151
|
Lin YC, Ku CC, Wuputra K, Liu CJ, Wu DC, Satou M, Mitsui Y, Saito S, Yokoyama KK. Possible Strategies to Reduce the Tumorigenic Risk of Reprogrammed Normal and Cancer Cells. Int J Mol Sci 2024; 25:5177. [PMID: 38791215 PMCID: PMC11120835 DOI: 10.3390/ijms25105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reprogramming of somatic cells to pluripotent stem cells has immense potential for use in regenerating or redeveloping tissues for transplantation, and the future application of this method is one of the most important research topics in regenerative medicine. These cells are generated from normal cells, adult stem cells, or neoplastic cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, and NANOG, and can differentiate into all tissue types in adults, both in vitro and in vivo. However, tumorigenicity, immunogenicity, and heterogeneity of cell populations may hamper the use of this method in medical therapeutics. The risk of cancer formation is dependent on mutations of these stemness genes during the transformation of pluripotent stem cells to cancer cells and on the alteration of the microenvironments of stem cell niches at genetic and epigenetic levels. Recent reports have shown that the generation of induced pluripotent stem cells (iPSCs) derived from human fibroblasts could be induced using chemicals, which is a safe, easy, and clinical-grade manufacturing strategy for modifying the cell fate of human cells required for regeneration therapies. This strategy is one of the future routes for the clinical application of reprogramming therapy. Therefore, this review highlights the recent progress in research focused on decreasing the tumorigenic risk of iPSCs or iPSC-derived organoids and increasing the safety of iPSC cell preparation and their application for therapeutic benefits.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cha-Chien Ku
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Maki Satou
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Yukio Mitsui
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Shigeo Saito
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
- Saito Laboratory of Cell Technology, Yaita 329-1571, Tochigi, Japan
| | - Kazunari K. Yokoyama
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
152
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
153
|
Xiao Z, Wang S, Chen J, Li Y, Jiang Y, Tin VP, Liu J, Hu H, Wong MP, Pan Y, Yam JWP. The Dual Role of the NFATc2/galectin-9 Axis in Modulating Tumor-Initiating Cell Phenotypes and Immune Suppression in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306059. [PMID: 38528665 PMCID: PMC11132051 DOI: 10.1002/advs.202306059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Tumor-initiating cells (TICs) resilience and an immunosuppressive microenvironment are aggressive oncogenic phenotypes that contribute to unsatisfactory long-term outcomes in lung adenocarcinoma (LUAD) patients. The molecular mechanisms mediating the interaction between TICs and immune tolerance have not been elucidated. The role of Galectin-9 in oncogenesis and immunosuppressive microenvironment is still unknown. This study explored the potential role of galectin-9 in TIC regulation and immune modulation in LUAD. The results show that galectin-9 supports TIC properties in LUAD. Co-culture of patient-derived organoids and matched peripheral blood mononuclear cells showed that tumor-secreted galectin-9 suppressed T cell cytotoxicity and induced regulatory T cells (Tregs). Clinically, galectin-9 is upregulated in human LUAD. High expression of galectin-9 predicted poor recurrence-free survival and correlated with high levels of Treg infiltration. LGALS9, the gene encoding galectin-9, is found to be transcriptionally regulated by the nuclear factor of activated T cells 2 (NFATc2), a previously reported TIC regulator, via in silico prediction and luciferase reporter assays. Overall, the results suggest that the NFATc2/galectin-9 axis plays a dual role in TIC regulation and immune suppression.
Collapse
Affiliation(s)
- Zhi‐Jie Xiao
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational ResearchThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Si‐Qi Wang
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Jun‐Jiang Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510000China
| | - Yun Li
- Department of Thoracic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Yuchen Jiang
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Vicky Pui‐Chi Tin
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Jia Liu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Huiyi Hu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Maria Pik Wong
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Yihang Pan
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| |
Collapse
|
154
|
Rehani V, Sreen A, Anadure RK, Gupta S. The Spectrum of Neurological Manifestations in Scrub Typhus. Neurol India 2024; 72:610-614. [PMID: 39041981 DOI: 10.4103/neuroindia.ni_470_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/09/2020] [Indexed: 07/24/2024]
Abstract
BACKGROUND Scrub typhus is a mite-borne zoonotic disease caused by Orientia tsutsugamushi and commonly presents with fever, rash, and eschar. Systemic complications develop later in the illness including, meningoencephalitis, pericardial effusion, myocarditis, and pneumonitis. In this article, we will be presenting different neurological manifestations of scrub typhus along with functional outcomes studied at a tertiary care center in New Delhi. METHODS This ambispective observational study was conducted at Army Hospital Research and Referral, New Delhi, during January 2018- January 2020. Febrile illness, serologically confirmed as scrub typhus and developing neurological complications were included. A predesigned clinical proforma was recorded for demographics, clinical features, neurological examination, supported with laboratory and/or radiology evaluation, and functional outcomes using the modified Rankin Scale (mRS). RESULTS In our cohort of 7 patients' majority were male (71%) with mean age at presentation being 42.5 years. Eschar was present in only 2 cases (28%) and a syndromic clinical diagnosis of meningoencephalitis was made in 3 (43%), acute flaccid quadriparesis in 2 (28%); and symptomatic seizure and parkinsonism in 1 patient each (14%). CSF showed lymphocytic pleocytosis with protein elevation in 57% cases. Systemic dysfunction was noted in the form of thrombocytopenia (57%), hyponatremia (42%), elevated transaminases (57%). Symptoms resolved with Doxycycline ± Rifampicin therapy in all cases, with good functional outcomes in majority of (89%) cases. CONCLUSION Neurological complications in scrub typhus have a wide spectrum involving meninges, encephalon, basal ganglia, cranial, and peripheral nerves. High index of suspicion with early serological testing (ELISA) is a must in undifferentiated fevers. Timely initiation of appropriate therapy leads to good clinical outcomes, in majority of cases with neurological involvement.
Collapse
Affiliation(s)
- Varun Rehani
- Department of Neurology, Army Hospital Research and Referral, New Delhi, India
| | - Amit Sreen
- Department of Neurology, Army Hospital Research and Referral, New Delhi, India
| | - R K Anadure
- Department of Neurology, Army Hospital Research and Referral, New Delhi, India
| | - Salil Gupta
- Prof and HOD Medicine, Command Hosp Air Force, Bangalore, Karnataka, India
| |
Collapse
|
155
|
Alharbi TA, Rabbani SI, Orfali R, Almadani ME, Ahmad F, Gilkaramenthi R, Jibreel EA, Ahmed Quadri MS, Basheeruddin Asdaq SM. Metabolic effects of a submaximal dose of pink salt and monosodium glutamate in experimental rats. Heliyon 2024; 10:e29810. [PMID: 38681587 PMCID: PMC11053270 DOI: 10.1016/j.heliyon.2024.e29810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Background & objectives Pink salt and monosodium glutamate (MSG) are two typical food additives used in cooking to enhance flavour. However, excessive use of them has been associated to a variety of metabolic problems, including weight gain and hyperglycemia. The current study aimed to assess the metabolic changes caused by submaximal dosages of MSG and pink salt in experimental rats. Methods Twenty-four 120-150 g Wister rats of both sexes were divided into three groups: control, pink salt-treated (0.8 g/kg daily for three weeks), and MSG-treated (3.6 g/kg daily for three weeks). The body weight, amount of food and water consumed, and blood glucose levels of animals were measured and recorded as indicators of their metabolic changes. Furthermore, after salt treatments at intervals such as week 1, week 2, and week 3, the survival rate and general toxicity manifestations were determined. The results were statistically analysed using one-way ANOVA, with p < 0.05 being considered significant. Results The study found that the group given a submaximal dose of MSG gained significantly more weight (p < 0.05), consumed more food and water, and had higher blood glucose levels than the control. Ninety percent of the MSG therapy group survived by the end of the third week, however, they suffered from negative effects like abdominal distention, respiratory problems, ptosis, and subcutaneous swelling. On the other hand, the consumption of food and drink was significantly (p < 0.05) increased upon the administration of pink salt. Only little changes were observed in the body weight, blood sugar levels, and general features (such as subcutaneous swelling, change in bowel colour, and loose stools). Additionally, it was shown that the survival rate remained unchanged, particularly after week 3. Conclusion According to study findings, MSG may induce metabolic issues, increasing the chance of death. While there was no discernible metabolic aberration linked to pink salt. Further research is required to fully understand the mechanism and consequences of these taste enhancers on the host system before pink salt can be deemed safe.
