201
|
Wei X, Hou W, Liang J, Fang P, Dou B, Wang Z, Sai J, Xu T, Ma C, Zhang Q, Cheng F, Wang X, Wang Q. Network Pharmacology-Based Analysis on the Potential Biological Mechanisms of Sinisan Against Non-Alcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:693701. [PMID: 34512330 PMCID: PMC8430321 DOI: 10.3389/fphar.2021.693701] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in China. Sinisan (SNS) is a traditional Chinese medicine formula that has been widely used in treating chronic liver diseases, including NAFLD. However, its underlying biological mechanisms are still unclear. In this study, we employed a network pharmacology approach consisting of overlapped terms- (genes or pathway terms-) based analysis, protein-protein interaction (PPI) network-based analysis, and PPI clusters identification. Unlike the previous network pharmacology study, we used the shortest path length-based network proximity algorithm to evaluate the efficacy of SNS against NAFLD. And we also used random walk with restart (RWR) algorithm and Community Cluster (Glay) algorithm to identify important targets and clusters. The screening results showed that the mean shortest path length between genes of SNS and NAFLD was significantly smaller than degree-matched random ones. Six PPI clusters were identified and ten hub targets were obtained, including STAT3, CTNNB1, MAPK1, MAPK3, AGT, NQO1, TOP2A, FDFT1, ALDH4A1, and KCNH2. The experimental study indicated that SNS reduced hyperlipidemia, liver steatosis, and inflammation. Most importantly, JAK2/STAT3 signal was inhibited by SNS treatment and was recognized as the most important signal considering the network pharmacology part. This study provides a systems perspective to study the relationship between Chinese medicines and diseases and helps to discover potential mechanisms by which SNS ameliorates NAFLD.
Collapse
Affiliation(s)
- Xiaoyi Wei
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Weixin Hou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiajun Liang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peng Fang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Bo Dou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zisong Wang
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiayang Sai
- Department of Oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
202
|
Kotta S, Aldawsari HM, Badr-Eldin SM, Binmahfouz LS, Bakhaidar RB, Sreeharsha N, Nair AB, Ramnarayanan C. Lung Targeted Lipopolymeric Microspheres of Dexamethasone for the Treatment of ARDS. Pharmaceutics 2021; 13:1347. [PMID: 34575422 PMCID: PMC8471313 DOI: 10.3390/pharmaceutics13091347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS), a catastrophic illness of multifactorial etiology, involves a rapid upsurge in inflammatory cytokines that leads to hypoxemic respiratory failure. Dexamethasone, a synthetic corticosteroid, mitigates the glucocorticoid-receptor-mediated inflammation and accelerates tissue homeostasis towards disease resolution. To minimize non-target organ side effects arising from frequent and chronic use of dexamethasone, we designed biodegradable, lung-targeted microspheres with sustained release profiles. Dexamethasone-loaded lipopolymeric microspheres of PLGA (Poly Lactic-co-Glycolic Acid) and DPPC (Dipalmitoylphosphatidylcholine) stabilized with vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate) were prepared by a single emulsion technique that had a mean diameter of 8.83 ± 0.32 μm and were spherical in shape as revealed from electron microscopy imaging. Pharmacokinetic and biodistribution patterns studied in the lungs, liver, and spleen of Wistar rats showed high selectivity and targeting efficiency for the lung tissue (re 13.98). As a proof-of-concept, in vivo efficacy of the microspheres was tested in the lipopolysaccharide-induced ARDS model in rats. Inflammation markers such as IL-1β, IL-6, and TNF-α, quantified in the bronchoalveolar lavage fluid indicated major improvement in rats treated with dexamethasone microspheres by intravenous route. Additionally, the microspheres substantially inhibited the protein infiltration, neutrophil accumulation and lipid peroxidation in the lungs of ARDS bearing rats, suggesting a reduction in oxidative stress. Histopathology showed decreased damage to the pulmonary tissue upon treatment with the dexamethasone-loaded microspheres. The multipronged formulation technology approach can thus serve as a potential treatment modality for reducing lung inflammation in ARDS. An improved therapeutic profile would help to reduce the dose, dosing frequency and, eventually, the toxicity.
Collapse
Affiliation(s)
- Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana Bakur Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Chandramouli Ramnarayanan
- Department of Pharmaceutical Chemistry, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India;
| |
Collapse
|
203
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
204
|
Chakraborty T, Gupta S, Nair A, Chauhan S, Saini V. Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102601] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
205
|
Liu J, Xu H, Zhang L, Wang S, Lu D, Chen M, Wu B. Chronoeffects of the Herbal Medicines Puerariae radix and Coptidis rhizoma in Mice: A Potential Role of REV-ERBα. Front Pharmacol 2021; 12:707844. [PMID: 34393786 PMCID: PMC8355589 DOI: 10.3389/fphar.2021.707844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying drugs with dosing time-dependent effects (chronoeffects) and understanding the underlying mechanisms would help to improve drug treatment outcome. Here, we aimed to determine chronoeffects of the herbal medicines Puerariae radix (PR) and Coptidis rhizoma (CR), and investigate a potential role of REV-ERBα as a drug target in generating chronoeffects. The pharmacological effect of PR on hyperhomocysteinemia in mice was evaluated by measuring total homocysteine, triglyceride levels and lipid accumulation. PR dosed at ZT10 generated a stronger effect on hyperhomocysteinemia than drug dosed at ZT2. Furthermore, PR increased the expression levels of REV-ERBα target genes Bhmt, Cbs and Cth (encoding three key enzymes responsible for homocysteine catabolism), thereby alleviating hyperhomocysteinemia in mice. Moreover, CR attenuated chronic colitis in mice in a dosing time-dependent manner based on measurements of disease activity index, colon length, malondialdehyde/myeloperoxidase activities and IL-1β/IL-6 levels. ZT10 dosing generated a stronger anti-colitis effect as compared to ZT2 dosing. This was accompanied by lower production of colonic inflammatory cytokines (i.e., Nlrp3, IL-1β, IL-6, Tnf-α and Ccl2, REV-ERBα target genes) in colitis mice dosed at ZT10. The diurnal patterns of PR and CR effects were respectively consistent with those of puerarin (a main active constituent of PR, a REV-ERBα antagonist) and berberine (a main active constituent of CR, a REV-ERBα agonist). In addition, loss of Rev-erbα in mice abolished the dosing time-dependency in PR and CR effects. In conclusion, the therapeutic effects of PR and CR depend on dosing time in mice, which are probably attributed to diurnal expression of REV-ERBα as the drug target. Our findings have implications for improving therapeutic outcomes of herbal medicines with a chronotherapeutic approach.
Collapse
Affiliation(s)
- Jinming Liu
- Department of Critical Care Medicine, Zhongshan Torch Development Zone Hospital, Zhongshan, China
| | - Haiman Xu
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danyi Lu
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
206
|
Pharmacokinetics and tissue distribution of hydrazinocurcumin in rats. Pharmacol Rep 2021; 73:1734-1743. [PMID: 34283375 DOI: 10.1007/s43440-021-00312-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Curcumin, a natural polyphenol from Curcuma longa, is known to possess diversified pharmacological roles including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic properties; however, its bioavailability is severely limited due to its poor solubility, poor absorption, rapid metabolism, and significant elimination. Hydrazinocurcumin (HZC), a novel analogue of curcumin has been reported to overcome the limitations of curcumin and also possesses multiple pharmacological activities. The present study aimed to evaluate the unexplored pharmacokinetic profile of this agent in experimental rats. METHODS Drug formulations were administered to the experimental animals via oral, intravenous and intraperitoneal routes. Blood samples were collected at different pre-determined time intervals to determine the pharmacokinetic parameters. To understand the biodistribution profile of HCZ, tissue samples were isolated from different groups of Sprague-Dawley rats at different time points. The pharmacokinetic parameters of HZC were evaluated after administration through oral (100 mg/kg), intraperitoneal (100 mg/kg) and intravenous (10 mg/kg) routes. RESULTS Significantly (p < 0.05) higher total AUC along with maximum concentration were evident with intraperitoneal administration when compared to the results of oral administration at a similar dose. In addition, shorter time to peak was observed with intraperitoneal administration. These results revealed a faster rate and longer duration of absorption with intraperitoneal administration, which further resulted in enhanced absolute bioavailability of HZC (29.17%) when compared to 5.1% upon oral dosing. The obtained data from the pharmacokinetic study indicated that HZC was instantaneously distributed and moderately eliminated from body fluids. CONCLUSION Based on the findings, it could be concluded that absorption of HZC is much higher via intraperitoneal route of administration compared to the oral administration.
Collapse
|
207
|
Guillén-Ruiz G, Cueto-Escobedo J, Hernández-López F, Rivera-Aburto LE, Herrera-Huerta EV, Rodríguez-Landa JF. Estrous cycle modulates the anxiogenic effects of caffeine in the elevated plus maze and light/dark box in female rats. Behav Brain Res 2021; 413:113469. [PMID: 34280462 DOI: 10.1016/j.bbr.2021.113469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023]
Abstract
Caffeine is a commonly used stimulant of the central nervous system that reduces fatigue, increases alertness, and exerts positive effects on emotion through actions on various brain structures. High doses of caffeine can cause headaches, heart palpitations, hyperactivity, and anxiety symptoms. Consequently, reducing the consumption of stimulant substances, such as sugar and caffeine, is proposed to ameliorate symptoms of premenstrual syndrome in women. The administration of steroid hormones has been suggested to modulate the effects of caffeine, but unknown is whether endogenous hormone variations during the estrous cycle modulate the pharmacological effects of caffeine. The present study evaluated the effects of caffeine (10, 20, and 40 mg/kg) during metestrus-diestrus and proestrus-estrus of the ovarian cycle in rats on anxiety-like behavior using the elevated plus maze and light/dark box. During metestrus-diestrus, all doses of caffeine increased anxiety-like behavior, indicated by the main variables in both behavioral tests (i.e., higher Anxiety Index and lower percent time spent on the open arms in the elevated plus maze and less time spent in the light compartment in the light/dark box). During proestrus-estrus, only 20 and 40 mg/kg caffeine increased these parameters of anxiety-like behavior, albeit only slightly. In conclusion, caffeine increased anxiety-like behaviors in metestrus-diestrus, with an attenuation of these effects of lower doses of caffeine in proestrus-estrus. These effects that were observed in metestrus-diestrus and proestrus-estrus may be associated with low and high concentrations of steroid hormones, respectively, that naturally occur during these phases of the ovarian cycle.
