201
|
Vilsbøll T, Garber AJ. Non-glycaemic effects mediated via GLP-1 receptor agonists and the potential for exploiting these for therapeutic benefit: focus on liraglutide. Diabetes Obes Metab 2012; 14 Suppl 2:41-9. [PMID: 22405268 DOI: 10.1111/j.1463-1326.2012.01579.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The glucagon-like peptide-1 receptor agonists (GLP-1 RAs) liraglutide and exenatide can improve glycaemic control by stimulating insulin release through pancreatic β-cells in a glucose-dependent manner. GLP-1 receptors are not restricted to the pancreas; therefore, GLP-1 RAs cause additional non-glycaemic effects. Preclinical and clinical trial data suggest a multitude of additional beneficial effects related to GLP-1 RA therapy, including improvements in β-cell function, systolic blood pressure and body weight. These effects are of a particular advantage to patients with type 2 diabetes, as most are affected by β-cell dysfunction, obesity and hypertension. Transient gastrointestinal adverse events, such as nausea and diarrhoea, are also common. To improve gastrointestinal tolerability, an incremental dosing approach is used with liraglutide and exenatide twice daily. A potential protective role for GLP-1 RAs in the cardiovascular and central nervous systems has been suggested from animal studies and short-term clinical trials. These effects and other safety aspects of GLP-1 therapy are currently being investigated in ongoing long-term clinical studies.
Collapse
Affiliation(s)
- T Vilsbøll
- Diabetes Research Division, Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
202
|
Abstract
Incretin-based therapies have established a foothold in the diabetes armamentarium through the introduction of oral dipeptidyl peptidase-4 inhibitors and the injectable class, the glucagon-like peptide-1 receptor agonists. In 2009, the American Diabetes Association and European Association for the Study of Diabetes authored a revised consensus algorithm for the initiation and adjustment of therapy in Type 2 diabetes (T2D). The revised algorithm accounts for the entry of incretin-based therapies into common clinical practice, especially where control of body weight and hypoglycemia are concerns. The gut-borne incretin hormones have powerful effects on glucose homeostasis, particularly in the postprandial period, when approximately two-thirds of the β-cell response to a given meal is due to the incretin effect. There is also evidence that the incretin effect is attenuated in patients with T2D, whereby the β-cell becomes less responsive to incretin signals. The foundation of incretin-based therapies is to target this previously unrecognized feature of diabetes pathophysiology, resulting in sustained improvements in glycemic control and improved body weight control. In addition, emerging evidence suggests that incretin-based therapies may have a positive impact on inflammation, cardiovascular and hepatic health, sleep, and the central nervous system. In the present article, we discuss the attributes of current and near-future incretin-based therapies.
Collapse
|
203
|
Li Y, Chigurupati S, Holloway HW, Mughal M, Tweedie D, Bruestle DA, Mattson MP, Wang Y, Harvey BK, Ray B, Lahiri DK, Greig NH. Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS One 2012; 7:e32008. [PMID: 22384126 PMCID: PMC3285661 DOI: 10.1371/journal.pone.0032008] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/17/2012] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1), facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4) is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells) and in vivo (SOD1 G93A mutant mice) models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT) activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R) stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS.
Collapse
Affiliation(s)
- Yazhou Li
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Srinivasulu Chigurupati
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Harold W. Holloway
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Mohamed Mughal
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - David Tweedie
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Daniel A. Bruestle
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Mark P. Mattson
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yun Wang
- Molecular Neuropsychiatry Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Brandon K. Harvey
- Molecular Neuropsychiatry Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Debomoy K. Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Nigel H. Greig
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
204
|
Cai H, Cong WN, Ji S, Rothman S, Maudsley S, Martin B. Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders. Curr Alzheimer Res 2012; 9:5-17. [PMID: 22329649 DOI: 10.2174/156720512799015064] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/17/2011] [Accepted: 08/09/2011] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.
Collapse
Affiliation(s)
- Huan Cai
- Metabolism Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
205
|
Liu WJ, Jin HY, Lee KA, Xie SH, Baek HS, Park TS. Neuroprotective effect of the glucagon-like peptide-1 receptor agonist, synthetic exendin-4, in streptozotocin-induced diabetic rats. Br J Pharmacol 2012; 164:1410-20. [PMID: 21323903 DOI: 10.1111/j.1476-5381.2011.01272.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) receptors are widely expressed in neural tissues and diminish neuronal degeneration or induce neuronal differentiation. The aim of this study was to investigate the effect of the GLP-1 pathway on peripheral nerves in streptozotocin-induced diabetic rats. EXPERIMENTAL APPROACH Diabetic and nondiabetic rats were treated with the GLP-1 receptor agonist, synthetic exendin-4 (i.p., 1 nmol·kg(-1)·day(-1)) or placebo for 24 weeks, and current perception threshold values, cAMP levels and nerve fibre size in the sciatic nerve were measured. We also investigated GLP-1 receptor expression, quantitative changes in PGP9.5-positive intraepidermal nerve fibres and cleaved caspase 3-stained Schwann cells by immunohistochemistry. KEY RESULTS GLP-1 receptor expression was detected in the sciatic nerve and skin. After exendin-4 treatment, the increase seen in current perception threshold values at 2000 and 250 Hz in diabetic rats was reduced. Also, the decrease in myelinated fibre size or axon/fibre area ratio in the sciatic nerve and the loss of intraepidermal nerve fibre in the skin of diabetic rats were ameliorated. These responses were closely associated with the attenuation of Schwann cell apoptosis and improvement in the cAMP level in exendin-4-treated diabetic rats, compared with placebo-treated animals. CONCLUSION AND IMPLICATIONS Synthetic exendin-4 may prevent peripheral nerve degeneration induced by diabetes in an animal model, supporting the hypothesis that GLP-1 may be useful in peripheral neuropathy. The neuroprotection is probably attributable to GLP-1 receptor activation, antiapoptotic effects and restoration of cAMP content.