Collapse
Affiliation(s)
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Moneer E. Almadani
- Department of Clinical Medicine, College of medicine, AlMaarefa University, Dariyah, Riyadh, 13713, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, AlMaarefa University, Dariyah, 13713, Riyadh, Saudi Arabia
| | - Rafiulla Gilkaramenthi
- Department of Emergency Medical Services, College of Applied Sciences, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Ebtesam Abdulrahman Jibreel
- Department of Nursing, College of Applied Sciences, AlMaarefa University, Dariyah, 13713, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
156
|
Jungcharoen P, Thivakorakot K, Thientanukij N, Kosachunhanun N, Vichapattana C, Panaampon J, Saengboonmee C. Magnetite nanoparticles: an emerging adjunctive tool for the improvement of cancer immunotherapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:316-331. [PMID: 38745773 PMCID: PMC11090691 DOI: 10.37349/etat.2024.00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/27/2023] [Indexed: 05/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a groundbreaking field, offering promising and transformative tools for oncological research and treatment. However, it faces several limitations, including variations in cancer types, dependence on the tumor microenvironments (TMEs), immune cell exhaustion, and adverse reactions. Magnetic nanoparticles, particularly magnetite nanoparticles (MNPs), with established pharmacodynamics and pharmacokinetics for clinical use, hold great promise in this context and are now being explored for therapeutic aims. Numerous preclinical studies have illustrated their efficacy in enhancing immunotherapy through various strategies, such as modulating leukocyte functions, creating favorable TMEs for cytotoxic T lymphocytes, combining with monoclonal antibodies, and stimulating the immune response via magnetic hyperthermia (MHT) treatment (Front Immunol. 2021;12:701485. doi: 10.3389/fimmu.2021.701485). However, the current clinical trials of MNPs are mostly for diagnostic aims and as a tool for generating hyperthermia for tumor ablation. With concerns about the adverse effects of MNPs in the in vivo systems, clinical translation and clinical study of MNP-boosted immunotherapy remains limited. The lack of extensive clinical investigations poses a current barrier to patient application. Urgent efforts are needed to ascertain both the efficacy of MNP-enhanced immunotherapy and its safety profile in combination therapy. This article reviews the roles, potential, and challenges of using MNPs in advancing cancer immunotherapy. The application of MNPs in boosting immunotherapy, and its perspective role in research and development is also discussed.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kunakorn Thivakorakot
- Cho-Kalaphruek Excellent Research Project for Medical Students, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nachayada Thientanukij
- Cho-Kalaphruek Excellent Research Project for Medical Students, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natkamon Kosachunhanun
- Cho-Kalaphruek Excellent Research Project for Medical Students, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chayanittha Vichapattana
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Charupong Saengboonmee
- Cho-Kalaphruek Excellent Research Project for Medical Students, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
157
|
Deng H, Liang WY, Chen LQ, Yuen TH, Sahin B, Vasilescu DM, Trinder M, Walley K, Rensen PC, Boyd JH, Brunham LR. CETP inhibition enhances monocyte activation and bacterial clearance and reduces streptococcus pneumonia-associated mortality in mice. JCI Insight 2024; 9:e173205. [PMID: 38646937 PMCID: PMC11141867 DOI: 10.1172/jci.insight.173205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.
Collapse
Affiliation(s)
- Haoyu Deng
- Department of Medicine, Faculty of Medicine
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | - Wan Yi Liang
- Department of Microbiology and Immunology, Faculty of Science, and
| | - Le Qi Chen
- Department of Microbiology and Immunology, Faculty of Science, and
| | - Tin Ho Yuen
- Department of Microbiology and Immunology, Faculty of Science, and
| | - Basak Sahin
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | | | - Mark Trinder
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
- Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith Walley
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | - Patrick C.N. Rensen
- Department of Medicine, Division of Endocrinology, and
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - John H. Boyd
- Department of Medicine, Faculty of Medicine
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | - Liam R. Brunham
- Department of Medicine, Faculty of Medicine
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| |
Collapse
|
158
|
Zhang Y, Sun P, Li T, Li J, Ye J, Li X, Wu J, Lu Y, Zhu L, Wang H, Pan C. Efficient Production of Self-Assembled Bioconjugate Nanovaccines against Klebsiella pneumoniae O2 Serotype in Engineered Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:728. [PMID: 38668222 PMCID: PMC11054253 DOI: 10.3390/nano14080728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Nanoparticles (NPs) have been surfacing as a pivotal platform for vaccine development. In our previous work, we developed a cholera toxin B subunit (CTB)-based self-assembled nanoparticle (CNP) and produced highly promising bioconjugate nanovaccines by loading bacterial polysaccharide (OPS) in vivo. In particular, the Klebsiella pneumoniae O2 serotype vaccine showcased a potent immune response and protection against infection. However, extremely low yields limited its further application. In this study, we prepared an efficient Klebsiella pneumoniae bioconjugate nanovaccine in Escherichia coli with a very high yield. By modifying the 33rd glycine (G) in the CNP to aspartate (D), we were able to observe a dramatically increased expression of glycoprotein. Subsequently, through a series of mutations, we determined that G33D was essential to increasing production. In addition, this increase only occurred in engineered E. coli but not in the natural host K. pneumoniae strain 355 (Kp355) expressing OPSKpO2. Next, T-cell epitopes were fused at the end of the CNP(G33D), and animal experiments showed that fusion of the M51 peptide induced high antibody titers, consistent with the levels of the original nanovaccine, CNP-OPSKpO2. Hence, we provide an effective approach for the high-yield production of K. pneumoniae bioconjugate nanovaccines and guidance for uncovering glycosylation mechanisms and refining glycosylation systems.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Juntao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Hengliang Wang
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
159
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
160
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
161
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
162
|
Balasubramanian T, Sambath U, Radja RD, Thangaraj G, Devaraju P, Srinivasan L, Srinivasan P, Nair MG, Raja K, Lakkawar AW, Soong L. Pathological Responses in Asian House Shrews ( Suncus murinus) to the Naturally Acquired Orientia tsutsugamushi Infection. Microorganisms 2024; 12:748. [PMID: 38674692 PMCID: PMC11051718 DOI: 10.3390/microorganisms12040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Scrub typhus is a re-emerging disease caused by Orientia tsutsugamushi, transmitted by mites belonging to the family Trombiculidae. Humans and rodents acquire the infection by the bite of larval mites/chiggers. Suncus murinus, the Asian house shrew, has been reported to harbor the vector mites and has been naturally infected with O. tsutsugamushi. The present study aimed to localize and record O. tsutsugamushi in the tissues and the host response in shrews naturally infected with O. tsutsugamushi. Sheehan's modified May-Grunwald Giemsa staining was carried out in 365 tissues from 87 animals, and rickettsiae were documented in 87 tissues from 20 animals. Immunohistochemical (IHC) staining, using polyclonal antibodies raised against selected epitopes of the 56-kDa antigen, was carried out, and 81/87 tissue sections were tested positive for O. tsutsugamushi. By IHC, in addition to the endothelium, the pathogen was also demonstrated by IHC in cardiomyocytes, the bronchiolar epithelium, stroma of the lungs, hepatocytes, the bile duct epithelium, the epithelium and goblet cells of intestine, the tubular epithelium of the kidney, and splenic macrophages. Furthermore, the pathogen was confirmed by real-time PCR using blood (n = 20) and tissues (n = 81) of the IHC-positive animals. None of the blood samples and only 22 out of 81 IHC-positive tissues were tested positive by PCR. By nucleotide sequencing of the 56-kDa gene, Gilliam and Karp strains were found circulating among these animals. Although these bacterial strains are highly virulent and cause a wide range of pathological alterations, hence exploring their adaptive mechanisms of survival in shrews will be of significance. Given that the pathogen localizes in various organs following a transient bacteremia, we recommend the inclusion of tissues from the heart, lung, intestine, and kidney of reservoir animals, in addition to blood samples, for future molecular surveillance of scrub typhus.
Collapse
Affiliation(s)
- Tharani Balasubramanian
- Department of Veterinary Pathology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India; (T.B.); (U.S.); (M.G.N.); (K.R.); (A.W.L.)
| | - Uma Sambath
- Department of Veterinary Pathology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India; (T.B.); (U.S.); (M.G.N.); (K.R.); (A.W.L.)
| | - Ranjana Devi Radja
- Unit of One Health, ICMR—Vector Control Research Centre, Indira Nagar, Puducherry 605006, India; (R.D.R.); (G.T.); (L.S.); (P.S.)
| | - Gowdham Thangaraj
- Unit of One Health, ICMR—Vector Control Research Centre, Indira Nagar, Puducherry 605006, India; (R.D.R.); (G.T.); (L.S.); (P.S.)
| | - Panneer Devaraju
- Unit of One Health, ICMR—Vector Control Research Centre, Indira Nagar, Puducherry 605006, India; (R.D.R.); (G.T.); (L.S.); (P.S.)
| | - Lakshmy Srinivasan
- Unit of One Health, ICMR—Vector Control Research Centre, Indira Nagar, Puducherry 605006, India; (R.D.R.); (G.T.); (L.S.); (P.S.)
| | - Pushpa Srinivasan
- Unit of One Health, ICMR—Vector Control Research Centre, Indira Nagar, Puducherry 605006, India; (R.D.R.); (G.T.); (L.S.); (P.S.)
| | - Madhavan Gopalakrishnan Nair
- Department of Veterinary Pathology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India; (T.B.); (U.S.); (M.G.N.); (K.R.); (A.W.L.)
| | - Kumar Raja
- Department of Veterinary Pathology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India; (T.B.); (U.S.); (M.G.N.); (K.R.); (A.W.L.)
| | - Avinash Warundeo Lakkawar
- Department of Veterinary Pathology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India; (T.B.); (U.S.); (M.G.N.); (K.R.); (A.W.L.)
| | - Lynn Soong
- Department of Microbiology and Immunology, Institute for Human Infections & Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
163
|
Liao M, Cao J, Chen W, Wang M, Jin Z, Ye J, Ren Y, Wei Y, Xue Y, Chen D, Zhang Y, Chen S. HMGB1 prefers to interact with structural RNAs and regulates rRNA methylation modification and translation in HeLa cells. BMC Genomics 2024; 25:345. [PMID: 38580917 PMCID: PMC10996203 DOI: 10.1186/s12864-024-10204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND High-mobility group B1 (HMGB1) is both a DNA binding nuclear factor modulating transcription and a crucial cytokine that mediates the response to both infectious and noninfectious inflammation such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. HMGB1 has been proposed to control ribosome biogenesis, similar as the other members of a class of HMGB proteins. RESULTS Here, we report that HMGB1 selectively promotes transcription of genes involved in the regulation of transcription, osteoclast differentiation and apoptotic process. Improved RNA immunoprecipitation by UV cross-linking and deep sequencing (iRIP-seq) experiment revealed that HMGB1 selectively bound to mRNAs functioning not only in signal transduction and gene expression, but also in axon guidance, focal adhesion, and extracellular matrix organization. Importantly, HMGB1-bound reads were strongly enriched in specific structured RNAs, including the domain II of 28S rRNA, H/ACA box snoRNAs including snoRNA63 and scaRNAs. RTL-P experiment showed that overexpression of HMGB1 led to a decreased methylation modification of 28S rRNA at position Am2388, Cm2409, and Gm2411. We further showed that HMGB1 overexpression increased ribosome RNA expression levels and enhanced protein synthesis. CONCLUSION Taken together, our results support a model in which HMGB1 binds to multiple RNA species in human cancer cells, which could at least partially contribute to HMGB1-modulated rRNA modification, protein synthesis function of ribosomes, and differential gene expression including rRNA genes. These findings provide additional mechanistic clues to HMGB1 functions in cancers and cell differentiation.
