2001
|
McGavern DB, Christen U, Oldstone MBA. Molecular anatomy of antigen-specific CD8(+) T cell engagement and synapse formation in vivo. Nat Immunol 2002; 3:918-25. [PMID: 12352968 PMCID: PMC2481514 DOI: 10.1038/ni843] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Accepted: 09/04/2002] [Indexed: 11/09/2022]
Abstract
Antigen-specific CD8(+) T cells are required for the clearance of most viral infections and several cancers. However, it is not clear in vivo whether CD8(+) T cells can engage multiple targets simultaneously, engagement results in the formation of an immunologic synapse or molecules involved in CD8 function are redistributed to the synapse. We used here high-resolution microscopy to visualize interactions between virus-specific effectors and target cells in vivo. Using either in situ tetramer staining or green fluorescent protein-labeled virus-specific T cells, we have shown that a single CD8(+) T cell can engage two or three targets, a synapse occurs at the site of engagement and molecules involved in attachment (lymphocyte function-associated antigen 1), signaling (Lck) and lytic activity (perforin) are differentially positioned on the T cell. In addition, we have established an in vivo approach for assessing the intricacies of antigen-specific T cell activation, migration, engagement, memory and other defining elements of adaptive immunity.
Collapse
Affiliation(s)
- Dorian B McGavern
- Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
2002
|
Hackney JA, Charbord P, Brunk BP, Stoeckert CJ, Lemischka IR, Moore KA. A molecular profile of a hematopoietic stem cell niche. Proc Natl Acad Sci U S A 2002; 99:13061-6. [PMID: 12226475 PMCID: PMC130586 DOI: 10.1073/pnas.192124499] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Indexed: 11/18/2022] Open
Abstract
The hematopoietic microenvironment provides a complex molecular milieu that regulates the self-renewal and differentiation activities of stem cells. We have characterized a stem cell supportive stromal cell line, AFT024, that was derived from murine fetal liver. Highly purified in vivo transplantable mouse stem cells are maintained in AFT024 cultures at input levels, whereas other primitive progenitors are expanded. In addition, human stem cells are very effectively supported by AFT024. We suggest that the AFT024 cell line represents a component of an in vivo stem cell niche. To determine the molecular signals elaborated in this niche, we undertook a functional genomics approach that combines extensive sequence mining of a subtracted cDNA library, high-density array hybridization and in-depth bioinformatic analyses. The data have been assembled into a biological process oriented database, and represent a molecular profile of a candidate stem cell niche.
Collapse
Affiliation(s)
- Jason A Hackney
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544; Laboratoire d'Hematopoièse, Faculté de Médecine, Université de Tours, 37041 Tours Cedex 1, France
| | | | | | | | | | | |
Collapse
|
2003
|
Yacyshyn BR, Barish C, Goff J, Dalke D, Gaspari M, Yu R, Tami J, Dorr FA, Sewell KL. Dose ranging pharmacokinetic trial of high-dose alicaforsen (intercellular adhesion molecule-1 antisense oligodeoxynucleotide) (ISIS 2302) in active Crohn's disease. Aliment Pharmacol Ther 2002; 16:1761-70. [PMID: 12269969 DOI: 10.1046/j.1365-2036.2002.01341.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS To evaluate the safety, pharmacokinetics and clinical efficacy of the intercellular adhesion molecule-1 antisense phosphorothioate oligonucleotide alicaforsen (ISIS 2302) at 250-350 mg in Crohn's disease. METHODS : Patients (> 50 kg) with active Crohn's disease (Crohn's disease activity index > or = 220) were assigned by gender, randomly, to two alicaforsen treatment groups: 300 or 350 mg, infused intravenously three times a week for 4 weeks. All patients weighing 36-50 kg received 250 mg of alicaforsen. Background aminosalicylates, antibiotics, immunosuppressives and corticosteroids were permitted, but tumour necrosis factor-alphainhibitors were prohibited. The primary end-point was clinical remission (Crohn's disease activity index < or = 150). RESULTS Twenty-two patients were enrolled with a mean baseline Crohn's disease activity index of 304. Steroids were used by 27%, 5-aminosalicylic acid by 68% and immunosuppressives by 27%; 23% had previously received infliximab. Five subjects withdrew after one to three infusions for infusion-related symptoms. Nine patients (41%) experienced clinical remission. Fifty-three per cent of the evaluable subjects receiving more than three infusions experienced remission (18% at week 8; 29% at week 12). The overall response, using a minimum decrease of 70 in the Crohn's disease activity index, was 41-47% for the evaluable group, at weeks 8 and 12. The median duration of remission was 14 weeks. Plasma pharmacokinetic results showed overlapping levels (Cmax, AUC) for the three doses. The infusion-related reaction profile consisted of fever, chills, headache, nausea, emesis or arthralgias, typically occurring 2-4 h after completion of the first infusion. Reactions were less frequent in patients receiving background corticosteroids. The 2-4-h transient post-infusion partial thromboplastin time prolongation values, a class effect of phosphorothioate oligonucleotides, were 18, 21 and 23 s for 250, 300 and 350 mg, respectively. CONCLUSIONS Alicaforsen (ISIS 2302), at fixed doses of 300 and 350 mg, achieved the desired drug exposure and may be an effective therapy for Crohn's disease. Infusion-related reactions were observed less frequently in patients on corticosteroids, and with decreasing frequency with continued treatment.
Collapse
|
2004
|
|
2005
|
Lehtonen S, Zhao F, Lehtonen E. CD2-associated protein directly interacts with the actin cytoskeleton. Am J Physiol Renal Physiol 2002; 283:F734-43. [PMID: 12217865 DOI: 10.1152/ajprenal.00312.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CD2-associated protein (CD2AP) is an adapter protein associating with several membrane proteins, including nephrin, mutated in congenital nephrotic syndrome of the Finnish type, and polycystin-2, mutated in type 2 autosomal dominant polycystic kidney disease. Both proteins have critical roles in the maintenance of the integrity of the nephrons. Previous studies have suggested a role for CD2AP in the regulation of the organization of the actin cytoskeleton, but it has not been known whether the postulated association between CD2AP and actin is direct or mediated by other proteins. In this study, we address this question by using various cellular and biochemical approaches. We show that CD2AP and F-actin partially colocalize in cultured cells and that disruption of the actin cytoskeleton results in disorganization of endogenous CD2AP. Using cytoskeletal fractionation by differential centrifugation, we demonstrate that a proportion of CD2AP associates with the actin cytoskeleton. Furthermore, using pure actin and purified CD2AP fusion proteins in an F-actin coprecipitation assay, we show that CD2AP directly associates with filamentous actin and that this interaction is mediated by means of the COOH terminus of CD2AP. The present results suggest that CD2AP is involved in the regulation of the actin cytoskeleton and indicate that CD2AP may act as a direct adapter between the actin cytoskeleton and cell membrane proteins, such as nephrin and polycystin-2. Alterations in these interactions could explain some of the pathophysiological changes in congenital nephrotic syndrome and polycystic kidney disease.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology, Haartman Institute and Helsinki University Central Hospital, University of Helsinki, Finland
| | | | | |
Collapse
|
2006
|
Abstract
The development of MHC tetramer staining has opened the doors to multiple avenues of new research [Science 274 (1996) 94]. In this review, we will discuss the development and application of in situ MHC tetramer (IST) staining. We describe two independently developed IST staining methodologies and discuss current uses, limitations, future uses and the interesting biology revealed by the use of IST staining.