Collapse
Affiliation(s)
- Wei Jing Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | | | | | | | | | | |
Collapse
|
206
|
de la Monte SM. Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer's disease therapeutics. ACTA ACUST UNITED AC 2012; 8:61-64. [PMID: 26855666 DOI: 10.2217/ahe.11.89] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evaluation of Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch Neurol. 2011 Sep 12. Alzheimer's disease is associated with brain insulin deficiency and insulin resistance, similar to the problems in diabetes. If insulin could be supplied to the brain in the early stages of Alzheimer's, subsequent neurodegeneration might be prevented. Administering systemic insulin to elderly non-diabetics poses unacceptable risks of inadvertant hypoglycemia. However, intranasal delivery directs the insulin into the brain, avoiding systemic side-effects. This pilot study demonstrates both efficacy and safety of using intranasal insulin to treat early Alzheimer's and mild cognitive impairment, i.e. the precursor to Alzheimer's. Significant improvements in learning, memory, and cognition occured within a few months, but without intranasal insulin, brain function continued to deteriorate in measurable degrees. Intranasal insulin therapy holds promise for halting progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Pathology (Neuropathology), Neurology, Neurosurgery, and Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
207
|
Heile A, Brinker T. Clinical translation of stem cell therapy in traumatic brain injury: the potential of encapsulated mesenchymal cell biodelivery of glucagon-like peptide-1. DIALOGUES IN CLINICAL NEUROSCIENCE 2011. [PMID: 22034462 PMCID: PMC3182013 DOI: 10.31887/dcns.2011.13.2/aheile] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury remains a major cause of death and disability; it is estimated that annually 10 million people are affected. Preclinical studies have shown the potential therapeutic value of stem cell therapies. Neuroprotective as well as regenerative properties of stem cells have been suggested to be the mechanism of action in preclinical studies. However, up to now stem cell therapy has not been studied extensively in clinical trials. This article summarizes the current experimental evidence and points out hurdles for clinical application. Focusing on a cell therapy in the acute stage of head injury, the potential of encapsulated cell biodelivery as a novel cell-therapeutic approach will also be discussed.
Collapse
Affiliation(s)
- Anna Heile
- International Neuroscience Institute, Hannover, Germany.
| | | |
Collapse
|
208
|
Diabetes as a risk factor for Alzheimer's disease: insulin signalling impairment in the brain as an alternative model of Alzheimer's disease. Biochem Soc Trans 2011; 39:891-7. [PMID: 21787319 DOI: 10.1042/bst0390891] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surprisingly little is known about the mechanisms that trigger the onset of AD (Alzheimer's disease) in sporadic forms. A number of risk factors have been identified that may shed light on the mechanisms that may trigger or facilitate the development of AD. Recently, T2DM (Type 2 diabetes mellitus) has been identified as a risk factor for AD. A common observation for both conditions is the desensitization of insulin receptors in the brain. Insulin acts as a growth factor in the brain and is neuroprotective, activates dendritic sprouting, regeneration and stem cell proliferation. The impairment of this important growth factor signal may facilitate the development of AD. Insulin as well as other growth factors have shown neuroprotective properties in preclinical and clinical trials. Several drugs have been developed to treat T2DM, which re-sensitize insulin receptors and may be of use to prevent neurodegenerative processes in the brain. In particular, the incretins GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insolinotropic polypeptide) are hormones that re-sensitize insulin signalling. Incretins also have similar growth-factor-like properties as insulin and are neuroprotective. In mouse models of AD, GLP-1 receptor agonists reduce amyloid plaque formation, reduce the inflammation response in the brain, protect neurons from oxidative stress, induce neurite outgrowth, and protect synaptic plasticity and memory formation from the detrimental effects caused by β-amyloid production and inflammation. Other growth factors such as BDNF (brain-derived neurotrophic factor), NGF (nerve growth factor) or IGF-1 (insulin-like growth factor 1) also have shown a range of neuroprotective properties in preclinical studies. These results show that these growth factors activate similar cell signalling mechanisms that are protective and regenerative, and suggest that the initial process that may trigger the cascade of neurodegenerative events in AD could be the impairment of growth factor signalling such as early insulin receptor desensitization.
Collapse
|
209
|
Li L, Zhang ZF, Holscher C, Gao C, Jiang YH, Liu YZ. (Val⁸) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Eur J Pharmacol 2011; 674:280-6. [PMID: 22115895 DOI: 10.1016/j.ejphar.2011.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
Abstract
It has being shown that glucagon-like peptide-1 (GLP-1), a new anti-diabetes agent, significantly attenuated beta-amyloid (Aβ) levels in rats. In the present study, (Val(8))GLP-1 was used to prevent impairments in memory formation, tau hyperphosphorylation and ultra-structural changes induced by streptozotocin intracerebroventricular (i.c.v.) injection. A spatial water maze task was used to test the rats' learning and memory formation, Western blot was used to measure tau hyperphosphorylation/total tau, and transmission electron microscope was used to find ultra-structural changes. The results shown that streptozotocin induced a series of Alzheimer disease -like changes in behaviour, a significant decline in learning and memory formation, an increased expression of total tau and an increased ratio of phosphorylated tau, and damage to nucleus and nucleolus as seen in electron micrographs. After treatment with (Val(8))GLP-1 (50 μM in 10 μl i.c.v.), there is a significant improvement in learning and memory, a reduction in total tau expression and hyperphosphorylated tau levels, and a recovery of damaged cell nuclei and nucleolus. Our results indicated that (Val(8))GLP-1 might prevent age-related neurodegenerative changes by preventing decline of learning and memory formation, reduction of phosphorylated tau levels and protection of subcellular structures and morphology of neurons. Therefore, (Val(8))GLP-1 is potentially a novel treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, PR China
| | | | | | | | | | | |
Collapse
|
210
|
Jolivalt CG, Fineman M, Deacon CF, Carr RD, Calcutt NA. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice. Diabetes Obes Metab 2011; 13:990-1000. [PMID: 21635674 PMCID: PMC3177968 DOI: 10.1111/j.1463-1326.2011.01431.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) is an incretin hormone that induces glucose-dependent insulin secretion and may have neurotrophic properties. Our aim was to identify the presence and activity of GLP-1 receptors (GLP-1Rs) in peripheral nerve and to assess the impact of GLP-1R agonists on diabetes-induced nerve disorders. METHODS Tissues were collected from streptozotocin-diabetic rats. GLP-1R function was assessed by incubating tissues from normal and diabetic rats with GLP-1R agonists and antagonists and measuring induction of ERK1/2 phosphorylation by Western blot. Streptozotocin-diabetic mice were also treated with the GLP-1R agonist exenatide for 8 weeks to assess the impact of GLP-1R signalling on peripheral nerve function and structure. RESULTS GLP-1R protein was detected in rat dorsal root ganglia and the neurons and Schwann cells of the sciatic nerve. Protein levels were not affected by streptozotocin-induced diabetes. GLP-1R agonists did not signal via ERK1/2 in sciatic nerve of normal rats. However, GLP-1R agonists significantly increased pERK1/2 levels in sciatic nerves from diabetic rats, indicating that GLP-1Rs are functional in this tissue. Exenatide treatment did not affect blood sugar, insulin levels or paw thermal response latencies in either control or diabetic mice. However, the reductions of motor nerve conduction velocity and paw intraepidermal fibre density seen in diabetic mice were attenuated by exenatide treatment. CONCLUSIONS These data show that the peripheral nerve of diabetic rodents exhibits functional GLP-1R and suggest that GLP-1R-mediated ERK-signalling in sciatic nerve of diabetic rodents may protect large motor fibre function and small C fibre structure by a mechanism independent of glycaemic control.
Collapse
Affiliation(s)
- C G Jolivalt
- University of California San Diego, School of Medicine, Department of Pathology, La Jolla, CA, USA.
| | | | | | | | | |
Collapse
|
211
|
Chen J, Pan H, Lipsky RH, Pérez-Gómez A, Cabrera-Garcia D, Fernández-Sánchez MT, Novelli A, Marini AM. Cellular and molecular responses of cultured neurons to stressful stimuli. Dose Response 2011; 9:416-33. [PMID: 22013403 DOI: 10.2203/dose-response.10-041.marini] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synaptic function is critical for the brain to process experiences dictated by the environment requiring change over the lifetime of the organism. Experience-driven adaptation requires that receptors, signal transduction pathways, transcription and translational mechanisms within neurons respond rapidly over its lifetime. Adaptive responses communicated through the rapid firing of neurons are dependent upon the integrity and function of synapses. These rapid responses via adaptation underlie the organism's ability to perceive, learn, remember, calculate and plan. Glutamate, the endogenous neurotransmitter required for physiological excitation in the brain, is critically involved in neuronal adaptive responses and in the pathophysiology of neurodegenerative disorders. Using neuronal experimental systems, we will discuss how compounds with low dose effects mediated via glutamate receptors can result either in a neuroprotective or neurotoxic response. Because the brain has evolved to respond rapidly to environmental cues, exposure of neurons to stressful stimuli can result in a pivotal response toward either synaptic adaptation or dysfunction and neuronal cell death. Understanding how neurons adapt to stressful stimuli will provide important clues toward the development of strategies to protect the brain against neurodegeneration.
Collapse
Affiliation(s)
- Jun Chen
- Uniformed Services University of the Health Sciences, Department of Neurology and Program in Neuroscience, 4301 Jones Bridge Road, Bethesda, Maryland 20814
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Repeated administration of exendin-4 reduces focal cerebral ischemia-induced infarction in rats. Brain Res 2011; 1427:23-34. [PMID: 22055454 DOI: 10.1016/j.brainres.2011.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 09/23/2011] [Accepted: 10/14/2011] [Indexed: 12/20/2022]
Abstract
Exendin-4 is a GLP-1 agonist that is clinically used for the treatment of diabetes mellitus and may also have neuroprotective effect. We explored the effect of repeated administration of exendin-4 (0.5 μg/kg, intraperitoneal twice a day for 7 days) on infarct volume, neurological deficit (neurological score, grip test, foot fault and rota rod tests), oxidative stress parameters (malondialdehyde, reduced glutathione, and superoxide dismutase) and expression of endothelin (ET) ET(A) and ET(B) receptors following cerebral ischemia produced in rats by permanent middle cerebral artery occlusion (MCAO). Since ET(A) receptors in the central nervous system (CNS) are involved in cerebral ischemia, we determined the effect of a specific ET(A) receptor antagonist, BQ123 (1mg/kg, intravenously administered thrice: 30 min, 2h and 4h after MCAO for a total dose of 3 mg/kg) on cerebral ischemia in control and exendin-4 treated rats. Results indicate that exendin-4 treated rats had significant protection following MCAO induced cerebral ischemia. The infarct volume was 27% less compared to vehicle treated rats. The neurological deficit following MCAO was lower and oxidative stress parameters were improved in exendin-4 treated rats compared to control. BQ123 significantly improved infarct volume, oxidative stress parameters and neurological deficit in ischemic rats treated with vehicle or exendin-4. BQ123 induced protection from cerebral ischemia was similar in vehicle or exendin-4 treated rats. Expression of ET(A) receptors was significantly increased following cerebral ischemia which was not affected by exendin-4 treatment or by BQ123 administration. No change in expression of ET(B) receptors was observed following cerebral ischemia or any treatment. It is concluded that exendin-4 protects the CNS from damage due to cerebral ischemia by reducing oxidative stress and is independent of ET receptor involvement.
Collapse
|
213
|
Suzuki K, Jayasena CN, Bloom SR. The gut hormones in appetite regulation. J Obes 2011; 2011:528401. [PMID: 21949903 PMCID: PMC3178198 DOI: 10.1155/2011/528401] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/25/2011] [Indexed: 12/12/2022] Open
Abstract
Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
214
|
Himeno T, Kamiya H, Naruse K, Harada N, Ozaki N, Seino Y, Shibata T, Kondo M, Kato J, Okawa T, Fukami A, Hamada Y, Inagaki N, Seino Y, Drucker DJ, Oiso Y, Nakamura J. Beneficial effects of exendin-4 on experimental polyneuropathy in diabetic mice. Diabetes 2011; 60:2397-406. [PMID: 21810596 PMCID: PMC3161330 DOI: 10.2337/db10-1462] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The therapeutic potential of exendin-4, an agonist of the glucagon-like peptide-1 receptor (GLP-1R), on diabetic polyneuropathy (DPN) in streptozotocin (STZ)-induced diabetic mice was investigated. RESEARCH DESIGN AND METHODS The presence of the GLP-1R in lumbar dorsal root ganglion (DRG) was evaluated by immunohistochemical analyses. DRG neurons were dissected from C57BL6/J mice and cultured with or without Schwann cell-conditioned media in the presence or absence of GLP-1 (7-37) or exendin-4. Then neurite outgrowth was determined. In animal-model experiments, mice were made diabetic by STZ administration, and after 12 weeks of diabetes, exendin-4 (10 nmol/kg) was intraperitoneally administered once daily for 4 weeks. Peripheral nerve function was determined by the current perception threshold and motor and sensory nerve conduction velocity (MNCV and SNCV, respectively). Sciatic nerve blood flow (SNBF) and intraepidermal nerve fiber densities (IENFDs) also were evaluated. RESULTS The expression of the GLP-1R in DRG neurons was confirmed. GLP-1 (7-37) and exendin-4 significantly promoted neurite outgrowth of DRG neurons. Both GLP-1R agonists accelerated the impaired neurite outgrowth of DRG neurons cultured with Schwann cell-conditioned media that mimicked the diabetic condition. At the doses used, exendin-4 had no effect on blood glucose or HbA(1c) levels. Hypoalgesia and delayed MNCV and SNCV in diabetic mice were improved by exendin-4 without affecting the reduced SNBF. The decreased IENFDs in sole skins of diabetic mice were ameliorated by exendin-4. CONCLUSIONS Our findings indicate that exendin-4 ameliorates the severity of DPN, which may be achieved by its direct actions on DRG neurons and their axons.
Collapse
Affiliation(s)
- Tatsuhito Himeno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Kamiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Chronic Kidney Disease Initiatives, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Corresponding author: Hideki Kamiya,
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Norio Harada
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuaki Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Seino
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taiga Shibata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Kondo
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jiro Kato
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuji Okawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Fukami
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoji Hamada
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutaka Seino
- Division of Diabetes, Clinical Nutrition, and Endocrinology, Department of Medicine, Kansai Electric Power Hospital, Osaka, Japan
| | - Daniel J. Drucker
- Department of Medicine, Mt. Sinai Hospital, Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jiro Nakamura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
215
|
Teramoto S, Miyamoto N, Yatomi K, Tanaka Y, Oishi H, Arai H, Hattori N, Urabe T. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cereb Blood Flow Metab 2011; 31:1696-705. [PMID: 21487412 PMCID: PMC3170947 DOI: 10.1038/jcbfm.2011.51] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate glucose-dependent insulin secretion. The GLP-1 receptor agonist, exendin-4, has similar properties to GLP-1 and is currently in clinical use for type 2 diabetes mellitus. As GLP-1 and exendin-4 confer cardioprotection after myocardial infarction, this study was designed to assess the neuroprotective effects of exendin-4 against cerebral ischemia-reperfusion injury. Mice received a transvenous injection of exendin-4, after a 60-minute focal cerebral ischemia. Exendin-4-treated vehicle and sham groups were evaluated for infarct volume, neurologic deficit score, various physiologic parameters, and immunohistochemical analyses at several time points after ischemia. Exendin-4 treatment significantly reduced infarct volume and improved functional deficit. It also significantly suppressed oxidative stress, inflammatory response, and cell death after reperfusion. Furthermore, intracellular cyclic AMP (cAMP) levels were slightly higher in the exendin-4 group than in the vehicle group. No serial changes were noted in insulin and glucose levels in both groups. This study suggested that exendin-4 provides neuroprotection against ischemic injury and that this action is probably mediated through increased intracellular cAMP levels. Exendin-4 is potentially useful in the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Shinichiro Teramoto
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
The term incretin effect was used to describe the fact that oral glucose load produces a greater insulin response than that of an isoglycemic intravenous glucose infusion. This difference has been attributed to gastrointestinal peptides GLP-1 and GIP. Since incretin effect is reduced in subjects with type 2 diabetes, despite GLP-1 activity preservation, two forms of incretin-based treatment have emerged: GLP-1R agonists, administered subcutaneously and DPP-4 inhibitors, administered orally. There is a great interest whether incretin-based treatment will be associated with sustained long-term control and improvement in β-cell function. The observation that GLP-1R agonists improve myocardial function and survival of cardiomyocytes highlights the need for further studies. Incretin-based therapies offer a new option and show great promise for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kyriafeos Kazafeos
- Department of Nursing, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
217
|
Bak AM, Egefjord L, Gejl M, Steffensen C, Stecher CW, Smidt K, Brock B, Rungby J. Targeting amyloid-beta by glucagon-like peptide -1 (GLP-1) in Alzheimer's disease and diabetes. Expert Opin Ther Targets 2011; 15:1153-62. [PMID: 21749267 DOI: 10.1517/14728222.2011.600691] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Epidemiological evidence suggests an association between type 2 diabetes (T2DM) and Alzheimer's disease (AD), in that one disease increases the risk of the other. T2DM and AD share several molecular processes which underlie the tissue degeneration in either disease. Disturbances in insulin signaling may be the link between the two conditions. Drugs originally developed for T2DM are currently being considered as possible novel agents in the treatment of AD. AREAS COVERED This review discusses the potential role of glucagon-like peptide -1 (GLP-1) treatment in AD. GLP-1 receptors are expressed in areas of the brain important to memory and learning, and GLP-1 has growth-factor-like properties similar to insulin. A key neuropathological feature of AD is the accumulation of amyloid-beta (Aβ). In preclinical studies, GLP-1 and longer lasting analogues have been shown to have both neuroprotective and neurotrophic effects, and to protect synaptic activity in the brain from Aβ toxicity. EXPERT OPINION A convincing amount of evidence has shown a beneficial effect of GLP-1 agonist treatment on cognitive function, memory and learning in experimental models of AD. GLP-1 analogues may therefore be the new therapeutic agent of choice for intervention in AD.
Collapse
Affiliation(s)
- Ann Mosegaard Bak
- University Hospital of Aarhus , Department of Medical Endocrinology, MEA, Nørrebrogade, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
218
|
The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J Neurosci 2011; 31:6587-94. [PMID: 21525299 DOI: 10.1523/jneurosci.0529-11.2011] [Citation(s) in RCA: 527] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes is a risk factor for Alzheimer's disease, most likely linked to an impairment of insulin signaling in the brain. The incretin hormone glucagon-like peptide-1 (GLP-1) facilitates insulin signaling, and novel long-lasting GLP-1 analogs, such as liraglutide, are on the market as diabetes therapeutics. GLP-1 has been shown to have neuroprotective properties in vitro and in vivo. Here we tested the effects of peripherally injected liraglutide in an Alzheimer mouse model, APP(swe)/PS1(ΔE9) (APP/PS1). Liraglutide was shown to cross the blood-brain barrier in an acute study. Liraglutide was injected for 8 weeks at 25 nmol/kg body weight i.p. once daily in 7-month-old APP/PS1 and wild-type littermate controls. In APP/PS1 mice, liraglutide prevented memory impairments in object recognition and water maze tasks, and prevented synapse loss and deterioration of synaptic plasticity in the hippocampus, commonly observed in this model. Overall β-amyloid plaque count in the cortex and dense-core plaque numbers were reduced by 40-50%, while levels of soluble amyloid oligomers were reduced by 25%. The inflammation response as measured by activated microglia numbers was halved in liraglutide-treated APP/PS1 mice. Numbers of young neurons in the dentate gyrus were increased in APP/PS1 mice with treatment. Liraglutide treatment had little effect on littermate control mice, whose behavior was comparable to wild-type saline controls; however, synaptic plasticity was enhanced in the drug group. Our results show that liraglutide prevents key neurodegenerative developments found in Alzheimer's disease, suggesting that GLP-1 analogs represent a novel treatment strategy for Alzheimer's disease.
Collapse
|
219
|
Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:281674. [PMID: 21747826 PMCID: PMC3124026 DOI: 10.1155/2011/281674] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/05/2011] [Indexed: 12/23/2022]
Abstract
Metabolic and neurodegenerative disorders have a growing prevalence in Western countries. Available epidemiologic and neurobiological evidences support the existence of a pathophysiological link between these conditions. Glucagon-like peptide 1 (GLP-1), whose activity is reduced in insulin resistance, has been implicated in central nervous system function, including cognition, synaptic plasticity, and neurogenesis. We review the experimental researches suggesting that GLP-1 dysfunction might be a mediating factor between Type 2 diabetes mellitus (T2DM) and neurodegeneration. Drug treatments enhancing GLP-1 activity hold out hope for treatment and prevention of Alzheimer's disease (AD) and cognitive decline.
Collapse
|
220
|
Glage S, Klinge PM, Miller MC, Wallrapp C, Geigle P, Hedrich HJ, Brinker T. Therapeutic concentrations of glucagon-like peptide-1 in cerebrospinal fluid following cell-based delivery into the cerebral ventricles of cats. Fluids Barriers CNS 2011; 8:18. [PMID: 21575271 PMCID: PMC3114785 DOI: 10.1186/2045-8118-8-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background Neuropeptides may have considerable potential in the treatment of acute and chronic neurological diseases. Encapsulated genetically engineered cells have been suggested as a means for sustained local delivery of such peptides to the brain. In our experiments, we studied human mesenchymal stem cells which were transfected to produce glucagon-like peptide-1 (GLP-1). Methods Cells were packed in a water-permeable mesh bag containing 400 polymeric microcapsules, each containing 3000 cells. The mesh bags were either transplanted into the subdural space, into the brain parenchyma or into the cerebral ventricles of the cat brain. Mesh bags were explanted after two weeks, and cell viability, as well as GLP-1 concentration in the cerebrospinal fluid (CSF), was measured. Results Viability of cells did not significantly differ between the three implantation sites. However, CSF concentration of GLP-1 was significantly elevated only after ventricular transplantation with a maximum concentration of 73 pM (binding constant = 70 pM). Conclusions This study showed that ventricular cell-based delivery of soluble factors has the capability to achieve concentrations in the CSF which may become pharmacologically active. Despite the controversy about the pharmacokinetic limitations of ventricular drug delivery, there might be a niche in this for encapsulated cell biodelivery of soluble, highly biologically-effective neuropeptides of low molecular weight like GLP-1.
Collapse
Affiliation(s)
- Silke Glage
- Neurosurgery Foundation, 55 Claverick Str,, Providence, RI 02903, USA.
| | | | | | | | | | | | | |
Collapse
|
221
|
Camandola S, Mattson MP. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:965-73. [PMID: 20950656 PMCID: PMC3032815 DOI: 10.1016/j.bbamcr.2010.10.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 02/06/2023]
Abstract
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer's disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
222
|
Klinge PM, Harmening K, Miller MC, Heile A, Wallrapp C, Geigle P, Brinker T. Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer's disease. Neurosci Lett 2011; 497:6-10. [PMID: 21507341 DOI: 10.1016/j.neulet.2011.03.092] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/26/2011] [Accepted: 03/30/2011] [Indexed: 11/28/2022]
Abstract
Encapsulated human mesenchymal stem cells(MSC) are studied in a double transgenic mouse model of Alzheimer's disease (AD) after intraventricular implantation at 3 months of age. Abeta 40/42 deposition, and glial (GFAP) and microglial (CD11b) immunoreactivity were investigated 2 months after transplantation of either native MSC or MSC transfected with glucagon-like peptide-1 (GLP-1). CD11b immunostaining in the frontal lobes was significantly decreased in the GLP-1 MSC group compared to the untreated controls. Also, the plaque associated GFAP immunoreactivity was only observed in one of four animals in the GLP-1 MSC group. Abeta 40 whole brain ELISA was decreased in the MSC group: 86.06±5.2 pg/ml (untreated control) vs. 78.67±11.2 pg/ml (GLP-1 MSC group) vs.70.9±11.1 pg/ml (MSC group, p<0.05). Intraventricular transplantation of native and GLP-1 transfected MSC has been shown effective. Decreased amyloid deposition or suppression of glial and microglial responses were observed. However, encapsulation of MSC may alter their biological activity.
Collapse
Affiliation(s)
- Petra M Klinge
- Neurosurgery Foundation, Rhode Island Hospital/Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | | | | | | | | | | |
Collapse
|
223
|
Lee CH, Yan B, Yoo KY, Choi JH, Kwon SH, Her S, Sohn Y, Hwang IK, Cho JH, Kim YM, Won MH. Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia. J Neurosci Res 2011; 89:1103-13. [PMID: 21472764 DOI: 10.1002/jnr.22596] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/30/2010] [Accepted: 12/16/2010] [Indexed: 12/14/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) protects against neuronal damages in the brain. In the present study, ischemia-induced changes in GLP-1R immunoreactivity in the gerbil hippocampal CA1 region were evaluated after transient cerebral ischemia; in addition, the neuroprotective effect of the GLP-1R agonist exendin-4 (EX-4) against ischemic damage was studied. GLP-1R immunoreactivity and its protein levels in the ischemic CA1 region were highest at 1 day after ischemia/reperfusion (I/R). At 4 days after I/R, GLP-1R immunoreactivity was hardly detected in CA1 pyramidal neurons, and its protein level was lowest. GLP-1R protein level was increased again at 10 days after I/R, and GLP-1R immunoreactivity was found in astrocytes and GABAergic interneurons. In addition, EX-4 treatment attenuated ischemia-induced hyperactivity, neuronal damage, and microglial activation in the ischemic CA1 region in a dose-dependent manner. EX-4 treatment also induced the elevation of GLP-1R immunoreactivity and protein levels in the ischemic CA1 region. These results indicate that GLP-1R is altered in the ischemic region after an ischemic insult and that EX-4 protects against ischemia-induced neuronal death possibly by increasing GLP-1R expression and attenuating microglial activation against transient cerebral ischemic damage.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Lee CH, Yoo KY, Ryu PD, Park JH, Choi JH, Kim S, Hwang IK, Kim YM, Won MH. Decreased glucagon-like peptide-1 receptor immunoreactivity in the dentate granule cell layer from adult in the gerbil hippocampus. Cell Mol Neurobiol 2011; 31:345-50. [PMID: 21152969 PMCID: PMC11498484 DOI: 10.1007/s10571-010-9632-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/15/2010] [Indexed: 11/29/2022]
Abstract
In this study, we investigated age-related changes in glucagon-like peptide-1 receptor (GLP-1R) immunoreactivity and its protein levels in the gerbil hippocampus during normal aging. In the postnatal month 3 (PM 3) group, GLP-1R immunoreaction was well observed in neurons, especially pyramidal and non-pyramidal cells in the hippocampus proper, and granule and polymorphic cells in the dentate gyrus. In the hippocampus proper, GLP-1R immunoreactivity in neurons was maintained until PM 24. In the dentate gyrus, however, GLP-1R immunoreactivity in granule cells, not polymorphic cells, was hardly detected from PM 6. Western blot analysis also showed that age-dependent change patterns in GLP-1R protein levels in the gerbil hippocampus were similar to the immunohistochemical changes. These results indicate that GLP-1R immunoreactivity was markedly decreased in dentate granule cells from PM 6, showing that GLP-1R immunoreactivity and its protein levels were decreased in the adult and aged gerbil hippocampus.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Ki-Yeon Yoo
- Department of Neurobiology, School of Medicine, and Medical & Bio-Material Research Center, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, and Medical & Bio-Material Research Center, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Sookon Kim
- Department of Radiation Oncology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
- Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, and Medical & Bio-Material Research Center, Kangwon National University, Chuncheon, 200-701 South Korea
- Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
225
|
Abstract
In the past few years, the development of pharmaceutical agents that enhance the physiological effects of glucagon-like peptide-1 (GLP-1), either through GLP-1 receptor agonism (GLP-1 agonists) or by inhibiting GLP-1 degradation (dipeptidylpeptidase-4 inhibitors) has broadened the range of treatment options for individuals with type 2 diabetes. It has been recognized for some time that GLP-1 also has extra-pancreatic effects, notably targeting the brain, where it regulates appetite and satiety, as well as peripheral functions highly controlled by the autonomic nervous system, such as gastric emptying. Furthermore, data are beginning to emerge that indicate a potential role for GLP-1 in neuroprotection. The increased risk of Alzheimer's disease, Parkinson's disease and stroke in people with type 2 diabetes suggests that shared mechanisms/pathways of cell death, possibly related to insulin dysregulation, may underlie all of these disorders. Although the disease anatomy varies with each disorder, a wide range of genetic and environmental triggers result in activation of similar biochemical pathways in all of them, suggesting a complex network of biochemical events that feed in to a final common path towards cellular dysfunction and death. This article summarizes the evidence for neuronal activity of GLP-1 and examines the limited data that currently exist on the therapeutic potential of GLP-1 in specific neurological and neurodegenerative conditions, namely Alzheimer's disease, Parkinson's disease, Huntingdon's disease, stroke and peripheral sensory neuropathy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
226
|
Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat Rev Neurosci 2011; 12:73-87. [DOI: 10.1038/nrn2977] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
227
|
Nediani C, Raimondi L, Borchi E, Cerbai E. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 2011; 14:289-331. [PMID: 20624031 DOI: 10.1089/ars.2010.3198] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adaptation of the heart to intrinsic and external stress involves complex modifications at the molecular and cellular levels that lead to tissue remodeling, functional and metabolic alterations, and finally to failure depending upon the nature, intensity, and chronicity of the stress. Reactive oxygen species (ROS) have long been considered as merely harmful entities, but their role as second messengers has gradually emerged. At the same time, our comprehension of the multifaceted role of nitric oxide (NO) and the related reactive nitrogen species (RNS) has been upgraded. The tight interlay between ROS and RNS suggests that their imbalance may implicate the impairment in physiological NO/redox-based signaling that contributes to the failing of the cardiovascular system. This review initially provides basic concepts on the role of nitroso/oxidative stress in the pathophysiology of heart failure with a particular focus on sources of ROS/RNS, their downstream targets, and endogenous modulators. Then, the role of NO/redox regulation of cardiomyocyte function, including calcium homeostasis, electrogenesis, and insulin signaling pathways, is described. Finally, an overview of old and emerging therapeutic opportunities in heart failure is presented, focusing on modulation of NO/redox mechanisms and discussing benefits and limitations.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
228
|
Isacson R, Nielsen E, Dannaeus K, Bertilsson G, Patrone C, Zachrisson O, Wikström L. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test. Eur J Pharmacol 2011; 650:249-55. [DOI: 10.1016/j.ejphar.2010.10.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/16/2010] [Accepted: 10/03/2010] [Indexed: 12/11/2022]
|
229
|
Role of the glucose-dependent insulinotropic polypeptide and its receptor in the central nervous system: therapeutic potential in neurological diseases. Behav Pharmacol 2010; 21:394-408. [PMID: 20574409 DOI: 10.1097/fbp.0b013e32833c8544] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid hormone, secreted from the enteroendocrine K cells, which has insulin-releasing and extra-pancreatic actions. GIP and its receptor present a widespread distribution in the mammalian brain where they have been implicated with synaptic plasticity, neurogenesis, neuroprotection and behavioral alterations. This review attempts to provide a comprehensive picture of the role of GIP in the central nervous system and to highlight recent findings from our group showing its potential involvement in neurological illnesses including epilepsies, Parkinson's disease and Alzheimer's disease.
Collapse
|
230
|
Val8-glucagon-like peptide-1 protects against Aβ1–40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats. Neuroscience 2010; 170:1239-48. [DOI: 10.1016/j.neuroscience.2010.08.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
|
231
|
Luciani P, Deledda C, Benvenuti S, Cellai I, Squecco R, Monici M, Cialdai F, Luciani G, Danza G, Di Stefano C, Francini F, Peri A. Differentiating effects of the glucagon-like peptide-1 analogue exendin-4 in a human neuronal cell model. Cell Mol Life Sci 2010; 67:3711-23. [PMID: 20496097 PMCID: PMC11115565 DOI: 10.1007/s00018-010-0398-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/31/2010] [Accepted: 04/30/2010] [Indexed: 01/27/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an insulinotropic peptide with neurotrophic properties, as assessed in animal cell models. Exendin-4, a GLP-1 analogue, has been recently approved for the treatment of type 2 diabetes mellitus. The aim of this study was to morphologically, structurally, and functionally characterize the differentiating actions of exendin-4 using a human neuronal cell model (i.e., SH-SY5Y cells). We found that exendin-4 increased the number of neurites paralleled by dramatic changes in intracellular actin and tubulin distribution. Electrophysiological analyses showed an increase in cell membrane surface and in stretch-activated-channels sensitivity, an increased conductance of Na(+) channels and amplitude of Ca(++) currents (T- and L-type), typical of a more mature neuronal phenotype. To our knowledge, this is the first demonstration that exendin-4 promotes neuronal differentiation in human cells. Noteworthy, our data support the claimed favorable role of exendin-4 against diabetic neuropathy as well as against different neurodegenerative diseases.
Collapse
Affiliation(s)
- Paola Luciani
- Endocrine Unit, Department of Clinical Physiopathology, Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies (DENOThe), University of Florence, Florence, Italy
| | - Cristiana Deledda
- Endocrine Unit, Department of Clinical Physiopathology, Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies (DENOThe), University of Florence, Florence, Italy
| | - Susanna Benvenuti
- Endocrine Unit, Department of Clinical Physiopathology, Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies (DENOThe), University of Florence, Florence, Italy
| | - Ilaria Cellai
- Endocrine Unit, Department of Clinical Physiopathology, Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies (DENOThe), University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Physiological Sciences, University of Florence, Florence, Italy
| | - Monica Monici
- Joint Laboratory ASAcampus, ASA Research Division, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Francesca Cialdai
- Joint Laboratory ASAcampus, ASA Research Division, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Giorgia Luciani
- Department of Physiological Sciences, University of Florence, Florence, Italy
| | - Giovanna Danza
- Endocrine Unit, Department of Clinical Physiopathology, Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies (DENOThe), University of Florence, Florence, Italy
| | - Chiara Di Stefano
- Endocrine Unit, Department of Clinical Physiopathology, Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies (DENOThe), University of Florence, Florence, Italy
| | - Fabio Francini
- Department of Physiological Sciences, University of Florence, Florence, Italy
| | - Alessandro Peri
- Endocrine Unit, Department of Clinical Physiopathology, Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies (DENOThe), University of Florence, Florence, Italy
- Endocrine Unit, Department of Clinical Physiopathology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
232
|
Frisardi V, Solfrizzi V, Seripa D, Capurso C, Santamato A, Sancarlo D, Vendemiale G, Pilotto A, Panza F. Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer's disease. Ageing Res Rev 2010; 9:399-417. [PMID: 20444434 DOI: 10.1016/j.arr.2010.04.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 02/07/2023]
Abstract
A growing body of epidemiological evidence suggested that metabolic syndrome (MetS) and Mets components (impaired glucose tolerance, abdominal or central obesity, hypertension, hypertriglyceridemia, and reduced high-density lipoprotein cholesterol) may be important in the development of age-related cognitive decline (ARCD), mild cognitive impairment (MCI), vascular dementia, and Alzheimer's disease (AD). These suggestions proposed in these patients the presence of a "metabolic-cognitive syndrome", i.e. a MetS plus cognitive impairment of degenerative or vascular origin. This could represent a pathophysiological model in which to study in depth the mechanisms linking MetS and MetS components with dementia, particularly AD, and predementia syndromes (ARCD or MCI), suggesting a possible integrating view of the MetS components and their influence on cognitive decline. In the present article, we discussed the role of these factors in the development of cognitive decline and dementia, including underlying mechanisms, supporting their influence on β-amyloid peptide metabolism and tau protein hyperphosphorylation, the principal neuropathological hallmarks of AD. In the next future, trials could then be undertaken to determine if modifications of these MetS components including inflammation, another factor probably related to MetS, could lower risk of developing cognitive decline. Future research aimed at identifying mechanisms that underlie comorbid associations of MetS components will not only provide important insights into the causes and interdependencies of predementia and dementia syndromes, but will also inspire novel strategies for treating and preventing cognitive disorders.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Aging/physiology
- Aging/psychology
- Alzheimer Disease/epidemiology
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Alzheimer Disease/therapy
- Amyloid beta-Peptides/metabolism
- Animals
- Biomarkers/metabolism
- Cholesterol, HDL/blood
- Cholesterol, HDL/standards
- Comorbidity
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/therapy
- Effect Modifier, Epidemiologic
- Humans
- Hyperlipidemias/blood
- Hyperlipidemias/epidemiology
- Hyperlipidemias/metabolism
- Hyperlipidemias/physiopathology
- Hyperlipidemias/therapy
- Hypertension/epidemiology
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/therapy
- Life Style
- Metabolic Syndrome/epidemiology
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/physiopathology
- Metabolic Syndrome/therapy
- Mice
- Obesity, Abdominal/epidemiology
- Obesity, Abdominal/metabolism
- Obesity, Abdominal/physiopathology
- Obesity, Abdominal/therapy
- Population Dynamics
- Risk Factors
- tau Proteins/metabolism
Collapse
Affiliation(s)
- Vincenza Frisardi
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Policlinico, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Li H, Lee CH, Yoo KY, Choi JH, Park OK, Yan BC, Byun K, Lee B, Hwang IK, Won MH. Chronic treatment of exendin-4 affects cell proliferation and neuroblast differentiation in the adult mouse hippocampal dentate gyrus. Neurosci Lett 2010; 486:38-42. [PMID: 20854877 DOI: 10.1016/j.neulet.2010.09.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/21/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Exendin-4 isolated from Heloderma suspectum venom acts via glucagon-like peptide 1 (GLP-1) receptor and has clinically been used in the type 2 diabetes. In this study, we investigated the effects of exendin-4 on cell proliferation and neuroblast differentiation in the subgranular zone (SGZ) of the dentate gyrus in mice. Exendin-4 was treated intraperitoneally to male ICR mice twice a day for 21 days. The exendin-4-treated group showed a significantly higher number of Ki67- (1.51-fold), doublecortin (DCX)- (2.5-fold) and 5-bromo-2'-deoxyuridine (BrdU)+DCX- (2.46-fold) immunoreactive cells in the SGZ of the dentate gyrus compared to the control group. The results of this study showed that treatment with exendin-4 increased cell proliferation neuroblast differentiation in the SGZ of the dentate gyrus, suggesting that exendin-4 promotes structural plasticity in the dentate gyrus.
Collapse
Affiliation(s)
- Hua Li
- Department of Anatomy and Neurobiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Leahy JL, Hirsch IB, Peterson KA, Schneider D. Targeting beta-cell function early in the course of therapy for type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95:4206-16. [PMID: 20739389 DOI: 10.1210/jc.2010-0668] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This report examines current perspectives regarding likely mechanisms of beta-cell failure in type 2 diabetes and their clinical implications for protecting or sparing beta-cells early in the disease progression. In addition, it considers translation strategies to incorporate relevant scientific findings into educational initiatives targeting clinical practice behavior. PARTICIPANTS On January 10, 2009, a working group of basic researchers, clinical endocrinologists, and primary care physicians met to consider whether current knowledge regarding pancreatic beta-cell defects justifies retargeting and retiming treatment for clinical practice. Based on this meeting, a writing group comprised of four meeting participants subsequently prepared this consensus statement. The conference was convened by The Endocrine Society and funded by an unrestricted educational grant from Novo Nordisk. EVIDENCE Participants reviewed and discussed published literature, plus their own unpublished data. CONSENSUS PROCESS The summary and recommendations were supported unanimously by the writing group as representing the consensus opinions of the working group. CONCLUSIONS Workshop participants strongly advocated developing new systems to address common barriers to glycemic control and recommended several initial steps toward this goal. These recommendations included further studies to establish the clinical value of pharmacological therapies, continuing basic research to elucidate the nature and mechanisms of beta-cell failure in type 2 diabetes mellitus, and exploring new educational approaches to promote pathophysiology-based clinical practices. The Endocrine Society has launched a new website to continue the discussion between endocrinologists and primary care physicians on beta-cell pathophysiology in type 2 diabetes and its clinical implications. Join the conversation at http://www.betacellsindiabetes.org
Collapse
Affiliation(s)
- Jack L Leahy
- Endocrine Unit, University of Vermont College of Medicine Colchester Research Facility, 208 South Park Drive, Colchester, Vermont 05446, USA.
| | | | | | | |
Collapse
|
235
|
Gulec G, Isbil-Buyukcoskun N, Kahveci N. Effects of centrally-injected glucagon-like peptide-1 on pilocarpine-induced seizures, anxiety and locomotor and exploratory activity in rat. Neuropeptides 2010; 44:285-91. [PMID: 20227110 DOI: 10.1016/j.npep.2010.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/09/2010] [Accepted: 02/17/2010] [Indexed: 12/29/2022]
Abstract
Glucagon-like peptide-1 (7-36)-amide (GLP-1) is a gut peptide, which exerts significant effects on glucose homeostasis. GLP-1 and GLP-1 receptors are also widely distributed in the central nervous system. In the present study, we aimed to investigate the effects of intracerebroventricularly (i.c.v.)-injected GLP-1 on pilocarpine-induced seizures, anxiety and locomotor and exploratory activity in rat. Rats were pretreated with GLP-1 (1-1000 ng/5 microl; i.c.v.) or saline (5 microl; i.c.v.) 30 min before seizure induction by pilocarpine (2.4 mg/5 microl; i.c.v.) and with GLP-1 (1, 10, 100 ng/5 microl; i.c.v.) or saline (5 microl; i.c.v.) 30 min before the open field test or the elevated plus maze test. GLP-1 did not produce any protective effect against pilocarpine-induced seizures and did not also produce statistically significant differences in the number of squares visited (measure of locomotor activity) or number of rearings (measure of exploratory behaviour), compared to the saline-treated rats in the open field test. On the other hand, GLP-1 (1 ng and 10 ng; i.c.v.) induced an anxiogenic effect, indicated by a decrease in the time spent in open arms, an increase in the time spent in closed arms, and a decrease in the anxiety scores in the elevated plus maze test. Pretreatment with an arginine vasopressin (AVP) V(1) receptor antagonist (125 ng/5 microl; i.c.v.) and L-NAME (100 microg/5 microl and 200 microg/5 microl) significantly abolished the anxiogenic effect of GLP-1 (1 ng/5 microl; i.c.v.). These results suggest that, centrally-injected GLP-1 produces anxiogenic effects via NO pathway and AVP V(1) receptors, but does not have any effects on pilocarpine-induced seizures or locomotor and exploratory activity in the open field test.
Collapse
Affiliation(s)
- Guldal Gulec
- Uludağ University, Medical Faculty Department of Physiology, Bursa, Turkey.
| | | | | |
Collapse
|
236
|
Vrang N, Larsen PJ. Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog Neurobiol 2010; 92:442-62. [PMID: 20638440 DOI: 10.1016/j.pneurobio.2010.07.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/01/2010] [Accepted: 07/10/2010] [Indexed: 12/16/2022]
Abstract
The scientific understanding of preproglucagon derived peptides has provided people with type 2 diabetes with two novel classes of glucose lowering agents, the dipeptidyl peptidase IV (DPP-IV) inhibitors and GLP-1 receptor agonists. For the scientists, the novel GLP-1 agonists, and DPP-IV inhibitors have evolved as useful tools to understand the role of the preproglucagon derived peptides in normal physiology and disease. However, the overwhelming interest attracted by GLP-1 analogues as potent incretins has somewhat clouded the efforts to understand the importance of preproglucagon derived peptides in other physiological contexts. In particular, our neurobiological understanding of the preproglucagon expressing neuronal pathways in the central nervous system as well as the degree to which central GLP-1 receptors are targeted by peripherally administered GLP-1 receptor agonists is still fairly limited. The role of GLP-1 as an anorectic neurotransmitter is well recognized, but clarification of the neuronal targets and physiological basis of this response is further warranted, as is the mapping of GLP-1 sensitive neurons involved in a variety of neuroendocrine and behavioral responses. Further recent evidence points to GLP-1 as a central neuropeptide with neuroprotective capabilities potentially mitigating a wide array of neurodegenerative conditions. It is the aim of the present review to summarize our current understanding of preproglucagon derived peptides as neurotransmitters in the central nervous system.
Collapse
Affiliation(s)
- Niels Vrang
- Gubra ApS, Ridebanevej 12, 1870 Frederiksberg, Denmark.
| | | |
Collapse
|
237
|
Li Y, Tweedie D, Mattson MP, Holloway HW, Greig NH. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 2010; 113:1621-31. [PMID: 20374430 PMCID: PMC2912144 DOI: 10.1111/j.1471-4159.2010.06731.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that glucagon-like peptide-1 (GLP-1), an incretin hormone of current interest in type 2 diabetes, is neuroprotective in both cell culture and animal models. To characterize the neuroprotective properties of GLP-1 and associated underlying mechanisms, we over-expressed the GLP-1 receptor (GLP-1R) on human neuroblastoma SH-SY5Y cells to generate a neuronal culture system featuring enhanced GLP-1R signaling. In GLP-1R over-expressing SH-SY5Y (SH-hGLP-1R#9) cells, GLP-1 and the long-acting agonist exendin-4 stimulated cell proliferation and increased cell viability by 2-fold at 24 h at physiologically relevant concentrations. This GLP-1R-dependent action was mediated via the protein kinase A and phosphoinositide 3-kinase signaling pathways, with the MAPK pathway playing a minor role. GLP-1 and exendin-4 pretreatment dose-dependently protected SH-hGLP-1R#9 cells from hydrogen peroxide (H(2)O(2))- and 6-hydroxydopamine-induced cell death. This involved amelioration of elevated caspase 3 activity, down-regulation of pro-apoptotic Bax and up-regulation of anti-apoptotic Bcl-2 protein. In the presence of 6-hydroxydopamine, GLP-1's ability to lower caspase-3 activity was abolished with the phosphoinositide 3-kinase inhibitor, LY2940002, and partly reduced with the protein kinase A inhibitor, H89. Hence, GLP-1R mediated neurotrophic and anti-apoptotic actions co-contribute to the neuroprotective property of GLP-1 in neuronal cell cultures, and reinforce the potential therapeutic value of GLP-1R agonists in neurodegenerative disorders involving oxidative stress.
Collapse
Affiliation(s)
- Yazhou Li
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - David Tweedie
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- MedStar Research Institute, Baltimore, MD, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Harold W. Holloway
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H. Greig
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
238
|
Gengler S, McClean PL, McCurtin R, Gault VA, Hölscher C. Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice. Neurobiol Aging 2010; 33:265-76. [PMID: 20359773 DOI: 10.1016/j.neurobiolaging.2010.02.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 02/04/2010] [Accepted: 02/19/2010] [Indexed: 01/09/2023]
Abstract
Diabetes is a risk factor for Alzheimer's disease. We tested the effects of Val(8)GLP-1, an enzyme-resistant analogue of the incretin hormone glucagon-like peptide 1 originally developed to treat diabetes in a mouse model of Alzheimer's disease that expresses mutated amyloid precursor protein (APP) and presenilin-1. We tested long term potentiation (LTP) of synaptic plasticity, inflammation response, and plaque formation. