2201
|
Burgert I, Eder M, Gierlinger N, Fratzl P. Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. PLANTA 2007; 226:981-7. [PMID: 17554550 DOI: 10.1007/s00425-007-0544-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 04/27/2007] [Indexed: 05/15/2023]
Abstract
Plants are able to pre-stress their tissues in order to actuate their organs. Here, we demonstrate with two tissue types of the secondary xylem of conifers (normal wood and compression wood of spruce (Picea abies)) that either tensile or compressive stresses can develop in the longitudinal direction during the swelling of the cell wall. This dramatic difference appears to be due mostly to differences in cell geometry and cellulose fibril orientation. A mechanical model was developed to demonstrate swelling experiments with the help of sodium iodide experiments. The reversal of longitudinal extension can be predicted, based on the orientation of the (nearly inextensible) cellulose fibrils and the shape of the cell.
Collapse
Affiliation(s)
- Ingo Burgert
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | | | | | | |
Collapse
|
2202
|
Caparrós-Ruiz D, Capellades M, Fornalé S, Puigdomènech P, Rigau J. Downregulation of structural lignin genes to improve digestibility and bioethanol production in maize. J Biotechnol 2007. [DOI: 10.1016/j.jbiotec.2007.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2203
|
Broberg A, Jacobsson K, Ström K, Schnürer J. Metabolite profiles of lactic acid bacteria in grass silage. Appl Environ Microbiol 2007; 73:5547-52. [PMID: 17616609 PMCID: PMC2042065 DOI: 10.1128/aem.02939-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 06/28/2007] [Indexed: 11/20/2022] Open
Abstract
The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydroxybenzoic acid, (trans, trans)-3,4-dihydroxycyclohexane-1-carboxylic acid, p-hydrocoumaric acid, vanillic acid, azelaic acid, hydroferulic acid, p-coumaric acid, hydrocaffeic acid, ferulic acid, and caffeic acid. Among these metabolites, the antifungal compounds 3-phenyllactic acid and 3-hydroxydecanoic acid were previously isolated in our laboratory from liquid cultures of the same LAB strains by bioassay-guided fractionation. It was concluded that other metabolites, e.g., p-hydrocoumaric acid, hydroferulic acid, and p-coumaric acid, were released from the grass by the added LAB strains. The antifungal activities of the identified metabolites in 100 mM lactic acid were investigated. The MICs against Pichia anomala, Penicillium roqueforti, and Aspergillus fumigatus were determined, and 3-hydroxydecanoic acid showed the lowest MIC (0.1 mg ml(-1) for two of the three test organisms).
Collapse
Affiliation(s)
- Anders Broberg
- Department of Chemistry, P.O. Box 7015, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
2204
|
Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Paré PW. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. PLANTA 2007; 226:839-51. [PMID: 17497164 DOI: 10.1007/s00425-007-0530-2] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Certain plant growth-promoting rhizobacteria (PGPR), in the absence of physical contact with a plant stimulate growth via volatile organic compound (VOC) emissions, through largely unknown mechanisms. To probe how PGPR VOCs trigger growth in plants, RNA transcript levels of Arabidopsis seedlings exposed to Bacillus subtilus (strain GB03) were examined using oligonucleotide microarrays. In screening over 26,000 protein-coded transcripts, a group of approximately 600 differentially expressed genes related to cell wall modifications, primary and secondary metabolism, stress responses, hormone regulation and other expressed proteins were identified. Transcriptional and histochemical data indicate that VOCs from the PGPR strain GB03 trigger growth promotion in Arabidopsis by regulating auxin homeostasis. Specifically, gene expression for auxin synthesis was up regulated in aerial regions of GB03-exposed plants; auxin accumulation decreased in leaves and increased in roots with GB03 exposure as revealed in a transgenic DR5::GUS Arabidopsis line, suggesting activation of basipetal auxin transport. Application of the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) restricted auxin accumulation to sites of synthesis thereby preventing GB03-mediated decreases in shoot auxin levels as well as thwarting GB03-mediated growth promotion. In addition, microarray data revealed coordinated regulation of cell wall loosening enzymes that implicated cell expansion with GB03 exposure, which was confirmed by comparative cytological measurements. The discovery that bacterial VOCs, devoid of auxin or other known plant hormones regulate auxin homeostasis and cell expansion provides a new paradigm as to how rhizobacteria promote plant growth.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Chemistry/Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2205
|
Abstract
Liquid crystalline (LC) polymers of rigid monomers based on flora and fauna were prepared by in-bulk polymerization. Para-coumaric (p-coumaric) acid [4-hydroxycinnamic acid (4HCA)] and its derivatives were selected as phytomonomers and bile acids were selected as biomonomers. The 4HCA homopolymer showed a thermotropic LC phase only in a state of low molecular weight. The copolymers of 4HCA with bile acids such as lithocholic acid (LCA) and cholic acid (CA) showed excellent cell compatibilities but low molecular weights. However, P(4HCA-co-CA)s allowed LC spinning to create molecularly oriented biofibers, presumably due to the chain entanglement that occurs during in-bulk chain propagation into hyperbranching architecture. P[4HCA-co-3,4-dihydroxycinnamic acid (DHCA)]s showed high molecular weight, high mechanical strength, high Young's modulus, and high softening temperature, which may be achieved through the entanglement by in-bulk formation of hyperbranching, rigid structures. P(4HCA-co-DHCA)s showed a smooth hydrolysis, in-soil degradation, and photo-tunable hydrolysis. Thus, P(4HCA-co-DHCA)s might be applied as an environmentally degradable plastic with extremely high performance.
Collapse
Affiliation(s)
- Tatsuo Kaneko
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan.
| |
Collapse
|
2206
|
Tiimonen H, Häggman H, Tsai CJ, Chiang V, Aronen T. The seasonal activity and the effect of mechanical bending and wounding on the PtCOMT promoter in Betula pendula Roth. PLANT CELL REPORTS 2007; 26:1205-14. [PMID: 17431633 DOI: 10.1007/s00299-007-0331-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/30/2007] [Accepted: 02/20/2007] [Indexed: 05/03/2023]
Abstract
In this study, 900-bp (signed as p including nucleotides -1 to -886) and partly deleted (signed as dp including nucleotides -1 to -414) COMT (caffeate/5-hydroxyferulate O-methyltransferase) promoters from Populus tremuloides Michx. were fused to the GUS reporter gene, and the tissue-specific expression patterns of the promoters were determined in Betula pendula Roth along the growing season, and as a response to mechanical bending and wounding. The main activity of the PtCOMTp- and PtCOMTdp-promoters, determined by the histochemical GUS assay, was found in the developing xylem of stems during the 8th-13th week and in the developing xylem of roots in the 13th week of the growing season. The GUS expression patterns did not differ among the xylem cell types. The PtCOMT promoter-induced GUS expression observed in phloem fibres suggests a need for PtCOMT expression and thus syringyl (S) lignin synthesis in fibre lignification. However, the PtCOMTdp-promoter induced GUS expression in stem trichomes, which may contribute to the biosynthesis of phenylpropanoid pathway-derived compounds other than lignin. Finally, a strong GUS expression was induced by the PtCOMT promoters in response to mechanical stem bending but not to wounding. The lack of major differences between the PtCOMTp- and PtCOMTdp-promoters suggests that the deleted promoter sequence (including nucleotides -415 to -886) did not contain a significant regulatory element contributing to the GUS expression in young B. pendula trees.
Collapse
Affiliation(s)
- Heidi Tiimonen
- Finnish Forest Research Institute, Punkaharju Research Unit, Finlandiantie 18, 58450 Punkaharju, Finland.
| | | | | | | | | |
Collapse
|
2207
|
Del Río JC, Marques G, Rencoret J, Martínez AT, Gutiérrez A. Occurrence of naturally acetylated lignin units. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5461-8. [PMID: 17552541 DOI: 10.1021/jf0705264] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This work examines the occurrence of native acetylated lignin in a large set of vascular plants, including both angiosperms and gymnosperms, by a modification of the so-called Derivatization Followed by Reductive Cleavage (DFRC) method. Acetylated lignin units were found in the milled wood lignins of all angiosperms selected for this study, including mono- and eudicotyledons, but were absent in the gymnosperms analyzed. In some plants (e.g., abaca, sisal, kenaf, or hornbeam), lignin acetylation occurred at a very high extent, exceeding 45% of the uncondensed (alkyl-aryl ether linked) syringyl lignin units. Acetylation was observed exclusively at the gamma-carbon of the lignin side chain and predominantly on syringyl units, although a predominance of acetylated guaiacyl over syringyl units was observed in some plants. In all cases, acetylation appears to occur at the monomer stage, and sinapyl and coniferyl acetates seem to behave as real lignin monomers participating in lignification.
Collapse
Affiliation(s)
- José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, 41080 Seville, Spain.
| | | | | | | | | |
Collapse
|
2208
|
Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Te Kiri L. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc Natl Acad Sci U S A 2007; 104:11856-61. [PMID: 17609384 PMCID: PMC1913891 DOI: 10.1073/pnas.0701428104] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Indexed: 11/18/2022] Open
Abstract
The enzyme hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (HCT) is involved in the production of methoxylated monolignols that are precursors to guaiacyl and syringyl lignin in angiosperm species. We identified and cloned a putative HCT gene from Pinus radiata, a coniferous gymnosperm that does not produce syringyl lignin. This gene was up-regulated during tracheary element (TE) formation in P. radiata cell cultures and showed 72.6% identity to the amino acid sequence of the Nicotiana tabacum HCT isolated earlier. RNAi-mediated silencing of the putative HCT gene had a strong impact on lignin content, monolignol composition, and interunit linkage distribution. AcBr assays revealed an up to 42% reduction in lignin content in TEs. Pyrolysis-GC/MS, thioacidolysis, and NMR detected substantial changes in lignin composition. Most notable was the rise of p-hydroxyphenyl units released by thioacidolysis, which increased from trace amounts in WT controls to up to 31% in transgenics. Two-dimensional 13C-1H correlative NMR confirmed the increase in p-hydroxyphenyl units in the transgenics and revealed structural differences, including an increase in resinols, a reduction in dibenzodioxocins, and the presence of glycerol end groups. The observed modifications in silenced transgenics validate the targeted gene as being associated with lignin biosynthesis in P. radiata and thus likely to encode HCT. This enzyme therefore represents the metabolic entry point leading to the biosynthesis of methoxylated phenylpropanoids in angiosperm species and coniferous gymnosperms such as P. radiata.
Collapse
Affiliation(s)
- Armin Wagner
- Cellwall Biotechnology Centre, Scion (New Zealand Forest Research Institute), Private Bag 3020, Rotorua, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
2209
|
Wadenbäck J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res 2007; 17:379-92. [PMID: 17610137 DOI: 10.1007/s11248-007-9113-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
An attractive objective in tree breeding is to reduce the content of lignin or alter its composition, in order to facilitate delignification in pulping. This has been achieved in transgenic angiosperm tree species. In this study we show for the first time that changes in lignin content and composition can be achieved in a conifer by taking a transgenic approach. Lignin content and composition have been altered in five-year-old transgenic plants of Norway spruce (Picea abies [L.] Karst) expressing the Norway spruce gene encoding cinnamoyl CoA reductase (CCR) in antisense orientation. The asCCR plants had a normal phenotype but smaller stem widths compared to the transformed control plants. The transcript abundance of the sense CCR gene was reduced up to 35% relative to the transformed control. The corresponding reduction in lignin content was up to 8%, which is at the lower limit of the 90-99% confidence intervals reported for natural variation. The contribution of H-lignin to the non-condensed fraction of lignin, as judged by thioacidolysis, was reduced up to 34%. The H-lignin content was strongly correlated with the total lignin content. Furthermore, the kappa number of small-scale Kraft pulps from one of the most down-regulated lines was reduced 3.5%. The transcript abundances of the various lignin biosynthetic genes were down-regulated indicating co-regulation of the biosynthetic pathway.
Collapse
Affiliation(s)
- Johan Wadenbäck
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
2210
|
Balaji V, Gibly A, Debbie P, Sessa G. Transcriptional analysis of the tomato resistance response triggered by recognition of the Xanthomonas type III effector AvrXv3. Funct Integr Genomics 2007; 7:305-16. [PMID: 17582538 DOI: 10.1007/s10142-007-0050-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 05/08/2007] [Accepted: 05/14/2007] [Indexed: 12/31/2022]
Abstract
The type III effector AvrXv3 from Xanthomonas campestris pv. vesicatoria (Xcv) elicits a resistance response in the tomato line Hawaii 7981. To test whether similar genes participate in responses triggered by recognition of different avirulence proteins, we examined the effect of AvrXv3 expression on the plant transcriptome as compared to that of other avirulence proteins. By microarray analysis we monitored expression of approximately 8,600 tomato genes upon inoculation with isogenic Xcv strains differing only by the avrXv3 gene. Changes in transcript levels of 139 genes were observed within 8 h, and a massive shift in expression of 1,294 genes was detected at 12 h. Recognition of AvrXv3 modulated a large number of genes encoding transcription factors and signaling components. In addition, genes involved in defense and stress responses, lipid metabolism, protein degradation, and secondary metabolism were mainly up-regulated. Conversely, genes related to photosynthesis and protein synthesis were generally down-regulated. Many novel genes encoding proteins of unknown function were also identified. A comparison between AvrXv3-modulated genes and those differentially expressed in tomato plants recognizing other bacterial effectors revealed partial overlap and similar distribution in functional classes. The identification of tomato genes modulated by AvrXv3 expression paves the way for dissecting defense networks activated by recognition of this effector in resistant plants.
Collapse
Affiliation(s)
- Vasudevan Balaji
- Department of Plant Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
2211
|
Chen F, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007; 25:759-61. [PMID: 17572667 DOI: 10.1038/nbt1316] [Citation(s) in RCA: 652] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 05/11/2007] [Indexed: 11/08/2022]
Abstract
Recalcitrance to saccharification is a major limitation for conversion of lignocellulosic biomass to ethanol. In stems of transgenic alfalfa lines independently downregulated in each of six lignin biosynthetic enzymes, recalcitrance to both acid pretreatment and enzymatic digestion is directly proportional to lignin content. Some transgenics yield nearly twice as much sugar from cell walls as wild-type plants. Lignin modification could bypass the need for acid pretreatment and thereby facilitate bioprocess consolidation.
Collapse
Affiliation(s)
- Fang Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA.
| | | |
Collapse
|
2212
|
Sánchez-Sampedro A, Kim HK, Choi YH, Verpoorte R, Corchete P. Metabolomic alterations in elicitor treated Silybum marianum suspension cultures monitored by nuclear magnetic resonance spectroscopy. J Biotechnol 2007; 130:133-42. [PMID: 17475356 DOI: 10.1016/j.jbiotec.2007.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 02/21/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
A comprehensive metabolomic profiling of Silybum marianum (L.) Gaernt cell cultures elicited with yeast extract or methyl jasmonate for the production of silymarin was carried out using one- and two-dimensional nuclear magnetic resonance spectroscopy. With these techniques we were able to detect both temporal quantitative variations in the metabolite pool in yeast extract-elicited cultures and qualitative differences in cultures treated with the two types of elicitors. Yeast extract and methyl jasmonate caused a metabolic reprogramming that affected amino acid and carbohydrate metabolism; upon elicitation sucrose decreased and glucose levels increased, these changes being dependent on "de novo" protein synthesis. Also dependent on protein synthesis were the increase seen in alanine and glutamine in elicited cultures. Yeast extract differentially acted on threonine and valine metabolism and promoted accumulation of choline and alpha-linolenic acid in cells thus suggesting its action on membranes and the involvement of the octadecanoid pathway in the induction of silymarin in S. marianum cultures. Phenylpropanoid metabolism was altered by elicitation but, depending on elicitor, different phenylpropanoid profile was produced. The results obtained in this study will permit in the future to identify candidate components of the signalling pathway involved in the stimulation of the constitutive pathway of silymarin.
Collapse
Affiliation(s)
- Angeles Sánchez-Sampedro
- Department of Plant Physiology, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
2213
|
Franke R, Schreiber L. Suberin--a biopolyester forming apoplastic plant interfaces. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:252-9. [PMID: 17434790 DOI: 10.1016/j.pbi.2007.04.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 04/03/2007] [Indexed: 05/14/2023]
Abstract
Suberized cell walls form physiologically important plant-environment interfaces because they act as barriers that limit water and nutrient transport and protect plants from invasion by pathogens. Plants respond to environmental stimuli by modifying the degree of suberization in root cell walls. Salt stress or drought-induced suberization leads to a decrease in radial water transport in roots. Although reinforced, suberized cell walls never act as absolutely impermeable barriers. Deeper insights into the structure and biosynthesis of suberin are required to elucidate what determines the barrier properties. Progress has been obtained from analytical methods that enabled the structural characterization of oligomeric building blocks in suberin, and from the opening of suberin research to molecular genetic approaches by the elucidation of the chemical composition and tissue distribution of suberin in the model species Arabidopsis.
Collapse
Affiliation(s)
- Rochus Franke
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany.
| | | |
Collapse
|
2214
|
Joshi CP, Mansfield SD. The cellulose paradox--simple molecule, complex biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:220-6. [PMID: 17468038 DOI: 10.1016/j.pbi.2007.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Cellulose is the most abundant biopolymer on earth. Despite its simple structure, omnipresence in the plant kingdom, and ever increasing global importance as industrial raw material, the genetic and biochemical regulation of cellulose biosynthesis continues to be unclear. Over the past ten years, the advances in functional genomics have significantly improved our understanding of the processes of cellulose biosynthesis in higher plants. However, for each question answered myriad new unanswered ones have arisen.
Collapse
Affiliation(s)
- Chandrashekhar P Joshi
- Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA.
| | | |
Collapse
|
2215
|
Zhong R, Richardson EA, Ye ZH. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. PLANTA 2007; 225:1603-11. [PMID: 17333250 DOI: 10.1007/s00425-007-0498-y] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/09/2007] [Indexed: 05/14/2023]
Abstract
Secondary walls are the major component of wood, and studies of the mechanisms regulating secondary wall synthesis is important for understanding the process of wood formation. We have previously shown that the NAC domain transcription factor SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a key regulator of secondary wall synthesis in fibers of Arabidopsis thaliana stems and dominant repression of SND1 leads to a reduction in secondary wall thickening in fibers. However, T-DNA knockout of the SND1 gene did not cause an alteration in secondary wall thickness, suggesting that other SND1 homologs may compensate for the loss of SND1 expression. Here, we studied the effects of simultaneous inhibition of SND1 and its homolog, NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1), on secondary wall synthesis in fibers. We show that simultaneous RNA interference (RNAi) inhibition of the expression of both SND1 and NST1 genes results in loss of secondary wall formation in fibers of stems. The fiber cells in the stems of SND1/NST1-RNAi plants lack all three major secondary wall components, including cellulose, xylan, and lignin, which is accompanied by a severe reduction in the expression of genes involved in their biosynthesis. In addition, inhibition of SND1 and NST1 leads to down-regulation of several fiber-associated transcription factor genes. Double T-DNA knockout mutations of SND1 and NST1 genes cause the same effects, as does simultaneous RNAi inhibition of SND1 and NST1. Our results provide first line evidence demonstrating that SND1 and NST1 function redundantly in the regulation of secondary wall synthesis in fibers.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
2216
|
Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M. A genomic approach to suberin biosynthesis and cork differentiation. PLANT PHYSIOLOGY 2007; 144:419-31. [PMID: 17351057 PMCID: PMC1913797 DOI: 10.1104/pp.106.094227] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 03/02/2007] [Indexed: 05/14/2023]
Abstract
Cork (phellem) is a multilayered dead tissue protecting plant mature stems and roots and plant healing tissues from water loss and injuries. Cork cells are made impervious by the deposition of suberin onto cell walls. Although suberin deposition and cork formation are essential for survival of land plants, molecular studies have rarely been conducted on this tissue. Here, we address this question by combining suppression subtractive hybridization together with cDNA microarrays, using as a model the external bark of the cork tree (Quercus suber), from which bottle cork is obtained. A suppression subtractive hybridization library from cork tree bark was prepared containing 236 independent sequences; 69% showed significant homology to database sequences and they corresponded to 135 unique genes. Out of these genes, 43.5% were classified as the main pathways needed for cork biosynthesis. Furthermore, 19% could be related to regulatory functions. To identify genes more specifically required for suberin biosynthesis, cork expressed sequence tags were printed on a microarray and subsequently used to compare cork (phellem) to a non-suberin-producing tissue such as wood (xylem). Based on the results, a list of candidate genes relevant for cork was obtained. This list includes genes for the synthesis, transport, and polymerization of suberin monomers such as components of the fatty acid elongase complexes, ATP-binding cassette transporters, and acyltransferases, among others. Moreover, a number of regulatory genes induced in cork have been identified, including MYB, No-Apical-Meristem, and WRKY transcription factors with putative functions in meristem identity and cork differentiation.
Collapse
Affiliation(s)
- Marçal Soler
- Laboratori del suro, Department of Biology, Facultat de Ciències, Universitat de Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | | | | | | | | | | |
Collapse
|
2217
|
Bedon F, Grima-Pettenati J, Mackay J. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC PLANT BIOLOGY 2007; 7:17. [PMID: 17397551 PMCID: PMC1851958 DOI: 10.1186/1471-2229-7-17] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 03/30/2007] [Indexed: 05/14/2023]
Abstract
BACKGROUND Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. RESULTS We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences), and loblolly pine, Pinus taeda L. (five sequences). Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. CONCLUSION Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.
Collapse
Affiliation(s)
- Frank Bedon
- Centre d'étude de la Forêt, Université Laval, Pavillon Charles-Eugène Marchand, Sainte Foy G1K7P4, Québec, Canada
- UMR CNRS/UPS 5546 Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP426 17 – Auzeville 31226, Castanet Tolosan, France
| | - Jacqueline Grima-Pettenati
- UMR CNRS/UPS 5546 Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP426 17 – Auzeville 31226, Castanet Tolosan, France
| | - John Mackay
- Centre d'étude de la Forêt, Université Laval, Pavillon Charles-Eugène Marchand, Sainte Foy G1K7P4, Québec, Canada
| |
Collapse
|
2218
|
Sakakibara N, Nakatsubo T, Suzuki S, Shibata D, Shimada M, Umezawa T. Metabolic analysis of the cinnamate/monolignol pathway in Carthamus tinctorius seeds by a stable-isotope-dilution method. Org Biomol Chem 2007. [PMID: 17315067 DOI: 10.1007/s11101-009-9155-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The present study established a system for comprehensive metabolic analysis of the cinnamate/monolignol and lignan pathways by the use of a stable-isotope-dilution method. The system was successfully applied to characterization of the pathways in Carthamus tinctorius cv. Round-leaved White maturing seeds in combination with administration of stable-isotope-labelled precursors. Experimental results obtained using this technique strongly suggested the intermediacy of ferulic acid in lignan biosynthesis in the plant.
Collapse
Affiliation(s)
- Norikazu Sakakibara
- Research Institute for Sustainable Humanosphare, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
2219
|
Ortiz-Bermúdez P, Hirth KC, Srebotnik E, Hammel KE. Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production. Proc Natl Acad Sci U S A 2007; 104:3895-900. [PMID: 17360449 PMCID: PMC1820680 DOI: 10.1073/pnas.0610074104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Indexed: 11/18/2022] Open
Abstract
Soils and decayed plant litter contain significant quantities of chlorinated aromatic polymers that have a natural but largely unknown origin. We used cupric oxide ligninolysis coupled with gas chromatography/mass spectrometry to show that Curvularia inaequalis, a widely distributed litter ascomycete, chlorinated the aromatic rings of lignin in wood that it was degrading. In aspen wood decayed for 24 weeks, two chlorolignin fragments, 5-chlorovanillin and 2-chlorosyringaldehyde, were each found at approximately 10 mug/g of wood (dry weight). These levels resemble those of similar structures generally found in unpolluted environmental samples. Fractionation of the extractable proteins followed by tandem mass spectrometric analysis showed that the colonized wood contained a previously described C. inaequalis chloroperoxidase that very likely catalyzed lignin chlorination. Chlorolignin produced by this route and humus derived from it are probably significant components of the global chlorine cycle because chloroperoxidase-producing fungi are ubiquitous in decaying lignocellulose and lignin is the earth's most abundant aromatic substance.
Collapse
Affiliation(s)
| | - Kolby C. Hirth
- United States Department of Agriculture Forest Products Laboratory, Madison, WI 53726; and
| | - Ewald Srebotnik
- Fakultät für Technische Chemie, Technische Universität Wien, A-1060 Vienna, Austria
| | - Kenneth E. Hammel
- *Department of Bacteriology, University of Wisconsin, Madison, WI 53706
- United States Department of Agriculture Forest Products Laboratory, Madison, WI 53726; and
| |
Collapse
|
2220
|
Hrmova M, Farkas V, Lahnstein J, Fincher GB. A Barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-beta-D-glucans. J Biol Chem 2007; 282:12951-62. [PMID: 17329246 DOI: 10.1074/jbc.m611487200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular interactions between wall polysaccharides, which include cellulose and a range of noncellulosic polysaccharides such as xyloglucans and (1,3;1,4)-beta-D-glucans, are fundamental to cell wall properties. These interactions have been assumed to be noncovalent in nature in most cases. Here we show that a highly purified barley xyloglucan xyloglucosyl transferase HvXET5 (EC 2.4.1.207), a member of the GH16 group of glycoside hydrolases, catalyzes the in vitro formation of covalent linkages between xyloglucans and cellulosic substrates and between xyloglucans and (1,3;1,4)-beta-D-glucans. The rate of covalent bond formation catalyzed by HvXET5 with hydroxyethylcellulose (HEC) is comparable with that on tamarind xyloglucan, whereas that with (1,3; 1,4)-beta-D-glucan is significant but slower. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analyses showed that oligosaccharides released from the fluorescent HEC:xyloglucan conjugate by a specific (1,4)-beta-D-glucan endohydrolase consisted of xyloglucan substrate with one, two, or three glucosyl residues attached. Ancillary peaks contained hydroxyethyl substituents (m/z 45) and confirmed that the parent material consisted of HEC covalently linked with xyloglucan. Similarly, partial hydrolysis of the (1,3;1,4)-beta-D-glucan:xyloglucan conjugate by a specific (1,3;1,4)-beta-D-glucan endohydrolase revealed the presence of a series of fluorescent oligosaccharides that consisted of the fluorescent xyloglucan acceptor substrate linked covalently with 2-6 glucosyl residues. These findings raise the possibility that xyloglucan endo-transglucosylases could link different polysaccharides in vivo and hence influence cell wall strength, flexibility, and porosity.
Collapse
Affiliation(s)
- Maria Hrmova
- School of Agriculture, Food and Wine, and Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| | | | | | | |
Collapse
|
2221
|
Méchin V, Baumberger S, Pollet B, Lapierre C. Peroxidase activity can dictate the in vitro lignin dehydrogenative polymer structure. PHYTOCHEMISTRY 2007; 68:571-9. [PMID: 17187834 DOI: 10.1016/j.phytochem.2006.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 05/13/2023]
Abstract
The objective of this study was to assess the influence of the peroxidase/coniferyl alcohol (CA) ratio on the dehydrogenation polymer (DHP) synthesis. The soluble and unsoluble fractions of horseradish peroxidase (HRP)-catalyzed CA dehydrogenation mixtures were recovered in various proportions, depending on the polymerization mode (Zutropf ZT/Zulauf ZL) and HRP/CA ratio (1.6-1100purpurogallin U mmol(-1)). The ZL mode yielded 0-57%/initial CA of unsoluble condensed DHPs (thioacidolysis yields <200micromolg(-1)) with a proportion of uncondensed CA end groups increasing with the HRP/CA ratio (7.2-55.5%/total uncondensed CA). Systematically lower polymer yields (0-49%/initial CA) were obtained for the ZT mode. In that mode, a negative correlation was established between the beta-O-4 content (thioacidolysis yields: 222-660micromolg(-1)) and the HRP/CA ratio. In both modes, decreasing the HRP/CA ratio below 18Ummol(-1) favoured an end-wise polymerization process evidenced by the occurrence of tri-, tetra- and pentamers involving at least one beta-O-4 bond. At low ratio, the unsoluble ZT DHP was found to better approximate natural lignins than DHPs previously synthesized with traditional methods. Besides its possible implication in lignin biosynthesis, peroxidase activity is a crucial parameter accounting for the structural variations of in vitro DHPs.
Collapse
Affiliation(s)
- Valérie Méchin
- UMR 206 Chimie Biologique, INRA/INA PG, F-78850 Thiverval Grignon, France.
| | | | | | | |
Collapse
|
2222
|
Soares AR, Ferrarese MDLL, Siqueira RDC, Böhm FMLZ, Ferrarese-Filho O. L-DOPA increases lignification associated with Glycine max root growth-inhibition. J Chem Ecol 2007; 33:265-75. [PMID: 17195115 DOI: 10.1007/s10886-006-9227-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
L-3,4-dihydroxyphenylalanine (L: -DOPA), an allelochemical exuded from the roots of velvet bean [Mucuna pruriens (L.) DC. var. utilis], presents a highly inhibitory action to plant growth. The effects of L-DOPA on phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) activities, and phenolic compound and lignin content in soybean [Glycine max (L.) Merr.] roots were investigated to determine the possible phytotoxic mechanism. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.1 to 1.0 mM L-DOPA in a growth chamber (25 degrees C, 12-hr light to 12-hr darkness photoperiod, irradiance of 280 micromol m-2 s-1) for 24 hr. In general, the length, fresh weight, and dry weight of the roots decreased, whereas PAL and POD activities and phenolic compound and lignin content increased after L-DOPA treatments. Results showed the susceptibility of soybean to L-DOPA and reinforce the role of this nonprotein amino acid as a strong allelochemical. The present findings also suggest that L-DOPA-induced inhibition in soybean roots may be because of a cell wall stiffening process related to the formation of cross-linking between cell wall polymers linked to lignin production.
Collapse
Affiliation(s)
- Anderson Ricardo Soares
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
| | | | | | | | | |
Collapse
|
2223
|
Menden B, Kohlhoff M, Moerschbacher BM. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. PHYTOCHEMISTRY 2007; 68:513-20. [PMID: 17188312 DOI: 10.1016/j.phytochem.2006.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/03/2006] [Accepted: 11/04/2006] [Indexed: 05/13/2023]
Abstract
The stem rust fungus Puccinia graminis f.sp. tritici is an obligately biotrophic pathogen attacking wheat (Triticum aestivum). In compatible host/pathogen-interactions, the fungus participates in the host's metabolism by establishing functional haustoria in the susceptible plant cells. In highly resistant wheat cultivars, fungal attack is stopped by a hypersensitive response of penetrated host cells. This mechanism of programmed cell death of single plant cells is accompanied by the intracellular accumulation of material with UV-fluorescence typical of phenolic compounds. A similar reaction can be induced in healthy wheat leaves by the application of a rust-derived elicitor. We analysed the biochemical composition of this defense-induced phenolic material. Contents of total soluble and cell wall esterified and etherified phenolic acids were determined in rust-inoculated and elicitor-treated leaves of the fully susceptible wheat cultivar Prelude and its highly resistant, near-isogenic line Prelude-Sr5. While no resistance-related changes occured in any of these fractions, the lignin content as determined by the thioglycolic acid and the acetyl bromide methods increased after elicitor treatment. Nitrobenzene oxidation revealed that the entire increase can be explained by an increase in syringyl units only. These biochemical data were confirmed by fluorescence emission spectra analyses which indicated a defense-induced enrichment of syringyl lignin for cell wall samples both from elicitor-treated wheat leaves and single host cells undergoing a hypersensitive response upon fungal penetration.
Collapse
Affiliation(s)
- Barbara Menden
- Institut für Biologie III (Pflanzenphysiologie), Rheinisch-Westfälische Technische Hochschule Aachen, Worringer Weg 1, D-52056 Aachen, Germany
| | | | | |
Collapse
|
2224
|
Peña MJ, Zhong R, Zhou GK, Richardson EA, O'Neill MA, Darvill AG, York WS, Ye ZH. Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. THE PLANT CELL 2007; 19:549-63. [PMID: 17322407 PMCID: PMC1867335 DOI: 10.1105/tpc.106.049320] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mutations of Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9 were previously shown to cause a collapsed xylem phenotype and decreases in xylose and cellulose in cell walls. In this study, we characterized IRX8 and IRX9 and performed chemical and structural analyses of glucuronoxylan (GX) from irx8 and irx9 plants. IRX8 and IRX9 are expressed specifically in cells undergoing secondary wall thickening, and their encoded proteins are targeted to the Golgi, where GX is synthesized. 1H-NMR spectroscopy showed that the reducing end of Arabidopsis GX contains the glycosyl sequence 4-beta-D-Xylp-(1-->4)-beta-D-Xylp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-GalpA-(1-->4)-D-Xylp, which was previously identified in birch (Betula verrucosa) and spruce (Picea abies) GX. This indicates that the reducing end structure of GXs is evolutionarily conserved in woody and herbaceous plants. This sequence is more abundant in irx9 GX than in the wild type, whereas irx8 and fragile fiber8 (fra8) plants are nearly devoid of it. The number of GX chains increased and the GX chain length decreased in irx9 plants. Conversely, the number of GX chains decreased and the chain length heterodispersity increased in irx8 and fra8 plants. Our results suggest that IRX9 is required for normal GX elongation and indicate roles for IRX8 and FRA8 in the synthesis of the glycosyl sequence at the GX reducing end.
Collapse
Affiliation(s)
- Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
2225
|
Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 2007; 8:31. [PMID: 17254327 PMCID: PMC1796867 DOI: 10.1186/1471-2164-8-31] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 01/25/2007] [Indexed: 12/19/2022] Open
Abstract
Background Improvement of Citrus, the most economically important fruit crop in the world, is extremely slow and inherently costly because of the long-term nature of tree breeding and an unusual combination of reproductive characteristics. Aside from disease resistance, major commercial traits in Citrus are improved fruit quality, higher yield and tolerance to environmental stresses, especially salinity. Results A normalized full length and 9 standard cDNA libraries were generated, representing particular treatments and tissues from selected varieties (Citrus clementina and C. sinensis) and rootstocks (C. reshni, and C. sinenis × Poncirus trifoliata) differing in fruit quality, resistance to abscission, and tolerance to salinity. The goal of this work was to provide a large expressed sequence tag (EST) collection enriched with transcripts related to these well appreciated agronomical traits. Towards this end, more than 54000 ESTs derived from these libraries were analyzed and annotated. Assembly of 52626 useful sequences generated 15664 putative transcription units distributed in 7120 contigs, and 8544 singletons. BLAST annotation produced significant hits for more than 80% of the hypothetical transcription units and suggested that 647 of these might be Citrus specific unigenes. The unigene set, composed of ~13000 putative different transcripts, including more than 5000 novel Citrus genes, was assigned with putative functions based on similarity, GO annotations and protein domains Conclusion Comparative genomics with Arabidopsis revealed the presence of putative conserved orthologs and single copy genes in Citrus and also the occurrence of both gene duplication events and increased number of genes for specific pathways. In addition, phylogenetic analysis performed on the ammonium transporter family and glycosyl transferase family 20 suggested the existence of Citrus paralogs. Analysis of the Citrus gene space showed that the most important metabolic pathways known to affect fruit quality were represented in the unigene set. Overall, the similarity analyses indicated that the sequences of the genes belonging to these varieties and rootstocks were essentially identical, suggesting that the differential behaviour of these species cannot be attributed to major sequence divergences. This Citrus EST assembly contributes both crucial information to discover genes of agronomical interest and tools for genetic and genomic analyses, such as the development of new markers and microarrays.
Collapse
|
2226
|
Abstract
Tracheary elements (TEs) are cells in the xylem that are highly specialized for transporting water and solutes up the plant. TEs undergo a very well-defined process of differentiation that involves specification, enlargement, patterned cell wall deposition, programmed cell death and cell wall removal. This process is coordinated such that adjacent TEs are joined together to form a continuous network. Expression studies on model systems as diverse as trees and cell cultures have contributed to providing a flood of candidate genes with potential roles in TE differentiation. Analysis of some of these genes has yielded important information on processes such as patterned secondary cell wall deposition. The current challenge is to continue this functional analysis and to use these data and build an integrated model of TE development.
Collapse
Affiliation(s)
- Simon Turner
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom.
| | | | | |
Collapse
|
2227
|
Abstract
With the completion of the Populus trichocarpa genome sequence and the development of various genetic, genomic, and biochemical tools, Populus now offers many possibilities to study questions that cannot be as easily addressed in Arabidopsis and rice, the two prime model systems of plant biology and genomics. Tree-specific traits such as wood formation, long-term perennial growth, and seasonality are obvious areas of research, but research in other areas such as control of flowering, biotic interactions, and evolution of adaptive traits is enriched by adding a tree to the suite of model systems. Furthermore, the reproductive biology of Populus (a dioeceous wind-pollinated long-lived tree) offers both new possibilities and challenges in the study and analysis of natural genetic and phenotypic variation. The relatively close phylogenetic relationship of Populus to Arabidopsis in the Eurosid clade of Eudicotyledonous plants aids in comparative functional studies and comparative genomics, and has the potential to greatly facilitate studies on genome and gene family evolution in eudicots.
Collapse
Affiliation(s)
- Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-901 87 Umeå, Sweden.
| | | |
Collapse
|
2228
|
Friedmann M, Ralph SG, Aeschliman D, Zhuang J, Ritland K, Ellis BE, Bohlmann J, Douglas CJ. Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:593-614. [PMID: 17220514 DOI: 10.1093/jxb/erl246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The apical shoot drives the yearly new stem growth of conifer trees, is the primary site for the establishment of chemical and physical defences, and is important in establishing subsequent perennial growth. This organ presents an interesting developmental system, with growth and development progressing from a meristematic tip through development of a primary vascular system, to a base with fully differentiated and lignified secondary xylem on the inside and bark tissue with constitutive defence structures such as resin, polyphenolic phloem parenchyma cells, and sclereids on the outside. A spruce (Picea spp.) microarray containing approximately 16.7K unique cDNAs was used to study transcript profiles that characterize the developmental transition in apical shoots of Sitka spruce (Picea sitchensis) from their vegetative tips to their woody bases. Along with genes involved in cell-wall modification and lignin biosynthesis, a number of differentially regulated genes encoding protein kinases and transcription factors with base-preferred expression patterns were identified, which could play roles in the formation of woody tissues inside the apical shoot, as well as in regulating other developmental transitions associated with organ maturation. Preferential expression of known conifer defence genes, genes encoding defence-related proteins, and genes encoding regulatory proteins was observed at the apical shoot tip and in the green bark tissues at the apical shoot base, suggesting a commitment to constitutive defence in the apical shoot that is co-ordinated with rapid development of secondary xylem.
Collapse
Affiliation(s)
- Michael Friedmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | | | | | | | |
Collapse
|
2229
|
|
2230
|
Andersen JR, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T. High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:307-19. [PMID: 17123062 DOI: 10.1007/s00122-006-0434-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 10/12/2006] [Indexed: 05/12/2023]
Abstract
Forage quality of maize is influenced by both the content and structure of lignin in the cell wall. Phenylalanine Ammonia-Lyase (PAL) catalyzes the first step in lignin biosynthesis in plants; the deamination of L-phenylalanine to cinnamic acid. Successive enzymatic steps lead to the formation of three monolignols, constituting the complex structure of lignin. We have cloned and sequenced a PAL genomic sequence from 32 maize inbred lines currently employed in forage maize breeding programs in Europe. Low nucleotide diversity and excessive linkage disequilibrium (LD) was identified at this PAL locus, possibly reflecting selective constrains resulting from PAL being the first enzyme in the monolignol, and other, pathways. While the association analysis was affected by extended LD and population structure, several individual polymorphisms were associated with neutral detergent fiber (not considering population structure) and a single polymorphism was associated with in vitro digestibility of organic matter (considering population structure).
Collapse
Affiliation(s)
- Jeppe R Andersen
- Danish Institute of Agricultural Sciences, Research Center Flakkebjerg, 4200, Slagelse, Denmark
| | | | | | | | | | | | | |
Collapse
|
2231
|
Lautner S, Ehlting B, Windeisen E, Rennenberg H, Matyssek R, Fromm J. Calcium nutrition has a significant influence on wood formation in poplar. THE NEW PHYTOLOGIST 2007; 173:743-752. [PMID: 17286823 DOI: 10.1111/j.1469-8137.2007.01972.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
To test the effects of calcium on wood formation, Populus tremula x Populus tremuloides clones were supplied with Hoagland solution modified in its calcium contents. Energy-dispersive X-ray analysis (EDXA) revealed an increase in calcium in the phloem, the cambium and the xylem elongation zone with increasing Ca(2+) supply in the nutrient solution. Using light and electron microscopy, a strong impact was shown on the cambial and the elongation zones under calcium starvation. Using Fourier transform infrared (FTIR) spectroscopy on wood and bark cells formed under calcium starvation, we detected a reduction of some absorptions, such as carbonyl and methoxy groups from S-lignin. Also, a significant reduction in fiber length was detected with decreasing calcium supply in the nutrient solution. High-performance liquid chromatography (HPLC) analysis revealed a large increase in sugar concentrations in the leaves, but reduced concentrations in the bark under Ca(2+) deficiency. In conclusion, our results show a significant influence of calcium on the structure, chemistry and physiology of wood formation. Thus, efficient Ca(2+) supply has to be considered a decisive factor in wood formation.
Collapse
Affiliation(s)
- Silke Lautner
- Department for Wood Biology, TU München, Winzerer Strasse 45, 80797 München, Germany
| | - Barbara Ehlting
- Chair of Tree Physiology, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee, 53/54, 79110 Freiburg, Germany
| | - Elisabeth Windeisen
- Department for Wood Biology, TU München, Winzerer Strasse 45, 80797 München, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee, 53/54, 79110 Freiburg, Germany
| | - Rainer Matyssek
- Chair of Plant Ecophysiology, TU München, Am Hochanger 13, 85354 Freising, Germany
| | - Jörg Fromm
- Department for Wood Biology, TU München, Winzerer Strasse 45, 80797 München, Germany
| |
Collapse
|
2232
|
Gómez Ros LV, Gabaldón C, Pomar F, Merino F, Pedreño MA, Barceló AR. Structural motifs of syringyl peroxidases predate not only the gymnosperm-angiosperm divergence but also the radiation of tracheophytes. THE NEW PHYTOLOGIST 2007; 173:63-78. [PMID: 17176394 DOI: 10.1111/j.1469-8137.2006.01898.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
* The most distinctive variation in the monomer composition of lignins in vascular land plants is that found between the two main groups of seed plants. Thus, while gymnosperm lignins are typically composed of guaiacyl (G) units, angiosperm lignins are largely composed of similar levels of G and syringyl (S) units. * However, and contrary to what might be expected, peroxidases isolated from basal (Cycadales and Ginkgoales) and differentially evolved (Coniferales and Gnetales) gymnosperms are also able to oxidize S moieties, and this ability is independent of the presence or absence of S-type units in their lignins. * The results obtained led us to look at the protein database to search for homologies between gymnosperm peroxidases and true eudicot S-peroxidases, such as the Zinnia elegans peroxidase. * The findings showed that certain structural motifs characteristic of eudicot S-peroxidases (certain amino acid sequences and beta-sheet secondary structures) predate the gymnosperm-angiosperm divergence and the radiation of tracheophytes, since they are found not only in peroxidases from basal gymnosperms, ferns and lycopods, but also in peroxidases from the moss Physcomitrella patens (Bryopsida) and the liverwort Marchantia polymorpha (Marchantiopsida), which, as typical of bryophytes, do not have xylem tissue nor lignins.
Collapse
Affiliation(s)
- L V Gómez Ros
- Department of Plant Biology, University of Murcia, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
2233
|
Keppler F, Harper DB, Kalin RM, Meier-Augenstein W, Farmer N, Davis S, Schmidt HL, Brown DM, Hamilton JTG. Stable hydrogen isotope ratios of lignin methoxyl groups as a paleoclimate proxy and constraint of the geographical origin of wood. THE NEW PHYTOLOGIST 2007; 176:600-609. [PMID: 17725557 DOI: 10.1111/j.1469-8137.2007.02213.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stable isotope ratios of organic compounds are valuable tools for determining the geographical origin, identity, authenticity or history of samples from a vast range of sources such as sediments, plants and animals, including humans. Hydrogen isotope ratios (delta(2)H values) of methoxyl groups in lignin from wood of trees grown in different geographical areas were measured using compound-specific pyrolysis isotope ratio mass spectrometry analysis. Lignin methoxyl groups were depleted in (2)H relative to both meteoric water and whole wood. A high correlation (r(2) = 0.91) was observed between the delta(2)H values of the methoxyl groups and meteoric water, with a relatively uniform fractionation of -216 +/- 19 per thousand recorded with respect to meteoric water over a range of delta(2)H values from -110 in northern Norway to +20 per thousand in Yemen. Thus, woods from northern latitudes can be clearly distinguished from those from tropical regions. By contrast, the delta(2)H values of bulk wood were only relatively poorly correlated (r(2) = 0.47) with those of meteoric water. Measurement of the delta(2)H values of lignin methoxyl groups is potentially a powerful tool that could be of use not only in the constraint of the geographical origin of lignified material but also in paleoclimate, food authenticity and forensic investigations.
Collapse
Affiliation(s)
- Frank Keppler
- Max-Planck-Institute for Chemistry, Joh.-Joachim-Becher-Weg 2, 55128 Mainz, Germany
| | - David B Harper
- School of Agriculture and Food Science, Newforge Lane, Belfast BT9 5PX, UK
| | - Robert M Kalin
- School of Planning Architecture and Civil Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Wolfram Meier-Augenstein
- School of Planning Architecture and Civil Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Nicola Farmer
- School of Planning Architecture and Civil Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | | | - Hanns-Ludwig Schmidt
- Technische Universität München, Lehrstuhl für Biologische Chemie, An der Saatzucht 5, D-85350 Freising-Weihenstephan, Germany
| | - David M Brown
- Department of Archaeology & Palaeoecology, Queen's University Belfast, Belfast BT9 5AG, UK
| | - John T G Hamilton
- School of Agriculture and Food Science, Newforge Lane, Belfast BT9 5PX, UK
| |
Collapse
|
2234
|
Fornalé S, Sonbol FM, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D. Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. PLANT MOLECULAR BIOLOGY 2006; 62:809-23. [PMID: 16941210 DOI: 10.1007/s11103-006-9058-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
The maize (Zea mays L.) caffeic acid O-methyl-transferase (COMT) is a key enzyme in the biosynthesis of lignin. In this work we have characterized the involvement of COMT in the lignification process through the study of the molecular mechanisms involved in its regulation. The examination of the maize COMT gene promoter revealed a putative ACIII box, typically recognized by R2R3-MYB transcription factors. We used the sequence of known R2R3-MYB factors to isolate five maize R2R3-MYB factors (ZmMYB2, ZmMYB8, ZmMYB31, ZmMYB39, and ZmMYB42) and study their possible roles as regulators of the maize COMT gene. The factors ZmMYB8, ZmMY31, and ZmMYB42 belong to the subgroup 4 of the R2R3-MYB family along with other factors associated with lignin biosynthesis repression. In addition, the induction pattern of ZmMYB31 and ZmMYB42 gene expression on wounding is that expected for repressors of the maize COMT gene. Arabidopsis thaliana plants over-expressing ZmMYB31 and ZmMYB42 down-regulate both the A. thaliana and the maize COMT genes. Furthermore, the over-expression of ZmMYB31 and ZmMYB42 also affect the expression of other genes of the lignin pathway and produces a decrease in lignin content of the transgenic plants.
Collapse
Affiliation(s)
- Silvia Fornalé
- Departament de Genética Molecular, Laboratori de Genètica Molecular Vegetal, CSIC-IRTA, Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
2235
|
Kaneko T, Thi TH, Shi DJ, Akashi M. Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. NATURE MATERIALS 2006; 5:966-70. [PMID: 17128261 DOI: 10.1038/nmat1778] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 09/18/2006] [Indexed: 05/12/2023]
Abstract
Aliphatic polyesters, such as poly(lactic acid), which degrade by hydrolysis, from naturally occurring molecules form the main components of biodegradable plastics. However, these polyesters have become substitutes for only a small percentage of the currently used plastic materials because of their poor thermal and mechanical properties. Polymers that degrade into natural molecules and have a performance closer to that of engineering plastics would be highly desirable. Although the use of a high-strength filler such as a bacterial cellulose or modified lignin greatly increases the plastic properties, it is the matrix polymer that determines the intrinsic properties of the composite. The introduction of an aromatic component into the thermoplastic polymer backbone is an efficient method to intrinsically improve the material performance. Here, we report the preparation of environmentally degradable, liquid crystalline, wholly aromatic polyesters. The polyesters were derived from polymerizable plant-derived chemicals--in other words, 'phytomonomers' that are widely present as lignin biosynthetic precursors. The mechanical performance of these materials surpasses that of current biodegradable plastics, with a mechanical strength, sigma, of 63 MPa, a Young's modulus, E, of 16 GPa, and a maximum softening temperature of 169 degrees C. On light irradiation, their mechanical properties improved further and the rate of hydrolysis accelerated.
Collapse
Affiliation(s)
- Tatsuo Kaneko
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita 565-0871, Japan.
| | | | | | | |
Collapse
|
2236
|
Zhong R, Demura T, Ye ZH. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. THE PLANT CELL 2006; 18:3158-70. [PMID: 17114348 PMCID: PMC1693950 DOI: 10.1105/tpc.106.047399] [Citation(s) in RCA: 492] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Secondary walls in fibers and tracheary elements constitute the most abundant biomass produced by plants. Although a number of genes involved in the biosynthesis of secondary wall components have been characterized, little is known about the molecular mechanisms underlying the coordinated expression of these genes. Here, we demonstrate that the Arabidopsis thaliana NAC (for NAM, ATAF1/2, and CUC2) domain transcription factor, SND1 (for secondary wall-associated NAC domain protein), is a key transcriptional switch regulating secondary wall synthesis in fibers. We show that SND1 is expressed specifically in interfascicular fibers and xylary fibers in stems and that dominant repression of SND1 causes a drastic reduction in the secondary wall thickening of fibers. Ectopic overexpression of SND1 results in activation of the expression of secondary wall biosynthetic genes, leading to massive deposition of secondary walls in cells that are normally nonsclerenchymatous. In addition, we have found that SND1 upregulates the expression of several transcription factors that are highly expressed in fibers during secondary wall synthesis. Together, our results reveal that SND1 is a key transcriptional activator involved in secondary wall biosynthesis in fibers.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
2237
|
Cai S, Lashbrook CC. Laser capture microdissection of plant cells from tape-transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:628-37. [PMID: 17026538 DOI: 10.1111/j.1365-313x.2006.02886.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Laser capture microdissection and related technologies permit the harvest of individual cells and cell types. Isolation of either nucleic acids or proteins from laser-captured cells supports such downstream applications as the construction of cell-specific cDNA libraries and the profiling of expressed genes and proteins. The success of these endeavors is dependent upon the yield, purity and structural integrity of the macromolecules derived from harvested cells. Here, we report protocols that promote the isolation of structurally intact RNA from laser-captured cells of paraffin-embedded tissues. The use of a tape transfer system that obviates the need to wet paraffin sections prior to slide mounting significantly increases RNA structural quality. Integrity is assessed directly via electrophoretic separation of picogram-nanogram levels of total RNA isolated from multiple cell types, including those comprising Arabidopsis ovules, replums and stamen abscission zones. RNA prepared from specialized cells within siliques provided targets for profiling the Arabidopsis genome during replum cell development. Digital northern analysis of transcripts expressed near the threshold of the system's ability to score signal presence suggests that low-abundance transcripts representing as little as approximately 0.002% of total mRNA can be reliably detected. Microarray data reveal a significant shift from primary cell-wall metabolism to lignin biosynthesis in replum tissues during fruit maturation.
Collapse
Affiliation(s)
- Suqin Cai
- Department of Horticulture, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
2238
|
Baghdady A, Blervacq AS, Jouanin L, Grima-Pettenati J, Sivadon P, Hawkins S. Eucalyptus gunnii CCR and CAD2 promoters are active in lignifying cells during primary and secondary xylem formation in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:674-83. [PMID: 17107813 DOI: 10.1016/j.plaphy.2006.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/10/2006] [Indexed: 05/02/2023]
Abstract
Cell-specific expression patterns of the Eucalyptus gunnii cinnamoyl coenzymeA reductase (EgCCR) and cinnamyl alcohol dehydrogenase (EgCAD2) promoters were analyzed by promoter-GUS histochemistry in the primary and secondary xylem tissues from floral stems and roots of Arabidopsis thaliana. Expression patterns indicated that the EgCCR and EgCAD2 genes were expressed in a coordinated manner in primary and secondary xylem tissues of the Arabidopsis floral stem and root. Both genes were expressed in all lignifying cells (vessel elements, xylem fibers and paratracheal parenchyma cells) of xylem tissues. The capacity for long-term monolignol production appeared to be related to the cell-specific developmental processes and biological roles of different cell types. Our results suggested that lignification of short-lived vessel elements was achieved by a two-step process involving (i) monolignol production by vessel elements prior to vessel programmed cell death and (ii) subsequent monolignol production by vessel-associated living paratracheal parenchyma cells following vessel element cell death. EgCCR and EgCAD2 gene expression patterns suggested that the process of xylem cell lignification was similar in both primary and secondary xylem tissues in Arabidopsis floral stems and roots.
Collapse
Affiliation(s)
- A Baghdady
- Stress abiotiques et différenciation des végétaux cultivés, UMR USTL-INRA 1281, université des sciences et technologies de Lille, bâtiment SN2, cité scientifique, 59655 Villeneuve-d'Ascq cedex, France
| | | | | | | | | | | |
Collapse
|
2239
|
Shi C, Koch G, Ouzunova M, Wenzel G, Zein I, Lübberstedt T. Comparison of maize brown-midrib isogenic lines by cellular UV-microspectrophotometry and comparative transcript profiling. PLANT MOLECULAR BIOLOGY 2006; 62:697-714. [PMID: 17016741 DOI: 10.1007/s11103-006-9049-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 07/08/2006] [Indexed: 05/02/2023]
Abstract
The molecular mechanisms underlying cell wall digestibility in maize (Zea mays L.) have been studied in three sets of maize brown-midrib isogenic lines in the genetic background of inbreds 1332 (1332 and 1332 bm3), 5361 (5361 and 5361 bm3), and F2 (F2, F2 bm1, F2 bm2, and F2 bm3). Two complementary approaches, SSH (suppression subtractive hybridization) and microarray-based expression profiling, were used to isolate and identify candidate genes in isogenic lines for bm mutants. Metabolic pathway analysis revealed that transcriptional events caused by altering the expression of a single bm gene involve all metabolic and signaling pathways. 53 ESTs were differentially expressed in all three isogenic bm3 comparisons, whereas 32 ESTs were consistently differentially expressed in different bm isogenic lines in F2 background. About 70% ESTs isolated by SSH were not present on the unigene microarray, demonstrating the usefulness of the SSH procedure to identify genes related to cell wall digestibility. Together with lignin analysis by cellular UV-microspectrophotometry, expression profiling in isogenic bm lines proved to be useful to understand alterations at the sub-cellular and molecular level with respect to lignin composition. The down-regulation of COMT affected the expression of CCoAOMT genes and caused a reduced content both of G and S units in bm3 mutants.
Collapse
Affiliation(s)
- Chun Shi
- Chair of Plant Breeding, Technical University of Munich, Am Hochanger 2, 85350 Freising, Germany
| | | | | | | | | | | |
Collapse
|
2240
|
Bunzel M, Ralph J. NMR characterization of lignins isolated from fruit and vegetable insoluble dietary fiber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:8352-61. [PMID: 17032051 DOI: 10.1021/jf061525z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Compositional information for lignins in food is rare and concentrated on cereal grains and brans. As lignins are suspected to have important health roles in the dietary fiber complex, the confusing current information derived from nonspecific lignin determination methods needs to be augmented by diagnostic structural studies. For this study, lignin fractions were isolated from kiwi, pear, rhubarb, and, for comparison, wheat bran insoluble dietary fiber. Clean pear and kiwi lignin isolates allowed for substantive structural profiling, but it is suggested that the significance of lignin in wheat has been overestimated by reliance on nonspecific analytical methods. Volume integration of NMR contours in two-dimensional (13)C-(1)H correlation spectra shows that pear and wheat lignins have comparable guaiacyl and syringyl contributions and that kiwi lignins are particularly guaiacyl-rich (approximately 94% guaiacyl) and suggest that rhubarb lignins, which could not be isolated from contaminating materials, are as syringyl-rich (approximately 96% syringyl) as lignins from any known natural or transgenic fiber source. Typical lignin structures, including those newly NMR-validated (glycerols, spirodienones, and dibenzodioxocins), and resinols implicated as possible mammalian lignan precursors in the gut are demonstrated via their NMR correlation spectra in the fruit and vegetable samples. A novel putative benzodioxane structure appears to be associated with the kiwi lignin. It is concluded that the fruits and vegetables examined contain authentic lignins and that the detailed structural analysis exposes limitations of currently accepted analytical methods.
Collapse
Affiliation(s)
- Mirko Bunzel
- Institute of Biochemistry and Food Chemistry, Department of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | | |
Collapse
|
2241
|
Liu Y, Lamkemeyer T, Jakob A, Mi G, Zhang F, Nordheim A, Hochholdinger F. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Proteomics 2006; 6:4300-8. [PMID: 16819721 DOI: 10.1002/pmic.200600145] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The embryonically preformed primary root is the first root type of maize that emerges after germination. In this study the abundant soluble proteins of 2.5-day-old primary roots of wild-type and lateral root mutant rum1 seedlings were compared before the initiation of lateral roots. In CBB-stained 2-D gels, among 350 detected proteins 14 were identified as differentially accumulated (>twofold change; t-test: 95% significance) in wild-type versus rum1 primary roots. These proteins which were identified via ESI MS/MS are encoded by 12 different genes. Functionally, these proteins are involved in lignin biosynthesis, defense, and the citrate cycle. Nine of these genes were further analyzed at the RNA expression level. This study represents the first comparative proteomic analysis of maize primary roots prior to lateral root initiation and will contribute to a better understanding of the molecular basis of root development in cereals.
Collapse
Affiliation(s)
- Yan Liu
- ZMBP, Center for Plant Molecular Biology, Department of General Genetics, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
2242
|
Lanot A, Hodge D, Jackson RG, George GL, Elias L, Lim EK, Vaistij FE, Bowles DJ. The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:286-95. [PMID: 16995900 DOI: 10.1111/j.1365-313x.2006.02872.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The phenylpropanoid pathway in plants leads to the synthesis of a wide range of soluble secondary metabolites, many of which accumulate as glycosides. In Arabidopsis, a small cluster of three closely related genes, UGT72E1-E3, encode glycosyltransferases shown to glucosylate several phenylpropanoids in vitro, including monolignols, hydroxycinnamic acids and hydroxycinnamic aldehydes. The role of these genes in planta has now been investigated through genetically downregulating the expression of individual genes or silencing the entire cluster. Analysis of these transgenic Arabidopsis plants showed that the levels of coniferyl and sinapyl alcohol 4-O-glucosides that accumulate in light-grown roots were significantly reduced. A 50% reduction in both glucosides was observed in plants in which UGT72E2 was downregulated, whereas silencing the three genes led to a 90% reduction, suggesting some redundancy of function within the cluster. The gene encoding UGT72E2 was constitutively overexpressed in transgenic Arabidopsis to determine whether increased glucosylation of monolignols could influence flux through the soluble phenylpropanoid pathway. Elevated expression of UGT72E2 led to increased accumulation of monolignol glucosides in root tissues and also the appearance of these glucosides in leaves. In particular, coniferyl alcohol 4-O-glucoside accumulated to massive amounts (10 micromol g(-1) FW) in root tissues of these plants. Increased glucosylation of other phenylpropanoids also occurred in plants overexpressing this glycosyltransferase. Significantly changing the pattern of glycosides in the leaves also led to a pronounced change in accumulation of the hydroxycinnamic ester sinapoyl malate. The data demonstrate the plasticity of phenylpropanoid metabolism and the important role that glucosylation of secondary metabolites can play in cellular homeostasis.
Collapse
Affiliation(s)
- Alexandra Lanot
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | | | | | | | | | | | | | | |
Collapse
|
2243
|
Liang M, Davis E, Gardner D, Cai X, Wu Y. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. PLANTA 2006; 224:1185-96. [PMID: 16779554 DOI: 10.1007/s00425-006-0300-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 04/23/2006] [Indexed: 05/10/2023]
Abstract
Laccase, EC 1.10.3.2 or p-diphenol:dioxygen oxidoreductase, has been proposed to be involved in lignin synthesis in plants based on its in vitro enzymatic activity and a close correlation with the lignification process in plants. Despite many years of research, genetic evidence for the role of laccase in lignin synthesis is still missing. By screening mutants available for the annotated laccase gene family in Arabidopsis, we identified two mutants for a single laccase gene, AtLAC15 (At5g48100) with a pale brown or yellow seed coat which resembled the transparent testa (tt) mutant phenotype. A chemical component analysis revealed that the mutant seeds had nearly a 30% decrease in extractable lignin content and a 59% increase in soluble proanthocyanidin or condensed tannin compared with wild-type seeds. In an in vitro enzyme assay, the developing mutant seeds showed a significant reduction in polymerization activity of coniferyl alcohol in the absence of H(2)O(2). Among the dimers formed in the in vitro assay using developing wild-type seeds, 23% of the linkages were beta-O-4 which resembles the major linkages formed in native lignin. The evidence strongly supports that AtLAC15 is involved in lignin synthesis in plants. To our knowledge, this is the first genetic evidence for the role of laccase in lignin synthesis. Changes in seed coat permeability, seed germination and root elongation were also observed in the mutant.
Collapse
Affiliation(s)
- Mingxiang Liang
- Department of Plants, Soils and Biometeorology, Utah State University, 4820 Old Main Hill, Logan, UT 84322, USA
| | | | | | | | | |
Collapse
|
2244
|
Chen F, Srinivasa Reddy MS, Temple S, Jackson L, Shadle G, Dixon RA. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:113-24. [PMID: 16972868 DOI: 10.1111/j.1365-313x.2006.02857.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Genes encoding seven enzymes of the monolignol pathway were independently downregulated in alfalfa (Medicago sativa) using antisense and/or RNA interference. In each case, total flux into lignin was reduced, with the largest effects arising from the downregulation of earlier enzymes in the pathway. The downregulation of l-phenylalanine ammonia-lyase, 4-coumarate 3-hydroxylase, hydroxycinnamoyl CoA quinate/shikimate hydroxycinnamoyl transferase, ferulate 5-hydroxylase or caffeic acid 3-O-methyltransferase resulted in compositional changes in lignin and wall-bound hydroxycinnamic acids consistent with the current models of the monolignol pathway. However, downregulating caffeoyl CoA 3-O-methyltransferase neither reduced syringyl (S) lignin units nor wall-bound ferulate, inconsistent with a role for this enzyme in 3-O-methylation ofS monolignol precursors and hydroxycinnamic acids. Paradoxically, lignin composition differed in plants downregulated in either cinnamate 4-hydroxylase or phenylalanine ammonia-lyase. No changes in the levels of acylated flavonoids were observed in the various transgenic lines. The current model for monolignol and ferulate biosynthesis appears to be an over-simplification, at least in alfalfa, and additional enzymes may be needed for the 3-O-methylation reactions of S lignin and ferulate biosynthesis.
Collapse
Affiliation(s)
- Fang Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | | | | | | | | | | |
Collapse
|
2245
|
Larsson KAE, Zetterlund I, Delp G, Jonsson LMV. N-Methyltransferase involved in gramine biosynthesis in barley: cloning and characterization. PHYTOCHEMISTRY 2006; 67:2002-8. [PMID: 16930646 DOI: 10.1016/j.phytochem.2006.06.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/26/2006] [Accepted: 06/27/2006] [Indexed: 05/11/2023]
Abstract
The indole alkaloid gramine occurs in leaves of certain barley (Hordeum vulgare L.) cultivars but not in others. A gene sequence in barley that earlier was characterized as a jasmonate-induced O-methyltransferase (MT) (EC 2.1.1.6, GenBank accession U54767) was here found to be absent in some barley cultivars and breeding lines that all lacked gramine. The cDNA was cloned and expressed in Escherichia coli and the recombinant protein purified. The purified recombinant protein methylated two substrates in the pathway to gramine: 3-aminomethylindole (AMI) and N-methyl-3-aminomethylindole (MAMI) at a high rate, with Km-values of 77 microM and 184 microM, respectively. In contrast, the protein did not exhibit any detectable methylation with the earlier suggested substrate for O-methylation, caffeic acid. A number of cultivars and breeding lines of barley were analyzed for presence of the U54767 gene sequence and MT protein and the enzyme activity in vitro with MAMI or caffeic acid as substrates. The results showed a clear relationship between the presence of the MT gene, the MT protein and N-methyltransferase activity, and confirmed the identification of the gene as coding for an N-methyltransferase (NMT, EC 2.1.1) and being involved in gramine biosynthesis.
Collapse
|
2246
|
Zhou GK, Zhong R, Richardson EA, Morrison WH, Nairn CJ, Wood-Jones A, Ye ZH. The poplar glycosyltransferase GT47C is functionally conserved with Arabidopsis Fragile fiber8. PLANT & CELL PHYSIOLOGY 2006; 47:1229-40. [PMID: 16887843 DOI: 10.1093/pcp/pcj093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylan is the major hemicellulose in dicot wood. Unraveling genes involved in the biosynthesis of xylan will be of importance in understanding the process of wood formation. In this report, we investigated the possible role of poplar GT47C, a glycosyltransferase belonging to family GT47, in the biosynthesis of xylan. PoGT47C from the hybrid poplar Populus alba x tremula exhibits 84% sequence similarity to Fragile fiber8 (FRA8), which is involved in the biosynthesis of glucuronoxylan in Arabidopsis. Phylogenetic analysis of glycosyltransferase family GT47 in the Populus trichocarpa genome revealed that GT47C is the only close homolog of FRA8. In situ hybridization showed that the PoGT47C gene was expressed in developing primary xylem, secondary xylem and phloem fibers of stems, and in developing secondary xylem of roots. Sequence analysis suggests that PoGT47C is a type II membrane protein, and study of the subcellular localization demonstrated that fluorescent protein-tagged PoGT47C was located in the Golgi. Immunolocalization with a xylan monoclonal antibody LM10 revealed a nearly complete loss of xylan signals in the secondary walls of fibers and vessels in the Arabidopsis fra8 mutant. Expression of PoGT47C in the fra8 mutant restored the secondary wall thickness and xylan content to the wild-type level. Together, these results suggest that PoGT47C is functionally conserved with FRA8 and it is probably involved in xylan synthesis during wood formation.
Collapse
Affiliation(s)
- Gong-Ke Zhou
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
2247
|
Monien BH, Henry BL, Raghuraman A, Hindle M, Desai UR. Novel chemo-enzymatic oligomers of cinnamic acids as direct and indirect inhibitors of coagulation proteinases. Bioorg Med Chem 2006; 14:7988-98. [PMID: 16914317 DOI: 10.1016/j.bmc.2006.07.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 07/17/2006] [Accepted: 07/26/2006] [Indexed: 11/28/2022]
Abstract
Thrombin and factor Xa, two important procoagulant enzymes, have been prime targets for regulation of clotting through the direct and indirect mechanism of inhibition. Our efforts on exploiting the indirect mechanism led us to study a carboxylic acid-based scaffold, which displayed major acceleration in the inhibition of these enzymes [J. Med. Chem.2005, 48, 1269, 5360]. This work advances the study to chemo-enzymatically prepared oligomers of 4-hydroxycinnamic acids, DHPs, which display interesting anticoagulant properties. Oligomers, ranging in size from tetramers to pentadecamers, were prepared through peroxidase-catalyzed oxidative coupling of caffeic, ferulic, and sinapic acids, and sulfated using triethylamine-sulfur trioxide complex. Chromatographic, spectroscopic, and elemental studies suggest that the DHPs are heterogeneous, polydisperse preparations composed of inter-monomer linkages similar to those found in natural lignins. Measurement of activated thromboplastin and prothrombin time indicates that both the sulfated and unsulfated derivatives of the DHPs display anticoagulant activity, which is dramatically higher than that of the reference polyacrylic acids. More interestingly, this activity approaches that of low-molecular-weight heparin with the sulfated derivative showing approximately 2- to 3-fold greater potency than the unsulfated parent. Studies on the inhibition of factor Xa and thrombin indicate that the oligomers exert their anticoagulant effect through both direct and indirect inhibition mechanisms. This dual inhibition property of 4-hydroxycinnamic acid-based DHP oligomers is the first example in inhibitors of coagulation. This work puts forward a novel, non-heparin structure, which may be exploited for the design of potent, dual action inhibitors of coagulation through combinatorial virtual screening on a library of DHP oligomers.
Collapse
Affiliation(s)
- Bernhard H Monien
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
2248
|
Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YSN, Kirkpatrick R, Liu J, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. PLANT, CELL & ENVIRONMENT 2006; 29:1545-70. [PMID: 16898017 DOI: 10.1111/j.1365-3040.2006.01532.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Collapse
Affiliation(s)
- Steven G Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2249
|
Gabaldón C, López-Serrano M, Pomar F, Merino F, Cuello J, Pedreño MA, Barceló AR. Characterization of the last step of lignin biosynthesis in Zinnia elegans suspension cell cultures. FEBS Lett 2006; 580:4311-6. [PMID: 16842784 DOI: 10.1016/j.febslet.2006.06.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 06/28/2006] [Indexed: 11/28/2022]
Abstract
The last step of lignin biosynthesis in Zinnia elegans suspension cell cultures (SCCs) catalyzed by peroxidase (ZePrx) has been characterized. The k(3) values shown by ZePrx for the three monolignols revealed that sinapyl alcohol was the best substrate, and were proportional to their oxido/reduction potentials, signifying that these reactions are driven exclusively by redox thermodynamic forces. Feeding experiments demonstrate that cell wall lignification in SCCs is controlled by the rate of supply of H(2)O(2). The results also showed that sites for monolignol beta-O-4 cross-coupling in cell walls may be saturated, suggesting that the growth of the lineal lignin macromolecule is not infinite.
Collapse
Affiliation(s)
- Carlos Gabaldón
- Department of Plant Biology, University of Murcia, E-30100 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
2250
|
Marjamaa K, Hildén K, Kukkola E, Lehtonen M, Holkeri H, Haapaniemi P, Koutaniemi S, Teeri TH, Fagerstedt K, Lundell T. Cloning, characterization and localization of three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies). PLANT MOLECULAR BIOLOGY 2006; 61:719-32. [PMID: 16897487 DOI: 10.1007/s11103-006-0043-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 03/09/2006] [Indexed: 05/06/2023]
Abstract
Plant class III peroxidases (POXs) take part in the formation of lignin and maturation of plant cell walls. However, only a few examples of such peroxidases from gymnosperm tree species with highly lignified xylem tracheids have been implicated so far. We report here cDNA cloning of three xylem-expressed class III peroxidase encoding genes from Norway spruce (Picea abies). The translated proteins, PX1, PX2 and PX3, contain the conserved amino acids required for heme-binding and peroxidase catalysis. They all begin with putative secretion signal propeptide sequences but diverge substantially at phylogenetic level, grouping to two subclusters when aligned with other class III plant peroxidases. In situ hybridization analysis on expression of the three POXs in Norway spruce seedlings showed that mRNA coding for PX1 and PX2 accumulated in the cytoplasm of young, developing tracheids within the current growth ring where lignification is occurring. Function of the putative N-terminal secretion signal peptides for PX1, PX2 and PX3 was confirmed by constructing chimeric fusions with EGFP (enhanced green fluorescent protein) and expressing them in tobacco protoplasts. Full-length coding region of px1 was also heterologously expressed in Catharanthus roseus hairy root cultures. Thus, at least the spruce PX1 peroxidase is processed via the endoplasmic reticulum (ER) most likely for secretion to the cell wall. Thereby, PX1 displays correct spatiotemporal localization for participation in the maturation of the spruce tracheid secondary cell wall.
Collapse
Affiliation(s)
- Kaisa Marjamaa
- Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|