Collapse
Affiliation(s)
- Gabriel Guillén-Ruiz
- Cátedras CONACyT-Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Fabiola Hernández-López
- Unidad de Medicina Familiar No. 66, Instituto Mexicano del Seguro Social, Xalapa, Veracruz, Mexico
| | - Lina E Rivera-Aburto
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| |
Collapse
|
208
|
The More, the Better: High-Dose Omega-3 Fatty Acids Improve Behavioural and Molecular Outcomes in Preclinical Models in Mild Brain Injury. Curr Neurol Neurosci Rep 2021; 21:45. [PMID: 34227043 DOI: 10.1007/s11910-021-01132-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Mild traumatic brain injury (mTBI) is a continuing healthcare concern worldwide contributing to significant cognitive and neurological impairment, consequently affecting activities of daily living. While mTBI recovery is becoming well studied, there are no interventions to reduce the known impairments of mTBI. Omega-3 fatty acids (N-3FA) are safe and beneficial for brain health; however, their potential effects in a pathophysiological environment such as that seen post-mTBI are unknown. RECENT FINDINGS Preclinical studies using rodent models are key to understanding molecular mechanisms underlying improvements post-injury. Studies to date have shown improved outcomes in rodent models following mTBI protocols, but these data have not been quantified using a systematic review and meta-analysis approach. Our systematic review assessed 291 studies identified from the literature. Of these studies, 18 studies met inclusion criteria. We conducted a meta-analysis examining the effect of high-dose n-3FA vs placebo on neurological, cognitive and molecular changes following mTBI. Quality of studies was rated as moderate to high quality, and while mostly compliant, some areas of risk of bias were identified. Results showed that preclinical doses of 10-370 mg/kg/day of n-3FA per day in rodents (equivalent to high clinical doses) resulted in improvements in neurological and cognitive performance (pooled effect sizes ranging between 1.52 and 3.55). Similarly, improvements in molecular and inflammatory markers were observed in treated rodents vs control (pooled effect sizes: 3.73-6.55). Overall, these findings highlight the potential for high-dose n-3FA for human clinical studies following mTBI.
Collapse
|
209
|
Shah H, Nair AB, Shah J, Jacob S, Bharadia P, Haroun M. Proniosomal vesicles as an effective strategy to optimize naproxen transdermal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102479] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
210
|
Liu W, Wang B, Zhao Y, Wu Z, Dong A, Chen H, Lin L, Lu J, Hai X. Pharmacokinetic Characteristics, Tissue Bioaccumulation and Toxicity Profiles of Oral Arsenic Trioxide in Rats: Implications for the Treatment and Risk Assessment of Acute Promyelocytic Leukemia. Front Pharmacol 2021; 12:647687. [PMID: 34122070 PMCID: PMC8194082 DOI: 10.3389/fphar.2021.647687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Oral arsenic trioxide (ATO) has demonstrated a favorable clinical efficiency in the treatment of acute promyelocytic leukemia (APL). However, the pharmacokinetic characteristics, tissue bioaccumulation, and toxicity profiles of arsenic metabolites in vivo following oral administration of ATO have not yet been characterized. The present study uses high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) to assess the pharmacokinetics of arsenic metabolites in rat plasma after oral and intravenous administration of 1 mg kg-1 ATO. In addition, the bioaccumulation of arsenic metabolites in blood and selected tissues were evaluated after 28 days oral administration of ATO in rats at a dose of 0, 2, 8, and 20 mg kg-1 d-1. The HPLC-HG-AFS analysis was complemented by a biochemical, hematological, and histopathological evaluation conducted upon completion of ATO treatment. Pharmacokinetic results showed that arsenite (AsIII) reached a maximum plasma concentration rapidly after initial dosing, and the absolute bioavailability of AsIII was 81.03%. Toxicological results showed that the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and white blood cells (WBC) in the 20 mg kg-1 d-1 ATO group were significantly increased compared to the control group (p < 0.05). The distribution trend of total arsenic in the rat was as follows: whole blood > kidney > liver > heart. Dimethylated arsenic (DMA) was the predominant bioaccumulative metabolite in the whole blood, liver, and heart, while monomethylated arsenic (MMA) was the predominant one in the kidney. Collectively, these results revealed that oral ATO was rapidly absorbed, well-tolerated, and showed organ-specific and dose-specific bioaccumulation of arsenic metabolites. The present study provides preliminary evidence for clinical applications and the long-term safety evaluation of oral ATO in the treatment of APL.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Wang
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yilei Zhao
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiqiang Wu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Andi Dong
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongzhu Chen
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwang Lin
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Hai
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
211
|
High Doses of D-Chiro-Inositol Alone Induce a PCO-Like Syndrome and Other Alterations in Mouse Ovaries. Int J Mol Sci 2021; 22:ijms22115691. [PMID: 34073634 PMCID: PMC8198710 DOI: 10.3390/ijms22115691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022] Open
Abstract
Administration of 1000-1500 mg/day D-Chiro-Inositol (DCIns) or a combination of Myo-Inositol (MyoIns) and DCIns in their plasma molar ratio (40:1) for three or more months are among recommended treatments for metabolic syndrome and/or Polycystic Ovary Syndrome (PCOS). We previously confirmed the efficacy of this formulation (8.2 mg/day MyoIns and 0.2 mg/day DCIns for 10 days) in a mouse PCOS model, but also observed negative effects on ovarian histology and function of formulations containing 0.4-1.6 mg/day DCIns. We therefore analyzed effects of higher doses of DCIns, 5, 10 and 20 mg/day, administered to young adult female mice for 21 days, on ovarian histology, serum testosterone levels and expression of the ovarian enzyme aromatase. Five mg/day DCIns (human correspondence: 1200 mg/day) altered ovarian histology, increased serum testosterone levels and reduced the amount of aromatase of negative controls, suggesting the induction of an androgenic PCOS model. In contrast, 10-20 mg/day DCIns (human correspondence: 2400-4800 mg/day) produced ovarian lesions resembling those typical of aged mice, and reduced serum testosterone levels without affecting aromatase amounts, suggesting a failure in steroidogenic gonadal activity. Notwithstanding physiological/biochemical differences between mice and humans, the observed pictures of toxicity for ovarian histology and function recommend caution when administering DCIns to PCOS patients at high doses and/or for periods spanning several ovulatory cycles.
Collapse
|
212
|
Cao J, Choi M, Guadagnin E, Soty M, Silva M, Verzieux V, Weisser E, Markel A, Zhuo J, Liang S, Yin L, Frassetto A, Graham AR, Burke K, Ketova T, Mihai C, Zalinger Z, Levy B, Besin G, Wolfrom M, Tran B, Tunkey C, Owen E, Sarkis J, Dousis A, Presnyak V, Pepin C, Zheng W, Ci L, Hard M, Miracco E, Rice L, Nguyen V, Zimmer M, Rajarajacholan U, Finn PF, Mithieux G, Rajas F, Martini PGV, Giangrande PH. mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease. Nat Commun 2021; 12:3090. [PMID: 34035281 PMCID: PMC8149455 DOI: 10.1038/s41467-021-23318-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade®/modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a.
Collapse
Affiliation(s)
| | | | | | - Maud Soty
- INSERM UMR1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Marine Silva
- INSERM UMR1213, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Jenny Zhuo
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | - Shi Liang
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | - Ling Yin
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | | | | | | | | | | | | | - Becca Levy
- Platform, Moderna, Inc, Cambridge, MA, USA
| | | | | | | | | | - Erik Owen
- Platform, Moderna, Inc, Cambridge, MA, USA
| | - Joe Sarkis
- Platform, Moderna, Inc, Cambridge, MA, USA
| | | | | | | | - Wei Zheng
- Platform, Moderna, Inc, Cambridge, MA, USA
| | - Lei Ci
- Platform, Moderna, Inc, Cambridge, MA, USA
| | | | | | - Lisa Rice
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | - Vi Nguyen
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | - Mike Zimmer
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | | | | | - Gilles Mithieux
- INSERM UMR1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabienne Rajas
- INSERM UMR1213, Université Claude Bernard Lyon 1, Lyon, France
| | | | | |
Collapse
|
213
|
Development of Mucoadhesive Buccal Film for Rizatriptan: In Vitro and In Vivo Evaluation. Pharmaceutics 2021; 13:pharmaceutics13050728. [PMID: 34063402 PMCID: PMC8157038 DOI: 10.3390/pharmaceutics13050728] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
The reduced therapeutic efficacy of rizatriptan in migraine treatment is primarily due to low oral bioavailability and extensive first pass metabolism. The purpose of this investigation was to optimize the thin mucoadhesive buccal film of rizatriptan and assess the practicability of its development as a potential substitute for conventional migraine treatment. Buccal films (FR1-FR10) were fabricated by a conventional solvent casting method utilizing a combination of polymers (Proloc, hydroxypropyl methylcellulose and Eudragit RS 100). Drug-loaded buccal films (F1-F4) were examined for mechanical, mucoadhesive, swelling and release characteristics. In vivo pharmacokinetics parameters of selected buccal film (F1) in rabbits were compared to oral administration. Films F1-F4 displayed optimal physicomechanical properties including mucoadhesive strength, which can prolong the buccal residence time. A biphasic, complete and higher drug release was seen in films F1 and F4, which followed Weibull model kinetics. The optimized film, F1, exhibited significantly higher (p < 0.005) rizatriptan buccal flux (71.94 ± 8.26 µg/cm2/h) with a short lag time. Film features suggested the drug particles were in an amorphous form, compatible with the polymers used and had an appropriate surface morphology suitable for buccal application. Pharmacokinetic data indicated a significantly higher rizatriptan plasma level (p < 0.005) and Cmax (p < 0.0001) upon buccal film application as compared to oral solution. The observed AUC0-12h (994.86 ± 95.79 ng.h/mL) in buccal treatment was two-fold higher (p < 0.0001) than the control, and the relative bioavailability judged was 245%. This investigation demonstrates the prospective of buccal films as a viable and alternative approach for effective rizatriptan delivery.
Collapse
|
214
|
Chaudhary S, Nair AB, Shah J, Gorain B, Jacob S, Shah H, Patel V. Enhanced Solubility and Bioavailability of Dolutegravir by Solid Dispersion Method: In Vitro and In Vivo Evaluation-a Potential Approach for HIV Therapy. AAPS PharmSciTech 2021; 22:127. [PMID: 33835317 DOI: 10.1208/s12249-021-01995-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Being a candidate of BCS class II, dolutegravir (DTG), a recently approved antiretroviral drug, possesses solubility issues. The current research was aimed to improve the solubility of the DTG and thereby enhance its efficacy using the solid dispersion technique. In due course, the miscibility study of the drug was performed with different polymers, where Poloxamer 407 (P407) was found suitable to move forward. The solid dispersion of DTG and P407 was formulated using solvent evaporation technique with a 1:1 proportion of drug and polymer, where the solid-state characterization was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction. No physicochemical interaction was found between the DTG and P407 in the fabricated solid dispersion; however, crystalline state of the drug was changed to amorphous as evident from the X-ray diffractogram. A rapid release of DTG was observed from the solid dispersion (>95%), which is highly significant (p<0.05) as compared to pure drug (11.40%), physical mixture (20.07%) and marketed preparation of DTG (35.30%). The drug release from the formulated solid dispersion followed Weibull model kinetics. Finally, the rapid drug release from the solid dispersion formulation revealed increased Cmax (14.56 μg/mL) when compared to the physical mixture (4.12 μg/mL) and pure drug (3.45 μg/mL). This was further reflected by improved bioavailability of DTG (AUC: 105.99±10.07 μg/h/mL) in the experimental Wistar rats when compared to the AUC of animals administered with physical mixture (54.45±6.58 μg/h/mL) and pure drug (49.27±6.16 μg/h/mL). Therefore, it could be concluded that the dissolution profile and simultaneously the bioavailability of DTG could be enhanced by means of the solid dispersion platform using the hydrophilic polymer, P407, which could be projected towards improved efficacy of the drug in HIV/AIDS.
