples, despite the fact that the p53 pathway is a well-characterized radiation-inducible response. Instead, the expression of mRNAs encoding p53 and cytokeratin 14 (TP53 and KRT14, respectively) decreased precipitously within hours of the first radiation treatment. These patients went on to develop oral mucositis, however, it is unclear whether TP53 and/or KRT14 expression are predictive of this adverse event. Larger scale analysis of buccal epithelial samples from patients undergoing allogeneic stem cell transplantation appears to be warranted.
Collapse
Affiliation(s)
| | | | - H Atkins
- c Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, Canada; and.,d Ottawa Hospital Research Institute, Ottawa, Canada
| | - M Sabloff
- c Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, Canada; and.,d Ottawa Hospital Research Institute, Ottawa, Canada
| | - B C McKay
- a Department of Biology and.,b Institute of Biochemistry, Carleton University, Ottawa, Canada
| |
Collapse
|
161
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
162
|
miR-30e controls DNA damage-induced stress responses by modulating expression of the CDK inhibitor p21WAF1/CIP1 and caspase-3. Oncotarget 2017; 7:15915-29. [PMID: 26895377 PMCID: PMC4941286 DOI: 10.18632/oncotarget.7432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs that usually cause gene silencing by translational repression or degradation of mRNAs, are implicated in DNA damage-induced stress responses. To identify senescence-associated miRNAs, we performed microarray analyses using wild-type and p53-deficient HCT116 colon carcinoma cells that following gamma-irradiation (γIR) are driven into senescence and apoptosis, respectively. Several miRNAs including miR-30e were found upregulated in a p53-dependent manner specifically in senescent cells, but not in apoptotic cells. Overexpression of miR-30e in HCT116 cells not only inhibited γIR-, etoposide- or miR-34a-induced caspase-3-like DEVDase activities and cell death, but greatly accelerated and augmented their senescent phenotype. Consistently, procaspase-3 protein, but not mRNA decreased in the presence of miR-30e, whereas expression of the cyclin-dependent kinase inhibitor p21 increased both at the mRNA and protein level. Performing luciferase reporter gene assays, we identified the 3′-UTR of the caspase-3 mRNA as a direct miR-30e target. In contrast, although miR-30e was unable to bind to the p21 mRNA, it increased expression of a luciferase construct containing the p21 promoter, suggesting that the miR-30e-mediated upregulation of p21 occurs indirectly at the transcriptional level. Interestingly, despite suppressing procaspase-3 expression, miR-30e was unable to protect RKO colon carcinoma cells from DNA damage-induced death or to induce senescence, as miR-30e completely fails to upregulate p21 in these cells. These data suggest that miR-30e functions in a cell type-dependent manner as an important molecular switch for DNA damage-induced stress responses and may thus represent a target of therapeutic value.
Collapse
|
163
|
Toraih EA, Aly NM, Abdallah HY, Al-Qahtani SA, Shaalan AA, Hussein MH, Fawzy MS. MicroRNA-target cross-talks: Key players in glioblastoma multiforme. Tumour Biol 2017; 39:1010428317726842. [PMID: 29110584 DOI: 10.1177/1010428317726842] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of microRNAs in brain cancer is still naive. Some act as oncogene and others as tumor suppressors. Discovery of efficient biomarkers is mandatory to debate that aggressive disease. Bioinformatically selected microRNAs and their targets were investigated to evaluate their putative signature as diagnostic and prognostic biomarkers in primary glioblastoma multiforme. Expression of a panel of seven microRNAs (hsa-miR-34a, hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, hsa-miR-326, and hsa-miR-375) and seven target genes ( E2F3, PI3KCA, TOM34, WNT5A, PDCD4, DFFA, and EGFR) in 43 glioblastoma multiforme specimens were profiled compared to non-cancer tissues via quantitative reverse transcription-polymerase chain reaction. Immunohistochemistry staining for three proteins (VEGFA, BAX, and BCL2) was performed. Gene enrichment analysis identified the biological regulatory functions of the gene panel in glioma pathway. MGMT ( O-6-methylguanine-DNA methyltransferase) promoter methylation was analyzed for molecular subtyping of tumor specimens. Our data demonstrated a significant upregulation of five microRNAs (hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, and hsa-miR-375), three genes ( E2F3, PI3KCA, and Wnt5a), two proteins (VEGFA and BCL2), and downregulation of hsa-miR-34a and three other genes ( DFFA, PDCD4, and EGFR) in brain cancer tissues. Receiver operating characteristic analysis revealed that miR-34a (area under the curve = 0.927) and miR-17 (area under the curve = 0.900) had the highest diagnostic performance, followed by miR-221 (area under the curve = 0.845), miR-21 (area under the curve = 0.836), WNT5A (area under the curve = 0.809), PDCD4 (area under the curve = 0.809), and PI3KCA (area under the curve = 0.800). MGMT promoter methylation status was associated with high miR-221 levels. Moreover, patients with VEGFA overexpression and downregulation of TOM34 and BAX had poor overall survival. Nevertheless, miR-17, miR-221, and miR-326 downregulation were significantly associated with high recurrence rate. Multivariate analysis by hierarchical clustering classified patients into four distinct groups based on gene panel signature. In conclusion, the explored microRNA-target dysregulation could pave the road toward developing potential therapeutic strategies for glioblastoma multiforme. Future translational and functional studies are highly recommended to better understand the complex bio-molecular signature of this difficult-to-treat tumor.
Collapse
Affiliation(s)
- Eman Ali Toraih
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nagwa Mahmoud Aly
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Saeed Awad Al-Qahtani
- 3 Department of Physiology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Aly Am Shaalan
- 4 Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,5 Department of Anatomy and Histology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | | - Manal Said Fawzy
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,7 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
164
|
Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ 2017; 25:133-143. [PMID: 29125602 PMCID: PMC5729533 DOI: 10.1038/cdd.2017.174] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022] Open
Abstract
p53 is a transcription factor that suppresses tumor growth through regulation of dozens of target genes with diverse biological functions. The activity of this master transcription factor is inactivated in nearly all tumors, either by mutations in the TP53 locus or by oncogenic events that decrease the activity of the wild-type protein, such as overexpression of the p53 repressor MDM2. However, despite decades of intensive research, our collective understanding of the p53 signaling cascade remains incomplete. In this review, we focus on recent advances in our understanding of mechanisms of p53-dependent transcriptional control as they relate to five key areas: (1) the functionally distinct N-terminal transactivation domains, (2) the diverse regulatory roles of its C-terminal domain, (3) evidence that p53 is solely a direct transcriptional activator, not a direct repressor, (4) the ability of p53 to recognize many of its enhancers across diverse chromatin environments, and (5) mechanisms that modify the p53-dependent transcriptional program in a context-dependent manner.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80203, USA
| |
Collapse
|
165
|
Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis 2017; 8:e3100. [PMID: 29022903 PMCID: PMC5682661 DOI: 10.1038/cddis.2017.495] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
MicroRNA miR-34a is recognized as a master regulator of tumor suppression. The strategy of miR-34a replacement has been investigated in clinical trials as the first attempt of miRNA application in cancer treatment. However, emerging outcomes promote the re-evaluation of existing knowledge and urge the need for better understanding the complex biological role of miR-34a. The targets of miR-34a encompass numerous regulators of cancer cell proliferation, survival and resistance to therapy. MiR-34a expression is transcriptionally controlled by p53, a crucial tumor suppressor pathway, often disrupted in cancer. Moreover, miR-34a abundance is fine-tuned by context-dependent feedback loops. The function and effects of exogenously delivered or re-expressed miR-34a on the background of defective p53 therefore remain prominent issues in miR-34a based therapy. In this work, we review p53-independent mechanisms regulating the expression of miR-34a. Aside from molecules directly interacting with MIR34A promoter, processes affecting epigenetic regulation and miRNA maturation are discussed. Multiple mechanisms operate in the context of cancer-associated phenomena, such as aberrant oncogene signaling, EMT or inflammation. Since p53-dependent tumor-suppressive mechanisms are disturbed in a substantial proportion of malignancies, we summarize the effects of miR-34a modulation in cell and animal models in the clinically relevant context of disrupted or insufficient p53 function.