Collapse
Affiliation(s)
- Pamela J Skinner
- Department of Microbiology and Great Lakes Center for AIDS Research, University of Minnesota Medical School, MMC 196, 420 Delaware St. SE, Minneapolis 55455, USA
| | | |
Collapse
|
2007
|
Fahmy TM, Bieler JG, Schneck JP. Probing T cell membrane organization using dimeric MHC-Ig complexes. J Immunol Methods 2002; 268:93-106. [PMID: 12213346 DOI: 10.1016/s0022-1759(02)00203-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this report, we review a novel method for probing the membrane organization of T cells using dimeric major histocompatibility complexes (MHC), MHC-Ig. MHC-Ig complexes are useful reagents for quantitative analysis of binding data since their valency is controlled. These complexes can be easily labeled and loaded with a variety of peptides. A binding assay using these dimers and quantitative analysis of the MHC-Ig dimer-T cell binding curves is described in detail. Using this approach, we show that the organization of TCR on activated T cells is different from TCR organization on nai;ve T cells. The implications of these findings are discussed with regards to current models of T cell recognition. This analysis offers insight into how T cell controls their biological range of responsiveness. Specifically, these findings reveal the biophysical basis of the ability of activated T cells to recognize low amounts of antigen independent of costimulation.
Collapse
Affiliation(s)
- Tarek M Fahmy
- Department of Pathology, Division of Immunopathology, Johns Hopkins School of Medicine, 664G Ross Bldg., 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
2008
|
Burroughs NJ, Wülfing C. Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse. Biophys J 2002; 83:1784-96. [PMID: 12324401 PMCID: PMC1302272 DOI: 10.1016/s0006-3495(02)73944-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Receptor-ligand couples in the cell-cell contact interface between a T cell and an antigen-presenting cell form distinct geometric patterns and undergo spatial rearrangement within the contact interface. Spatial segregation of the antigen and adhesion receptors occurs within seconds of contact, central aggregation of the antigen receptor then occurring over 1-5 min. This structure, called the immunological synapse, is becoming a paradigm for localized signaling. However, the mechanisms driving its formation, in particular spatial segregation, are currently not understood. With a reaction diffusion model incorporating thermodynamics, elasticity, and reaction kinetics, we examine the hypothesis that differing bond lengths (extracellular domain size) is the driving force behind molecular segregation. We derive two key conditions necessary for segregation: a thermodynamic criterion on the effective bond elasticity and a requirement for the seeding/nucleation of domains. Domains have a minimum length scale and will only spontaneously coalesce/aggregate if the contact area is small or the membrane relaxation distance large. Otherwise, differential attachment of receptors to the cytoskeleton is required for central aggregation. Our analysis indicates that differential bond lengths have a significant effect on synapse dynamics, i.e., there is a significant contribution to the free energy of the interaction, suggesting that segregation by differential bond length is important in cell-cell contact interfaces and the immunological synapse.
Collapse
|
2009
|
Lee SJE, Hori Y, Groves JT, Dustin ML, Chakraborty AK. Correlation of a dynamic model for immunological synapse formation with effector functions: two pathways to synapse formation. Trends Immunol 2002; 23:492-9. [PMID: 12297421 DOI: 10.1016/s1471-4906(02)02285-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During antigen recognition by T cells different receptors and ligands form a pattern in the intercellular junction called the immunological synapse, which might be involved in T-cell activation. Recently, a synapse assembly model has been proposed, which enables the calculation of the propensity for synapse assembly driven by membrane-constrained protein binding interactions. We bring together model predictions of mature synapse assembly with data on the dependence of T-cell responses on T-cell receptor (TCR)-MHC-peptide (pMHC) binding kinetics. Predictions of mature synapse assembly, based on TCR-pMHC binding kinetics, correlate well with observed cytokine responses by T cells bearing the relevant TCR but not with cytotoxic T lymphocyte-mediated killing. We discuss the suggested different role for the synapse in pre- and post-nuclear activation events in T cells. The view of immunological synapse assembly given here emphasizes the importance of both the on and off rates for the TCR-pMHC interaction and in this context recent data on a positive role for analogs of self-peptides in synapse assembly is considered.
Collapse
Affiliation(s)
- Sung-Joo E Lee
- Biophysics Graduate Group, Dept of Chemistry, University of California, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
2010
|
Blanchard N, Di Bartolo V, Hivroz C. In the immune synapse, ZAP-70 controls T cell polarization and recruitment of signaling proteins but not formation of the synaptic pattern. Immunity 2002; 17:389-99. [PMID: 12387734 DOI: 10.1016/s1074-7613(02)00421-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recognition by T cells of their ligands at the surface of antigen-presenting cells (APCs) leads to T cell activation, polarization of the T cell toward the APC, and formation of an immune synapse. Using ZAP-70-deficient T cells expressing zeta-GFP, we show that ZAP-70 signaling drives the TCR-dependent reorientation of the microtubule-organizing center thus leading to relocation of a zeta-GFP(+) intracellular compartment close to the APC. ZAP-70 is also necessary to supply the synapse with the signaling molecules PKC-theta and LAT. In contrast, ZAP-70 is not required for clustering of zeta-GFP and CD2 or exclusion of CD45 and CD43 from the synapse. These data show that ZAP-70-dependent signaling is required for formation of a functional immune synapse.
Collapse
|
2011
|
Smith KA. Medical immunology: a new journal for a new subspecialty. MEDICAL IMMUNOLOGY (LONDON, ENGLAND) 2002; 1:1. [PMID: 12437786 PMCID: PMC131025 DOI: 10.1186/1476-9433-1-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2002] [Accepted: 09/30/2002] [Indexed: 11/10/2022]
Affiliation(s)
- Kendall A Smith
- The Division of Immunology, Department of Medicine Weill Medical, College of Cornell University, 1300 York Avenue, Box 41, New York, NY 10021, USA.
| |
Collapse
|
2012
|
Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Barr VA, Samelson LE. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 2002; 158:1263-75. [PMID: 12356870 PMCID: PMC2173229 DOI: 10.1083/jcb.200203043] [Citation(s) in RCA: 510] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tcell antigen receptor (TCR) ligation initiates tyrosine kinase activation, signaling complex assembly, and immune synapse formation. Here, we studied the kinetics and mechanics of signaling complex formation in live Jurkat leukemic T cells using signaling proteins fluorescently tagged with variants of enhanced GFP (EGFP). Within seconds of contacting coverslips coated with stimulatory antibodies, T cells developed small, dynamically regulated clusters which were enriched in the TCR, phosphotyrosine, ZAP-70, LAT, Grb2, Gads, and SLP-76, excluded the lipid raft marker enhanced yellow fluorescent protein-GPI, and were competent to induce calcium elevations. LAT, Grb2, and Gads were transiently associated with the TCR. Although ZAP-70-containing clusters persisted for more than 20 min, photobleaching studies revealed that ZAP-70 continuously dissociated from and returned to these complexes. Strikingly, SLP-76 translocated to a perinuclear structure after clustering with the TCR. Our results emphasize the dynamically changing composition of signaling complexes and indicate that these complexes can form within seconds of TCR engagement, in the absence of either lipid raft aggregation or the formation of a central TCR-rich cluster.