Collapse
|
215
|
Nair AB, Shah J, Al-Dhubiab BE, Jacob S, Patel SS, Venugopala KN, Morsy MA, Gupta S, Attimarad M, Sreeharsha N, Shinu P. Clarithromycin Solid Lipid Nanoparticles for Topical Ocular Therapy: Optimization, Evaluation and In Vivo Studies. Pharmaceutics 2021; 13:pharmaceutics13040523. [PMID: 33918870 PMCID: PMC8068826 DOI: 10.3390/pharmaceutics13040523] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) are being extensively exploited as topical ocular carrier systems to enhance the bioavailability of drugs. This study investigated the prospects of drug-loaded SLNs to increase the ocular permeation and improve the therapeutic potential of clarithromycin in topical ocular therapy. SLNs were formulated by high-speed stirring and the ultra-sonication method. Solubility studies were carried out to select stearic acid as lipid former, Tween 80 as surfactant, and Transcutol P as cosurfactant. Clarithromycin-loaded SLN were optimized by fractional factorial screening and 32 full factorial designs. Optimized SLNs (CL10) were evaluated for stability, morphology, permeation, irritation, and ocular pharmacokinetics in rabbits. Fractional factorial screening design signifies that the sonication time and amount of lipid affect the SLN formulation. A 32 full factorial design established that both factors had significant influences on particle size, percent entrapment efficiency, and percent drug loading of SLNs. The release profile of SLNs (CL9) showed ~80% drug release in 8 h and followed Weibull model kinetics. Optimized SLNs (CL10) showed significantly higher permeation (30.45 μg/cm2/h; p < 0.0001) as compared to control (solution). CL10 showed spherical shape and good stability and was found non-irritant for ocular administration. Pharmacokinetics data demonstrated significant improvement of clarithromycin bioavailability (p < 0.0001) from CL10, as evidenced by a 150% increase in Cmax (~1066 ng/mL) and a 2.8-fold improvement in AUC (5736 ng h/mL) (p < 0.0001) as compared to control solution (Cmax; 655 ng/mL and AUC; 2067 ng h/mL). In summary, the data observed here demonstrate the potential of developed SLNs to improve the ocular permeation and enhance the therapeutic potential of clarithromycin, and hence could be a viable drug delivery approach to treat endophthalmitis.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| | - Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, Natal, South Africa
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
216
|
Novel Preclinical Patient-Derived Lung Cancer Models Reveal Inhibition of HER3 and MTOR Signaling as Therapeutic Strategies for NRG1 Fusion-Positive Cancers. J Thorac Oncol 2021; 16:1149-1165. [PMID: 33839363 DOI: 10.1016/j.jtho.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION NRG1 rearrangements produce chimeric ligands that subvert the ERBB pathway to drive tumorigenesis. A better understanding of the signaling networks that mediate transformation by NRG1 fusions is needed to inform effective therapeutic strategies. Unfortunately, this has been hampered by a paucity of patient-derived disease models that faithfully recapitulate this molecularly defined cancer subset. METHODS Patient-derived xenograft (PDX) and cell line models were established from NRG1-rearranged lung adenocarcinoma samples. Transcriptomic, proteomic, and biochemical analyses were performed to identify activated pathways. Efficacy studies were conducted to evaluate HER3- and MTOR-directed therapies. RESULTS We established a pair of PDX and cell line models of invasive mucinous lung adenocarcinoma (LUAD) (LUAD-0061AS3, SLC3A2-NRG1), representing the first reported paired in vitro and in vivo model of NRG1-driven tumors. Growth of LUAD-0061AS3 models was reduced by the anti-HER3 antibody GSK2849330. Transcriptomic profiling revealed activation of the MTOR pathway in lung tumor samples with NRG1 fusions. Phosphorylation of several MTOR effectors (S6 and 4EBP1) was higher in LUAD-0061AS3 cells compared with human bronchial epithelial cells and the breast cancer cell line MDA-MB-175-VII (DOC4-NRG1 fusion). Accordingly, LUAD-0061AS3 cells were more sensitive to MTOR inhibitors than MDA-MB-175-VII cells and targeting the MTOR pathway with rapamycin blocked growth of LUAD-0061AS3 PDX tumors in vivo. In contrast, MDA-MB-175-VII breast cancer cells had higher MAPK pathway activation and were more sensitive to MEK inhibition. CONCLUSIONS We identify the MTOR pathway as a candidate vulnerability in NRG1 fusion-positive lung adenocarcinoma that may warrant further preclinical evaluation, with the eventual goal of finding additional therapeutic options for patients in whom ERBB-directed therapy fails. Moreover, our results uncover heterogeneity in downstream oncogenic signaling among NRG1-rearranged cancers, possibly tumor type-dependent, the therapeutic significance of which requires additional investigation.
Collapse
|
217
|
Yang L, Liu Q, Zhang H, Wang Y, Li Y, Chen S, Song G, Ren L. Silibinin improves nonalcoholic fatty liver by regulating the expression of miR‑122: An in vitro and in vivo study. Mol Med Rep 2021; 23:335. [PMID: 33760189 PMCID: PMC7974327 DOI: 10.3892/mmr.2021.11974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Silibinin is a flavonoid that improves fatty liver and insulin resistance. To elucidate the effect of silibinin on lipid deposition and the potential molecular mechanism, the present study conducted in vivo and in vitro experiments. In the in vivo experiments, mice were randomly divided into control, high‑fat and silibinin groups, while HepG2 cells were randomly divided into control, palmitic acid intervention and silibinin intervention groups. The mRNA, protein and miR‑122 expression associated with hepatic lipid metabolism were detected in each group. The results demonstrated that silibinin reduced the triglyceride content, miR‑122 expression and the mRNA and protein expressions of fatty acid synthase (FAS) and acetyl‑CoA carboxylase (ACC). Silibinin increased the mRNA and protein expression of carnitine palmitoyl transferase 1A (CPT1A). In the present study, HepG2 cells cultured with palmitate were treated with silibinin following overexpression of micro RNA (miR) 122. The results demonstrated that the mRNA and protein expression of FAS and ACC was increased, while that of CPT1A was decreased. Therefore, it could be deduced that silibinin improved lipid metabolism by reducing the expression of miR‑122 and inhibiting the expression of miR‑122 may be a new therapeutic target to improve fatty liver disease.
Collapse
Affiliation(s)
- Liying Yang
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Qianqian Liu
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - He Zhang
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yichao Wang
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yang Li
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuchun Chen
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Guangyao Song
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Luping Ren
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
218
|
Lei ZN, Teng QX, Gupta P, Zhang W, Narayanan S, Yang DH, Wurpel JND, Fan YF, Chen ZS. Cabozantinib Reverses Topotecan Resistance in Human Non-Small Cell Lung Cancer NCI-H460/TPT10 Cell Line and Tumor Xenograft Model. Front Cell Dev Biol 2021; 9:640957. [PMID: 33829017 PMCID: PMC8019832 DOI: 10.3389/fcell.2021.640957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Cabozantinib (CBZ) is a small molecule tyrosine kinase receptor inhibitor, which could also inhibit the ABCG2 transporter function. Therefore, CBZ could re-sensitize cancer cells that are resistant to ABCG2 substrate drugs including topotecan (TPT). However, its reversal effect against TPT resistance has not been tested in a TPT-induced resistant cancer model. In this study, a new TPT selected human non-small cell lung cancer (NSCLC)-resistant cell model NCI-H460/TPT10 with ABCG2 overexpression and its parental NCI-H460 cells were utilized to investigate the role of CBZ in drug resistance. The in vitro study showed that CBZ, at a non-toxic concentration, could re-sensitize NCI-H460/TPT10 cells to TPT by restoring intracellular TPT accumulation via inhibiting ABCG2 function. In addition, the increased cytotoxicity by co-administration of CBZ and TPT may be contributed by the synergistic effect on downregulating ABCG2 expression in NCI-H460/TPT10 cells. To further verify the applicability of the NCI-H460/TPT10 cell line to test multidrug resistance (MDR) reversal agents in vivo and to evaluate the in vivo efficacy of CBZ on reversing TPT resistance, a tumor xenograft mouse model was established by implanting NCI-H460 and NCI-H460/TPT10 into nude mice. The NCI-H460/TPT10 xenograft tumors treated with the combination of TPT and CBZ dramatically reduced in size compared to tumors treated with TPT or CBZ alone. The TPT-resistant phenotype of NCI-H460/TPT10 cell line and the reversal capability of CBZ in NCI-H460/TPT10 cells could be extended from in vitro cell model to in vivo xenograft model. Collectively, CBZ is considered to be a potential approach in overcoming ABCG2-mediated MDR in NSCLC. The established NCI-H460/TPT10 xenograft model could be a sound clinically relevant resource for future drug screening to eradicate ABCG2-mediated MDR in NSCLC.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Institute of Plastic Surgery, Weifang Medical University, Weifang, China
| | - Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - John N D Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
219
|
Nair AB, Shah J, Jacob S, Al-Dhubiab BE, Sreeharsha N, Morsy MA, Gupta S, Attimarad M, Shinu P, Venugopala KN. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections. PLoS One 2021; 16:e0248857. [PMID: 33739996 PMCID: PMC7978349 DOI: 10.1371/journal.pone.0248857] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/06/2021] [Indexed: 12/30/2022] Open
Abstract
In situ gels have been extensively explored as ocular drug delivery system to enhance bioavailability and efficacy. The objective of present study was to design, formulate and evaluate ion-activated in situ gel to enhance the ocular penetration and therapeutic performance of moxifloxacin in ophthalmic delivery. A simplex lattice design was utilized to examine the effect of various factors on experimental outcomes of the in situ gel system. The influence of polymers (independent variables) such as gellan gum (X1), sodium alginate (X2), and HPMC (X3) on gel strength, adhesive force, viscosity and drug release after 10 h (Q10) were assessed. Selected formulation (MH7) was studied for ex vivo permeation, in vivo irritation and pharmacokinetics in rabbits. Data revealed that increase in concentration of polymers led to higher gel strength, adhesive force and viscosity, however, decreases the drug release. MH7 exhibited all physicochemical properties within acceptable limits and was stable for 6 months. Release profile of moxifloxacin from MH7 was comparable to the check point batches and followed Korsmeyer-Peppas matrix diffusion-controlled mechanism. Ocular irritation study signifies that selected formulation is safe and non-irritant for ophthalmic administration. In vivo pharmacokinetics data indicates significant improvement of moxifloxacin bioavailability (p < 0.0001) from MH7, as evidenced by higher Cmax (727 ± 56 ng/ml) and greater AUC (2881 ± 108 ng h/ml), when compared with commercial eye drops (Cmax; 503 ± 85 ng/ml and AUC; 978 ± 86 ng h/ml). In conclusion, developed in situ gel system (MH7) could offers a more effective and extended ophthalmic therapy of moxifloxacin in ocular infections when compared to conventional eye drops.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- * E-mail:
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Faculty of Medicine, Department of Pharmacology, Minia University, El-Minia, Egypt
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
220
|
Chen X, Huang C, Sun H, Hong H, Jin J, Bei C, Lu Z, Zhang X. Puerarin suppresses inflammation and ECM degradation through Nrf2/HO-1 axis in chondrocytes and alleviates pain symptom in osteoarthritic mice. Food Funct 2021; 12:2075-2089. [PMID: 33543180 DOI: 10.1039/d0fo03076g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder with no effective drugs. Puerarin is a dietary supplement that has wide-ranging pharmacological effects. This study aimed to investigate the effects of Puerarin on OA. The effects of Puerarin on apoptosis, extracellular matrix (ECM) metabolism, and inflammation-related factors were assessed; also, the nuclear factor-κB (NF-κB) signaling pathway and Nrf2/HO-1 (nuclear factor (erythroid-derived 2)-like 2/heme oxygenase-1) axis were evaluated to elucidate the working mechanism of Puerarin. Mice were fed with Puerarin to evaluate the therapeutic effect of Puerarin on Osteoarthritis in vivo. The results showed that Puerarin suppressed inflammatory mediators and apoptosis induced by IL-1β treatment in chondrocytes, it may also suppress ECM degradation in IL-1β treated chondrocytes. The mechanism study revealed that Nrf2/HO-1 pathway is involved in Puerarin induced inhibition of NF-κB signaling pathway. Finally, in vivo study demonstrated that Puerarin could postpone the progression of OA in mice and relieve the symptoms of pain. In conclusion, Puerarin may potentially alleviate OA progression, and the mechanism may relate to the Nrf2/HO-1 pathway regulation.