Collapse
|
166
|
Cui XB, Peng H, Li RR, Mu JQ, Yang L, Li N, Liu CX, Hu JM, Li SG, Wei Y, Laibo-Yin, Zhou H, Li F, Chen YZ. MicroRNA-34a functions as a tumor suppressor by directly targeting oncogenic PLCE1 in Kazakh esophageal squamous cell carcinoma. Oncotarget 2017; 8:92454-92469. [PMID: 29190930 PMCID: PMC5696196 DOI: 10.18632/oncotarget.21384] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the frequent malignant tumors with poor prognosis worldwide. Identifying the prognostic biomarkers and potential mechanisms of such tumors has attracted increasing interest in esophageal cancer biology. Our previous study showed that phospholipase C elipson 1 (PLCE1) expression is up-regulated and associated with disease progression in esophageal carcinoma. MicroRNAs (miRNAs) play vital roles in regulating its target gene expression. However, studies on miRNA-regulated PLCE1 expression and its cellular function are still very few. We found that miR-34a is significantly expressed lower in ESCC tissues. We further showed that PLCE1 is a direct functional target gene of miR-34a, and the functional roles of miR-34a in ESCC cell lines in vitro were also determined through gain- and loss-of-function analyses. Results revealed that miR-34a functions as a tumor suppressor by inhibiting the proliferation, migration, and EMT phenotype, as well as promoting apoptosis of ESCC cell lines. Moreover, PLCE1 is overexpressed in ESCC tumors and promotes tumorigenicity in vivo and vitro. PLCE1 expression is negatively correlated with miR-34a profiles in ESCC tissues. Our data suggest that miR-34a exerts its anti-cancer function by suppressing PLCE1. The newly identified miR-34a/PLCE1 axis partially illustrates the molecular mechanism of ESCC metastasis and represents a new candidate therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Xiao-Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Ran-Ran Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jian-Qin Mu
- First Department of Internal Medicine, Xinjiang Production and Construction Corp Hospital of Chinese People's Armed Police Force, Urumqi, China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Na Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Chun-Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jian-Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Shu-Gang Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Yutao Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Laibo-Yin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yun-Zhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,The People's Hospital of Suzhou National Hi-Tech District, Suzhou, China
| |
Collapse
|
167
|
MicroRNA-34a: A Key Regulator in the Hallmarks of Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3269379. [PMID: 29104726 PMCID: PMC5632457 DOI: 10.1155/2017/3269379] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/07/2017] [Accepted: 08/20/2017] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) incidence has increased over the past two decades. Recent studies reported microRNAs as promising biomarkers for early cancer detection, accurate prognosis, and molecular targets for future treatment. This study aimed to evaluate the expression levels of miR-34a and 11 of its bioinformatically selected target genes and proteins to test their potential dysregulation in RCC. Quantitative real-time PCR for miR-34a and its targets; MET oncogene; gene-regulating apoptosis (TP53INP2 and DFFA); cell proliferation (E2F3); and cell differentiation (SOX2 and TGFB3) as well as immunohistochemical assay for VEGFA, TP53, Bcl2, TGFB1, and Ki67 protein expression have been performed in 85 FFPE RCC tumor specimens. Clinicopathological parameter correlation and in silico network analysis have also implicated. We found RCC tissues displayed significantly higher miR-34a expression level than their corresponding noncancerous tissues, particularly in chromophobic subtype. MET and E2F3 were significantly upregulated, while TP53INP2 and SOX2 were downregulated. ROC analysis showed high diagnostic performance of miR-34a (AUC = 0.854), MET (AUC = 0.765), and E2F3 (AUC = 0.761). The advanced pathological grade was associated with strong TGFB1, VEGFA, and Ki67 protein expression and absent Tp53 staining. These findings indicate miR-34a along with its putative target genes could play a role in RCC tumorigenesis and progression.
Collapse
|
168
|
Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A 2017; 114:10660-10665. [PMID: 28923932 DOI: 10.1073/pnas.1702914114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell-cycle exit, thereby allowing epithelial cell differentiation. Constitutive ablation of all six members of this miRNA family causes derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and entering a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues such as the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 display infertility as well as severe chronic airway disease leading to postnatal death. These results demonstrate that miRNA-mediated repression of the cell cycle is required to allow epithelial cell differentiation.
Collapse
|
169
|
Treiber T, Treiber N, Plessmann U, Harlander S, Daiß JL, Eichner N, Lehmann G, Schall K, Urlaub H, Meister G. A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis. Mol Cell 2017; 66:270-284.e13. [PMID: 28431233 DOI: 10.1016/j.molcel.2017.03.014] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/22/2016] [Accepted: 03/20/2017] [Indexed: 12/19/2022]
Abstract
During microRNA (miRNA) biogenesis, two endonucleolytic reactions convert stem-loop-structured precursors into mature miRNAs. These processing steps can be posttranscriptionally regulated by RNA-binding proteins (RBPs). Here, we have used a proteomics-based pull-down approach to map and characterize the interactome of a multitude of pre-miRNAs. We identify ∼180 RBPs that interact specifically with distinct pre-miRNAs. For functional validation, we combined RNAi and CRISPR/Cas-mediated knockout experiments to analyze RBP-dependent changes in miRNA levels. Indeed, a large number of the investigated candidates, including splicing factors and other mRNA processing proteins, have effects on miRNA processing. As an example, we show that TRIM71/LIN41 is a potent regulator of miR-29a processing and its inactivation directly affects miR-29a targets. We provide an extended database of RBPs that interact with pre-miRNAs in extracts of different cell types, highlighting a widespread layer of co- and posttranscriptional regulation of miRNA biogenesis.
Collapse
Affiliation(s)
- Thomas Treiber
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Simone Harlander
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Julia-Lisa Daiß
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Norbert Eichner
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Gerhard Lehmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Kevin Schall
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
170
|
Zhang Y, Kang R, Liu W, Yang Y, Ding R, Huang Q, Meng J, Xiong L, Guo Z. Identification and Analysis of P53-Mediated Competing Endogenous RNA Network in Human Hepatocellular Carcinoma. Int J Biol Sci 2017; 13:1213-1221. [PMID: 29104512 PMCID: PMC5666336 DOI: 10.7150/ijbs.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Recent studies have indicated that long non-coding RNAs (lncRNAs) and mRNA function as competing endogenous RNAs (ceRNAs) that compete to bind to shared microRNA (miRNA) recognition elements (MREs) to perform specific biological functions during tumorigenesis. The tumor suppressor p53 is a master regulator of cancer-related biological processes by acting as a transcription factor to regulate target genes including miRNA and lncRNA. However, the mechanism in human hepatocellular carcinoma and whether p53-mediated RNA targets could form ceRNA network remain unclear. Here, we identified a series of differential expressed miRNAs, lncRNA and mRNA which were potentially regulated by p53 using RNA sequencing in HepG2. Genomic characteristics comparative analysis showed significant differences between mRNAs and lncRNAs. By integrating experimentally confirmed Ago2 and p53 binding sites, we constructed a highly reliable p53-mediated ceRNA network using hypergeometric test. The KEGG pathway enrichment analysis showed that the ceRNA network highly enriched in the cancer or p53-associated signaling pathways. Finally, using betweenness centrality analysis, we identified five master miRNAs (hsa-miR-3620-5p, hsa-miR-3613-3p, hsa-miR-6881-3p, hsa-miR-6087 and hsa-miR-18a-3p) that regulated most of the target RNAs, suggesting these miRNAs play central roles in the whole p53-mediated ceRNAs network. Taken together, our results provide a new regulatory mechanism of p53 networks for future studies in cancer therapeutics.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Ran Kang
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Wenrong Liu
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Yalan Yang
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Ruofan Ding
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Qingqing Huang
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Junhua Meng
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Lili Xiong
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Zhiyun Guo
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| |
Collapse
|
171
|
Liu F, Du Y, Feng WH. New perspective of host microRNAs in the control of PRRSV infection. Vet Microbiol 2017; 209:48-56. [DOI: 10.1016/j.vetmic.2017.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 02/09/2023]
|
172
|
Lu KW, Ma YS, Yu FS, Huang YP, Chu YL, Wu RSC, Liao CL, Chueh FS, Chung JG. Gypenosides induce cell death and alter gene expression in human oral cancer HSC-3 cells. Exp Ther Med 2017; 14:2469-2476. [PMID: 28962182 PMCID: PMC5609268 DOI: 10.3892/etm.2017.4840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/24/2017] [Indexed: 12/21/2022] Open
Abstract
Gypenosides (Gyp), the primary components of Gynostemma pentaphyllum Makino, have long been used as a Chinese herbal medicine. In the present study, the effects of Gyp on cell viability, the cell cycle, cell apoptosis, DNA damage and chromatin condensation were investigated in vitro using human oral cancer HSC-3 cells. The results of the present study indicated that Gyp induces cell death, G2/M phase arrest and apoptosis in HSC-3 cells in a dose-dependent manner. It was also demonstrated that Gyp decreased the depolarization of mitochondrial membrane potential in a time-dependent manner. A cDNA microarray assay was performed and the results indicated that a number of genes were upregulated following Gyp treatment. The greatest increase was a 75.42-fold increase in the expression of GTP binding protein in skeletal muscle. Levels of the following proteins were also increased by Gyp: Serpine peptidase inhibitor, clade E, member 1 by 20.25-fold; ras homolog family member B by 18.04-fold, kelch repeat and BTB domain containing 8 by 15.22-fold; interleukin 11 by 14.96-fold; activating transcription factor 3 by 14.49-fold; cytochrome P450, family 1 by 14.44-fold; ADP-ribosylation factor-like 14 by 13.88-fold; transfer RNA selenocysteine 2 by 13.23-fold; and syntaxin 11 by 13.08-fold. However, the following genes were downregulated by GYP: Six-transmembrane epithelial antigen of prostate family member 4, 14.19-fold; γ-aminobutyric acid A receptor by 14.58-fold; transcriptional-regulating factor 1 by 14.69-fold; serpin peptidase inhibitor, clade B, member 13 by 14.71-fold; apolipoprotein L 1 by 14.85-fold; follistatin by 15.22-fold; uncharacterized LOC100506718; fibronectin leucine rich transmembrane protein 2 by 15.61-fold; microRNA 205 by 16.38-fold; neuregulin 1 by 19.69-fold; and G protein-coupled receptor 110 by 22.05-fold. These changes in gene expression illustrate the effects of Gyp at the genetic level and identify potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan, R.O.C.,Department of Chinese Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan, R.O.C
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yung-Lin Chu
- Department of Food Science, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, R.O.C
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Ching-Lung Liao
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C.,Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| |
Collapse
|
173
|
Laudato S, Patil N, Abba ML, Leupold JH, Benner A, Gaiser T, Marx A, Allgayer H. P53-induced miR-30e-5p inhibits colorectal cancer invasion and metastasis by targeting ITGA6 and ITGB1. Int J Cancer 2017; 141:1879-1890. [DOI: 10.1002/ijc.30854] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/01/2017] [Accepted: 06/12/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Sara Laudato
- Department of Experimental Surgery-Cancer Metastasis; Medical Faculty Mannheim, University of Heidelberg; Germany
- Centre for Biomedicine and Medical Technology, Medical Faculty Mannheim, University of Heidelberg; Germany
| | - Nitin Patil
- Department of Experimental Surgery-Cancer Metastasis; Medical Faculty Mannheim, University of Heidelberg; Germany
- Centre for Biomedicine and Medical Technology, Medical Faculty Mannheim, University of Heidelberg; Germany
| | - Mohammed L. Abba
- Department of Experimental Surgery-Cancer Metastasis; Medical Faculty Mannheim, University of Heidelberg; Germany
- Centre for Biomedicine and Medical Technology, Medical Faculty Mannheim, University of Heidelberg; Germany
| | - Joerg H. Leupold
- Department of Experimental Surgery-Cancer Metastasis; Medical Faculty Mannheim, University of Heidelberg; Germany
- Centre for Biomedicine and Medical Technology, Medical Faculty Mannheim, University of Heidelberg; Germany
| | - Axel Benner
- Department of Biostatistics; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Timo Gaiser
- Institute of Pathology, University Hospital Mannheim (UMM); Mannheim Germany
| | - Alexander Marx
- Institute of Pathology, University Hospital Mannheim (UMM); Mannheim Germany
| | - Heike Allgayer
- Department of Experimental Surgery-Cancer Metastasis; Medical Faculty Mannheim, University of Heidelberg; Germany
- Centre for Biomedicine and Medical Technology, Medical Faculty Mannheim, University of Heidelberg; Germany
| |
Collapse
|
174
|
Vetter NS, Kolb EA, Mills CC, Sampson VB. The Microtubule Network and Cell Death Are Regulated by an miR-34a/Stathmin 1/βIII-Tubulin Axis. Mol Cancer Res 2017; 15:953-964. [PMID: 28275089 PMCID: PMC5500423 DOI: 10.1158/1541-7786.mcr-16-0372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
MicroRNA-34a (miR-34a) is a master regulator of signaling networks that maintains normal physiology and disease and is currently in development as a miRNA-based therapy for cancer. Prior studies have reported low miR-34a expression in osteosarcoma; however, the molecular mechanisms underlying miR-34a activity in osteosarcoma are not well-defined. Therefore, this study evaluated the role of miR-34a in regulating signal transduction pathways that influence cell death in osteosarcoma. Levels of miR-34a were attenuated in human osteosarcoma cells and xenografts of the Pediatric Preclinical Testing Consortium (PPTC). Bioinformatics predictions identified stathmin 1 (STMN1) as a potential miR-34a target. Biotin pull-down assay and luciferase reporter analysis confirmed miR-34a target interactions within the STMN1 mRNA 3'-untranslated region. Overexpression of miR-34a in osteosarcoma cells suppressed STMN1 expression and reduced cell growth in vitro Restoration of miR-34a led to microtubule destabilization and increased βIII-tubulin expression, with corresponding G1-G2 phase cell-cycle arrest and apoptosis. Knockdown of the Sp1 transcription factor, by siRNA silencing, also upregulated βIII-tubulin expression in osteosarcoma cells, suggesting that miR-34a indirectly affects Sp1. Validating the coordinating role of miR-34a in microtubule destabilization, when miR-34a was combined with either microtubule inhibitors or chemotherapy, STMN1 phosphorylation was suppressed and there was greater cytotoxicity in osteosarcoma cells. These results demonstrate that miR-34a directly represses STMN1 gene and protein expression and upregulates βIII-tubulin, leading to disruption of the microtubule network and cell death.Implications: The miR-34a/STMN1/βIII-tubulin axis maintains the microtubule cytoskeleton in osteosarcoma, and combining miR-34a with microtubule inhibitors can be investigated as a novel therapeutic strategy. Mol Cancer Res; 15(7); 953-64. ©2017 AACR.
Collapse
Affiliation(s)
- Nancy S Vetter
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - E A Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | | | - Valerie B Sampson
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware.
| |
Collapse
|
175
|
Buñay J, Larriba E, Moreno RD, Del Mazo J. Chronic low-dose exposure to a mixture of environmental endocrine disruptors induces microRNAs/isomiRs deregulation in mouse concomitant with intratesticular estradiol reduction. Sci Rep 2017; 7:3373. [PMID: 28611354 PMCID: PMC5469815 DOI: 10.1038/s41598-017-02752-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
Humans are environmentally exposed not only to single endocrine-disrupting chemicals (EDCs) but to mixtures that affect their reproductive health. In reproductive tissues, microRNAs (miRNAs) are emerging as key targets of EDCs. Here, we analysed changes in the testis "miRNome" (and their biogenesis mechanism) in chronically exposed adult mice to a cocktail of five EDCs containing 0.3 mg/kg-body weight (BW)/day of each phthalate (DEHP, DBP, BBP) and 0.05 mg/kg-BW/day of each alkylphenol (NP, OP), from conception to adulthood. The testis "miRNome" was characterised using next-generation sequencing (NGS). Expression levels of genes involved in miRNA biogenesis were measured by RT-qPCR, as well as several physiological and cytological parameters. We found two up-regulated, and eight down-regulated miRNAs and thirty-six differentially expressed isomiRs along with an over-expression of Drosha, Adar and Zcchc11. A significant decrease of intratesticular estradiol but not testosterone was detected. Functional analysis showed altered spermatogenesis, germ cell apoptosis and negative correlation of miR-18a-5p with Nr1h2 involved in the deregulation of the steroidogenesis pathway. Here, we present the first association between miRNA/isomiRs deregulation, their mechanisms of biogenesis and histopathological and hormonal alterations in testes of adult mice exposed to a mixture of low-dose EDCs, which can play a role in male infertility.
Collapse
Affiliation(s)
- Julio Buñay
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ricardo D Moreno
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Jesús Del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
176
|
Jafari N, Abediankenari S. MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell. Tumour Biol 2017; 39:1010428317701652. [PMID: 28468587 DOI: 10.1177/1010428317701652] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a major cause of cancer mortality worldwide, with a low survival rate for patients with advanced forms of the disease. Over the recent decades, the investigation of the pathophysiological mechanisms of tumourigenesis has opened promising avenues to understand some of the complexities of cancer treatment. However, tumour regeneration and metastasis impose great difficulty for gastric cancer cure. In recent years, cancer stem cells - a small subset of tumour cells in many cancers - have become a major focus of cancer research. Cancer stem cells are capable of self-renewal and are known to be responsible for tumour initiation, metastasis, therapy resistance and cancer recurrence. Recent studies have revealed the key role of microRNAs - small noncoding RNAs regulating gene expression - in these processes. MicroRNAs play crucial roles in the regulation of a wide range of biological processes in a post-transcriptional manner, though their expression is dysregulated in most malignancies, including gastric cancer. In this article, we review the consequences of aberrant expression of microRNA-34 in cancer and cancer stem cells, with a specific focus on the miR-34 dysregulation in gastric cancer and gastric cancer stem cells. We address the critical effects of the aberrant expression of miR-34 and its target genes in maintaining cancer stem cell properties. Information collection and discussion about the advancements in gastric cancer stem cells and microRNAs can be useful for providing novel insights into patient treatment.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
177
|
Armstrong CM, Liu C, Lou W, Lombard AP, Evans CP, Gao AC. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells. Prostate 2017; 77:1020-1028. [PMID: 28485104 PMCID: PMC5448975 DOI: 10.1002/pros.23358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Docetaxel is one of the primary drugs used for treating castration resistant prostate cancer (CRPC). Unfortunately, over time patients invariably develop resistance to docetaxel therapy and their disease will continue to progress. The mechanisms by which resistance develops are still incompletely understood. This study seeks to determine the involvement of miRNAs, specifically miR-181a, in docetaxel resistance in CRPC. METHODS Real-time PCR was used to measure miR-181a expression in parental and docetaxel resistant C4-2B and DU145 cells (TaxR and DU145-DTXR). miR-181a expression was modulated in parental or docetaxel resistant cells by transfecting them with miR-181a mimics or antisense, respectively. Following transfection, cell number was determined after 48 h with or without docetaxel. Cross resistance to cabazitaxel induced by miR-181a was also determined. Western blots were used to determine ABCB1 protein expression and rhodamine assays used to assess activity. Phospho-p53 expression was assessed by Western blot and apoptosis was measured by ELISA in C4-2B TaxR and PC3 cells with inhibited or overexpressed miR-181a expression with or without docetaxel. RESULTS miR-181a is significantly overexpressed in TaxR and DU145-DTXR cells compared to parental cells. Overexpression of miR-181a in parental cells confers docetaxel and cabazitaxel resistance and knockdown of miR-181a in TaxR cells re-sensitizes them to treatment with both docetaxel and cabazitaxel. miR-181a was not observed to impact ABCB1 expression or activity, a protein which was previously demonstrated to be highly involved in docetaxel resistance. Knockdown of miR-181a in TaxR cells induced phospho-p53 expression. Furthermore, miR-181a knockdown alone induced apoptosis in TaxR cells which could be further enhanced by the addition of DTX. CONCLUSIONS Overexpression of mir-181a in prostate cancer cells contributes to their resistance to docetaxel and cabazitaxel and inhibition of mir-181a expression can restore treatment response. This is due, in part, to modulation of p53 phosphorylation and apoptosis.
Collapse
Affiliation(s)
| | - Chengfei Liu
- Department of Urology, University of California Davis, CA, USA
| | - Wei Lou
- Department of Urology, University of California Davis, CA, USA
| | - Alan P. Lombard
- Department of Urology, University of California Davis, CA, USA
| | - Christopher P Evans
- Department of Urology, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
| | - Allen C. Gao
- Department of Urology, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
- VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
178
|
Zhang Y, Dai D, Chang Y, Li Y, Zhang M, Zhou G, Peng Z, Zeng C. Cryopreservation of boar sperm induces differential microRNAs expression. Cryobiology 2017; 76:24-33. [DOI: 10.1016/j.cryobiol.2017.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 01/29/2023]
|
179
|
MicroRNAs as Key Effectors in the p53 Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:51-90. [PMID: 28729028 DOI: 10.1016/bs.ircmb.2017.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The guardian of the genome p53 is embedded in a fine-spun network of MicroRNAs. p53 is able to activate or repress directly the transcription of MicroRNAs that are participating in the tumor-suppressive mission of p53. On the other hand, the expression of p53 is under tight control of MicroRNAs that are either targeting directly p53 or factors that are modifying its protein level or activity. Although the most important function of p53 is suggested to be transcriptional regulation, there are several nontranscriptional functions described. One of those regards the modulation of MicroRNA biogenesis. Wild-type p53 is increasing the maturation of selected MicroRNAs from the primary transcript to the precursor MiRNA by interacting with the Microprocessor complex. Furthermore, p53 is modulating the mRNA accessibility for certain MicroRNAs by association with the RISC complex and transcriptional regulation of RNA-binding proteins. In this way p53 is able to remodel the MiRNA-mRNA interaction network. As wild-type p53 is employing MicroRNAs to suppress cancer development, gain-of-function mutant p53 proteins use MicroRNAs to confer oncogenic properties like chemoresistance and the ability to drive metastasis. Like its wild-type counterpart mutant p53 is able to regulate MicroRNAs transcriptionally and posttranscriptionally. Mutant p53 affects the MiRNA processing at two cleavage steps through interfering with the Microprocessor complex and by downregulating Dicer and KSRP, a modulator of MiRNA biogenesis. Thus, MicroRNAs are essential components in the p53 pathway, contributing substantially to combat or enhance tumor development depending on the wild-type or mutant p53 context.
Collapse
|
180
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
181
|
Sandbothe M, Buurman R, Reich N, Greiwe L, Vajen B, Gürlevik E, Schäffer V, Eilers M, Kühnel F, Vaquero A, Longerich T, Roessler S, Schirmacher P, Manns MP, Illig T, Schlegelberger B, Skawran B. The microRNA-449 family inhibits TGF-β-mediated liver cancer cell migration by targeting SOX4. J Hepatol 2017; 66:1012-1021. [PMID: 28088579 DOI: 10.1016/j.jhep.2017.01.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Modulation of microRNA expression is a potential treatment for hepatocellular carcinoma (HCC). Therefore, the epigenetically regulated microRNA-449 family (miR-449a, miR-449b, miR-449c) was characterized with regards to its functional effects and target genes in HCC. METHODS After transfection of miR-449a, miR-449b, and/or miR-449c, tumor-relevant functional effects were analyzed using in vitro assays and a xenograft mouse model. Binding specificities, target genes, and regulated pathways of each miRNA were identified by microarray analyses. Target genes were validated by luciferase reporter assays and expression analyses in vitro. Furthermore, target gene expression was analyzed in 61 primary human HCCs compared to normal liver tissue. RESULTS Tumor suppressive effects, binding specificities, target genes, and regulated pathways of miR-449a and miR-449b differed from those of miR-449c. Transfection of miR-449a, miR-449b, and/or miR-449c inhibited cell proliferation and migration, induced apoptosis, and reduced tumor growth to different extents. Importantly, miR-449a, miR-449b, and, to a lesser degree, miR-449c directly targeted SOX4, which codes for a transcription factor involved in epithelial-mesenchymal transition and HCC metastasis, and thereby inhibited TGF-β-mediated cell migration. CONCLUSIONS This study provides detailed insights into the regulatory network of the epigenetically regulated miRNA-449 family and, for the first time, describes distinct tumor suppressive effects and target specificities of miR-449a, miR-449b, and miR-449c. Our results indicate that particularly miR-449a and miR-449b may be considered for miRNA replacement therapy to prevent HCC progression and metastasis. LAY SUMMARY In this study, we demonstrated that the microRNA-449 family acts as a tumor suppressor in liver cancer by causing cell death and inhibiting cell migration. These effects are caused by downregulation of the oncogene SOX4, which is frequently overexpressed in liver cancer. We conclude that the microRNA-449 family may be a target for liver cancer therapy.
Collapse
Affiliation(s)
- Maria Sandbothe
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Reena Buurman
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicole Reich
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Luisa Greiwe
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Beate Vajen
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Engin Gürlevik
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital RWTH Aachen, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael P Manns
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Britta Skawran
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
182
|
Gao Y, Feng B, Lu L, Han S, Chu X, Chen L, Wang R. MiRNAs and E2F3: a complex network of reciprocal regulations in human cancers. Oncotarget 2017; 8:60624-60639. [PMID: 28947999 PMCID: PMC5601167 DOI: 10.18632/oncotarget.17364] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
E2F transcription factor 3 (E2F3) is oncogenic in tumorigenesis. Alterations in E2F3 functions correspond with poor prognosis in various cancers, underscoring their status for the clinical cancer phenotype. Latest reports discovered intricate networks between microRNAs (miRNAs) and E2F3 in regulating the balance of these events, including proliferation, apoptosis, metastasis, as well as drug resistance. miRNAs are non-coding small RNAs which negatively regulate gene expressions post-transcriptionally mainly through 3′-UTR binding of target mRNAs. Increasing evidence shows that E2F3 can be activated/inhibited by numerous miRNAs whose dysregulation has been implicated in malignancy. In turn, miRNAs themselves can be transcriptionally regulated by E2F3, thus forming a negative feedback loop. These findings add a new challenging layer of complexity to E2F3 network. Current understanding of the reciprocal link between E2F3 and miRNAs in human cancers were summarized, which could help to develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanping Gao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Lu Lu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| |
Collapse
|
183
|
Bertero T, Rezzonico R, Pottier N, Mari B. Impact of MicroRNAs in the Cellular Response to Hypoxia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:91-158. [PMID: 28729029 DOI: 10.1016/bs.ircmb.2017.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammalian cells, hypoxia, or inadequate oxygen availability, regulates the expression of a specific set of MicroRNAs (MiRNAs), termed "hypoxamiRs." Over the past 10 years, the appreciation of the importance of hypoxamiRs in regulating the cellular adaptation to hypoxia has grown dramatically. At the cellular level, each hypoxamiR, including the master hypoxamiR MiR-210, can simultaneously regulate expression of multiple target genes in order to fine-tune the adaptive response of cells to hypoxia. This review addresses the complex molecular regulation of MiRNAs in both physiological and pathological conditions of low oxygen adaptation and the multiple functions of hypoxamiRs in various hypoxia-associated biological processes, including apoptosis, survival, proliferation, angiogenesis, inflammation, and metabolism. From a clinical perspective, we also discuss the potential use of hypoxamiRs as new biomarkers and/or therapeutic targets in cancer and aging-associated diseases including cardiovascular and fibroproliferative disorders.
Collapse
Affiliation(s)
- Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Nice, France
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Sophia-Antipolis, France
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Sophia-Antipolis, France.
| |
Collapse
|
184
|
LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway. Sci Rep 2017; 7:749. [PMID: 28389657 PMCID: PMC5429732 DOI: 10.1038/s41598-017-00913-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Our previous studies showed that low frequency magnetic fields (LF-MF) suppressed tumor growth and influenced the function of immune system. Nevertheless the mechanisms behind the effect of LF-MF still remain to be elucidated. In this study, Tumor- bearing mice subcutaneously inoculated with Lewis lung cancer cells were exposed to a LF-MF (0.4T, 7.5 Hz) for 35 days and Survival rate, tumor growth and the tumor markers were measured. Results showed that tumor growth was obviously inhibited with a prolonged survival of tumor- bearing mice by LF-MF exposure. In vitro experiments, LF-MF was found to induce cell growth arrest, cell senescence and inhibit iron metabolism of lung cancer cells. Moreover, LF-MF stabilized p53 protein via inhibiting cell iron metabolism and the stabilized p53 protein enhanced miR-34a transcription. Furthermore, increased expression of miR-34a induced cell proliferation inhibition, cell cycle arrest and cell senescence of lung cancer cells by targeting E2F1/E2F3. We also detected the relevant indicator in tumor tissue such as the iron content, the level of miR-34a and related protein, corresponding results were obtained. Taken together, these observations imply that LF-MF suppressed lung cancer via inhibiting cell iron metabolism, stabilizing p53 protein and activation P53- miR-34a-E2F1/E2F3 pathway.
Collapse
|
185
|
Cabrita MA, Bose R, Vanzyl EJ, Pastic A, Marcellus KA, Pan E, Hamill JD, McKay BC. The p53 protein induces stable miRNAs that have the potential to modify subsequent p53 responses. Gene 2017; 608:86-94. [DOI: 10.1016/j.gene.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/07/2017] [Accepted: 01/19/2017] [Indexed: 12/19/2022]
|
186
|
Jiang L, Hermeking H. miR-34a and miR-34b/c Suppress Intestinal Tumorigenesis. Cancer Res 2017; 77:2746-2758. [PMID: 28363996 DOI: 10.1158/0008-5472.can-16-2183] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/04/2016] [Accepted: 03/23/2017] [Indexed: 11/16/2022]
Abstract
The p53-inducible miR-34a and miR-34b/c genes are frequently silenced in colorectal cancer. To address the in vivo relevance of miR-34a/b/c function for suppression of intestinal tumor formation, we generated ApcMin/+ mice with deletions of the miR-34a and/or miR-34b/c genes separately or in combination. Combined deletion of miR-34a/b/c increased the number of intestinal stem cells as well as Paneth and Goblet cells, resulting in enlarged intestinal crypts. miR-34a/b/c-deficient ApcMin/+ mice displayed an increased tumor burden and grade and decreased survival. miR-34a/b/c-deficient adenomas showed elevated proliferation and decreased apoptosis and displayed pronounced bacterial infiltration, which may be due to an observed decrease in infiltrating immune cells and downregulation of barrier proteins. mRNA induction in miR-34a/b/c-deficient tumors was enriched for miR-34a/b/c seed-matching sites and for mRNAs encoding proteins related to epithelial-mesenchymal transition, stemness, and Wnt signaling. Accordingly, cells explanted from miR-34a/b/c-deficient adenomas formed tumor organoids at an increased rate. Several upregulated miR-34 targets displayed elevated expression in primary human colorectal cancers that was associated with lymph-node metastases (INHBB, AXL, FGFR1, and PDFGRB) and upregulation of INHBB and AXL in primary colorectal cancer was associated with poor patient survival. In conclusion, our results show that miR-34a/b/c suppress tumor formation caused by loss of Apc and control intestinal stem cell and secretory cell homeostasis by downregulation of multiple target mRNAs. Cancer Res; 77(10); 2746-58. ©2017 AACR.
Collapse
Affiliation(s)
- Longchang Jiang
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, München, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
187
|
Affiliation(s)
- Chao-Po Lin
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| |
Collapse
|
188
|
Shetty SK, Tiwari N, Marudamuthu AS, Puthusseri B, Bhandary YP, Fu J, Levin J, Idell S, Shetty S. p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1016-1034. [PMID: 28273432 DOI: 10.1016/j.ajpath.2016.12.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. The pathogenesis of interstitial lung diseases, including its most common form, IPF, remains poorly understood. Alveolar epithelial cell (AEC) apoptosis, proliferation, and accumulation of myofibroblasts and extracellular matrix deposition results in progressive loss of lung function in IPF. We found induction of tumor suppressor protein, p53, and apoptosis with suppression of urokinase-type plasminogen activator (uPA) and the uPA receptor in AECs from the lungs of IPF patients, and in mice with bleomycin, cigarette smoke, silica, or sepsis-induced lung injury. Treatment with the caveolin-1 scaffolding domain peptide (CSP) reversed these effects. Consistent with induction of p53, AECs from IPF lungs or mice with diverse types of lung injuries showed increased p53 acetylation and miR-34a expression with reduction in Sirt1. This was significantly reduced after treatment of wild-type mice with CSP, and uPA-deficient mice were unresponsive. Bleomycin failed to induce miR-34a in p53- or plasminogen activator inhibitor-1 (PAI-1)-deficient mice. CSP-mediated inhibition of miR-34a restored Sirt1, suppressed p53 acetylation and apoptosis in injured AECs, and prevented pulmonary fibrosis (PF). AEC-specific suppression of miR-34a inhibited bleomycin-induced p53, PAI-1, and apoptosis and prevented PF, whereas overexpression of precursor-miR-34a increased p53, PAI-1, and apoptosis in AECs of mice unexposed to bleomycin. Our study validates p53-miR-34a feedback as a potential therapeutic target in PF.
Collapse
Affiliation(s)
- Shwetha K Shetty
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Nivedita Tiwari
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Amarnath S Marudamuthu
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Bijesh Puthusseri
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Yashodhar P Bhandary
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Jian Fu
- Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey Levin
- Division of Occupational Medicine, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Sreerama Shetty
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas.
| |
Collapse
|
189
|
MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16:203-222. [PMID: 28209991 DOI: 10.1038/nrd.2016.246] [Citation(s) in RCA: 3447] [Impact Index Per Article: 430.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.
Collapse
|
190
|
Granados-López AJ, Ruiz-Carrillo JL, Servín-González LS, Martínez-Rodríguez JL, Reyes-Estrada CA, Gutiérrez-Hernández R, López JA. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development. Int J Mol Sci 2017; 18:ijms18020407. [PMID: 28216603 PMCID: PMC5343941 DOI: 10.3390/ijms18020407] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches.
Collapse
Affiliation(s)
- Angelica Judith Granados-López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
- Doctorado en Ciencias Básicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Campus II, Zacatecas 98066, Mexico.
| | - José Luis Ruiz-Carrillo
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| | | | - José Luis Martínez-Rodríguez
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| | - Claudia Araceli Reyes-Estrada
- Doctorado en Ciencias Básicas en la Especialidad en Farmacología Médica y Molecular de la Unidad Académica de Medicina Humana y Ciencias de la Salud de la Universidad Autónoma de Zacateacas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Rosalinda Gutiérrez-Hernández
- Doctorado en Ciencias Básicas en la Especialidad en Farmacología Médica y Molecular de la Unidad Académica de Medicina Humana y Ciencias de la Salud de la Universidad Autónoma de Zacateacas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Jesús Adrián López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
- Doctorado en Ciencias Básicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Campus II, Zacatecas 98066, Mexico.
| |
Collapse
|
191
|
Deig CR, Mendonca MS, Lautenschlaeger T. Blood-Based Nucleic Acid Biomarkers as a Potential Tool to Determine Radiation Therapy Response in Non-Small Cell Lung Cancer. Radiat Res 2017; 187:333-338. [PMID: 28186469 DOI: 10.1667/rr14613.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with smoking as the main risk factor. The use of low-dose computed tomography (LDCT) as a screening method has shown a 20% lung cancer specific mortality benefit; however, widespread implementation is estimated to add $1.3-$2.0 billion in annual national health care expenditures. Blood-based microRNAs (miRNAs) have been investigated in detail and found to be potentially useful biomarkers indicating the presence of lung cancer, especially when used as a companion test to LDCT. Testing for miRNAs and circulating tumor DNA (ct-DNA) in the blood are anticipated to become more affordable in the near future, and therefore these potentially sensitive methods could serve as first-line screening modalities prior to obtaining LDCT and definitive diagnostic tests for lung cancer. Furthermore, miRNAs may shed light not only on the tumor burden, but also perhaps on tumor aggressiveness, histology, treatment response and the patient's overall survival. In the near future, analysis of ct-DNA may reveal somatic mutations beyond EGFR, tumor burden and the presence of occult progression of disease. In theory, these biomarkers may also help oncologists to elucidate the tumor response to radiotherapy, and in the future, may assist the radiation oncologist in making data-driven treatment decisions and providing patients with quantitative information regarding their treatment response.
Collapse
Affiliation(s)
- Christopher R Deig
- Department of a Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Marc S Mendonca
- Department of a Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202.,b Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tim Lautenschlaeger
- Department of a Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
192
|
Hassan A, Mosley J, Singh S, Zinn PO. A Comprehensive Review of Genomics and Noncoding RNA in Gliomas. Top Magn Reson Imaging 2017; 26:3-14. [PMID: 28079712 DOI: 10.1097/rmr.0000000000000111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glioblastoma (GBM) is the most malignant primary adult brain tumor. In spite of our greater understanding of the biology of GBMs, clinical outcome of GBM patients remains poor, as their median survival with best available treatment is 12 to 18 months. Recent efforts of The Cancer Genome Atlas (TCGA) have subgrouped patients into 4 molecular/transcriptional subgroups: proneural, neural, classical, and mesenchymal. Continuing efforts are underway to provide a comprehensive map of the heterogeneous makeup of GBM to include noncoding transcripts, genetic mutations, and their associations to clinical outcome. In this review, we introduce key molecular events (genetic and epigenetic) that have been deemed most relevant as per studies such as TCGA, with a specific focus on noncoding RNAs such as microRNAs (miRNA) and long noncoding RNAs (lncRNA). One of our main objectives is to illustrate how miRNAs and lncRNAs play a pivotal role in brain tumor biology to define tumor heterogeneity at molecular and cellular levels. Ultimately, we elaborate how radiogenomics-based predictive models can describe miRNA/lncRNA-driven networks to better define heterogeneity of GBM with clinical relevance.
Collapse
Affiliation(s)
- Ahmed Hassan
- *Department of Diagnostic Radiology †Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center ‡Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | | | | | | |
Collapse
|
193
|
Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer 2017; 16:2. [PMID: 28137304 PMCID: PMC5282926 DOI: 10.1186/s12943-016-0574-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Since leukemic stem cells (LSCs) or cancer stem cells (CSCs) were found in acute myeloid leukemia (AML) in 1997, extensive studies have been contributed to identification and characterization of such cell populations in various tissues. LSCs are now generally recognized as a heterogeneous cell population that possesses the capacities of self-renewal, proliferation and differentiation. It has been shown that LSCs are regulated by critical surface antigens, microenvironment, intrinsic signaling pathways, and novel molecules such as some ncRNAs. To date, significant progress has been made in understanding of LSCs, leading to the development of numerous LSCs-targeted therapies. Moreover, various novel therapeutic agents targeting LSCs are undergoing clinical trials. Here, we review current knowledge of LSCs, and discuss the potential therapies and their challenges that are being tested in clinical trials for evaluation of their effects on leukemias.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, China. .,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
194
|
Xie Y, Murray-Stewart T, Wang Y, Yu F, Li J, Marton LJ, Casero RA, Oupický D. Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy. J Control Release 2017; 246:110-119. [PMID: 28017891 PMCID: PMC5258827 DOI: 10.1016/j.jconrel.2016.12.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/15/2016] [Indexed: 01/07/2023]
Abstract
Combination of anticancer drugs with therapeutic microRNA (miRNA) has emerged as a promising anticancer strategy. However, the promise is hampered by a lack of desirable delivery systems. We report on the development of self-immolative nanoparticles capable of simultaneously delivering miR-34a mimic and targeting dysregulated polyamine metabolism in cancer. The nanoparticles were prepared from a biodegradable polycationic prodrug, named DSS-BEN, which was synthesized from a polyamine analog N1,N11-bisethylnorspermine (BENSpm). The nanoparticles were selectively disassembled in the cytoplasm where they released miRNA. Glutathione (GSH)-induced degradation of self-immolative linkers released BENSpm from the DSS-BEN polymers. MiR-34a mimic was effectively delivered to cancer cells as evidenced by upregulation of intracellular miR-34a and downregulation of Bcl-2 as one of the downstream targets of miR-34a. Intracellular BENSpm generated from the degraded nanoparticles induced the expression of rate-limiting enzymes in polyamine catabolism (SMOX, SSAT) and depleted cellular natural polyamines. Simultaneous regulation of polyamine metabolism and miR-34a expression by DSS-BEN/miR-34a not only enhanced cancer cell killing in cultured human colon cancer cells, but also improved antitumor activity in vivo. The reported findings validate the self-immolative nanoparticles as delivery vectors of therapeutic miRNA capable of simultaneously targeting dysregulated polyamine metabolism in cancer, thereby providing an elegant and efficient approach to combination nanomedicines.
Collapse
Affiliation(s)
- Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tracy Murray-Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yazhe Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Laurence J Marton
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
195
|
Borzi C, Calzolari L, Centonze G, Milione M, Sozzi G, Fortunato O. mir-660-p53-mir-486 Network: A New Key Regulatory Pathway in Lung Tumorigenesis. Int J Mol Sci 2017; 18:ijms18010222. [PMID: 28124991 PMCID: PMC5297851 DOI: 10.3390/ijms18010222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/09/2023] Open
Abstract
Lung cancer is the most frequent cause of cancer-related death worldwide, with limited therapeutic options and rapid development of drug resistance. MicroRNAs, a class of small non-coding RNAs that control different physiological processes, have been associated with cancer development, as either oncomiRNAs or tumor-suppressor miRNAs. In the present study we investigated the interaction between mir-486-5p and mir-660-5p, two independent tumor-suppressor miRNAs, to assess their possible role and synergistic effect in lung cancer treatment. Our data show that mir-660-5p over-expression in A549 lung cancer cells induced a remarkable increase in mir-486-5p expression level and activity, detected as a reduction of its target gene, p85. mir-486-5p expression was confirmed by microRNA in situ hybridization. mir-660-5p modulated mir-486-5p through the silencing of Mouse Double Minute 2 (MDM2), one of its direct target, and then through p53 stimulation. This regulatory pathway was effective in A549, but not in H1299; therefore, only in the context of a functional p53 protein. Our findings support the conclusion that mir-486-5p is positively regulated by mir-660-5p in lung cancer cell lines, through the mir-660-MDM2-p53 pathway, making mir-660-5p even more interesting for its potential successful use in lung cancer therapy.
Collapse
Affiliation(s)
- Cristina Borzi
- Department of Experimental Oncology and Molecular Medicine, Unit of Tumor Genomics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Linda Calzolari
- Department of Experimental Oncology and Molecular Medicine, Unit of Tumor Genomics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giovanni Centonze
- Department of Experimental Oncology and Molecular Medicine, Unit of Tumor Genomics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Massimo Milione
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Gabriella Sozzi
- Department of Experimental Oncology and Molecular Medicine, Unit of Tumor Genomics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Orazio Fortunato
- Department of Experimental Oncology and Molecular Medicine, Unit of Tumor Genomics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
196
|
Leichter AL, Sullivan MJ, Eccles MR, Chatterjee A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol Cancer 2017; 16:15. [PMID: 28103887 PMCID: PMC5248531 DOI: 10.1186/s12943-017-0584-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/04/2017] [Indexed: 12/18/2022] Open
Abstract
The development of childhood solid tumours is tied to early developmental processes. These tumours may be complex and heterogeneous, and elucidating the aberrant mechanisms that alter the early embryonic environment and lead to disease is essential to our understanding of how these tumours function. MicroRNAs (miRNAs) are vital regulators of gene expression at all stages of development, and their crosstalk via developmental signalling pathways is essential for orchestrating regulatory control in processes such as proliferation, differentiation and apoptosis of cells. Oncogenesis, from aberrant miRNA expression, can occur through amplification and overexpression of oncogenic miRNAs (oncomiRs), genetic loss of tumour suppressor miRNAs, and global miRNA reduction from genetic and epigenetic alterations in the components regulating miRNA biogenesis. While few driver mutations have been identified in many of these types of tumours, abnormal miRNA expression has been found in a number of childhood solid tumours compared to normal tissue. An exploration of the network of key developmental pathways and interacting miRNAs may provide insight into the development of childhood solid malignancies and how key regulators are affected. Here we present a comprehensive introduction to the roles and implications of miRNAs in normal early development and childhood solid tumours, highlighting several tumours in depth, including embryonal brain tumours, neuroblastoma, osteosarcoma, Wilms tumour, and hepatoblastoma. In light of recent literature describing newer classifications and subtyping of tumours based on miRNA profiling, we discuss commonly identified miRNAs, clusters or families associated with several solid tumours and future directions for improving therapeutic approaches.
Collapse
Affiliation(s)
- Anna L Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, P.O. Box 913, Dunedin, 9016, New Zealand
| | | | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, P.O. Box 913, Dunedin, 9016, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, P.O. Box 913, Dunedin, 9016, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
197
|
Regulation of miR-34 Family in Neuronal Development. Mol Neurobiol 2017; 55:936-945. [PMID: 28084588 DOI: 10.1007/s12035-016-0359-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/28/2016] [Indexed: 12/31/2022]
Abstract
Differentiation of neural stem cells (NSC's) to mature and functional neurons requires coordinated expression of mRNA, microRNAs (miRNAs) and regulatory proteins. Our earlier unbiased miRNA profiling studies have identified miR-200, miR-34 and miR-221/222 as maximally up-regulated miRNA families in differentiating PC12 cells and demonstrated the capability of miR-200 family in inducing neuronal differentiation (J. Neurochem, 2015, 133, 640-652). In present study, we have investigated role of miR-34 family in neuronal differentiation and identified P53 as mediator of nerve growth factor (NGF) induced miR-34a expression in differentiating PC12 cells. Our studies have shown that NGF induced miR-34a, arrests proliferating PC12 cells to G1 phase, which is pre-requisite for neuronal differentiation. Our studies have also shown that increased expression of miR-34a controls the P53 level in differentiated PC12 cells in feedback inhibition manner, which probably prevents differentiated cells from P53 induced apoptosis. Expression profiling of miR-34 family in different neuronal, non-neuronal and developing cells have identified differentiated and aged brain cells as richest source of miR-34, which also indicates that higher expression of miR-34 family helps in maintaining the mature neurons in non-proliferative stage. In conclusion, our studies have shown that miR-34 is brain enriched miRNA family, which up-regulates with neuronal maturation and brain ageing and co-operative regulation of P53 and miR-34a helps in neuronal differentiation by arresting cells in G1 phase.
Collapse
|
198
|
Abstract
The E6 and E7 proteins are the major oncogenic drivers encoded by high-risk human papillomaviruses (HPVs). While many aspects of the transforming activities of these proteins have been extensively studied, there are fewer studies that have investigated how HPV E6/E7 expression affects the expression of cellular noncoding RNAs. The goal of our study was to investigate HPV16 E6/E7 modulation of cellular microRNA (miR) levels and to determine the potential consequences for cellular gene expression. We performed deep sequencing of small and large cellular RNAs in primary undifferentiated cultures of human foreskin keratinocytes (HFKs) with stable expression of HPV16 E6/E7 or a control vector. After integration of the two data sets, we identified 51 differentially expressed cellular miRs associated with the modulation of 1,456 potential target mRNAs in HPV16 E6/E7-expressing HFKs. We discovered that the degree of differential miR expression in HFKs expressing HPV16 E6/E7 was not necessarily predictive of the number of corresponding mRNA targets or the potential impact on gene expression. Additional analyses of the identified miR-mRNA pairs suggest modulation of specific biological activities and biochemical pathways. Overall, our study supports the model that perturbation of cellular miR expression by HPV16 E6/E7 importantly contributes to the rewiring of cellular regulatory circuits by the high-risk HPV E6 and E7 proteins that contribute to oncogenic transformation. IMPORTANCE High-risk human papillomaviruses (HPVs) are the causative agents of almost all cervical cancers and many other cancers, including anal, vaginal, vulvar, penile, and oropharyngeal cancers. Despite the availability of efficacious HPV vaccines, it is critical to determine how HPVs cause cancer, as many people remain unvaccinated and the vaccine does not prevent cancer development in individuals who are already infected. Two HPV proteins, E6 and E7, are the major drivers of cancer development, and much remains to be learned about how the expression of these viral proteins reprograms infected cells, ultimately resulting in cancer development. Small, noncoding human RNAs, termed microRNAs (miRs), regulate gene expression and have been implicated in almost all human cancers, including HPV-associated cancers. Our study provides a comprehensive analysis of how E6 and E7 alter the expression of human miRs and how this potentially impacts cellular gene expression, which may contribute to cancer development.
Collapse
|
199
|
Lacombe J, Zenhausern F. Emergence of miR-34a in radiation therapy. Crit Rev Oncol Hematol 2017; 109:69-78. [PMID: 28010900 PMCID: PMC5199215 DOI: 10.1016/j.critrevonc.2016.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Expressions of many microRNAs (miRNAs) in response to ionizing radiation (IR) have already been investigated and some of them seem to play an important role in the tumor radioresistance, normal tissue radiotoxicity or as predictive biomarkers to radiation. miR-34a is an emerging miRNA in recent radiobiology studies. Here, we review this miR-34 family member by detailing its different roles in radiation response and we will discuss about the role that it can play in radiation treatment. Thus, we will show that IR regulates miR-34a by increasing its expression. We will also highlight different biological processes involved in cellular response to IR and regulated by miR-34a in order to demonstrate the role it can play in tumor radio-response or normal tissue radiotoxicity as a radiosensitizer or radioprotector. miR-34a is poised to assert itself as an important player in radiobiology and should become more and more important in radiation therapy management.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA.
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA; Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, 425 N. 5th Street, Phoenix, AZ 85004, USA.
| |
Collapse
|
200
|
Abstract
MicroRNAs (miRNAs) function as oncogenes or tumor suppressors and are dysregulated in cancer. miRNAs therefore represent promising therapeutic targets for cancer. Small molecules that could modulate the expression of miRNAs would thus have potential as anticancer agents. Library screening of small molecules targeting miRNAs is a useful technology platform for anticancer drug development. Here, we describe a hepatocellular carcinoma (HCC) cell-based luciferase reporter system which could be used to screen for small molecule modulators of tumor suppressor microRNA-34a.
Collapse
Affiliation(s)
- Zhangang Xiao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518087, China.
| |
Collapse
|