Collapse
Affiliation(s)
- Meimei Liao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Jiarui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Wen Chen
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Mengwei Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Zhihui Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Jia Ye
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Yijun Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Yaqiang Xue
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Sen Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China.
| |
Collapse
|
164
|
Gelibter A, Asquino A, Strigari L, Zizzari IG, Tuosto L, Scirocchi F, Pace A, Siringo M, Tramontano E, Bianchini S, Bellati F, Botticelli A, Paoli D, Santini D, Nuti M, Rughetti A, Napoletano C. CD137 + and regulatory T cells as independent prognostic factors of survival in advanced non-oncogene addicted NSCLC patients treated with immunotherapy as first-line. J Transl Med 2024; 22:329. [PMID: 38570798 PMCID: PMC10993529 DOI: 10.1186/s12967-024-05142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), administered alone or combined with chemotherapy, are the standard of care in advanced non-oncogene addicted Non-Small Cell Lung Cancer (NSCLC). Despite these treatments' success, most long-term survival benefit is restricted to approximately 20% of patients, highlighting the need to identify novel biomarkers to optimize treatment strategies. In several solid tumors, immune soluble factors, the activatory CD137+ Tcells, and the immunosuppressive cell subsets Tregs and MDSCs (PMN(Lox1+)-MDSC and M-MDSCs) correlated with responses to ICIs and clinical outcomes thus becoming appealing predictive and prognostic factors. This study investigated the role of distinct CD137+ Tcell subsets, Tregs, MDSCs, and immune-soluble factors in NSCLC patients as possible biomarkers. METHODS The levels of T cells, MDSCs and soluble factors were evaluated in 89 metastatic NSCLC patients who underwent ICIs as first- or second-line treatment. T cell analysis was performed by cytoflurimetry evaluating Tregs and different CD137+ Tcell subsets also combined with CD3+, CD8+, PD1+, and Ki67+ markers. Circulating cytokines and immune checkpoints were also evaluated by Luminex analysis. All these parameters were correlated with several clinical factors (age, sex, smoking status, PS and TPS), response to therapy, PFS , and OS . The analyses were conducted in the overall population and in patients treated with ICIs as first-line (naïve patients). RESULTS In both groups of patients, high levels of circulating CD137+ and CD137+PD1+ T cells (total, CD4 and CD8) and the soluble factor LAG3 positively correlated with response to therapy. In naïve patients, PMN(Lox1+)-MDSCs negatively correlated with clinical response, and a high percentage of Tregs was associated with favorable survival. Moreover, the balance between Treg/CD137+ Tcells or PMN(Lox1+)-MDSC/CD137+ Tcells was higher in non-responding patients and was associated with poor survival. CD137+ Tcells and Tregs resulted as two positive independent prognostic factors. CONCLUSION High levels of CD137+, CD137+PD1+ Tcells and sLAG3 could predict the response to ICIs in NSCLC patients independently by previous therapy. Combining the evaluation of CD137+ Tcells and Tregs also as Treg/CD137+ T cells ratio it is possible to identify naive patients with longer survival.
Collapse
Affiliation(s)
- Alain Gelibter
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Angela Asquino
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliera-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lucrezia Tuosto
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Fabio Scirocchi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Angelica Pace
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marco Siringo
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Elisa Tramontano
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Serena Bianchini
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Filippo Bellati
- Department of Medical and Surgical Sciences and Translational Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa 1035, 00189, Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Daniele Santini
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
165
|
Minahan NT, Yen TY, Guo YLL, Shu PY, Tsai KH. Concatenated ScaA and TSA56 Surface Antigen Sequences Reflect Genome-Scale Phylogeny of Orientia tsutsugamushi: An Analysis Including Two Genomes from Taiwan. Pathogens 2024; 13:299. [PMID: 38668254 PMCID: PMC11054523 DOI: 10.3390/pathogens13040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Orientia tsutsugamushi is an obligate intracellular bacterium associated with trombiculid mites and is the causative agent of scrub typhus, a life-threatening febrile disease. Strain typing of O. tsutsugamushi is based on its immunodominant surface antigen, 56-kDa type-specific antigen (TSA56). However, TSA56 gene sequence-based phylogenetic analysis is only partially congruent with core genome-based phylogenetic analysis. Thus, this study investigated whether concatenated surface antigen sequences, including surface cell antigen (Sca) proteins, can reflect the genome-scale phylogeny of O. tsutsugamushi. Complete genomes were obtained for two common O. tsutsugamushi strains in Taiwan, TW-1 and TW-22, and the core genome/proteome was identified for 11 O. tsutsugamushi strains. Phylogenetic analysis was performed using maximum likelihood (ML) and neighbor-joining (NJ) methods, and the congruence between trees was assessed using a quartet similarity measure. Phylogenetic analysis based on 691 concatenated core protein sequences produced identical tree topologies with ML and NJ methods. Among TSA56 and core Sca proteins (ScaA, ScaC, ScaD, and ScaE), TSA56 trees were most similar to the core protein tree, and ScaA trees were the least similar. However, concatenated ScaA and TSA56 sequences produced trees that were highly similar to the core protein tree, the NJ tree being more similar. Strain-level characterization of O. tsutsugamushi may be improved by coanalyzing ScaA and TSA56 sequences, which are also important targets for their combined immunogenicity.
Collapse
Affiliation(s)
- Nicholas T. Minahan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (N.T.M.); (Y.-L.L.G.)
| | - Tsai-Ying Yen
- Centers for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 115210, Taiwan; (T.-Y.Y.); (P.-Y.S.)
| | - Yue-Liang Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (N.T.M.); (Y.-L.L.G.)
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei 100025, Taiwan
| | - Pei-Yun Shu
- Centers for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 115210, Taiwan; (T.-Y.Y.); (P.-Y.S.)
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (N.T.M.); (Y.-L.L.G.)
- Global Health Program, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
| |
Collapse
|
166
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
167
|
Torke S, Walther W, Stein U. Immune Response and Metastasis-Links between the Metastasis Driver MACC1 and Cancer Immune Escape Strategies. Cancers (Basel) 2024; 16:1330. [PMID: 38611008 PMCID: PMC11010928 DOI: 10.3390/cancers16071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Metastasis remains the most critical factor limiting patient survival and the most challenging part of cancer-targeted therapy. Identifying the causal drivers of metastasis and characterizing their properties in various key aspects of cancer biology is essential for the development of novel metastasis-targeting approaches. Metastasis-associated in colon cancer 1 (MACC1) is a prognostic and predictive biomarker that is now recognized in more than 20 cancer entities. Although MACC1 can already be linked with many hallmarks of cancer, one key process-the facilitation of immune evasion-remains poorly understood. In this review, we explore the direct and indirect links between MACC1 and the mechanisms of immune escape. Therein, we highlight the signaling pathways and secreted factors influenced by MACC1 as well as their effects on the infiltration and anti-tumor function of immune cells.
Collapse
Affiliation(s)
- Sebastian Torke
- Experimental and Clinical Research Center, Charité, Medical Centre Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany; (W.W.); (U.S.)
| | | | | |
Collapse
|
168
|
Xie Y, Han R, Li Y, Li W, Zhang S, Wu Y, Zhao Y, Liu R, Wu J, Jiang W, Chen X. P2X7 receptor antagonists modulate experimental autoimmune neuritis via regulation of NLRP3 inflammasome activation and Th17 and Th1 cell differentiation. J Neuroinflammation 2024; 21:73. [PMID: 38528529 PMCID: PMC10964508 DOI: 10.1186/s12974-024-03057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Guillain-Barré syndrome (GBS), a post-infectious, immune-mediated, acute demyelinating disease of the peripheral nerves and nerve roots, represents the most prevalent and severe acute paralyzing neuropathy. Purinergic P2X7 receptors (P2X7R) play a crucial role in central nervous system inflammation. However, little is known about their role in the immune-inflammatory response within the peripheral nervous system. METHODS Initially, we assessed the expression of purinergic P2X7R in the peripheral blood of patients with GBS using flow cytometry and qRT-PCR. Next, we explored the expression of P2 X7R in CD4+ T cells, CD8+ T cells, and macrophages within the sciatic nerves and spleens of rats using immunofluorescence labeling and flow cytometry. The P2X7R antagonist brilliant blue G (BBG) was employed to examine its therapeutic impact on rats with experimental autoimmune neuritis (EAN) induced by immunization with the P0180 - 199 peptide. We analyzed CD4+ T cell differentiation in splenic mononuclear cells using flow cytometry, assessed Th17 cell differentiation in the sciatic nerve through immunofluorescence staining, and examined the expression of pro-inflammatory cytokine mRNA using RT-PCR. Additionally, we performed protein blotting to assess the expression of P2X7R and NLRP3-related inflammatory proteins within the sciatic nerve. Lastly, we utilized flow cytometry and immunofluorescence labeling to examine the expression of NLRP3 on CD4+ T cells in rats with EAN. RESULTS P2X7R expression was elevated not only in the peripheral blood of patients with GBS but also in rats with EAN. In rats with EAN, inhibiting P2X7R with BBG alleviated neurological symptoms, reduced demyelination, decreased inflammatory cell infiltration of the peripheral nerves, and improved nerve conduction. BBG also limited the production of pro-inflammatory molecules, down-regulated the expression of P2X7R and NLRP3, and suppressed the differentiation of Th1 and Th17 cells, thus protecting against EAN. These effects collectively contribute to modifying the inflammatory environment and enhancing outcomes in EAN rats. CONCLUSIONS Suppression of P2X7R relieved EAN manifestation by regulating CD4+ T cell differentiation and NLRP3 inflammasome activation. This finding underscores the potential significance of P2X7R as a target for anti-inflammatory treatments, advancing research and management of GBS.
Collapse
Affiliation(s)
- Yuhan Xie
- Department of Neurology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300052, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yulin Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Weiya Li
- Department of Neurology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300052, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shichao Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300102, China
| | - Yu Wu
- Department of Neurology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yuexin Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rongrong Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Xiuju Chen
- Department of Neurology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
169
|
Li C, Li J, Sun P, Li T, Yan X, Ye J, Wu J, Zhu L, Wang H, Pan C. Production of Promising Heat-Labile Enterotoxin (LT) B Subunit-Based Self-Assembled Bioconjugate Nanovaccines against Infectious Diseases. Vaccines (Basel) 2024; 12:347. [PMID: 38675730 PMCID: PMC11054625 DOI: 10.3390/vaccines12040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Nanoparticles (NPs) have been widely utilized in vaccine design. Although numerous NPs have been explored, NPs with adjuvant effects on their own have rarely been reported. We produce a promising self-assembled NP by integrating the pentameric Escherichia coli heat-labile enterotoxin B subunit (LTB) (studied as a vaccine adjuvant) with a trimer-forming peptide. This fusion protein can self-assemble into the NP during expression, and polysaccharide antigens (OPS) are then loaded in vivo using glycosylation. We initially produced two Salmonella paratyphi A conjugate nanovaccines using two LTB subfamilies (LTIB and LTIIbB). After confirming their biosafety in mice, the data showed that both nanovaccines (NP(LTIB)-OPSSPA and NP(LTIIbB)-OPSSPA) elicited strong polysaccharide-specific antibody responses, and NP(LTIB)-OPS resulted in better protection. Furthermore, polysaccharides derived from Shigella or Klebsiella pneumoniae were loaded onto NP(LTIB) and NP(LTIIbB). The animal experimental results indicated that LTIB, as a pentamer module, exhibited excellent protection against lethal infections. This effect was also consistent with that of the reported cholera toxin B subunit (CTB) modular NP in all three models. For the first time, we prepared a novel promising self-assembled NP based on LTIB. In summary, these results indicated that the LTB-based nanocarriers have the potential for broad applications, further expanding the library of self-assembled nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China; (C.L.); (J.L.); (P.S.); (T.L.); (X.Y.); (J.Y.); (L.Z.)
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China; (C.L.); (J.L.); (P.S.); (T.L.); (X.Y.); (J.Y.); (L.Z.)
| |
Collapse
|
170
|
Li X, Yamazaki T, Ebara M, Shirahata N, Hanagata N. Rational design of adjuvants boosts cancer vaccines. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:101-125. [PMID: 39461749 DOI: 10.1016/bs.pmbts.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer vaccines are expected to be next breakthrough in cancer immunotherapy. In cancer vaccines, adjuvants play an important role by enhancing and reshaping tumor antigen-specific immune responses. Failures in previous cancer vaccine clinical trials can be attributed to inappropriate selection and design of tumor antigens and adjuvants. Using basic theories of tumor immunology, the development of sequencing technology and nanotechnology enables the creation of cancer vaccines through appropriate selection of tumor antigens and adjuvants and their nanoscale assembly based on the specific characteristics of each tumor. In this chapter, we begin by discussing the various types of cancer vaccines and categories of tumor antigens. Then, we summarize the classification of adjuvants for cancer vaccines, including immunostimulatory molecules and delivery systems, and clarify the various factors that influence the properties of adjuvants, such as chemical composition, structure, and surface modification. Finally, we provide perspectives and insights on rational design of adjuvants in cancer vaccines to enhance their efficacy.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, Ibaraki, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Nobutaka Hanagata
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
171
|
Brouwer-Visser J, Fiaschi N, Deering RP, Cygan KJ, Scott D, Jeong S, Boucher L, Gupta NT, Gupta S, Adler C, Topp MS, Bannerji R, Duell J, Advani RH, Flink DM, Chaudhry A, Thurston G, Ambati SR, Jankovic V. Molecular assessment of intratumoral immune cell subsets and potential mechanisms of resistance to odronextamab, a CD20×CD3 bispecific antibody, in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. J Immunother Cancer 2024; 12:e008338. [PMID: 38519055 PMCID: PMC10961523 DOI: 10.1136/jitc-2023-008338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Patients with relapsed/refractory B-cell non-Hodgkin lymphoma (R/R B-NHL) have a significant need for effective treatment options. Odronextamab is an Fc-silenced, human, CD20×CD3 bispecific antibody that targets CD20-expressing cells via T-cell-mediated cytotoxicity independent of T-cell/major histocompatibility complex interaction. Phase I results in patients with R/R B-NHL demonstrated that odronextamab monotherapy could achieve deep and durable responses with a generally manageable safety profile (ELM-1; NCT02290951). As part of a biomarker analysis of the same study, we investigated potential biomarkers and mechanisms of resistance to odronextamab. METHODS Patients with R/R B-NHL enrolled in ELM-1 received one time per week doses of intravenous odronextamab for 4×21 day cycles, then doses every 2 weeks thereafter. Patient tumor biopsies were obtained at baseline, on-treatment, and at progression. Immune cell markers were analyzed by immunohistochemistry, flow cytometry, single-cell RNA sequencing, and whole genome sequencing. RESULTS Baseline tumor biopsies showed that almost all patients had high proportions of B cells that expressed the CD20 target antigen, whereas expression of other B-cell surface antigens (CD19, CD22, CD79b) was more variable. Responses to odronextamab in patients with diffuse large B-cell lymphoma were not related to the relative level of baseline CD20 expression, cell of origin, or high-risk molecular subtype. A potential link was observed between greater tumor programmed cell death-ligand 1 expression and increased likelihood of response to odronextamab. Similarly, a trend was observed between clinical response and increased levels of CD8 T cells and regulatory T cells at baseline. We also identified an on-treatment pharmacodynamic shift in intratumoral immune cell subsets. Finally, loss of CD20 expression through inactivating gene mutations was identified as a potential mechanism of resistance in patients who were treated with odronextamab until progression, as highlighted in two detailed patient cases reported here. CONCLUSIONS This biomarker analysis expands on clinical findings of odronextamab in patients with R/R B-NHL, providing verification of the suitability of CD20 as a therapeutic target, as well as evidence for potential mechanisms of action and resistance.
Collapse
Affiliation(s)
| | | | | | - Kamil J Cygan
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Darius Scott
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Se Jeong
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Lauren Boucher
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Namita T Gupta
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Suraj Gupta
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | | | - Max S Topp
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Rajat Bannerji
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Johannes Duell
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ranjana H Advani
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Dina M Flink
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Aafia Chaudhry
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
172
|
Kimura N, Tsukita Y, Ebina-Shibuya R, Miyauchi E, Yamada M, Narita D, Saito R, Inoue C, Fujino N, Ichikawa T, Tamada T, Sugiura H. Peripheral blood biomarkers associated with combination of immune checkpoint blockade plus chemotherapy in NSCLC. Cancer Biomark 2024:CBM230301. [PMID: 38669521 DOI: 10.3233/cbm-230301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND Biomarkers predicting clinical outcomes of treating non-small cell lung cancer (NSCLC) with combination of immune checkpoint inhibitors (ICIs) and chemotherapy would be valuable. OBJECTIVE This study aims to seek predictors of combination of ICI/chemotherapy response in NSCLC patients using peripheral blood samples. METHODS Patients diagnosed with advanced NSCLC between July 2019 and May 2021 receiving combination of ICI/chemotherapy were included and assessed for partial responses (PR), stable disease (SD) or progressive disease (PD). We measured circulating immune cells, plasma cytokines and chemokines. RESULTS Nineteen patients were enrolled. The proportions of circulating natural killer (NK) cells within CD45 + cells, programmed death 1 (PD-1) + Tim-3 + T cells within CD4 + cells, and the amount of chemokine C-X-C ligand (CXCL10) in the plasma were significantly elevated in PR relative to SD/PD patients (median 8.1%-vs-2.1%, P = 0.0032; median 1.2%-vs-0.3%, P = 0.0050; and median 122.6 pg/ml-vs-76.0 pg/ml, P = 0.0125, respectively). Patients with 2 or 3 elevated factors had longer progression-free survival than patients with 0 or only one (not reached-vs-5.6 months, P = 0.0002). CONCLUSIONS We conclude that NK cells, CD4 + PD-1 + Tim-3 + T cells, and CXCL10 levels in pre-treatment peripheral blood may predict the efficacy of combination of ICI/chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Nozomu Kimura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Tsukita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Narita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryota Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Inoue
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
173
|
van Schaik EJ, Fratzke AP, Gregory AE, Dumaine JE, Samuel JE. Vaccine development: obligate intracellular bacteria new tools, old pathogens: the current state of vaccines against obligate intracellular bacteria. Front Cell Infect Microbiol 2024; 14:1282183. [PMID: 38567021 PMCID: PMC10985213 DOI: 10.3389/fcimb.2024.1282183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.
Collapse
Affiliation(s)
- E J van Schaik
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - A P Fratzke
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Charles River Laboratories, Reno, NV, United States
| | - A E Gregory
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jennifer E Dumaine
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - J E Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Texas A&M University (TAMU), College Station, TX, United States
| |
Collapse
|
174
|
De Geyter I, Kowalewski MP, Tavares Pereira M. Applying a novel kinomics approach to study decidualization and the effects of antigestagens using a canine model†. Biol Reprod 2024; 110:583-598. [PMID: 38079525 PMCID: PMC10941090 DOI: 10.1093/biolre/ioad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 03/16/2024] Open
Abstract
Maternal decidual cells are crucial for the maintenance of canine pregnancy as they are the only cells expressing the nuclear progesterone (P4) receptor (PGR) in the placenta. Interfering with P4/PGR signaling adversely affects decidual cells and terminates pregnancy. Although immortalized dog uterine stromal (DUS) cells can be decidualized in vitro using cAMP, the involvement of cAMP-dependent kinases in canine decidualization had not been investigated. Therefore, the present project investigated changes in the kinome of DUS cells following in vitro decidualization, using the serine/threonine kinase (STK) PamChip assay (PamGene). Decidualization led to a predicted activation of 85 STKs in DUS cells, including protein kinase (PK) A, PKC, extracellular signal-regulated kinase (ERK)1/2 and other mitogen-activated protein kinases (MAPKs), calcium/calmodulin-dependent protein kinases (CAMKs), and Akt1/2. In addition, blocking PGR with type 2 antigestagens (aglepristone or mifepristone) decreased the activity of virtually all kinases modulated by decidualization. The underlying transcriptional effects were inferred from comparison with available transcriptomic data on antigestagen-mediated effects in DUS cells. In targeted studies, interfering with PKA or MAPK kinase (MEK)1/2 resulted in downregulation of important decidualization markers (e.g., insulin-like growth factor 1 (IGF1), prostaglandin E2 synthase (PTGES), prolactin receptor (PRLR), PGR, and prostaglandin-endoperoxide synthase 2 (PTGS2/COX2)). Conversely, blocking of PKC decreased the mRNA availability of IGF1, PGR, and PTGS2, but not of PTGES and PRLR. Moreover, suppressing PKA decreased the phosphorylation of the transcription factors cJUN and CREB, whereas blocking of PKC affected only cJUN. This first kinomics analysis to target decidualization showed an increased activity of a wide range of STKs, which could be hindered by disrupting P4/PGR signaling. Decidualization appears to be regulated in a kinase-dependent manner, with PKA and PKC evoking different effects.
Collapse
Affiliation(s)
- Isabelle De Geyter
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
175
|
Zhang H, Li Y, Kang H, Lan J, Hou L, Chen Z, Li F, Liu Y, Zhao J, Li N, Wan Y, Zhu Y, Zhao Z, Zhang H, Zhuang J, Huang X. Genetically engineered membrane-based nanoengagers for immunotherapy of pancreatic cancer. J Nanobiotechnology 2024; 22:104. [PMID: 38468289 PMCID: PMC10926568 DOI: 10.1186/s12951-024-02369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Modulating macrophages presents a promising avenue in tumor immunotherapy. However, tumor cells have evolved mechanisms to evade macrophage activation and phagocytosis. Herein, we introduced a bispecific antibody-based nanoengager to facilitate the recognition and phagocytosis of tumor cells by macrophages. Specifically, we genetically engineered two single chain variable fragments (scFv) onto cell membrane: anti-CD40 scFv for engaging with macrophages and anti-Claudin18.2 (CLDN18.2) scFv for interacting with tumor cells. These nanoengagers were further constructed by coating scFv-anchored membrane into PLGA nanoparticle core. Our developed nanoengagers significantly boosted immune responses, including increased recognition and phagocytosis of tumor cells by macrophages, enhanced activation and antigen presentation, and elevated cytotoxic T lymphocyte activity. These combined benefits resulted in enhancing antitumor efficacy against highly aggressive "cold" pancreatic cancer. Overall, this study offers a versatile nanoengager design for immunotherapy, achieved through genetically engineering to incorporate antibody-anchored membrane.
Collapse
Affiliation(s)
- Haoqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Helong Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jingping Lan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Lin Hou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhengbang Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yanqin Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jiliang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Na Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yajuan Wan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yiping Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
176
|
De Gaetano GV, Lentini G, Coppolino F, Famà A, Pietrocola G, Beninati C. Engagement of α 3β 1 and α 2β 1 integrins by hypervirulent Streptococcus agalactiae in invasion of polarized enterocytes. Front Microbiol 2024; 15:1367898. [PMID: 38511003 PMCID: PMC10951081 DOI: 10.3389/fmicb.2024.1367898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
The gut represents an important site of colonization of the commensal bacterium Streptococcus agalactiae (group B Streptococcus or GBS), which can also behave as a deadly pathogen in neonates and adults. Invasion of the intestinal epithelial barrier is likely a crucial step in the pathogenesis of neonatal infections caused by GBS belonging to clonal complex 17 (CC17). We have previously shown that the prototypical CC17 BM110 strain invades polarized enterocyte-like cells through their lateral surfaces using an endocytic pathway. By analyzing the cellular distribution of putative GBS receptors in human enterocyte-like Caco-2 cells, we find here that the alpha 3 (α3) and alpha 2 (α2) integrin subunits are selectively expressed on lateral enterocyte surfaces at equatorial and parabasal levels along the vertical axis of polarized cells, in an area corresponding to GBS entry sites. The α3β1 and α2β1 integrins were not readily accessible in fully differentiated Caco-2 monolayers but could be exposed to specific antibodies after weakening of intercellular junctions in calcium-free media. Under these conditions, anti-α3β1 and anti-α2β1 antibodies significantly reduced GBS adhesion to and invasion of enterocytes. After endocytosis, α3β1 and α2β1 integrins localized to areas of actin remodeling around GBS containing vacuoles. Taken together, these data indicate that GBS can invade enterocytes by binding to α3β1 and α2β1 integrins on the lateral membrane of polarized enterocytes, resulting in cytoskeletal remodeling and bacterial internalization. Blocking integrins might represent a viable strategy to prevent GBS invasion of gut epithelial tissues.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
177
|
Liu J, Zhang Y, Yang B, Jia Y, Liu RT, Ding L, Shen Z, Chen X. Synergistic Glutathione Depletion and STING Activation to Potentiate Dendritic Cell Maturation and Cancer Vaccine Efficacy. Angew Chem Int Ed Engl 2024; 63:e202318530. [PMID: 38196070 DOI: 10.1002/anie.202318530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Dendritic cell (DC) maturation and antigen presentation are key factors for successful vaccine-based cancer immunotherapy. This study developed manganese-based layered double hydroxide (Mn-LDH) nanoparticles as a self-adjuvanted vaccine carrier that not only promoted DC maturation through synergistically depleting endogenous glutathione (GSH) and activating STING signaling pathway, but also facilitated the delivery of model antigen ovalbumin (OVA) into lymph nodes and subsequent antigen presentation in DCs. Significant therapeutic-prophylactic efficacy of the OVA-loaded Mn-LDH (OVA/Mn-LDH) nanovaccine was determined by the tumor growth inhibition in the mice bearing B16-OVA tumor. Our results showed that the OVA/Mn-LDH nanoparticles could be a potent delivery system for cancer vaccine development without the need of adjuvant. Therefore, the combination of GSH exhaustion and STING pathway activation might be an advisable approach for promoting DC maturation and antigen presentation, finally improving cancer vaccine efficacy.
Collapse
Affiliation(s)
- Jianping Liu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Biomedical Engineering, Southern Medical of University, Guangzhou, Guangdong, 510515, P. R. China
| | - Ye Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P. R. China
| | - Bowei Yang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yingbo Jia
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lingwen Ding
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical of University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Center, Center for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
178
|
Um YW, Kwon WY, Seong SY, Suh GJ. Protective role of kallistatin in oxygen-glucose deprivation and reoxygenation in human umbilical vein endothelial cells. Clin Exp Emerg Med 2024; 11:43-50. [PMID: 38204159 PMCID: PMC11009709 DOI: 10.15441/ceem.23.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE Ischemia-reperfusion (IR) injury is implicated in various clinical diseases. Kallistatin attenuates oxidative stress, and its deficiency has been associated with poor neurological outcomes after cardiac arrest. The present study investigated the antioxidant mechanism through which kallistatin prevents IR injury. METHODS Human umbilical vein endothelial cells (HUVECs) were transfected with small interfering RNA (siRNA) targeting the human kallistatin gene (SERPINA4). Following SERPINA4 knockdown, the level of kallistatin expression was measured. To induce IR injury, HUVECs were exposed to 24 h of oxygen-glucose deprivation and reoxygenation (OGD/R). To evaluate the effect of SERPINA4 knockdown on OGD/R, cell viability and the concentration of kallistatin, endothelial nitric oxide synthase (eNOS) and total NO were measured. RESULTS SERPINA4 siRNA transfection suppressed the expression of kallistatin in HUVECs. Exposure to OGD/R reduced cell viability, and this effect was more pronounced in SERPINA4 knockdown cells compared with controls. SERPINA4 knockdown significantly reduced kallistatin concentration regardless of OGD/R, with a more pronounced effect observed without OGD/R. Furthermore, SERPINA4 knockdown significantly decreased eNOS concentrations induced by OGD/R (P<0.01) but did not significantly affect the change in total NO concentration (P=0.728). CONCLUSION The knockdown of SERPINA4 resulted in increased vulnerability of HUVECs to OGD/R and significantly affected the change in eNOS level induced by OGD/R. These findings suggest that the protective effect of kallistatin against IR injury may contribute to its eNOS-promoting effect.
Collapse
Affiliation(s)
- Young Woo Um
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Disaster Medicine Research Center, Seoul National University Medical Research Center, Seoul, Korea
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Disaster Medicine Research Center, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
179
|
Chen L, Lu S, Wu Z, Zhang E, Cai Q, Zhang X. Innate immunity in diabetic nephropathy: Pathogenic mechanisms and therapeutic targets. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 01/02/2025]
Abstract
AbstractDiabetic nephropathy (DN) represents a prevalent chronic microvascular complication of diabetes mellitus (DM) and is a major cause of end‐stage renal disease. The anfractuous surrounding of DN pathogenesis and the intricate nature of this metabolic disorder often pose challenges in both the diagnosis and treatment of DN compared to other kidney diseases. Hyperglycaemia in DM predispose vulnerable renal cells into microenvironmental disequilibrium and thereby results in innate immunocytes infiltration including neutrophils, macrophages, myeloid‐derived suppressor cells, dendritic cells, and so forth. These immune cells play dual roles in kidney injury and closely correlated with the degree of proteinuria in DN patients. Additionally, innate immune signaling cascades, initiated by altered metabolic and hemodynamic in diabetic context, are crucial in instigating and perpetuating renal inflammation, which detrimentally contribute to DN pathogenesis. As such, anti‐inflammatory therapies, particularly those targeting innate immunity, hold renoprotective promise in DN. In this article, we reviewed the origin and feature of the above four prominent kidney innate immune cells, analyze their pathogenic role in DN, and discuss potential targeted‐therapeutic strategies, aiming to enhance the current understanding of renal innate immunity and hence help to discover promising therapeutic approaches for DN.
Collapse
Affiliation(s)
- Le‐Xin Chen
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Shu‐Ru Lu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Zhi‐Hao Wu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - En‐Xin Zhang
- Shenzhen Bao'an Authentic TCM Therapy Hospital Shenzhen PR China
| | - Qing‐Qun Cai
- The First Affiliated Hospital Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Xiao‐Jun Zhang
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| |
Collapse
|
180
|
Rafaqat S, Sattar A, Anjum F, Gilani M, Rafaqat S. The role of predictive and prognostic values of inflammatory markers in acute pancreatitis: a narrative review. JOURNAL OF PANCREATOLOGY 2024; 7:72-85. [DOI: 10.1097/jp9.0000000000000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Pancreatitis is an inflammatory condition affecting the pancreas and is classified into 2 types, acute and chronic, which can manifest in various forms. This review article summarizes the role of predictive and prognostic values of inflammatory markers in the pathogenesis of acute pancreatitis, mainly focused on preclinical and clinical studies. It includes serum amyloid A (SAA), monocyte chemotactic protein-1 (MCP-1), erythrocyte sedimentation rate (ESR), interleukin-6 (IL-6), C-reactive protein (CRP), IL-10, myeloperoxidase, pentraxin 3, and plasminogen activator inhibitor 1. SAA3 plays a crucial role in developing acute pancreatitis by triggering a receptor-interacting protein 3–dependent necroptosis pathway in acinar cells. Targeting SAA3 could be a potential strategy for treating acute pancreatitis. The recruitment of monocytes/macrophages and the activation of the systemic MCP-1 signaling pathway play a role in the progression of pancreatitis, and blocking MCP-1 may have a suppressive effect on the development of pancreatic fibrosis. The ESR can predict severe acute pancreatitis with slightly lower accuracy than CRP. When ESR and CRP levels are combined at 24 hours, they predict severe acute pancreatitis accurately. IL-6 plays a crucial role in activating the Janus kinase/signal transducers and activators of the transcription pathway, exacerbating pancreatitis and contributing to the initiation and progression of pancreatic cancer. Endogenous IL-10 plays a crucial role in controlling the regenerative phase and limiting the severity of fibrosis and glandular atrophy induced by repeated episodes of acute pancreatitis in mice. The predictive and diagnostic roles of these inflammatory factors in pancreatitis were introduced in detail in this review.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan
| | - Aqsa Sattar
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan
| | - Farhan Anjum
- Institute of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Mahrukh Gilani
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology (Human Genetics), Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
181
|
Yokota S, Yonezawa T, Momoi Y, Maeda S. Myeloid derived suppressor cells in peripheral blood can be a prognostic factor in canine transitional cell carcinoma. Vet Immunol Immunopathol 2024; 269:110716. [PMID: 38308864 DOI: 10.1016/j.vetimm.2024.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells with immunosuppressive properties found in the tumor microenvironment. MDSCs are divided into two major subsets: polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs). Both MDSC subsets contribute to the creation of an immunosuppressive environment for tumor progression. In humans, patients with high levels of MDSCs show worse outcomes for several types of cancers. However, the association between MDSCs and clinical features has rarely been investigated in canine studies. In the present study, we measured the proportion of PMN-MDSCs and M-MDSCs in the peripheral blood and tumor tissue of dogs with hepatocellular carcinoma (HCC), prostate cancer (PC), transitional cell carcinoma (TCC), lymphoma, and pulmonary adenocarcinoma. Additionally, we examined immunosuppressive ability of PMN-MDSCs and M-MDSCs in peripheral blood mononuclear cells of TCC case on CD4+, CD8+ and interferon-γ+ cells and investigated the relationships of MDSCs with clinical features and outcomes. PMN-MDSCs increased in HCC, PC, TCC, and lymphoma. In contrast, M-MDSCs increased in the TCC. Both PMN-MDSCs and M-MDSCs exhibited immunosuppressive effects on CD8+, CD4+ and interferon-γ+ cells. In dogs with TCC, lymph node metastasis was associated with high level of PMN-MDSCs but not with M-MDSCs. High levels of both PMN-MDSCs and M-MDSCs were related to advanced tumor stage. Kaplan-Meier analysis revealed that high levels of both PMN-MDSCs and M-MDSCs were significantly associated with shorter overall survival. In addition, the Cox proportional hazard regression model showed that M-MDSCs and the tumor stage were independent prognostic factors for TCC. These results suggest that PMN-MDSCs and M-MDSCs may be involved in tumor progression and could be prognostic factors and promising therapeutic targets in dogs with TCC.
Collapse
Affiliation(s)
- Shohei Yokota
- Department of Veterinary Clinical Pathobiology, Guraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Guraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Guraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Guraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
182
|
Chen Y, Wang Y, Lei J, Chen B, Zhang X, Chang L, Hu Z, Wang Y, Lu Y. Taurohyocholic acid acts as a potential predictor of the efficacy of tyrosine kinase inhibitors combined with programmed cell death-1 inhibitors in hepatocellular carcinoma. Front Pharmacol 2024; 15:1364924. [PMID: 38464731 PMCID: PMC10920247 DOI: 10.3389/fphar.2024.1364924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Background and aims: Tyrosine kinase inhibitors (TKIs) combined with programmed cell death protein-1 (PD-1) have significantly improved survival in patients with unresectable hepatocellular carcinoma (uHCC), but effective biomarkers to predict treatment efficacy are lacking. Peripheral blood bile acids (BAs) are associated with tumor response to therapy, but their roles in HCC remain unclear. Methods: This retrospective study included HCC patients who received first-line TKIs combined with PD-1 inhibitors treatment (combination therapy) in our clinical center from November 2020 to June 2022. The aim of this study was to analyze the changes in plasma BA profiles before and after treatment in both the responding group (Res group) and the non-responding group (Non-Res group). We aimed to explore the potential role of BAs in predicting the response to combination therapy in HCC patients. Results: Fifty-six patients with HCC who underwent combination therapy were included in this study, with 28 designated as responders (Res group) and 28 as non-responders (Non-Res group). There were differences in plasma BA concentrations between the two groups before systemic therapy. Plasma taurohyocholic acid (THCA) levels in the Res group were significantly lower than those in the Non-Res group. Patients with low levels of THCA exhibited superior median progression-free survival (7.6 vs. 4.9 months, p = 0.027) and median overall survival (23.7 vs. 11.6 months, p = 0.006) compared to those of patients with high levels of THCA. Conclusion: Peripheral blood BA metabolism is significantly correlated with combination therapy response and survival in patients with HCC. Our findings emphasize the potential of plasma BAs as biomarkers for predicting combination therapy outcomes and offering novel therapeutic targets for modulating responses to systemic cancer therapy.
Collapse
Affiliation(s)
- Yue Chen
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yutao Wang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Peking University 302 Clinical Medical School, Beijing, China
| | - Jin Lei
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Bowen Chen
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinfeng Zhang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Liangzheng Chang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhangli Hu
- Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yun Wang
- Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yinying Lu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
183
|
Vagena IA, Gatou MA, Theocharous G, Pantelis P, Gazouli M, Pippa N, Gorgoulis VG, Pavlatou EA, Lagopati N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:397. [PMID: 38470728 PMCID: PMC10933906 DOI: 10.3390/nano14050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.
Collapse
Affiliation(s)
- Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National Kapodistrian University of Athens (NKUA), 15771 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
184
|
Kim H, Suh GJ, Kwon WY, Kim KS, Jung YS, Kim T, Park H. Kallistatin deficiency exacerbates neuronal damage after cardiac arrest. Sci Rep 2024; 14:4279. [PMID: 38383562 PMCID: PMC10881987 DOI: 10.1038/s41598-024-54415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
The purpose of study was to evaluate that kallistatin deficiency causes excessive production of reactive oxygen species and exacerbates neuronal injury after cardiac arrest. For in vitro study, kallistatin knockdown human neuronal cells were given ischemia-reperfusion injury, and the oxidative stress and apoptosis were evaluated. For clinical study, cardiac arrest survivors admitted to the ICU were divided into the good (CPC 1-2) and poor (CPC 3-5) 6-month neurological outcome groups. The serum level of kallistatin, Nox-1, H2O2 were measured. Nox-1 and H2O2 levels were increased in the kallistatin knockdown human neuronal cells with ischemia-reperfusion injury (p < 0.001) and caspase-3 was elevated and apoptosis was promoted (SERPINA4 siRNA: p < 0.01). Among a total of 62 cardiac arrest survivors (16 good, 46 poor), serum kallistatin were lower, and Nox-1 were higher in the poor neurological group at all time points after admission to the ICU (p = 0.013 at admission; p = 0.020 at 24 h; p = 0.011 at 72 h). At 72 h, H2O2 were higher in the poor neurological group (p = 0.038). Kallistatin deficiency exacerbates neuronal ischemia-reperfusion injury and low serum kallistatin levels were associated with poor neurological outcomes in cardiac arrest survivors.
Collapse
Affiliation(s)
- Hayoung Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yoon Sun Jung
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Taegyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heesu Park
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
185
|
Pettinella F, Mariotti B, Lattanzi C, Bruderek K, Donini M, Costa S, Marini O, Iannoto G, Gasperini S, Caveggion E, Castellucci M, Calzetti F, Bianchetto-Aguilera F, Gardiman E, Giani M, Dusi S, Cantini M, Vassanelli A, Pavone D, Milella M, Pilotto S, Biondani P, Höing B, Schleupner MC, Hussain T, Hadaschik B, Kaspar C, Visco C, Tecchio C, Koenderman L, Bazzoni F, Tamassia N, Brandau S, Cassatella MA, Scapini P. Surface CD52, CD84, and PTGER2 mark mature PMN-MDSCs from cancer patients and G-CSF-treated donors. Cell Rep Med 2024; 5:101380. [PMID: 38242120 PMCID: PMC10897522 DOI: 10.1016/j.xcrm.2023.101380] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs.
Collapse
Affiliation(s)
- Francesca Pettinella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Barbara Mariotti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Chiara Lattanzi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Kirsten Bruderek
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany
| | - Marta Donini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Costa
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Olivia Marini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giulia Iannoto
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Gasperini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elena Caveggion
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Elisa Gardiman
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Matteo Giani
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Stefano Dusi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Maurizio Cantini
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Aurora Vassanelli
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Denise Pavone
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Pamela Biondani
- Section of Oncology, University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Benedikt Höing
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | | | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Cordelia Kaspar
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Carlo Visco
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Leo Koenderman
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Flavia Bazzoni
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany; German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
186
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
187
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
188
|
Wang J, Zhu N, Su X, Yang R. Gut microbiota: A double-edged sword in immune checkpoint blockade immunotherapy against tumors. Cancer Lett 2024; 582:216582. [PMID: 38065401 DOI: 10.1016/j.canlet.2023.216582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Tumor cells can evade immune surveillance by expressing immune checkpoint molecule ligands, resulting in effective immune cell inactivation. Immune checkpoint blockades (ICBs) have dramatically improved survival of patients with multiple types of cancers. However, responses to ICB immunotherapy are heterogeneous with lower patient response rates. The advances have established that the gut microbiota can be as a promising target to overcome resistance to ICB immunotherapy. Furthermore, some bacterial species have shown to promote improved responses to ICBs. However, gut microbiota is critical in maintaining gut and systemic immune homeostasis. It not only promotes differentiation and function of immunosuppressive immune cells but also inhibits inflammatory cells via gut microbiota derived products such as short chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, which play an important role in tumor immunity. Since the gut microbiota can either inhibit or enhance immune against tumor, it should be a double-edged sword in ICBs against tumor. In this review, we discuss the effects of gut microbiota on immune cells and also tumor cells, especially enhances of gut microbiota on ICB immunotherapy. These discussions can hopefully promote the development of ICB immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
189
|
Wang S, Hou Y. New Types of Magnetic Nanoparticles for Stimuli-Responsive Theranostic Nanoplatforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305459. [PMID: 37988692 PMCID: PMC10885654 DOI: 10.1002/advs.202305459] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Indexed: 11/23/2023]
Abstract
Magnetic nanomaterials have played a crucial role in promoting the application of nanotechnology in the biomedical field. Although conventional magnetic nanomaterials such as iron oxide nanoparticles (NPs) are used as biosensors, drug delivery vehicles, diagnostic and treatment agents for several diseases, the persistent pursuit of high-performance technologies has prompted researchers to continuously develop new types of magnetic nanomaterials such as iron carbide NPs. Considering their potential application in biomedicine, magnetic NPs responsive to exogenous or endogenous stimuli are developed, thereby enhancing their applicability in more complex versatile scenarios. In this review, the synthesis and surface modification of magnetic NPs are focused, particularly iron carbide NPs. Subsequently, exogenous and endogenous stimuli-responsive magnetic NP-based theranostic platforms are introduced, particularly focusing on nanozyme-based technologies and magnetic NP-mediated immunotherapy, which are emerging stimuli-responsive treatments. Finally, the challenges and perspectives of magnetic NPs to accelerate future research in this field are discussed.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
190
|
Lu J, Liu X, Li X, Li H, Shi L, Xia X, He BL, Meyer TF, Li X, Sun H, Yang X. Copper regulates the host innate immune response against bacterial infection via activation of ALPK1 kinase. Proc Natl Acad Sci U S A 2024; 121:e2311630121. [PMID: 38232278 PMCID: PMC10823219 DOI: 10.1073/pnas.2311630121] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Copper is an essential trace element for the human body, and its requirement for optimistic immune functions has been recognized for decades. How copper is involved in the innate immune pathway, however, remains to be clarified. Here, we report that copper serves as a signal molecule to regulate the kinase activity of alpha-kinase 1 (ALPK1), a cytosolic pattern-recognition receptor (PRR), and therefore promotes host cell defense against bacterial infection. We show that in response to infection, host cells actively accumulate copper in the cytosol, and the accumulated cytosolic copper enhances host cell defense against evading pathogens, including intracellular and, unexpectedly, extracellular bacteria. Subsequently, we demonstrate that copper activates the innate immune pathway of host cells in an ALPK1-dependent manner. Further mechanistic studies reveal that copper binds to ALPK1 directly and is essential for the kinase activity of this cytosolic PRR. Moreover, the binding of copper to ALPK1 enhances the sensitivity of ALPK1 to the bacterial metabolite ADP-heptose and eventually prompts host cells to elicit an enhanced immune response during bacterial infection. Finally, using a zebrafish in vivo model, we show that a copper-treated host shows an increased production of proinflammatory cytokines, enhanced recruitment of phagosome cells, and promoted bacterial clearance. Our findings uncover a previously unrecognized role of copper in the modulation of host innate immune response against bacterial pathogens and advance our knowledge on the cross talk between cytosolic copper homeostasis and immune system.
Collapse
Affiliation(s)
- Jing Lu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Xue Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Chinese Academy of Sciences-The University of Hong Kong Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Liwa Shi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Xin Xia
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Bai-liang He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin10117, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht’s University of Kiel, University Hospital Schleswig Holstein, Kiel24105, Germany
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Chinese Academy of Sciences-The University of Hong Kong Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xinming Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| |
Collapse
|
191
|
Yang C, Zhu R, Zhang Y, Ying L, Wang J, Liu P, Su D. [Research Progress of Granulocytic Myeloid-derived Suppressor Cells
in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:65-72. [PMID: 38296627 PMCID: PMC10895289 DOI: 10.3779/j.issn.1009-3419.2023.106.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Granulocytic myeloid-derived suppressor cells (G-MDSCs) are one of the main subgroups of MDSCs, which are widely enriched in most cancers. It can inhibit the killing function of T-lymphocyte through the expression of arginase-1 (Arg-1) and reactive oxygen species (ROS), reshape the tumor immune microenvironment, and promote the occurrence and development of tumors. In recent years, more and more studies have found that G-MDSCs are significantly correlated with the prognosis and immunotherapy efficacy of patients with non-small cell lung cancer, and the use of drugs specifically targeting the recruitment, differentiation and function of G-MDSCs can effectively inhibit tumor progression. This article reviews the immunosuppressive effect of G-MDSCs in non-small cell lung cancer and the progress of related pathway targeting drugs.
.
Collapse
Affiliation(s)
- Chaodan Yang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuting Zhang
- Postgraduate Training Base Alliance of Wenzhou Medical
University, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Lisha Ying
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiamin Wang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Liu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Dan Su
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
192
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
193
|
Dolley A, Goswami HB, Dowerah D, Dey U, Kumar A, Hmuaka V, Mukhopadhyay R, Kundu D, Varghese GM, Doley R, Chandra Deka R, Namsa ND. Reverse vaccinology and immunoinformatics approach to design a chimeric epitope vaccine against Orientia tsutsugamushi. Heliyon 2024; 10:e23616. [PMID: 38187223 PMCID: PMC10767154 DOI: 10.1016/j.heliyon.2023.e23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Scrub typhus is a vector-borne infectious disease caused by Orientia tsutsugamushi and it is reportedly associated with up to 20 % of hospitalized cases of febrile illnesses. The major challenge of vaccine development is the lack of identified antigens that can induce both heterotypic and homotypic immunity including the production of antibodies, cytotoxic T lymphocyte, and helper T lymphocytes. We employed a comprehensive immunoinformatic prediction algorithm to identify immunogenic epitopes of the 56-kDa type-specific cell membrane surface antigen and surface cell antigen A of O. tsutsugamushi to select potential candidates for developing vaccines and diagnostic assays. We identified 35 linear and 29 continuous immunogenic B-cell epitopes and 51 and 27 strong-binding T-cell epitopes of major histocompatibility complex class I and class II molecules, respectively, in the conserved and variable regions of the 56-kDa type-specific surface antigen. The predicted B- and T-cell epitopes were used to develop immunogenic multi-epitope candidate vaccines and showed to elicit a broad-range of immune protection. A stable interactions between the multi-epitope vaccines and the host fibronectin protein were observed using docking and simulation methods. Molecular dynamics simulation studies demonstrated that the multi-epitope vaccine constructs and fibronectin docked models were stable during simulation time. Furthermore, the multi-epitope vaccine exhibited properties such as antigenicity, non-allergenicity and ability to induce interferon gamma production and had strong associations with their respective human leukocyte antigen alleles of world-wide population coverage. A correlation of immune simulations and the in-silico predicted immunogenic potential of multi-epitope vaccines implicate for further investigations to accelerate designing of epitope-based vaccine candidates and chimeric antigens for development of serological diagnostic assays for scrub typhus.
Collapse
Affiliation(s)
- Anutee Dolley
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Himanshu Ballav Goswami
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Dikshita Dowerah
- Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
| | - Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Vanlal Hmuaka
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, 784001, Assam, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Debasree Kundu
- Department of Infectious Diseases, Christian Medical College, Vellore, 632002, Tamil Nadu, India
| | - George M. Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, 632002, Tamil Nadu, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Ramesh Chandra Deka
- Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
| | - Nima D. Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| |
Collapse
|
194
|
Tripathi T, Yadav J, Janjua D, Chaudhary A, Joshi U, Senrung A, Chhokar A, Aggarwal N, Bharti AC. Targeting Cervical Cancer Stem Cells by Phytochemicals. Curr Med Chem 2024; 31:5222-5254. [PMID: 38288813 DOI: 10.2174/0109298673281823231222065616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 09/06/2024]
Abstract
Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.
Collapse
Affiliation(s)
- Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Department of Zoology, Daulat Ram College, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
195
|
Sharma P, Otto M. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy. Bioact Mater 2024; 31:440-462. [PMID: 37701452 PMCID: PMC10494322 DOI: 10.1016/j.bioactmat.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer immunotherapy has gained momentum for treating malignant tumors over the past decade. Checkpoint blockade and chimeric antigen receptor cell therapy (CAR-T) have shown considerable potency against liquid and solid cancers. However, the tumor microenvironment (TME) is highly immunosuppressive and hampers the effect of currently available cancer immunotherapies on overall treatment outcomes. Advancements in the design and engineering of nanomaterials have opened new avenues to modulate the TME. Progress in the current nanocomposite technology can overcome immunosuppression and trigger robust immunotherapeutic responses by integrating synergistic functions of different molecules. We will review recent advancements in nanomedical applications and discuss specifically designed nanocomposites modulating the TME for cancer immunotherapy. In addition, we provide information on the current landscape of clinical-stage nanocomposites for cancer immunotherapy.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
| | - Mario Otto
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
- Center for Cancer and Blood Disorders (CCBD), Phoenix Children's, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| |
Collapse
|
196
|
Wang C, Gao MQ. Research Progress on the Antidepressant Effects of Baicalin and Its Aglycone Baicalein: A Systematic Review of the Biological Mechanisms. Neurochem Res 2024; 49:14-28. [PMID: 37715823 DOI: 10.1007/s11064-023-04026-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Depression is the most prevalent mental disorder, affecting more than 300 million adults worldwide each year, which can lead to serious economic and social problems. Antidepressants are usually the first-line treatment for depression, however, traditional antidepressants on the market have the disadvantage of low remission rates and may cause side effects to patients, therefore, the current focus in the field of depression is to develop novel therapeutic agents with high remission rates and few side effects. In this context, the antidepressant effects of natural compounds have received attention. Baicalin (baicalein-7-O-glucuronide) and its aglycone baicalein (5,6,7-trihydroxyflavone) are flavonoid compounds extracted from the root of Scutellaria baicalensis. Although lacking the support of clinical data, they have been shown to have significantly promising antidepressant activity in many preclinical studies through various rodent models of depression. This paper reviews the antidepressant effects of baicalin and baicalein in experimental animal models, with emphasis on summarizing the molecular mechanisms of their antidepressant effects including regulation of the HPA axis, inhibition of inflammation and oxidative stress, reduction of neuronal apoptosis and promotion of neurogenesis, as well as amelioration of mitochondrial dysfunction. Controlled clinical trials should be conducted in the future to examine the effects of baicalin and baicalein on depression in humans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ming-Qi Gao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
197
|
Pirolli NH, Reus LSC, Jay SM. Separation of Bacterial Extracellular Vesicles via High-Performance Anion Exchange Chromatography. Methods Mol Biol 2024; 2843:155-162. [PMID: 39141299 DOI: 10.1007/978-1-0716-4055-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Bacterial extracellular vesicles (BEVs) have extraordinary biotechnological potential, but traditional purification methods lack desirable scalability and commonly co-isolate protein impurities, limiting clinical translation. Anion exchange chromatography (AEC) separates molecules based on differences in net charge and is widely used for industrial biomanufacturing of protein therapeutics. Recently, AEC has recently been applied for purification of EVs from both mammalian and bacterial sources. Since most bacteria produce BEVs with a negative surface membrane change, AEC can potentially be widely used for BEV purification. Here, we describe a method utilizing high-performance AEC (HPAEC) in tandem with size-based tangential flow filtration for improved BEV purification. We have previously found this method can reduce co-isolated protein impurities and potentiate anti-inflammatory bioactivity of probiotic BEVs. Thus, this method holds promise as a scalable alternative for improved BEV purification.
Collapse
Affiliation(s)
- Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Laura Samantha C Reus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
198
|
Li D, Wang L, Jiang B, Jing Y, Li X. Improving cancer immunotherapy by preventing cancer stem cell and immune cell linking in the tumor microenvironment. Biomed Pharmacother 2024; 170:116043. [PMID: 38128186 DOI: 10.1016/j.biopha.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stem cells are the key link between malignant tumor progression and drug resistance. This cell population has special properties that are different from those of conventional tumor cells, and the role of cancer stem cell-related exosomes in progression of tumor malignancy is becoming increasingly clear. Cancer stem cell-derived exosomes carry a variety of functional molecules involved in regulation of the microenvironment, especially with regard to immune cells, but how these exosomes exert their functions and the specific mechanisms need to be further clarified. Here, we summarize the role of cancer stem cell exosomes in regulating immune cells in detail, aiming to provide new insights for subsequent targeted drug development and clinical strategy formulation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of General Surgery & VIP In-Patient Ward, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Yuchen Jing
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China.
| |
Collapse
|
199
|
Xiong J, Zhang L, Chen G, Dong P, Tong J, Hua L, Li N, Wen L, Zhu L, Chang W, Jin Y. Associations of CKIP-1 and LOX-1 polymorphisms with the risk of type 2 diabetes mellitus with hypertension among Chinese adults. Acta Diabetol 2024; 61:43-52. [PMID: 37668684 DOI: 10.1007/s00592-023-02175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) and hypertension are common high-incidence diseases, closely related, and have common pathogenic basis such as oxidative stress. Casein kinase 2 interacting protein-1 (CKIP-1) and low-density lipoprotein receptor (LOX-1) are considered to be important factors affect the level of oxidative stress in the body. The main purpose of this study was to explore the relationship between CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 (rs1050283 G > A, rs11053646 C > G) polymorphisms and the risk of hypertension and diabetes, and try to find new candidate genes for diabetes and diabetes with hypertension etiology in Chinese population. METHODS 574 T2DM patients and 597 controls frequently matched by age and sex were selected for genotyping of CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 gene (rs1050283 G > A, rs11053646 C > G). Logistic regression was used to analyze the correlation between different genotypes and the risk of T2DM and T2DM with hypertension, and the results were expressed as odds ratio (OR) and 95% confidence interval (95% CI). RESULTS We found that the risk of T2DM in the AA + AT genotype of rs6693817 was higher than that in the TT genotype in Chinese population (OR = 1.318, 95%CI: 1.011-1.717, P = 0.041), and the difference was still significant after adjustment (OR = 1.370, 95%CI: 1.043-1.799, Padjusted = 0.024), the difference of heterozygotes (AT vs TT: OR = 1.374, 95%CI: 1.026-1.840, Padjusted = 0.033) was statistically significant. But after Bonferroni correction, the significance of the above sites disappeared. And rs6693817 was associated with the risk of T2DM combined with hypertension before and after adjustment in dominant model (OR = 1.424, 95% CI: 1.038-1.954, P = 0.028; OR = 1.460, 95% CI: 1.057-2.015, Padjusted = 0.021, respectively) and in heterozygote model (OR = 1.499, 95% CI: 1.069-2.102, P = 0.019; OR = 1.562, 95% CI: 1.106-2.207, Padjusted = 0.011, respectively). However, only the statistical significance of the heterozygous model remained after Bonferroni correction. rs2306235, rs1050283 and rs11053646 were not significantly correlated with T2DM and T2DM combined with hypertension risk (P > 0.05). CONCLUSIONS The results suggest that CKIP-1 rs6693817 is related to the susceptibility of Chinese people to T2DM with hypertension, providing a new genetic target for the treatment of diabetes with hypertension with in the future.
Collapse
Affiliation(s)
- Jiajie Xiong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Liu Zhang
- Department of Hospital Infection Management Office, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, Anhui, China
| | - Guimei Chen
- School of Health Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Pu Dong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Jiani Tong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Long Hua
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Liying Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Lijun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Weiwei Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China.
| | - Yuelong Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China.
| |
Collapse
|
200
|
Yuan Y, Fan J, Liang D, Wang S, Luo X, Zhu Y, Liu N, Xiang T, Zhao X. Cell surface GRP78-directed CAR-T cells are effective at treating human pancreatic cancer in preclinical models. Transl Oncol 2024; 39:101803. [PMID: 37897831 PMCID: PMC10630660 DOI: 10.1016/j.tranon.2023.101803] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Pancreatic cancer is a highly lethal solid malignancy with limited treatment options. Chimeric antigen receptor T (CAR-T) cell therapy has been successfully applied to treat hematological malignancies, but faces many challenges in solid tumors. One major challenge is the shortage of tumor-selective targets. Cell surface GRP78 (csGRP78) is highly expressed on various solid cancer cells including pancreatic cancer, but not normal cells, providing a potential target for CAR-T cell therapy in pancreatic cancer. Here, we demonstrated that csGRP78-directed CAR-T (GRP78-CAR-T) cells effectively killed the human pancreatic cancer cell lines Bxpc-3-luc, Aspc-1-luc and MIA PaCa-2-luc, and pancreatic cancer stem-like cells derived from Aspc-1-luc cells and MIA PaCa-2-luc cells in vitro by a luciferase-based cytotoxicity assay. Importantly, we showed that GRP78-CAR-T cells efficiently homed to and infiltrated Aspc-1-luc cell-derived xenografts and significantly inhibited pancreatic tumor growth in vivo by performing mouse xenograft experiments. Interestingly, we found that gemcitabine treatment increased csGRP78 expression in gemcitabine-resistant MIA PaCa-2-luc cells, and the coapplication of gemcitabine with GRP78-CAR-T cells led to a robust cytotoxic effect on these cells in vitro. Taken together, our study demonstrates that csGRP78-directed CAR-T cells, alone or in combination with chemotherapy, selectively and efficiently target csGRP78-expressing pancreatic cancer cells to suppress pancreatic tumor growth.
Collapse
Affiliation(s)
- Yuncang Yuan
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Fan
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shijie Wang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xu Luo
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin 644600, China
| | - Yongjie Zhu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan Liu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|