Collapse
Affiliation(s)
- Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiqiu Sun
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haofeng Hong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chaoyong Bei
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China.
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China and Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| |
Collapse
|
221
|
Yang Z, Lin Y, Su C, Wang S, Gao L, Lin J, Wang Z, Wu B. Pharmacokinetics-based chronoefficacy of Fuzi against chronic kidney disease. J Pharm Pharmacol 2021; 73:535-544. [PMID: 33793835 DOI: 10.1093/jpp/rgaa060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Identifying drugs with time-varying efficacy or toxicity, and understanding the underlying mechanisms would help to improve treatment efficacy and reduce adverse effects. In this study, we uncovered that the therapeutic effect of Fuzi (the lateral root of Aconitum carmichaelii Debeaux) depended on the dosing time in mice with adenine-induced chronic kidney disease (CKD). METHODS The Fuzi efficacy was determined by biomarker measurements [i.e. plasma creatinine (CRE), blood urea nitrogen (BUN) and urinary N-acetyl-β-D-glucosaminidase (NAG)], as well as inflammation, fibrosis and histological analyses. Circadian regulation of Fuzi pharmacokinetics and efficacy was evaluated using brain and muscle Arnt-like protein-1 (Bmal1)-deficient (Bmal1-/-) mice. KEY FINDINGS The Fuzi efficacy was higher when the drug was dosed at ZT10 and was lower when the drug was dosed at other times (ZT2, ZT6, ZT14, ZT18 and ZT22) according to measurements of plasma CRE, BUN and urinary NAG. Consistently, ZT10 (5 PM) dosing showed a stronger protective effect on the kidney (i.e. less extensive tubular injury) as compared to ZT22 (5 AM) dosing. This was supported by lower levels of inflammatory and fibrotic factors (IL-1β, IL-6, Tnf-α, Ccl2, Tgfb1 and Col1a1) at ZT10 than at ZT22. Pharmacokinetic analyses showed that the area under the curve (AUC) values (reflective of systemic exposure) and renal distribution of aconitine, hypaconitine and mesaconitine (three putative active constituents) for Fuzi dosing at ZT10 were significantly higher than those for herb dosing at ZT22, suggesting a role of circadian pharmacokinetics in Fuzi chronoefficacy. Drug efficacy studies confirmed that aconitine, hypaconitine and mesaconitine possessed a kidney-protecting effect. In addition, genetic knockout of Bmal1 in mice abolished the time-dependency of Fuzi pharmacokinetics and efficacy. This reinforced the existence of chronoefficacy for Fuzi and supported the role of circadian pharmacokinetics in Fuzi chronoefficacy. CONCLUSIONS The efficacy of Fuzi against CKD depends on the dosing time in mice, which is associated with circadian pharmacokinetics of the three main active constituents (i.e. aconitine, hypaconitine and mesaconitine). These findings highlight the relevance of dosing time in the therapeutic outcomes of herbal medicines.
Collapse
Affiliation(s)
- Zemin Yang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chong Su
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
- Zhuhai United Laboratories, Zhuhai, Guangdong, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lu Gao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jingpan Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
222
|
Lemus-Conejo A, Grao-Cruces E, Toscano R, Varela LM, Claro C, Pedroche J, Millan F, Millan-Linares MC, Montserrat-de la Paz S. A lupine (Lupinus angustifolious L.) peptide prevents non-alcoholic fatty liver disease in high-fat-diet-induced obese mice. Food Funct 2021; 11:2943-2952. [PMID: 32267269 DOI: 10.1039/d0fo00206b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive peptides are related to the prevention and treatment of many diseases. GPETAFLR is an octapeptide that has been isolated from lupine (Lupinus angustifolius L.) and shows anti-inflammatory properties. The aim of this study was to evaluate the potential activity of GPETAFLR to prevent non-alcoholic fatty liver disease (NAFLD) in high-fat-diet (HFD)-induced obese mice. C57BL/6J mice were fed a standard diet or HFD. Two of the groups fed the HFD diet were treated with GPETAFLR in drinking water at 0.5 mg kg-1 day-1 or 1 mg kg-1 day-1. To determine the ability of GPETAFLR to improve the onset and progression of non-alcoholic fatty liver disease, histological studies, hepatic enzyme profiles, inflammatory cytokine and lipid metabolism-related genes and proteins were analysed. Our results suggested that HFD-induced inflammatory metabolic disorders were alleviated by treatment with GPETAFLR. In conclusion, dietary lupine consumption can repair HFD-induced hepatic damage possibly via modifications of liver's lipid signalling pathways.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain and Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla. Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla. Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Rocio Toscano
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain and Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla. Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Lourdes M Varela
- Institute de Biomedicine of Seville, Virgen del Rocio University Hospital/CSIC/Department of Medical Physiology and Biophysic, School of Medicine, University of Seville, Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Carmen Claro
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Justo Pedroche
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain
| | - Francisco Millan
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain
| | - Maria C Millan-Linares
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain and Cell Biology Unit, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla. Av. Dr. Fedriani 3, 41071 Seville, Spain
| |
Collapse
|
223
|
Chen S, Liu L, Li Y, Li H, Sun X, Zhu D, Meng Q, Yao S, Du S. Comparison of the effects of colonic electrical stimulation and prucalopride on gastrointestinal transit and defecation in a canine model of constipation. Scand J Gastroenterol 2021; 56:137-144. [PMID: 33307879 DOI: 10.1080/00365521.2020.1856919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The aim of this study was to compare the effects of colonic electrical stimulation (CES) and prucalopride on gastrointestinal transit and defecation and to verify the safety of CES in a canine model of constipation. METHODS Eight beagles received CES implantation and induction drugs for slow transit constipation (STC). In the STC model, the gastrointestinal transit time (GITT), colonic transit time (CTT), stool frequency and stool consistency were assessed to compare the effects of CES and prucalopride on gastrointestinal transit and defecation. The histocompatibility of the implantable device was evaluated. RESULTS The individualized parameters for CES varied greatly among the animals, and the GITTs were not significantly shortened by CES or prucalopride; however, both the CES and prucalopride treatment significantly accelerated CTT and improved stool consistency compared with sham stimulation. CES treatment also resulted in significantly higher stool frequency than prucalopride treatment, which did not significantly change the stool frequency. No severe inflammation response was detected in the gross and microscopic appearance around the implants. CONCLUSION CES and prucalopride treatment may yield similar short-term effects for improving gastrointestinal transit and stool consistency, and CES outperformed prucalopride treatment in terms of defecation inducement in the short term. There were ideal levels of endurance and histocompatibility for the animals that underwent CES.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
| | - Liang Liu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanmei Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
| | - Hailong Li
- Department of Gastroenterology, Peking University International Hospital, Beijing, China
| | - Xizhen Sun
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Zhu
- Department of Geriatrics, China-Japan Friendship Hospital, Beijing China
| | - Qiao Meng
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing China
| | - Shukun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
| |
Collapse
|
224
|
Of mice, microglia, and (wo)men: a case series and mechanistic investigation of hydroxychloroquine for complex regional pain syndrome. Pain Rep 2021; 5:e841. [PMID: 33490839 PMCID: PMC7808678 DOI: 10.1097/pr9.0000000000000841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Complex regional pain syndrome (CRPS) is a condition that occurs after minor trauma characterized by sensory, trophic, and motor changes. Although preclinical studies have demonstrated that CRPS may be driven in part by autoinflammation, clinical use of immune-modulating drugs in CRPS is limited. Hydroxychloroquine (HCQ) is a disease-modifying antirheumatic drug used to treat malaria and autoimmune disorders that may provide benefit in CRPS. Objectives To describe the use of HCQ in patients with refractory CRPS and investigate possible mechanisms of benefit in a mouse model of CRPS. Methods We initiated HCQ therapy in 7 female patients with refractory CRPS undergoing treatment at the Stanford Pain Management Center. We subsequently undertook studies in the mouse tibial fracture-casting model of CRPS to identify mechanisms underlying symptom reduction. We evaluated behavior using mechanical allodynia and spinal cord autoinflammation by immunohistochemistry and enzyme-linked immunosorbent assay. Results We treated 7 female patients with chronic, refractory CRPS with HCQ 200 mg twice daily for 2 months, followed by 200 mg daily thereafter. Two patients stopped HCQ secondary to lack of response or side effects. Overall, HCQ significantly improved average numerical rating scale pain from 6.8 ± 1.1 before HCQ to 3.8 ± 1.9 after HCQ treatment. In the tibial fracture-casting mouse model of CRPS, we observed reductions in allodynia, paw edema, and warmth following daily HCQ treatment starting at 3 weeks after injury. Spinal cord dorsal horn microglial activation and cytokine levels were also reduced by HCQ treatment. Conclusion Together, these preclinical and clinical results suggest that HCQ may benefit patients with CRPS at least in part by modulating autoinflammation and support further investigation into the use of HCQ for CRPS.
Collapse
|
225
|
Liu X, Zhang F, Wang Z, Zhang T, Teng C, Wang Z. Altered gut microbiome accompanying with placenta barrier dysfunction programs pregnant complications in mice caused by graphene oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111143. [PMID: 32942098 DOI: 10.1016/j.ecoenv.2020.111143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The wide use of graphene oxide (GO) has raised increasing concerns about the potential risks to environmental and human health. Recent studies have shown the vital role of gut microbiome in various pathological status or even exogenous exposure, but more detailed understanding about the effects of possible gut microbiome alterations under GO exposure on reproductive toxicology evaluations in pregnant mammals remained elusive. Here we found that orally administrated GO daily during gestational day (GD) 7-16 caused dose-dependent pregnant complications of mice on the endpoint (GD19), including decreased weight of dam and live fetus, high rate of resorbed embryos and dead fetus, and skeletal development retardation. Meanwhile in placenta tissues of pregnant mice exposed to GO at dose over 10 mg/kg, the expression levels of tight junctions (Claudin1 and Occludin) and vascular endothelial growth factor (VEGFA) decreased approximately by 30%-80%, meaning impaired placenta barrier. According to the data of fecal 16s RNA sequencing in 40 mg/kg dose group and the control group, gut microbiome showed dramatically decreased α- and β-diversity, and upregulated Firmicutes/Bacteroidetes ratio owing to GO exposure. What's more, significantly differentiated abundance of Euryarchaeota is expected to be a special biomarker for failed pregnancy caused by GO. Notably, the result of Spearman correlation analysis suggested that there was a strong link (correlation coefficient>0.6) between perturbed gut microbiome with both abnormally expressed factors of placenta barrier and adverse pregnant outcomes. In summary, the damages of GO exposure to placenta barrier and pregnancy were dose-dependent. And GO exposure was responsible for gut microbiome dysbiosis in mice with pregnant complications. These findings could provide referable evidence to evaluate reproductive risk of GO to mammals.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Fengmei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Zengjin Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Tongchao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
226
|
Xiong L, Zhou B, Liu H, Cai L. Comprehensive Review of Cadmium Toxicity Mechanisms in Male Reproduction and Therapeutic Strategies. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:151-193. [PMID: 34618232 DOI: 10.1007/398_2021_75] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cadmium (Cd) has been widely studied as an environmental pollutant for many years. Numerous studies have reported that Cd exposure causes damage to the heart, liver, kidneys, and thyroid in vivo. The emerging evidence suggests that Cd exposure induces damage on male reproductive system, which is related to oxidative stress, inflammation, steroidogenesis disruption, and epigenetics. Current preclinical animal studies have confirmed a large number of proteins and intracellular signaling pathways involved in the pathological process of Cd-induced male reproductive damage and potential measures for prophylaxis and treatment, which primarily include antioxidants, anti-inflammatory agents, and essential ion supplement. However, explicit pathogenesis and effective treatments remain uncertain. This review collects data from the literatures, discusses the underlying mechanisms of Cd-induced toxicity on male reproductive function, and summarizes evidence that may provide guidance for the treatment and prevention of Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lijuan Xiong
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Bin Zhou
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hong Liu
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Departments of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
227
|
Ekeuku SO, Thong BKS, Quraisiah A, Annuar F, Hanafiah A, Nur Azlina MF, Chin KY. The Skeletal Effects of Short-Term Triple Therapy in a Rat Model of Gastric Ulcer Induced by Helicobacter pylori Infection. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5359-5366. [PMID: 33324037 PMCID: PMC7732759 DOI: 10.2147/dddt.s287239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Purpose Triple therapy is the standard therapy to eradicate Helicobacter pylori (H.pylori) infection. Chronic use of proton pump inhibitors (PPIs), a component of triple therapy, is associated with osteoporosis. However, the skeletal effects of short-term triple therapy containing PPI remain elusive. This study aims to determine the skeletal effect of short-term triple therapy in a rat model of gastric ulcer induced by H. pylori. Methods Three-month-old male Sprague Dawley rats were assigned to normal control, H. pylori-inoculated group (negative control) and H. pylori-inoculated group receiving triple therapy consisting of omeprazole [2.035 mg/kg body weight (b.w)], amoxicillin (102.80 mg/kg b.w) and clarithromycin (51.37 mg/kg b.w) (n=6/group). H. pylori infection developed for four weeks after inoculation, followed by two-week triple therapy. At the end of the treatment period, femoral bones of the rats were harvested for analysis. Bone mineral density and content of the femurs were determined using dual-energy X-ray absorptiometry, while bone strength was measured with a universal mechanical tester. Results Bone mineral content was significantly lower in the negative control group compared to the triple therapy group (p=0.014). Triple therapy decreased strain (vs negative control, p=0.002) and displacement of the femur (vs normal control, p=0.004; vs untreated control, p=0.005). No significant difference was observed in other parameters among the study groups (p>0.05). Conclusion Short-term triple therapy increases bone mineral content but decreases bone strength of rats. Skeletal prophylaxis should be considered for patients on short-term triple therapy containing PPI.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Benjamin Ka Seng Thong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia.,Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Adam Quraisiah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Fazalda Annuar
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology & Immunology Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
228
|
Jiang Y, Xie F, Lv X, Wang S, Liao X, Yu Y, Dai Q, Zhang Y, Meng J, Hu G, Peng Z, Tao L. Mefunidone ameliorates diabetic kidney disease in STZ and db/db mice. FASEB J 2020; 35:e21198. [PMID: 33225469 DOI: 10.1096/fj.202001138rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Diabetic kidney disease (DKD) is a major cause of end stage renal diseases worldwide. Despite successive interventions for delaying the progression of DKD, current treatments cannot reverse the pathological progression. Mefunidone (MFD) is a new compound with potent antifibrotic properties, but the effect of MFD on DKD remains unknown. Therefore, we investigated the protective effects of MFD in both models of the db/db type 2 diabetes (T2D) and streptozotocin (STZ)-induced type 1 diabetes (T1D) models. Compared with the model group, MFD treatment significantly reduced pathological changes observed by PAS staining, PASM staining, and Masson staining in vivo. To further elucidate the potential mechanisms, we discovered MFD treatment notably restored podocyte function, alleviated inflammation, abated ROS generation, inhibited the TGF-β1/SAMD2/3 pathway, suppressed the phosphorylation levels of MAPKs (ERK1/2, JNK, and P38), and reduced epithelial-to-mesenchymal transition(EMT). In conclusion, these findings demonstrate the effectiveness of MFD in diabetic nephropathy and elucidate its possible mechanism.
Collapse
Affiliation(s)
- Yupeng Jiang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Feifei Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Shuting Wang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gaoyun Hu
- Faculty of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
229
|
Dipeptidyl peptidase-4 inhibitor protects against non-alcoholic steatohepatitis in mice by targeting TRAIL receptor-mediated lipoapoptosis via modulating hepatic dipeptidyl peptidase-4 expression. Sci Rep 2020; 10:19429. [PMID: 33173107 PMCID: PMC7655829 DOI: 10.1038/s41598-020-75288-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP4i) are antidiabetic medications that prevent cleavage of incretin hormones by dipeptidyl peptidase-4 (DPP4). DPP4 is ubiquitously expressed, and its hepatic DPP4 expression is upregulated under non-alcoholic steatohepatitis (NASH) conditions. We investigated the effect of DPP4i treatment on NASH pathogenesis, as well as its potential underlying molecular mechanisms. Mice were randomly divided into three groups: Group 1, chow-fed mice treated with vehicle for 20 weeks; Group 2, high-fat, high-fructose, and high-cholesterol Amylin liver NASH (AMLN) diet-fed mice treated with vehicle for 20 weeks; Group 3, AMLN diet-fed mice treated with vehicle for the first 10 weeks, followed by the DPP4i teneligliptin (20 mg/kg/day) for additional 10 weeks. DPP4i administration reduced serum liver enzyme and hepatic triglyceride levels and markedly improved hepatic steatosis and fibrosis in the AMLN diet-induced NASH model. In vivo, NASH alleviation significantly correlated with the suppression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis and downregulated hepatic DPP4 expression. In vitro, DPP4i treatment significantly decreased the markers of TRAIL receptor-mediated lipoapoptosis and suppressed DPP4 expression in palmitate-treated hepatocytes. In conclusion, DPP4i may efficiently attenuate the pathogenesis of AMLN diet-induced NASH in mice by suppressing lipotoxicity-induced apoptosis, possibly by modulating hepatic DPP4 expression.
Collapse
|
230
|
Shah J, Nair AB, Shah H, Jacob S, Shehata TM, Morsy MA. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel. Asian J Pharm Sci 2020; 15:786-796. [PMID: 33363633 PMCID: PMC7750831 DOI: 10.1016/j.ajps.2019.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 10/31/2022] Open
Abstract
Oral therapy of tramadol, an opiate analgesic, undergoes extensive hepatic metabolism and requires frequent administration. Transdermal therapy by virtue can overcome these issues and can improve the efficacy and reduce abuse liability of tramadol. The aim of this research was to investigate the possibility of transdermal delivery of tramadol by formulating proniosome gel and evaluate its therapeutic potential in vivo. The effect of formulation composition as well as amount of drug on physicochemical characteristics of prepared proniosomes were examined. Best proniosome gel (F4) was selected and evaluated for drug release, stability and transdermal efficacy by ex vivo and in vivo experiments. The vesicles demonstrated optimal properties including spherical shape, nanosize with good entrapment efficiency, adequate zeta potential, higher stability and greater transdermal flux. The amorphization and dispersion of tramadol in the aqueous core of proniosome vesicles was confirmed by differential scanning calorimeter. Release profile of F4 was distinct (P < 0.001) from control and displayed steady and prolonged tramadol release by Fickian diffusion. Transdermal therapy of F4 showed prominent reduction of induced twitches (P < 0.005) in mice and edema (P < 0.05) in rats, as compared to oral tramadol. The improvement in clinical efficacy of tramadol in transdermal therapy is correlated with the pharmacokinetic data observed. In conclusion, the observed improvement in antinociceptive and anti-inflammatory effects from proniosome carriers signifies its potential to be a suitable alternative to oral therapy of tramadol with greater efficacy.
Collapse
Affiliation(s)
- Jigar Shah
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Anroop B. Nair
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Corresponding author. College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia. Tel: +966 536 219868.
| | - Hiral Shah
- Arihant School of Pharmacy & BRI, Gandhinagar 382421, India
| | - Shery Jacob
- College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Tamer M. Shehata
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Faculty of Pharmacy, University of Zagazig, Zagazig 44519, Egypt
| | - Mohamed Aly Morsy
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
231
|
Maxwell EA, King TI, Kamble SH, Raju KSR, Berthold EC, León F, Avery BA, McMahon LR, McCurdy CR, Sharma A. Pharmacokinetics and Safety of Mitragynine in Beagle Dogs. PLANTA MEDICA 2020; 86:1278-1285. [PMID: 32693425 PMCID: PMC7907416 DOI: 10.1055/a-1212-5475] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitragynine is the most abundant psychoactive alkaloid derived from the leaves of Mitragyna speciosa (kratom), a tropical plant indigenous to regions of Southeast Asia. Mitragynine displays a moderate affinity to opioid receptors, and kratom is often self-prescribed to treat pain and/or opioid addiction. The purpose of this study was to investigate the safety and pharmacokinetic properties of mitragynine in the dog. Single dose oral (5 mg/kg) and intravenous (0.1 mg/kg) pharmacokinetic studies of mitragynine were performed in female beagle dogs. The plasma concentrations of mitragynine were measured using ultra-performance liquid chromatography coupled with a tandem mass spectrometer, and the pharmacokinetic properties were analyzed using non-compartmental analysis. Following intravenous administration, mitragynine showed a large volume of distribution (Vd, 6.3 ± 0.6 L/kg) and high clearance (Cl, 1.8 ± 0.4 L/h/kg). Following oral mitragynine dosing, first peak plasma (Cmax, 278.0 ± 47.4 ng/mL) concentrations were observed within 0.5 h. A potent mu-opioid receptor agonist and active metabolite of mitragynine, 7-hydroxymitragynine, was also observed with a Cmax of 31.5 ± 3.3 ng/mL and a Tmax of 1.7 ± 0.6 h in orally dosed dogs while its plasma concentrations were below the lower limit of quantification (1 ng/mL) for the intravenous study. The absolute oral bioavailability of mitragynine was 69.6%. Administration of mitragynine was well tolerated, although mild sedation and anxiolytic effects were observed. These results provide the first detailed pharmacokinetic information for mitragynine in a non-rodent species (the dog) and therefore also provide significant information for allometric scaling and dose predictions when designing clinical studies.
Collapse
Affiliation(s)
- Elizabeth A. Maxwell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Tamara I. King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Shyam H. Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Kanumuri Siva Rama Raju
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Erin C. Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Bonnie A. Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Lance R. McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R. McCurdy
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
232
|
Al-Dhubiab BE, Patel SS, Morsy MA, Duvva H, Nair AB, Deb PK, Shah J. The Beneficial Effect of Boswellic Acid on Bone Metabolism and Possible Mechanisms of Action in Experimental Osteoporosis. Nutrients 2020; 12:nu12103186. [PMID: 33081068 PMCID: PMC7603128 DOI: 10.3390/nu12103186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen is instrumental in the pathological process of osteoporosis because a deficiency of this hormone increases the release of bone-resorbing cytokines. Acetyl-11-keto-β-boswellic acid (AKBA), a constituent from Boswellia serrata, has an anti-inflammatory effect by inhibiting tumor necrosis factor-α (TNF-α) expression, which leads to a decline in receptor activator of nuclear factor-kappa B (NF-κB) ligand, and consequently, a reduction in osteoclast activity. Hence, AKBA may be beneficial against bone loss during osteoporosis. Therefore, the current study intended to evaluate the beneficial effects of AKBA in ovariectomy-induced osteoporosis and to investigate its mechanism of action. Sham-operation or ovariectomy female Sprague Dawley rats were used for evaluating the antiosteoporotic effect of AKBA in this study. AKBA (35 mg/kg, p.o.) and estradiol (0.05 mg/kg, i.m.) were administered for 42 days. At the end of the experiment, body and uterus weights, serum and urine calcium and phosphorus, serum alkaline phosphatase, and urinary creatinine levels, besides serum levels of NF-κB and TNF-α were determined. Weight, length, thickness, hardness, calcium content, as well as the bone mineral density of femur bone and lumbar vertebra were measured. A histopathological examination was also carried out. AKBA ameliorated all tested parameters and restored a normal histological structure. Thus, AKBA showed good antiosteoporotic activity, which may be mediated through its suppression of the NF-κB-induced TNF-α signaling pathway.
Collapse
Affiliation(s)
- Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
- Correspondence: ; Tel.: +966-505-845-758
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (S.S.P.); (H.D.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Harika Duvva
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (S.S.P.); (H.D.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| |
Collapse
|
233
|
Choi JE, Kim EY, Park Y. N-3 PUFA improved pup separation-induced postpartum depression via serotonergic pathway regulated by miRNA. J Nutr Biochem 2020; 84:108417. [PMID: 32629237 DOI: 10.1016/j.jnutbio.2020.108417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Stress and ovarian hormone fluctuation are risk factors for postpartum depression (PPD). Previous studies suggested antidepressant-like effects of n-3 polyunsaturated fatty acids (PUFA), but their effect on dam animal with additional stress were not clear. The purpose of the present study was to investigate the hypothesis that n-3 PUFA improved PPD through the serotonergic and glutamatergic pathways by modulating miRNA. Rats were fed n-3 PUFA or control diet from gestation, with pup separation (PS) on postpartum days 2-14 and non-PS controls. N-3 PUFA reversed PS-induced depressive behaviors, including increased immobility, latencies to contact first pup and retrieve all pups, and decreased sucrose preference. N-3 PUFA also modulated the hypothalamic-pituitary-adrenal (HPA) axis by decreasing circulating levels of adrenocorticotropic hormone and corticosterone and expression of hypothalamic corticotrophin releasing factor and hippocampal miRNA-218 but increasing the hippocampal expression of glucocorticoid receptor. N-3 PUFA inhibited neuroinflammation by decreasing circulating levels of prostaglandin E2 and hippocampal expression of tumor necrosis factor-α, interleukin-6, and miRNA-155. In addition, n-3 PUFA up-regulated the serotonergic pathway by increasing circulating levels of serotonin and hippocampal expression of serotonin-1A receptor, cAMP response element binding protein (CREB), pCREB, brain-derived neurotrophic factor, and miRNA-182 but did not affect the glutamatergic pathway according to the hippocampal expression of N-methyl-D-aspartate receptor-2B. The present study suggested that n-3 PUFA improved PPD through the serotonergic pathway by modifying the HPA axis, neuroinflammation, and related miRNAs.
Collapse
Affiliation(s)
- Jeong-Eun Choi
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Eun-Young Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
234
|
Wang Z, Zhang C, Liu X, Huang F, Wang Z, Yan B. Oral intake of ZrO 2 nanoparticles by pregnant mice results in nanoparticles' deposition in fetal brains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110884. [PMID: 32563952 DOI: 10.1016/j.ecoenv.2020.110884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Nanotoxicity to fetal brains after maternal oral exposures during pregnancy is often in question because nanoparticles have to cross multiple biological barriers such as intestinal barrier, maternal blood placental barrier (BPB) and fetal blood brain barrier (BBB). Here, we investigated this seemingly impossible passage for ZrO2 nanoparticles (ZrO2 NPs) from maternal body to fetal brains using a pregnant mouse model. After three oral exposures to pregnant mice at late pregnancy (GD16, 17, 18), ZrO2 NPs were able to accumulate in fetal brains at GD19 via crossing the well-developed maternal BPB and fetal BBB. Moreover, ZrO2 NPs crossed the mature biological barriers with increasing the expression levels of caveolae, clathrin and arf6 proteins as well as decreasing the expression levels of the tight junction proteins claudin-5, occludin and ZO-1 in placenta and fetal brain. From this investigation, we speculated that the main mechanisms for such translocation were receptor-mediated endocytosis transcellular pathway and breakthrough of tight junctions paracellular pathway in mature maternal BPB and fetal BBB. These findings have important implications for other nanoparticles exposures during pregnancy and provide crucial information to safeguard fetal development from contamination of widely used nanoproducts.
Collapse
Affiliation(s)
- Zengjin Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Congcong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Fengyan Huang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
235
|
Akrawi SH, Gorain B, Nair AB, Choudhury H, Pandey M, Shah JN, Venugopala KN. Development and Optimization of Naringenin-Loaded Chitosan-Coated Nanoemulsion for Topical Therapy in Wound Healing. Pharmaceutics 2020; 12:E893. [PMID: 32962195 PMCID: PMC7558164 DOI: 10.3390/pharmaceutics12090893] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
The potential role of naringenin (NAR), a natural flavonoid, in the treatment of chronic wound has prompted the present research to deliver the drug in nanoemulsion (NE) form, where synergistic role of chitosan was achieved through development of chitosan-coated NAR NE (CNNE). The NE consisted of Capryol 90, Tween 20 and Transcutol P, which was fabricated by low-energy emulsification method to encapsulate NAR within the oil core. The optimization of the formulated NEs was performed using Box-Behnken statistical design to obtain crucial variable parameters that influence globule size, size distribution and surface charge. Finally, the optimized formulation was coated with different concentrations of chitosan and subsequently characterized in vitro. The size of the CNNE was found to be increased when the drug-loaded formulation was coated with chitosan. Controlled release characteristics depicted 67-81% release of NAR from the CNNE, compared to 89% from the NE formulation. Cytotoxicity study of the formulation was performed in vitro using fibroblast cell line (NIH-3T3), where no inhibition in proliferation of the cells was observed with CNNE. Finally, the wound healing potential of the CNNE was evaluated in an abrasion-created wound model in experimental animals where the animals were treated and compared histologically at 0 and 14 days. Significant improvement in construction of the abrasion wound was observed when the animals were treated with formulated CNNE, whereas stimulation of skin regeneration was depicted in the histological examination. Therefore, it could be summarized that the chitosan coating of the developed NAR NE is a potential platform to accelerate healing of wounds.
Collapse
Affiliation(s)
- Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.C.); (M.P.)
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.C.); (M.P.)
| | - Jigar N. Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
236
|
How Qualification of 3D Disease Models Cuts the Gordian Knot in Preclinical Drug Development. Handb Exp Pharmacol 2020. [PMID: 32894342 DOI: 10.1007/164_2020_374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Preclinical research struggles with its predictive power for drug effects in patients. The clinical success of preclinically approved drug candidates ranges between 3% and 33%. Regardless of the approach, novel disease models and test methods need to prove their relevance and reliability for predicting drug effects in patients, which is usually achieved by method validation. Nevertheless, validating all models appears unrealistic due to the variety of diseases. Thus, novel concepts are needed to increase the quality of preclinical research.Herein, we introduce qualification as a minimal standard to establish the relevance of preclinical models and test methods. Qualification starts with prioritizing and translating scientific requirements into technical parameters by quality function deployment. Qualified models use authenticated cells, which resemble the corresponding cells in humans in morphology and drug target expression. Moreover, disease models differ from normal models in the expression of relevant biomarkers. As a result, qualified test methods can discriminate effects of treatment standards and the effects of weakly effective or ineffective substances. Observer-blind readout, adequate data documentation, dropout inclusion, and a priori power studies are as crucial as realistic dosage regimens for qualified approaches. Here, we showcase the implementation of qualification. Adjusting the level of model complexity and qualification to three defined phases of preclinical research assures the optimal level of certainty at each step.In conclusion, qualification strengthens the researchers' impact by defining basic requirements that novel approaches must fulfill while still allowing for scientific creativity. Qualification helps to improve the predictive power of preclinical research. Applied to human cell-based models, qualification reduces animal testing, since only effective drug candidates are subjected to final animal testing and subsequently to clinical trials.
Collapse
|
237
|
Eicosapentaenoic Acid Regulates Inflammatory Pathways through Modulation of Transcripts and miRNA in Adipose Tissue of Obese Mice. Biomolecules 2020; 10:biom10091292. [PMID: 32906847 PMCID: PMC7564513 DOI: 10.3390/biom10091292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
This study aims to investigate the global profiling of genes and miRNAs expression to explore the regulatory effects of eicosapentaenoic acid (EPA) in visceral adipose tissue (VAT) of obese mice. We used male mice, fed either a high-fat diet (HF) or HF supplemented with EPA (HF-EPA), for 11 weeks. RNA, and small RNA profiling, were performed by RNAseq analysis. We conducted analyses using Ingenuity Pathway Analysis software (IPA®) and validated candidate genes and miRNAs related to lipid mediators and inflammatory pathways using qRT-PCR. We identified 153 genes differentially downregulated, and 62 microRNAs differentially expressed in VAT from HF-EPA compared to HF. Genes with a positive association with inflammation, chemotaxis, insulin resistance, and inflammatory cell death, such as Irf5, Alox5ap, Tlrs, Cd84, Ccr5, Ccl9, and Casp1, were downregulated by EPA. Moreover, EPA significantly reduced LTB4 levels, a lipid mediator with a central role in inflammation and insulin resistance in obesity. The pathways and mRNA/microRNA interactions identified in our study corroborated with data validated for inflammatory genes and miRNAs. Together, our results identified key VAT inflammatory targets and pathways, which are regulated by EPA. These targets merit further investigation to better understand the protective mechanisms of EPA in obesity-associated inflammation.
Collapse
|
238
|
van Nuland M, Rosing H, Huitema ADR, Beijnen JH. Predictive Value of Microdose Pharmacokinetics. Clin Pharmacokinet 2020; 58:1221-1236. [PMID: 31030372 DOI: 10.1007/s40262-019-00769-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phase 0 microdose trials are exploratory studies to early assess human pharmacokinetics of new chemical entities, while limiting drug exposure and risks for participants. The microdose concept is based on the assumption that microdose pharmacokinetics can be extrapolated to pharmacokinetics of a therapeutic dose. However, it is unknown whether microdose pharmacokinetics are actually indicative of the pharmacokinetics at therapeutic dose. The aim of this review is to investigate the predictive value of microdose pharmacokinetics and to identify drug characteristics that may influence the scalability of these parameters. The predictive value of microdose pharmacokinetics was determined for 46 compounds and showed adequate predictability for 28 of 41 orally administered drugs (68%) and 15 of 16 intravenously administered drugs (94%). Microdose pharmacokinetics were considered predictive if the mean observed values of the microdose and the therapeutic dose were within twofold. Nonlinearity may be caused by saturation of enzyme and transporter systems, such as intestinal and hepatic efflux and uptake transporters. The high degree of success regarding linear pharmacokinetics shows that phase 0 microdose trials can be used as an early human model for determination of drug pharmacokinetics.
Collapse
Affiliation(s)
- Merel van Nuland
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands. .,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Hilde Rosing
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
239
|
Savic LJ, Doemel LA, Schobert IT, Montgomery RR, Joshi N, Walsh JJ, Santana J, Pekurovsky V, Zhang X, Lin M, Adam L, Boustani A, Duncan J, Leng L, Bucala RJ, Goldberg SN, Hyder F, Coman D, Chapiro J. Molecular MRI of the Immuno-Metabolic Interplay in a Rabbit Liver Tumor Model: A Biomarker for Resistance Mechanisms in Tumor-targeted Therapy? Radiology 2020; 296:575-583. [PMID: 32633675 PMCID: PMC7434651 DOI: 10.1148/radiol.2020200373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023]
Abstract
Background The immuno-metabolic interplay has gained interest for determining and targeting immunosuppressive tumor micro-environments that remain a barrier to current immuno-oncologic therapies in hepatocellular carcinoma. Purpose To develop molecular MRI tools to reveal resistance mechanisms to immuno-oncologic therapies caused by the immuno-metabolic interplay in a translational liver cancer model. Materials and Methods A total of 21 VX2 liver tumor-bearing New Zealand white rabbits were used between October 2018 and February 2020. Rabbits were divided into three groups. Group A (n = 3) underwent intra-arterial infusion of gadolinium 160 (160Gd)-labeled anti-human leukocyte antigen-DR isotope (HLA-DR) antibodies to detect antigen-presenting immune cells. Group B (n = 3) received rhodamine-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) intravenously to detect macrophages. These six rabbits underwent 3-T MRI, including T1- and T2-weighted imaging, before and 24 hours after contrast material administration. Group C (n = 15) underwent extracellular pH mapping with use of MR spectroscopy. Of those 15 rabbits, six underwent conventional transarterial chemoembolization (TACE), four underwent conventional TACE with extracellular pH-buffering bicarbonate, and five served as untreated controls. MRI signal intensity distribution was validated by using immunohistochemistry staining of HLA-DR and CD11b, Prussian blue iron staining, fluorescence microscopy of rhodamine, and imaging mass cytometry (IMC) of gadolinium. Statistical analysis included Mann-Whitney U and Kruskal-Wallis tests. Results T1-weighted MRI with 160Gd-labeled antibodies revealed localized peritumoral ring enhancement, which corresponded to gadolinium distribution detected with IMC. T2-weighted MRI with SPIONs showed curvilinear signal intensity representing selective peritumoral deposition in macrophages. Extracellular pH-specific MR spectroscopy of untreated liver tumors showed acidosis (mean extracellular pH, 6.78 ± 0.09) compared with liver parenchyma (mean extracellular pH, 7.18 ± 0.03) (P = .008) and peritumoral immune cell exclusion. Normalization of tumor extracellular pH (mean, 6.96 ± 0.05; P = .02) using bicarbonate during TACE increased peri- and intratumoral immune cell infiltration (P = .002). Conclusion MRI in a rabbit liver tumor model was used to visualize resistance mechanisms mediated by the immuno-metabolic interplay that inform susceptibility and response to immuno-oncologic therapies, providing a therapeutic strategy to restore immune permissiveness in liver cancer. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Luzie A. Doemel
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Isabel Theresa Schobert
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Ruth Rebecca Montgomery
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Nikhil Joshi
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - John James Walsh
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Jessica Santana
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Vasily Pekurovsky
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Xuchen Zhang
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - MingDe Lin
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Lucas Adam
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Annemarie Boustani
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - James Duncan
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Lin Leng
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Richard John Bucala
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - S. Nahum Goldberg
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Fahmeed Hyder
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Daniel Coman
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Julius Chapiro
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| |
Collapse
|
240
|
Luo H, Wu PF, Cao Y, Jin M, Shen TT, Wang J, Huang JG, Han QQ, He JG, Deng SL, Ni L, Hu ZL, Long LH, Wang F, Chen JG. Angiotensin-Converting Enzyme Inhibitor Rapidly Ameliorates Depressive-Type Behaviors via Bradykinin-Dependent Activation of Mammalian Target of Rapamycin Complex 1. Biol Psychiatry 2020; 88:415-425. [PMID: 32220499 DOI: 10.1016/j.biopsych.2020.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Angiotensin-converting enzyme inhibitors (ACEIs) are widely prescribed antihypertensive agents. Intriguingly, case reports and clinical trials have indicated that ACEIs, including captopril and lisinopril, may have a rapid mood-elevating effect in certain patients, but few experimental studies have investigated their value as fast-onset antidepressants. METHODS The present study consisted of a series of experiments using biochemical assays, immunohistochemistry, and behavioral techniques to examine the effect and mechanism of captopril on depressive-like behavior in 2 animal models, the chronic unpredictable stress model and the chronic social defeat stress model. RESULTS Captopril (19.5 or 39 mg/kg, intraperitoneal injection) exerted rapid antidepressant activity in mice treated under the chronic unpredictable stress model and mice treated under the chronic social defeat stress model. Pharmacokinetic analysis revealed that captopril crossed the blood-brain barrier and that lisinopril, another ACEI with better blood-brain barrier permeability, exerted a faster and longer-lasting effect at a same molar equivalent dose. This antidepressant effect seemed to be independent of the renin-angiotensin system, but dependent on the bradykinin (BK) system, since the decreased BK detected in the stressed mice could be reversed by captopril. The hypofunction of the downstream effector of BK, Cdc42 (cell division control protein 42) homolog, contributed to the stress-induced loss of dendritic spines, which was rapidly reversed by captopril via activating the mTORC1 (mammalian target of rapamycin complex 1) pathway. CONCLUSIONS Our findings indicate that the BK-dependent activation of mTORC1 may represent a promising mechanism underlying antidepressant pharmacology. Considering their affordability and availability, ACEIs may emerge as a novel fast-onset antidepressant, especially for patients with comorbid depression and hypertension.
Collapse
Affiliation(s)
- Han Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Cao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Jin
- Department of Pharmaceutics, College of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian-Tian Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Geng Huang
- Department of Pharmaceutics, College of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian-Qian Han
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si-Long Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lan Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China; The Collaborative-Innovation Center for Brain Science, Wuhan, Hubei, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China; The Collaborative-Innovation Center for Brain Science, Wuhan, Hubei, China.
| |
Collapse
|
241
|
Satyavert, Gupta S, Nair AB, Attimarad M. Development and validation of bioanalytical method for the determination of hydrazinocurcumin in rat plasma and organs by HPLC-UV. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1156:122310. [PMID: 32835908 DOI: 10.1016/j.jchromb.2020.122310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022]
Abstract
Hydrazinocurcumin is a semi-synthetic analogue of curcumin with superior anticancer and anti-angiogenic activities. In the present work a simple and sensitive reverse phase high performance liquid chromatography (RP-HPLC) method for quantitative evaluation of hydrazinocurcumin in plasma and various organs of rats including liver, kidneys, brain, heart, lungs and spleen was developed. Hydrazinocurcumin was separated using octadecylsilane (Inertsil-ODS-3V) column in an isocratic mode using mobile phase consisting of methanol-acetonitrile- water (36:27:37 v/v) with flow rate of 1.0 ml/min. Ultra violet (UV) detection of hydrazinocurcumin and internal standard was carried out in dual-wavelength mode at 332 nm and 380 nm, respectively. The linearity of hydrazinocurcumin was found in the range 0.05-5 µg/ml with a correlation coefficient of r2 > 0.999. The developed bioanalytical method shown higher inter-day accuracy (98.04-105.94%) and precision (0.89-10.24). The average recoveries of hydrazinocurcumin from rat plasma and various organs were in the range of 96-101.75% and 92.25-99.0%, respectively. The bioanalytical samples shows good stability of hydrazinocurcumin at different storage and handling conditions. In conclusion, this validated HPLC-UV method could be applied effectively for evaluation of hydazinocurcumin for the pharmacokinetic and organ distribution studies.
Collapse
Affiliation(s)
- Satyavert
- Department of Pharmacology, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
242
|
Zhang X, Henneman NF, Girardot PE, Sellers JT, Chrenek MA, Li Y, Wang J, Brenner C, Nickerson JM, Boatright JH. Systemic Treatment With Nicotinamide Riboside Is Protective in a Mouse Model of Light-Induced Retinal Degeneration. Invest Ophthalmol Vis Sci 2020; 61:47. [PMID: 32852543 PMCID: PMC7452859 DOI: 10.1167/iovs.61.10.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Maintaining levels of nicotinamide adenine dinucleotide (NAD+), a coenzyme critical for cellular energetics and biosynthetic pathways, may be therapeutic in retinal disease because retinal NAD+ levels decline during retinal damage and degeneration. The purpose of this study was to investigate whether systemic treatment with nicotinamide riboside (NR), a NAD+ precursor that is orally deliverable and well-tolerated by humans, is protective in a mouse model of light-induced retinal degeneration. Methods Mice were injected intraperitoneally with vehicle or NR the day before and the morning of exposure to degeneration-inducing levels of light. Retinal function was assessed by electroretinography and in vivo retinal morphology and inflammation was assessed by optical coherence tomography. Post mortem retina sections were assessed for morphology, TUNEL, and inflammatory markers Iba1 and GFAP. Retinal NAD+ levels were enzymatically assayed. Results Exposure to degeneration-inducing levels of light suppressed retinal NAD+ levels. Mice undergoing light-induced retinal degeneration exhibited significantly suppressed retinal function, severely disrupted photoreceptor cell layers, and increased apoptosis and inflammation in the outer retina. Treatment with NR increased levels of NAD+ in retina and prevented these deleterious outcomes. Conclusions This study is the first to report the protective effects of NR treatment in a mouse model of retinal degeneration. The positive outcomes, coupled with human tolerance to NR dosing, suggest that maintaining retinal NAD+ via systemic NR treatment should be further explored for clinical relevance.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Nathaniel F. Henneman
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
- Institut Necker-Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, 75015 Paris, France
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, California, United States
| | - Preston E. Girardot
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Jana T. Sellers
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Ying Li
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Jiaxing Wang
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Charles Brenner
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, California, United States
| | - John M. Nickerson
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VAHS, Decatur, Georgia, United States
| |
Collapse
|
243
|
Vesicular Emulgel Based System for Transdermal Delivery of Insulin: Factorial Design and in Vivo Evaluation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155341] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transdermal delivery of insulin is a great challenge due to its poor permeability through the skin. The aim of the current investigation was to evaluate the prospective of insulin loaded niosome emulgel as a noninvasive delivery system for its transdermal therapy. A 23 full-factorial design was used to optimize the insulin niosome emulgel by assessing the effect of independent variables (concentration of paraffin oil, Tween 80 and sodium carboxymethyl cellulose) on dependent variables (in vitro release, viscosity and in vitro permeation). The physical characteristics of the prepared formulations were carried out by determining viscosity, particle size, entrapment efficiency, drug loading, drug release and kinetics. In vitro permeation studies were carried out using rat skin membrane. Hypoglycemic activity of prepared formulations was assessed in diabetic-induced rats. It was observed that the independent variables influenced the dependent variables. A significant difference (p < 0.05) in viscosity was noticed between the prepared gels, which in turn influenced the insulin release. The order of permeation is: insulin niosome emulgel > insulin niosome gel > insulin emulgel > insulin gel > insulin niosomes > insulin solution. The enhancement in transdermal flux in insulin niosome emulgel was 10-fold higher than the control (insulin solution). In vivo data significantly demonstrated reduction (p < 0.05) of plasma glucose level (at six hours) by insulin niosome emulgel than other formulations tested. The results suggest that the developed insulin niosome emulgel could be an efficient carrier for the transdermal delivery of insulin.
Collapse
|
244
|
Li Y, Yang N, Wang B, Niu X, Cai W, Li Y, Li Y, Chen S. Effect and mechanism of prophylactic use of tadalafil during pregnancy on l-NAME-induced preeclampsia-like rats. Placenta 2020; 99:35-44. [PMID: 32750643 DOI: 10.1016/j.placenta.2020.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is a serious maternal inflammatory disease with endothelial cell dysfunction, and there is a lack of effective treatment and prevention. Tadalafil is considered to be a promising drug for PE. This study aimed to determine whether and how tadalafil use during early pregnancy alleviates PE induced by N-nitro-l-arginine-methyl-ester (l-NAME), an antagonist of nitric oxide synthase, in rats. METHODS Twenty-eight Sprague-Dawley (SD) rats were randomly divided into 4 equal groups on gestational day 0 (GD0): a pregnant control group, an l-NAME-treated PE group and two prophylactic low-dose and high-dose tadalafil groups. Blood pressure was measured on GD0, 5, 10, 15 and 20. Proteinuria was assessed on GD0 and 18. Femoral artery ultrasound was performed on GD19. Tissue sampling was performed on GD20. The perinatal outcomes, placenta and kidney tissue morphology, and endothelial and inflammatory markers were examined. RESULTS Prophylactic administration of low and high doses of tadalafil improved l-NAME induced hypertension, proteinuria, maternal weight loss during pregnancy, fetal growth restriction and flow-mediated dilatation, balanced endothelial-relative factors, and alleviated inflammation activation in placenta and kidney tissue. What's more, in some results, the HT group performed better than the LT group. DISCUSSION Our results indicate that prophylactic use of tadalafil in l-NAME-induced PE-like rat models alleviates PE symptoms, promotes fetal growth, protects endothelial function and reduces inflammation, suggesting that tadalafil may be a potential drug for the prevention of PE.
Collapse
Affiliation(s)
- Yaguang Li
- Logistics University of the Chinese People's Armed Police Force, Tianjin, 300309, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Ning Yang
- Tianjin Economic-Technological Development Area (TEDA) International Cardiovascular Hospital, Tianjin, 300457, China
| | - Binsu Wang
- Department of Cardiovascular Surgery ICU, General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Xiulong Niu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Wei Cai
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Yuanbin Li
- Logistics University of the Chinese People's Armed Police Force, Tianjin, 300309, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Yuming Li
- Tianjin Economic-Technological Development Area (TEDA) International Cardiovascular Hospital, Tianjin, 300457, China
| | - Shaobo Chen
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300162, China.
| |
Collapse
|
245
|
Shrestha N, Bland AR, Bower RL, Rosengren RJ, Ashton JC. Inhibition of Mitogen-Activated Protein Kinase Kinase Alone and in Combination with Anaplastic Lymphoma Kinase (ALK) Inhibition Suppresses Tumor Growth in a Mouse Model of ALK-Positive Lung Cancer. J Pharmacol Exp Ther 2020; 374:134-140. [PMID: 32284325 DOI: 10.1124/jpet.120.266049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer most commonly arises through EML4 (Echinoderm Microtuble Like 4)-ALK chromosomal fusion. We have previously demonstrated that combination of the ALK inhibitor crizotinib with the MEK inhibitor selumetinib was highly effective at reducing cell viability of ALK-positive non-small-cell lung cancer (H3122) cells. In this study, we further investigated the efficacy of crizotinib and selumetinib combination therapy in an in vivo xenograft model of ALK-positive lung cancer. Crizotinib decreased tumor volume by 52% compared with control, and the drug combination reduced tumor growth compared with crizotinib. In addition, MEK inhibition alone reduced tumor growth by 59% compared with control. Crizotinib and selumetinib alone and in combination were nontoxic at the dose of 25 mg/kg, with values for ALT (<80 U/l) and creatinine (<2 mg/dl) within the normal range. Our results support the combined use of crizotinib with selumetinib in ALK-positive lung cancer but raise the possibility that a sufficient dose of an MEK inhibitor alone may be as effective as adding an MEK inhibitor to an ALK inhibitor. SIGNIFICANCE STATEMENT: This study contains in vivo evidence supporting the use of combination MEK inhibitors in ALK+ lung cancer research, both singularly and in combination with ALK inhibitors. Contrary to previously published reports, our results suggest that it is possible to gain much of the benefit from combination treatment with an MEK inhibitor alone, at a tolerable dose.
Collapse
Affiliation(s)
- N Shrestha
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - A R Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - R L Bower
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - R J Rosengren
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J C Ashton
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
246
|
Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM, Murphy EA, Sajish M, Sheth A, Buckhaults PJ, Berger FG. Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol 2020; 17:352-364. [PMID: 32086499 PMCID: PMC10711686 DOI: 10.1038/s41575-019-0253-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Over the past several decades, the incidence of early-onset colorectal cancer (EOCRC; in patients <50 years old) has increased at an alarming rate. Although robust and scientifically rigorous epidemiological studies have sifted out environmental elements linked to EOCRC, our knowledge of the causes and mechanisms of this disease is far from complete. Here, we highlight potential risk factors and putative mechanisms that drive EOCRC and suggest likely areas for fruitful research. In addition, we identify inconsistencies in the evidence implicating a strong effect of increased adiposity and suggest that certain behaviours (such as diet and stress) might place nonobese and otherwise healthy people at risk of this disease. Key risk factors are reviewed, including the global westernization of diets (usually involving a high intake of red and processed meats, high-fructose corn syrup and unhealthy cooking methods), stress, antibiotics, synthetic food dyes, monosodium glutamate, titanium dioxide, and physical inactivity and/or sedentary behaviour. The gut microbiota is probably at the crossroads of these risk factors and EOCRC. The time course of the disease and the fact that relevant exposures probably occur in childhood raise important methodological issues that are also discussed.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - James R Hebert
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Anindya Chanda
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hexin Chen
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan L Love
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Maria M Pena
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mathew Sajish
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Amit Sheth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Computer Science and Engineering, College of Engineering, University of South Carolina, Columbia, SC, USA
| | - Phillip J Buckhaults
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
247
|
Lemus-Conejo A, Millan-Linares MDC, Toscano R, Millan F, Pedroche J, Muriana FJG, Montserrat-de la Paz S. GPETAFLR, a peptide from Lupinus angustifolius L. prevents inflammation in microglial cells and confers neuroprotection in brain. Nutr Neurosci 2020; 25:472-484. [DOI: 10.1080/1028415x.2020.1763058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana Lemus-Conejo
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Rocio Toscano
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisco Millan
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
| | - Justo Pedroche
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
248
|
Pahlavani M, Ramalingam L, Miller EK, Davis H, Scoggin S, Moustaid-Moussa N. Discordant Dose-Dependent Metabolic Effects of Eicosapentanoic Acid in Diet-Induced Obese Mice. Nutrients 2020; 12:E1342. [PMID: 32397139 PMCID: PMC7284763 DOI: 10.3390/nu12051342] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a widespread epidemic that increases the risk for several metabolic diseases. Despite several beneficial health effects of eicosapentaenoic acid (C20:5n-3, EPA), previous studies have used very high doses of EPA. In this study, dose-dependent effects of EPA on metabolic outcomes were determined in diet-induced obese mice. We used B6 male mice, fed high-fat diet (HF, 45% kcal fat) or HF diet supplemented with 9, 18, and 36 g/kg of EPA-enriched fish oil for 14 weeks. We conducted metabolic phenotyping during the feeding period, and harvested tissues and blood at termination. Only mice fed 36 g/kg of EPA significantly (p < 0.05) lowered body weight, fat content and epididymal fat pad weight, compared to HF. Both 18 and 36 g/kg doses of EPA significantly increased glucose clearance and insulin sensitivity, compared to HF or 9 g/kg of EPA. Locomotor activity was significantly increased with both 18 and 36 g/kg doses of EPA. Interestingly, all doses of EPA compared to HF, significantly increased energy expenditure and oxygen consumption and significantly reduced serum insulin, leptin, and triglycerides levels. These results demonstrate weight- and adiposity-independent metabolic benefits of EPA, at doses comparable to those currently used to treat hypertriglyceridemia.
Collapse
Affiliation(s)
| | | | | | | | | | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (M.P.); (L.R.); (E.K.M.); (H.D.); (S.S.)
| |
Collapse
|
249
|
Shi X, Gao C, Wang L, Chu X, Shi Q, Yang H, Li T. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. Toxicon 2020; 178:33-40. [PMID: 32250746 DOI: 10.1016/j.toxicon.2019.12.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022]
Abstract
Chronic inflammatory pain is a serious clinical problem caused by inflammation of the joints and degenerative diseases and greatly affects patients' quality of life. Persistent pain states are thought to result from the central sensitization of nociceptive pathways in the spinal dorsal horn. Spinal microglia-mediated neuroinflammation plays a pivotal role in the development and maintenance of the central sensitization of chronic inflammatory pain. Botulinum toxin type A (BoNT/A) was recently reported to have analgesic and anti-inflammatory effects. However, the precise mechanism underlying its analgesic effect remains unclear. Although several studies have reported that BoNT/A could regulate neuroflammation, the reduction of neuroinflammation regulated by BoNT/A in chronic inflammatory pain in experimentally induced arthritis has not been reported. The aim of this study was to investigate whether BoNT/A could alleviate adjuvant-arthritis pain via modulating microglia-mediated neuroinflammation and intracellular molecular pathway. The pain behavioral tests were performed before and after CFA immunization as well as after BoNT/A injection. Western blotting and immunofluorescence staining were used to assess the changes of microglial activation markers (ionized calcium binding adaptor molecule 1, IBA-1) and phosphorylation of P38MAPK (P-p38MAPK) in the lumbar spinal cord. TNF-αand P2X4R gene expression were studied by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that (1) the activation of spinal microglia can be continued till 21 days after CFA injection, which suggested its role in the development and maintenance of chronic inflammatory pain. (2) The intra-articular administration of a single effective dose of BoNT/A (5U/10 U) on day 21 after CFA injection significantly reduced nociceptive behaviors and decreased protein overexpression and immunoreactivity for IBA-1 and P-p38MAPK in CFA induced rat. Simultaneously, BoNT/A (5 U) also inhibited the increase in TNF-α mRNA and P2X4R mRNA expression induced by CFA injection. These results suggested that BoNT/A is a potential therapeutic agent for relieving the neuroinflammation that occurs in chronic inflammatory pain by inhibiting the activation of microglial cells and the release of microglia-derived TNF-α. This effect is likely mediated by inhibiting the activation of the P2X4R-P38MAPK signaling pathways in spinal microglial cells.
Collapse
Affiliation(s)
- Xiaojuan Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Chengfei Gao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Xiao Chu
- Department of Pharmacy of Qingdao Municipal Hospital, Qingdao, Shandong Province, PR China
| | - Qilin Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Hui Yang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China.
| |
Collapse
|
250
|
Improvement of oral bioavailability of carvedilol by liquisolid compact: optimization and pharmacokinetic study. Drug Deliv Transl Res 2020; 10:975-985. [DOI: 10.1007/s13346-020-00734-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|