Collapse
Affiliation(s)
- Stephen C Bunnell
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
2013
|
Schrum AG, Turka LA. The proliferative capacity of individual naive CD4(+) T cells is amplified by prolonged T cell antigen receptor triggering. J Exp Med 2002; 196:793-803. [PMID: 12235212 PMCID: PMC2194051 DOI: 10.1084/jem.20020158] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Strong antigenic encounter by T cells rapidly induces immunological synapse formation and surface T cell receptor (TCR) downregulation. Although surface TCR expression can remain low for several days, T cells can still sustain antigenic signaling. It has been unclear whether prolonged antigenic signaling occurs in the absence of surface TCR replenishment, being maintained by a few "nondownregulatable" surface TCRs that might reside in a synaptosomal structure. Alternatively, the low surface TCR level induced by antigen might represent a dynamic state of expression involving continual surface TCR replenishment, reengagement by antigen, and ongoing downregulation. To resolve this issue, we studied in vivo-generated, dual-specificity primary naive CD4(+) T cells. On these cells, antigenic stimulus exclusively downregulated antigen-specific, but not antigen-nonspecific, TCRs. In addition to providing a means to track TCR engagement, this also allowed us to use the antigen nonspecific TCR to track TCR expression in isolation from TCR engagement by antigen. Surface TCR replenishment began within the first day of stimulation, and occurred synchronously with continuous antigen-specific TCR engagement and downregulation. Furthermore, by enhancing CD25 expression, extended signaling through surface-replenishing TCRs significantly amplified the number of daughter cells generated by naive CD4(+) T cells that had already committed to proliferate. This effect required TCR engagement and could not be substituted for by interleukin 2. These data demonstrate that TCR triggering and consumption can occur over an extended period of time, with a significant impact on the effector responses evoked from naive CD4(+) T cells.
Collapse
Affiliation(s)
- Adam G Schrum
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
2014
|
Burack WR, Lee KH, Holdorf AD, Dustin ML, Shaw AS. Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2837-41. [PMID: 12218094 DOI: 10.4049/jimmunol.169.6.2837] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the accumulation of lipid rafts at the immunological synapse is now well accepted, the degree of the accumulation, the localization within the fine structure of the immunological synapse, and the region from which lipid rafts are recruited have not been defined. In this work we show that lipid rafts preferentially accumulate in the central zone of the immunological synapse, the central supramolecular activation complex (C-SMAC). However, quantitative analyses indicate that the level of recruitment of lipid rafts to the C-SMAC is relatively small and suggests that rearrangement of lipid rafts from the peripheral zone of the synapse into the C-SMAC can account for this accumulation. We also assessed the effects of CD28 deficiency on lipid raft recruitment to the immunological synapse. The accumulation of lipid occurred independently of the CD28/B7 system and was not measurably altered by CD28.
Collapse
Affiliation(s)
- W Richard Burack
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
2015
|
Coombs D, Kalergis AM, Nathenson SG, Wofsy C, Goldstein B. Activated TCRs remain marked for internalization after dissociation from pMHC. Nat Immunol 2002; 3:926-31. [PMID: 12244312 DOI: 10.1038/ni838] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2002] [Accepted: 08/15/2002] [Indexed: 11/09/2022]
Abstract
To assess the roles of serial engagement and kinetic proofreading in T cell receptor (TCR) internalization, we have developed a mathematical model of this process. Our determination of TCR down-regulation for an array of TCR mutants, interpreted in the context of the model, has provided new information about peptide-induced TCR internalization. The amount of TCR down-regulation increases to a maximum value and then declines as a function of the half-life of the bond between the TCR and peptide-major histocompatibility complex (pMHC). The model shows that this behavior, which reflects competition between serial engagement and kinetic proofreading, arises only if it is postulated that activated TCRs remain marked for internalization after dissociation from pMHC. The model also predicts that because of kinetic proofreading, the range of TCR-pMHC-binding half-lives required for T cell activation depends on the concentrations and localization of intracellular signaling molecules. We show here that kinetic proofreading provides an explanation for the different requirements for activation observed in naïve and memory T cells.
Collapse
Affiliation(s)
- Daniel Coombs
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | |
Collapse
|
2016
|
Jin T, Li J. Dynamitin controls Beta 2 integrin avidity by modulating cytoskeletal constraint on integrin molecules. J Biol Chem 2002; 277:32963-9. [PMID: 12082093 DOI: 10.1074/jbc.m201525200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamitin, a subunit of the microtubule-dependent motor complex, was implicated in cell adhesion by binding to MacMARCKS (Macrophage-enriched myristoylated alanine-rice C kinase substrate). However, how dynamitin is involved in cell adhesion is unclear despite the fact that both MacMARCKS and microtubules regulate beta(2) integrin activation. We report that dynamitin regulates beta(2) integrin avidity toward iC3b by modulating the lateral mobility of beta(2) integrin molecules. Using the single particle tracking method, we found that integrin molecular mobility in cells expressing the fusion protein CFP (cyan fluorescent protein)-dynamitin or CFP-MB (the MacMARCKS binding domain peptide of dynamitin) increased 6-fold over the control cells, suggesting that disturbing dynamitin function dramatically altered the cytoskeletal constraint on beta(2) integrin molecules. Further mechanistic studies revealed that overexpression of dynamitin stimulated the phosphorylation of endogenous MacMARCKS protein, which lead to the enhanced tyrosine phosphorylation of paxillin. This effect of dynamitin correlates with the observation that higher concentration of PKC inhibitor is required to block beta(2) integrin mobility in dynamitin-expressing cells. Although dynamitin acts at the point of MacMARCKS phosphorylation, it is upstream of RhoA, because its effect was blocked by RhoA inhibitor. Thus, we conclude that dynamitin is a part of the cytoskeletal constraint that locks beta(2) integrin in the inactive form.
Collapse
Affiliation(s)
- Tianquan Jin
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|
2017
|
Freiberg BA, Kupfer H, Maslanik W, Delli J, Kappler J, Zaller DM, Kupfer A. Staging and resetting T cell activation in SMACs. Nat Immunol 2002; 3:911-7. [PMID: 12244310 DOI: 10.1038/ni836] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2002] [Accepted: 08/05/2002] [Indexed: 11/08/2022]
Abstract
During the productive interaction of T cells with antigen-presenting cells (APCs), engaged receptors, including the T cell antigen receptors and their associated tyrosine kinases, assemble into spatially segregated supramolecular activation clusters (SMACs) at the area of cell contact. Here, we studied intracellular signaling in SMACs by three-dimensional immunofluorescence microscopic localization of CD3, CD45, talin, phosphotyrosine, Lck and phosphorylated ZAP-70 in T cell-APC conjugates. Two distinct phases of spatial-temporal activation, one before and one after SMAC formation, which were separated by a brief state of inactivation caused by CD45, were observed at the T cell-APC contact area. We propose that pre-SMAC signals are sufficient to activate cell adhesion, but not productive T cell responses, which require orchestrated signaling in SMACs.
Collapse
Affiliation(s)
- Benjamin A Freiberg
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
2018
|
Kuo Y, Lucero L, Michaels J, DeLuca D, Lukas RJ. Differential expression of nicotinic acetylcholine receptor subunits in fetal and neonatal mouse thymus. J Neuroimmunol 2002; 130:140-54. [PMID: 12225896 DOI: 10.1016/s0165-5728(02)00220-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies were initiated to identify nicotinic acetylcholine receptor (nAChR) subunits and subtypes expressed in the developing immune system and cell types on which nAChR are expressed. Reported here are reverse transcription-polymerase chain reactions (RT-PCR) studies of nAChR alpha2-alpha7 and beta2-beta4 subunit gene expression using fetal or neonatal regular or scid/scid C57BL/6 mouse thymus. Findings are augmented with studies of murine fetal thymic organ cultures (FOTC) and of human peripheral lymphocytes. Novel partial cDNA sequences were derived for mouse nAChR alpha2, alpha3, beta3 and beta4 subunits, polymorphisms were identified in mouse nAChR alpha4, alpha7 and beta2 subunits, and recently derived sequences for mouse nAChR alpha5 and alpha6 subunits were confirmed. Thymic stromal cells appear to express nAChR alpha2, alpha3, alpha4, alpha7 and beta4 subunits, perhaps in addition to alpha5 and beta2 subunits, in a pattern reminiscent of expression in the developing brain. Immature T cells appear to express alpha3, alpha5, alpha7, beta2 and beta4 subunits, just as do neural crest-derived cells targeted by cholinergic innervation. Peripheral T cells seem to express an unusual profile of alpha2, alpha5 and alpha7 subunits, perhaps indicating that their nAChR express yet-to-be-identified assembly partners or that T cell nicotinic responsiveness occurs through homomeric nAChR composed of alpha7 subunits. Our findings are consistent with published work but show a much wider array of nAChR subunit gene expression in mouse thymic stromal and/or lymphoid cells and evidence for developmental regulation of nAChR subunit expression. These studies suggest important roles for nAChR in immune system development and function and in the neuroimmune network.
Collapse
Affiliation(s)
- Yen Kuo
- Division of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, 85013, Phoenix, AZ, USA.
| | | | | | | | | |
Collapse
|
2019
|
Boes M, Cerny J, Massol R, Op den Brouw M, Kirchhausen T, Chen J, Ploegh HL. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 2002; 418:983-8. [PMID: 12198548 DOI: 10.1038/nature01004] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Assembly of major histocompatibility complex (MHC) molecules, which present antigen in the form of short peptides to T lymphocytes, occurs in the endoplasmic reticulum; once assembled, these molecules travel from the endoplasmic reticulum to their final destination. MHC class II molecules follow a route that takes them by means of the endocytic pathway, where they acquire peptide, to the cell surface. The transport of MHC class II molecules in 'professional' antigen-presenting cells (APCs) is subject to tight control and responds to inflammatory stimuli such as lipopolysaccharide. To study class II transport in live APCs, we replaced the mouse MHC class II gene with a version that codes for a class II molecule tagged with enhanced green fluorescent protein (EGFP). The resulting mice are immunologically indistinguishable from wild type. In bone-marrow-derived dendritic cells, we observed class II molecules in late endocytic structures with transport patterns similar to those in Langerhans cells observed in situ. We show that tubular endosomes extend intracellularly and polarize towards the interacting T cell, but only when antigen-laden dendritic cells encounter T cells of the appropriate specificity. We propose that such tubulation serves to facilitate the ensuing T-cell response.
Collapse
Affiliation(s)
- Marianne Boes
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
2020
|
Brown BD, Lillicrap D. Dangerous liaisons: the role of "danger" signals in the immune response to gene therapy. Blood 2002; 100:1133-40. [PMID: 12149189 DOI: 10.1182/blood-2001-11-0067] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies in gene transfer suggest that the innate immune system plays a significant role in impeding gene therapy. In this review, we examine factors that might influence the recruitment and activation of the innate system in the context of gene therapy. We have adopted a novel model of immunology that contends that the immune system distinguishes not between self and nonself, but between what is dangerous and what is not dangerous. In taking this perspective, we provide an alternative and complementary insight into some of the failures and successes of current gene therapy protocols.
Collapse
Affiliation(s)
- Brian D Brown
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
2021
|
Rossetti G, Collinge M, Bender JR, Molteni R, Pardi R. Integrin-dependent regulation of gene expression in leukocytes. Immunol Rev 2002; 186:189-207. [PMID: 12234372 DOI: 10.1034/j.1600-065x.2002.18616.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to their role in strengthening intercellular adhesion, leukocyte integrins transduce signals which affect genetic programs, consequently defining cell phenotype and function. These signals can be independently sufficient, or can cooperate with other environmental stimuli to affect gene expression regulation. In the past several years, there has been an emergence of mechanistic data which contribute to our understanding of these critical integrin roles. In this review, we describe anchorage-dependent T lymphocyte proliferation and, in particular, how leukocyte integrin engagement overcomes the G1 to S cell cycle restriction point in antigen-activated T cells. The related role of alphaLbeta2 integrin (LFA-1) as a T cell co-stimulatory molecule is discussed. This includes defining mechanisms whereby LFA-1 engagement enhances transcriptional activation of numerous genes by regulating its association with transcription modulators such as JAB-1, and through interaction with other gene-activating signaling complexes such as JAK-STATs. Evidence is presented to support that leukocyte integrin engagement provides potent signals which stabilize otherwise labile activation mRNA transcripts, including those encoding cytokine and extracellular matrix degrading proteins. These integrin-dependent mechanisms, all described recently, play important roles in T cell differentiation and proliferation, immune surveillance and inflammatory responses.
Collapse
Affiliation(s)
- Grazisa Rossetti
- Unit of Leukocyte Biology, Department of Molecular Biology and Functional Genomics, Vita-Salute San Raffaele University School of Medicine, Milan, Italy
| | | | | | | | | |
Collapse
|
2022
|
Dupré L, Aiuti A, Trifari S, Martino S, Saracco P, Bordignon C, Roncarolo MG. Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 2002; 17:157-66. [PMID: 12196287 DOI: 10.1016/s1074-7613(02)00360-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immunological synapse assembly relies on the clustering of lipid rafts and is required for optimal T cell activation. We demonstrate that the Wiskott-Aldrich syndrome protein (WASP) is recruited to lipid rafts immediately after TCR and CD28 triggering and is required for the movements of lipid rafts. T cells from Wiskott-Aldrich syndrome (WAS) patients, lacking WASP, proliferate poorly after TCR/CD28 activation and have impaired capacities to cluster the lipid raft marker GM1 and to upregulate GM1 cell surface expression. T cell proliferation and lipid raft clustering are restored by retroviral transfer of the WASP gene. These results demonstrate that WASP plays a central role in the movements of lipid rafts and identify a potential mechanism underlying the T cell defect affecting WAS patients.
Collapse
Affiliation(s)
- Loïc Dupré
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
2023
|
Abstract
Among the myriad receptors expressed by T cells, the sine qua non is the CD3/T cell receptor (CD3/TCR) complex, because it is uniquely capable of translating the presence of a specific antigen into intracellular signals necessary to trigger an immune response against a pathogen or tumor. Much work over the past 2 decades has attempted to define the signaling pathways leading from the CD3/TCR complex that culminate ultimately in the functions necessary for effective T cell immune responses, such as cytokine production. Here, we summarize recent advances in our understanding of the mechanisms by which the CD3/TCR complex controls integrin-mediated T cell adhesion, and discuss new information that suggests that there may be unexpected facets to this pathway that distinguish it from those previously defined.
Collapse
Affiliation(s)
- Sirid-Aimée Kellermann
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
2024
|
Abstract
Adhesive interactions play important roles in coordinating T-cell migration and activation, specifically in the formation of the immunological synapse (IS), a specialized cell-cell junction. Recent demonstrations show several molecules implicated in T-cell signaling, including Vav, ADAP, and Rap-1, have major roles in integrin regulation and place adhesion molecules at center stage in addressing the question: what are the signals involved in the formation of the IS and full T-cell activation? This review focuses on the role of integrins as an essential system for both physical adhesion and signaling in T-cell activation. The role of integrins appears to be quite distinct from classical costimulation and has been largely overlooked due to the ubiquitous use of serum in lymphocyte functional assays. Each major signal transduction pathway has branches leading to the nucleus and others that feed back on cytoskeletal and membrane regulation at the IS.
Collapse
Affiliation(s)
- Tasha N Sims
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
2025
|
Hogg N, Henderson R, Leitinger B, McDowall A, Porter J, Stanley P. Mechanisms contributing to the activity of integrins on leukocytes. Immunol Rev 2002; 186:164-71. [PMID: 12234370 DOI: 10.1034/j.1600-065x.2002.18614.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Understanding how the integrins on leukocytes operate is important because these receptors control the activity of leukocytes in all phases of their lives. Thus integrins control leukocyte development and maturation in bone marrow, the circulation of naive cells in secondary lymphoid tissue, e.g. the lymph nodes, and leukocyte responses to inflammatory signals emanating from injured tissues. Using as an example LFA-1, which is expressed by all leukocytes, we outline how the activity of this integrin is modified to meet the challenges posed by these leukocyte activities. Briefly, we discuss three means by which LFA-1 is adapted to bind more efficiently to its chief ligand, ICAM-1. LFA-1 can undergo changes in conformation leading to increased affinity, can be clustered on the membrane and, finally, when activated can move into the lipid raft compartment of the membrane. The study of humans with the beta2 deficiency syndrome termed leukocyte adhesion deficiency (LAD)-1 and analysis of LFA-1 null mice has given further insight into integrin activation mechanisms and the in vivo roles of LFA-1 and other leukocyte integrins.
Collapse
Affiliation(s)
- Nancy Hogg
- Leukocyte Adhesion Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, UK.
| | | | | | | | | | | |
Collapse
|
2026
|
Montoya MC, Sancho D, Vicente-Manzanares M, Sánchez-Madrid F. Cell adhesion and polarity during immune interactions. Immunol Rev 2002; 186:68-82. [PMID: 12234363 DOI: 10.1034/j.1600-065x.2002.18607.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intercellular interactions are critical for a coordinated function of different cell types involved in the immune response. Here we review the cellular and molecular events occurring during cell-cell immune contacts. Cognate naïve CD4+ T lymphocyte-dendritic cell (DC) and primed T cell-antigen-presenting B lymphocyte interactions are discussed. The engagement of cytotoxic T lymphocytes (CTL) or natural killer cells (NK) with their targets is analyzed and compared to the process of T cell-antigen-presenting cell (APC) conjugate formation. The immunological synapse, a complex cluster of molecules organized at the contact area of cell conjugates, exhibits common features but shows some differences depending on cell types involved. Cellular interactions occur in sequential stages that involve dramatic changes in cell polarity and dynamic redistribution of cell membrane receptors. The role of membrane microdomains, adaptor molecules and the cytoskeleton in the regulation of the molecular reorganization at cell-cell contacts is also discussed.
Collapse
Affiliation(s)
- María C Montoya
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
2027
|
van Kooyk Y, Geijtenbeek TBH. A novel adhesion pathway that regulates dendritic cell trafficking and T cell interactions. Immunol Rev 2002; 186:47-56. [PMID: 12234361 DOI: 10.1034/j.1600-065x.2002.18605.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dendritic cells (DC) are present in essentially every tissue, where they operate at the interface of innate and acquired immunity by recognizing pathogens and presenting pathogen-derived peptides to T cells. Cell-cell interactions between DC, T cells and endothelial cells are crucial to all immunological processes. Recently, several C-type lectin receptors have been characterized that are abundantly expressed on the surface of DC. It is now becoming clear that these lectin receptors serve not only as antigen-receptors recognizing pathogens, but they may also function as adhesion receptors and/or signaling molecules. In particular the DC specific C-type lectin DC-SIGN (CD209) regulates adhesion processes, such as DC trafficking by interacting with ICAM-2 and T cell synapse formation, upon binding of ICAM-3. C-type lectins such as DC-SIGN contain a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures presented on the glycoproteins ICAM-2 and ICAM-3. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3, on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. Here we discuss how the heterogeneity of mannose-residues exposed on cellular proteins and pathogens regulates specific binding of a repertoire of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DC.
Collapse
Affiliation(s)
- Yvette van Kooyk
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
2028
|
Abstract
The T-cell cytoskeleton is intimately involved in determining the efficiency and fidelity of the immune response. During T-cell interactions with antigen-presenting cells (APCs), dynamic remodeling of the actin cytoskeleton is particularly important for stabilizing long-lived integrin-dependent adhesive interactions. In addition, actin remodeling is important for facilitating the sustained signaling required for full T-cell activation. Although the relationship between T-cell signaling and cytoskeletal remodeling is complex, new molecular genetic tools are making it possible to investigate individual molecular interactions in the context of bona fide conjugate formation. We describe here the progress from our laboratory toward defining the pathways required for actin remodeling during conjugate formation. Our studies show that engagement of T-cell receptor (TCR) and leukocyte functional antigen-1 (LFA-1) leads to distinct effects on the remodeling of individual cytoskeletal elements. Downstream of TCR, we find that p56Lck (Lck) plays a critical role in integrin-dependent adhesion independent of its ability to activate zeta-associated protein of 70 kDa (ZAP-70). TCR engagement also results in the assembly of a signaling complex that facilitates the activation of Wiskott-Aldrich syndrome protein (WASP) by colocalization with Cdc42-GTP. These events, together with other parallel actin regulatory pathways, induce localized actin polymerization at the site of APC binding.
Collapse
Affiliation(s)
- Judy L Cannon
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
2029
|
Friedl P, Bröcker EB. TCR triggering on the move: diversity of T-cell interactions with antigen-presenting cells. Immunol Rev 2002; 186:83-9. [PMID: 12234364 DOI: 10.1034/j.1600-065x.2002.18608.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polarized T cells are mobile cells optimized for migration, receptor scanning, and signaling. When in contact with antigen-presenting cells (APCs), polarized T cells can develop a spectrum of biophysical interaction modes ranging from adhesive sticking to dynamic crawling. Both static and dynamic contacts support sustained triggering of the T-cell receptor (TCR), leading to signal induction, T blast formation, and proliferation. In dynamic interactions, T cells crawl across the surface of the APC at speeds of 2-6 micro m/min and simultaneously establish an asymmetric tight yet mobile junction plane, representing a dynamic immunological synapse. In dynamic synapses three functional compartments of the polarized T cell are in close contact with the APC surface, i.e. leading edge, cell body and uropod. Through its mobility, the asymmetric junction is topographically suited for receptor scanning and engagement at the leading edge, retrograde receptor movement along the junction, and exit from the uropod. Herein we develop a model on scanning encounters between T cells and APCs that includes the simultaneous engagement of T-cell leading edge and uropod and implicates a serial receptor triggering mode in cell-cell recognition.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Dermatology, University of Wuerzburg, Wuerzburg, Germany.
| | | |
Collapse
|
2030
|
Rudolph MG, Luz JG, Wilson IA. Structural and thermodynamic correlates of T cell signaling. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:121-49. [PMID: 11988465 DOI: 10.1146/annurev.biophys.31.082901.134423] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The first crystal structures of intact T cell receptors (TCRs) bound to class I peptide-MHC (pMHCs) antigens were determined in 1996. Since then, further structures of class I TCR/pMHC complexes have explored the degree of structural variability in the TCR-pMHC system and the structural basis for positive and negative selection. The recent determination of class II and allogeneic class I TCR/pMHC structures, as well as those of accessory molecules (e.g., CD3), has pushed our knowledge of TCR/pMHC interactions into new realms, shedding light on clinical pathologies, such as graft rejection and graft-versus-host disease. Furthermore, the determination of coreceptor structures lays the foundation for a more comprehensive structural description of the supramolecular TCR signaling events and those assemblies that arise in the immunological synapse. While these telling photodocumentaries of the TCR/pMHC interaction are composed mainly from static crystal structures, a full description of the biological snapshots in T cell signaling requires additional analytical methods that record the dynamics of the process. To this end, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and ultracentrifugation (UC) have furnished both affinities and kinetics of the TCR/pMHC association. In the past year, structural, biochemical, and molecular biological data describing TCR/pMHC interactions have sublimely coalesced into a burgeoning well of understanding that promises to deliver further insights into T cell recognition. The coming years will, through a more intimate union of structural and kinetic data, allow many pressing questions to be addressed, such as how TCR/pMHC ligation is affected by coreceptor binding and what is the mechanism of TCR signaling in both early and late stages of T cell engagement with antigen-presenting cells.
Collapse
Affiliation(s)
- Markus G Rudolph
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
2031
|
Shacklett BL, Means RE, Larsson M, Wilkens DT, Beadle TJ, Merritt MJ, Bhardwaj N, Palumbo PE, Skurnick JH, Louria DB, Nixon DF. Dendritic cell amplification of HIV type 1-specific CD8+ T cell responses in exposed, seronegative heterosexual women. AIDS Res Hum Retroviruses 2002; 18:805-15. [PMID: 12167272 DOI: 10.1089/08892220260139558] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the Heterosexual AIDS Transmission Study (HATS), the frequency of high-risk sexual activity and viral load in the seropositive partner were shown to correlate with HIV-1 transmission. However, these parameters could not account for the status of some exposed, seronegative (ESN) individuals who remained uninfected despite years of exposure. To test the hypothesis that antiviral immune responses are a correlate of nontransmission in this cohort, we developed two sensitive methods for assessing HIV-1-specific humoral and cell-mediated responses. To quantify T cell responses, autologous mature dendritic cells (DCs) were used as antigen-presenting cells to elicit HIV-1-specific IFN-gamma production by ELISPOT. Antibody responses to HIV-1 gp120 were assessed by combination immunoprecipitation-Western blot (IP-WB). Previous studies of this cohort, using limiting dilution analysis, did not reveal HIV-1-specific cytotoxic T lymphocyte activity. However, when autologous DCs were used to present HIV-1 antigens, T cells from three of eight ESN women (38%) responded by producing IFN-gamma. T cells from three of four seropositive partners responded to HIV-1 antigens, whereas five negative controls did not. The use of DCs as antigen-presenting cells increased sensitivity by 2- to 30-fold relative to standard ELISPOT. Using IP-WB, low levels of gp120-reactive antibodies were detected in plasma from 1 of 14 ESN women. These results support the hypothesis that HIV-1-specific T cell responses play a role in immune surveillance in this cohort of North American serodiscordant couples. This report also demonstrates the ability of dendritic cells to reveal T cell responses that might be overlooked by other methods.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Gladstone Institute of Virology and Immunology, University of California-San Francisco, PO Box 419100, San Francisco, CA 94110-9100, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2032
|
Abstract
The recent Juan March Foundation meeting on "Regulation and functional insights in cellular polarity" focused on cellular polarity in yeasts, Dictyostelium, epithelial cells, fibroblasts, and immune cells. The molecular systems covered included membrane rafts, actin and tubulin cytoskeleton, polarized transcription, signaling, and cell-cell adhesion. Across these diverse biological and molecular systems, important general concepts emerged, including new ideas for establishing and maintaining polarity that are likely to be applicable across models and experimental systems.
Collapse
Affiliation(s)
- Michael L Dustin
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
2033
|
Morford LA, Forrest K, Logan B, Overstreet LK, Goebel J, Brooks WH, Roszman TL. Calpain II colocalizes with detergent-insoluble rafts on human and Jurkat T-cells. Biochem Biophys Res Commun 2002; 295:540-6. [PMID: 12150984 DOI: 10.1016/s0006-291x(02)00676-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calpain, a calcium-dependent cysteine protease, is known to associate with the T-cell plasma membrane and subsequently cleave a number of cytoskeletal-associated proteins. In this study, we report the novel observation that calpain II, but not calpain I, associates with membrane lipid rafts on human peripheral blood T-cells and Jurkat cells. Raft-associated calpain activity is enhanced with exogenous calcium and inhibited with calpeptin, a specific inhibitor of calpain activity. In addition, we demonstrate that calpain cleaves the cytoskeletal-associated protein, talin, during the first 30-min after cell stimulation. We propose that lipid raft associated-calpain II could function in early TCR signaling to facilitate immune synapse formation through cytoskeletal remodeling mechanisms. Hence, we demonstrate that the positioning of calpain II within T-cell lipid rafts strategically places it in close proximity to known calpain substrates that are cleaved during Ag-specific T-cell signaling and immune synapse formation.
Collapse
Affiliation(s)
- Lorri A Morford
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
2034
|
Huang J, Lo PF, Zal T, Gascoigne NRJ, Smith BA, Levin SD, Grey HM. CD28 plays a critical role in the segregation of PKC theta within the immunologic synapse. Proc Natl Acad Sci U S A 2002; 99:9369-73. [PMID: 12077322 PMCID: PMC123147 DOI: 10.1073/pnas.142298399] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2002] [Indexed: 11/18/2022] Open
Abstract
The signaling pathways that lead to the localization of cellular protein to the area of interaction between T cell and antigen-presenting cell and the mechanism by which these molecules are further sorted to the peripheral supramolecular activation cluster or central supramolecular activation cluster regions of the immunologic synapse are poorly understood. In this study, we investigated the functional involvement of CD28 costimulation in the T cell receptor (TCR)-mediated immunologic synapse formation with respect to protein kinase C (PKC)theta; localization. We showed that CD3 crosslinking alone was sufficient to induce PKC theta; capping in naive CD4(+) T cells. Studies with pharmacologic inhibitors and knockout mice showed that the TCR-derived signaling that drives PKC theta; membrane translocation requires the Src family kinase, Lck, but not Fyn. In addition, a time course study of the persistence of T cell molecules to the immunologic synapse indicated that PKC theta;, unlike TCR, persisted in the synapse for at least 4 h, a time that is sufficient for commitment of a T cell to cell division. Finally, by using TCR-transgenic T cells from either wild-type or CD28-deficient mice, we showed that CD28 expression was required for the formation of the mature immunologic synapse, because antigen stimulation of CD28(-) T cells led to a diffuse pattern of localization of PKC theta; and lymphocyte function-associated antigen-1 in the immunologic synapse, in contrast to the central supramolecular activation cluster localization of PKC theta; in CD28(+) T cells.
Collapse
Affiliation(s)
- Jianyong Huang
- Division of Immunochemistry, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
2035
|
Mellman I, Ridley A. Regulation and functional insights in cellular polarity, Madrid, Spain June 3-5, 2002. J Cell Biol 2002; 158:12-6. [PMID: 12141270 PMCID: PMC2173012 DOI: 10.1083/jcb1581mr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
2036
|
Bromley SK, Dustin ML. Stimulation of naïve T-cell adhesion and immunological synapse formation by chemokine-dependent and -independent mechanisms. Immunology 2002; 106:289-98. [PMID: 12100716 PMCID: PMC1782736 DOI: 10.1046/j.1365-2567.2002.01441.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemokines adsorbed to the cell surface play an important role in the initial interactions of T cells with endothelial cells, and may also have a role in T-cell interactions with dendritic cells. Therefore, we examined the effect of surface-adsorbed chemokines on the interaction of naïve murine splenic T cells with supported bilayers containing intercellular adhesion molecule (ICAM)-1, or with bone marrow-derived cultured dendritic cells in the presence and absence of relevant MHC-peptide complexes. Naïve T cells formed immunological synapses, defined as a ring of lymphocyte function associated (LFA)-1-ICAM-1 interactions surrounding a central cluster of MHC-peptide complexes, on supported planar bilayers containing ICAM-1 and relevant MHC-peptide complexes. Chemokines stimulated an increase in the percentage of naïve cells that adhered to ICAM-1, but did not increase the average number of LFA-1-ICAM-1 interactions in the contact area. In contrast, relevant MHC-peptide complexes resulted in a small increase in the proportion of interacting T cells, but stimulated an 8-fold increase in the number of LFA-1-ICAM-1 interactions in each contact formed. Naïve T cells displayed a significant basal adhesion to bone marrow dendritic cells that was further increased when relevant chemokines were adsorbed to the dendritic cell surface. However, basal and antigen-stimulated T-cell adhesion to dendritic cells was not sensitive to pertussis toxin. Thus, there are chemokine-independent mechanisms that initiate adhesion between T cells and dendritic cells.
Collapse
Affiliation(s)
- Shannon K Bromley
- Graduate Program in Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
2037
|
|
2038
|
Affiliation(s)
- Daniel M Davis
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.
| |
Collapse
|
2039
|
Sancho D, Montoya MC, Monjas A, Gordón-Alonso M, Katagiri T, Gil D, Tejedor R, Alarcón B, Sánchez-Madrid F. TCR engagement induces proline-rich tyrosine kinase-2 (Pyk2) translocation to the T cell-APC interface independently of Pyk2 activity and in an immunoreceptor tyrosine-based activation motif-mediated fashion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:292-300. [PMID: 12077257 DOI: 10.4049/jimmunol.169.1.292] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The relocation of kinases in T lymphocytes during their cognate interaction with APCs is essential for lymphocyte activation. We found that the proline-rich tyrosine kinase-2 (Pyk2) is rapidly translocated to the T cell-APC contact area upon T cell-specific recognition of superantigen-pulsed APCs. Stimulation with anti-CD3-coated latex microspheres was sufficient for Pyk2 reorientation, and the coengagement of CD28 boosted Pyk2 redistribution. Nevertheless, Pyk2 translocation did not result in its recruitment to lipid rafts. Two results support that Pyk2 translocation was independent of its kinase activity. First, Lck activity was required for TCR-induced Pyk2 translocation, but not for TCR-induced Pyk2 activation. Second, a kinase-dead Pyk2 mutant was equally translocated upon TCR triggering. In addition, Lck activity alone was insufficient to induce Pyk2 reorientation and activation, requiring the presence of at least one intact immunoreceptor tyrosine-based activation motif (ITAM). Despite the dependence on functional Lck and on phosphorylated ITAM for Pyk2 translocation, the ITAM-binding tyrosine kinase zeta-associated protein 70 (ZAP-70) was not essential. All these data suggest that, by translocating to the vicinity of the immune synapse, Pyk2 could play an essential role in T cell activation and polarized secretion of cytokines.
Collapse
Affiliation(s)
- David Sancho
- Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
2040
|
Espinosa E, Tabiasco J, Hudrisier D, Fournié JJ. Synaptic transfer by human gamma delta T cells stimulated with soluble or cellular antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6336-43. [PMID: 12055250 DOI: 10.4049/jimmunol.168.12.6336] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B, alpha beta T, and NK lymphocytes establish immunological synapses (IS) with their targets to enable recognition. Transfer of target cell-derived Ags together with proximal molecules onto the effector cell appears also to occur through synapses. Little is known about the molecular basis of this transfer, but it is assumed to result from Ag receptor internalization. Because human gamma delta T cells recognize soluble nonpeptidic phosphoantigens as well as tumor cells such as Daudi, it is unknown whether they establish IS with, and extract molecules from, target cells. Using flow cytometry and confocal microscopy, we show in this work that Ag-stimulated human V gamma 9/V delta 2 T cells conjugate to, and perform molecular transfer from, various tumor cell targets. The molecular transfer appears to be linked to IS establishment, evolves in a dose-dependent manner in the presence of either soluble or cellular Ag, and requires gamma delta TCR ligation, Src family kinase signaling, and participation of the actin cytoskeleton. Although CD45 exclusion characterized the IS performed by gamma delta T cells, no obvious capping of the gamma delta TCR was detected. The synaptic transfer mediated by gamma delta T cells involved target molecules unrelated to the cognate Ag and occurred independently of MHC class I expression by target cells. From these observations, we conclude that despite the particular features of gamma delta T cell activation, both synapse formation and molecular transfer of determinants belonging to target cell characterize gamma delta T cell recognition of Ags.
Collapse
Affiliation(s)
- Eric Espinosa
- Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | | | | | | |
Collapse
|
2041
|
Tuosto L, Marinari B, Piccolella E. CD4-Lck through TCR and in the absence of Vav exchange factor induces Bax increase and mitochondrial damage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6106-12. [PMID: 12055221 DOI: 10.4049/jimmunol.168.12.6106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we aimed to demonstrate that CD4 may represent a critical turning point that governs the apoptotic and survival programs in T cells, without modifying the physical association with the TCR-CD3 complex. To address this issue, we have explored the possibility that the activation of CD4 may transduce apoptotic signals unless signaling effectors neutralize them. Our data show that in Jurkat T cells CD4 engagement by Leu3a mAb results in a rapid and strong increase of Lck kinase activity, subsequent alterations of mitochondrial membrane potential, and apoptosis. Critical parameters are coassociation of CD4/Lck with TCR/CD3 and up-regulation of the proapoptotic protein Bax. Indeed, Leu3a-mediated Lck activation failed to induce apoptotic features in Jurkat cells either defective for TCR/CD3 or overexpressing the antiapoptotic protein Bcl-2. Furthermore, we demonstrate that Leu3a treatment of Jurkat cells overexpressing Vav results in the inhibition of mitochondrial damage and apoptosis; this rescue effect is accompanied with a significant decrease of Bax expression observed in apoptotic cells. Our evidence that the activation of Lck activates in T cells apoptotic pathways which are counteracted by Vav, a signaling molecule that cooperates with CD28 to boost TCR signals, suggests a novel role for costimulation in protecting T cells from CD4-mediated cell death.
Collapse
Affiliation(s)
- Loretta Tuosto
- Department of Cellular and Developmental Biology, La Sapienza University, Rome, Italy
| | | | | |
Collapse
|
2042
|
Porter JC, Bracke M, Smith A, Davies D, Hogg N. Signaling through integrin LFA-1 leads to filamentous actin polymerization and remodeling, resulting in enhanced T cell adhesion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6330-5. [PMID: 12055249 DOI: 10.4049/jimmunol.168.12.6330] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The integrins can activate signaling pathways, but the final downstream outcome of these pathways is often unclear. This study analyzes the consequences of signaling events initiated by the interaction of the leukocyte integrin LFA-1 with its ligand, dimeric ICAM-1. We show that the active form of LFA-1 regulates its own function on primary human T cells by directing the remodeling of the F-actin cytoskeleton to strengthen T cell adhesion to ICAM-1. Confocal microscopy revealed that both F-actin bundling and overall levels of F-actin are increased in the ICAM-1-adhering T cells. This increase in F-actin levels and change in F-actin distribution was quantitated for large numbers of T cells using the technique of laser scanning cytometry and was found to be significant. The study went on to show that clustering of conformationally altered LFA-1 is essential for the changes in F-actin, and a model is proposed in which clustered, high-avidity T cell LFA-1, interacting with multivalent ICAM-1, causes LFA-1 signaling, which results in F-actin polymerization and higher-order F-actin bundling. The findings demonstrate that LFA-1 acts not only as an adhesion receptor but also as a signaling receptor by actively initiating the F-actin reorganization that is essential for many T cell-dependent processes.
Collapse
Affiliation(s)
- Joanna C Porter
- Leukocyte Adhesion Laboratory, Cancer Research U.K. London Research Institute, London, United Kingdom
| | | | | | | | | |
Collapse
|
2043
|
Triantafilou M, Miyake K, Golenbock DT, Triantafilou K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 2002; 115:2603-11. [PMID: 12045230 DOI: 10.1242/jcs.115.12.2603] [Citation(s) in RCA: 466] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The plasma membrane of cells is composed of lateral heterogeneities,patches and microdomains. These membrane microdomains or lipid rafts are enriched in glycosphingolipids and cholesterol and have been implicated in cellular processes such as membrane sorting and signal transduction. In this study we investigated the importance of lipid raft formation in the innate immune recognition of bacteria using biochemical and fluorescence imaging techniques. We found that receptor molecules that are implicated in lipopolysaccharide (LPS)-cellular activation, such as CD14, heat shock protein(hsp) 70, 90, Chemokine receptor 4 (CXCR4), growth differentiation factor 5(GDF5) and Toll-like receptor 4 (TLR4), are present in microdomains following LPS stimulation. Lipid raft integrity is essential for LPS-cellular activation, since raft-disrupting drugs, such as nystatin or MCD, inhibit LPS-induced TNF-α secretion. Our results suggest that the entire bacterial recognition system is based around the ligation of CD14 by bacterial components and the recruitment of multiple signalling molecules, such as hsp70, hsp90, CXCR4, GDF5 and TLR4, at the site of CD14-LPS ligation, within the lipid rafts.
Collapse
Affiliation(s)
- Martha Triantafilou
- University of Portsmouth, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
| | | | | | | |
Collapse
|
2044
|
Stoll S, Delon J, Brotz TM, Germain RN. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 2002; 296:1873-6. [PMID: 12052961 DOI: 10.1126/science.1071065] [Citation(s) in RCA: 565] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T cell immune responses begin within organized lymphoid tissues. The pace, topology, and outcomes of the cellular interactions that underlie these responses have, so far, been inferred from static imaging of sectioned tissue or from studies of cultured cells. Here we report dynamic visualization of antigen-specific T cells interacting with dendritic cells within intact explanted lymph nodes. We observed immunological synapse formation and prolonged interactions between these two cell types, followed by the activation, dissociation, and rapid migration of T cells away from the antigenic stimulus. This high-resolution spatiotemporal analysis provides insight into the nature of cell interactions critical to early immune responses within lymphoid structures.
Collapse
Affiliation(s)
- Sabine Stoll
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
2045
|
Affiliation(s)
- Ulrich H von Andrian
- Center for Blood Research, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2046
|
Bousso P, Bhakta NR, Lewis RS, Robey E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 2002; 296:1876-80. [PMID: 12052962 DOI: 10.1126/science.1070945] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Thymocytes are selected to mature according to their ability to interact with self major histocompatibility complex (MHC)-peptide complexes displayed on the thymic stroma. Using two-photon microscopy, we performed real-time analysis of the cellular contacts made by developing thymocytes undergoing positive selection in a three-dimensional thymic organ culture. A large fraction of thymocytes within these cultures were highly motile. MHC recognition was found to increase the duration of thymocyte-stromal cell interactions and occurred as both long-lived cellular associations displaying stable cell-cell contacts and as shorter, highly dynamic contacts. Our results identify the diversity and dynamics of thymocyte interactions during positive selection.
Collapse
Affiliation(s)
- Philippe Bousso
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
2047
|
Abstract
Typical immune responses lead to prominent clonal expansion of antigen-specific T and B cells followed by differentiation into effector cells. Most effector cells die at the end of the immune response but some of these cells survive and form long-lived memory cells. The factors controlling the formation and survival of memory T cells are reviewed.
Collapse
Affiliation(s)
- Jonathan Sprent
- Department of Immunology, IMM4, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
2048
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
Affiliation(s)
- Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1E24, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
2049
|
Abstract
The novel protein kinase C (PKC) isoform, PKC theta, is selectively expressed in T lymphocytes and is a sine qua non for T cell antigen receptor (TCR)-triggered activation of mature T cells. Productive engagement of T cells by antigen-presenting cells (APCs) results in recruitment of PKC theta to the T cell-APC contact area--the immunological synapse--where it interacts with several signaling molecules to induce activation signals essential for productive T cell activation and IL-2 production. The transcription factors NF-kappa B and AP-1 are the primary physiological targets of PKC theta, and efficient activation of these transcription factors by PKC theta requires integration of TCR and CD28 costimulatory signals. PKC theta cooperates with the protein Ser/Thr phosphatase, calcineurin, in transducing signals leading to activation of JNK, NFAT, and the IL-2 gene. PKC theta also promotes T cell cycle progression and regulates programmed T cell death. The exact mode of regulation and immediate downstream substrates of PKC theta are still largely unknown. Identification of these molecules and determination of their mode of operation with respect to the function of PKC theta will provide essential information on the mechanism of T cell activation. The selective expression of PKC theta in T cells and its essential role in mature T cell activation establish it as an attractive drug target for immunosuppression in transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Noah Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | |
Collapse
|
2050
|
Hailman E, Burack WR, Shaw AS, Dustin ML, Allen PM. Immature CD4(+)CD8(+) thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation. Immunity 2002; 16:839-48. [PMID: 12121665 DOI: 10.1016/s1074-7613(02)00326-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The immunological synapse formed during mature T cell activation consists of a central cluster of TCR and MHC molecules surrounded by a ring of LFA-1 and ICAM-1. We examined synapse formation in thymocytes undergoing activation in a lipid bilayer system by following the movement of fluorescent MHC and ICAM-1 molecules. Immature CD4(+)CD8(+) thymocytes formed a decentralized synapse with multiple foci of MHC accumulation corresponding to areas of exclusion of ICAM-1. The MHC clusters and ICAM-1 holes were mobile and transient and correlated with active and sustained signaling, as shown by staining with antibodies against phosphotyrosine and activated Lck. Our findings show that signaling in immature thymocytes can result from a novel, multifocal pattern of receptor accumulation.
Collapse
Affiliation(s)
- Eric Hailman
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|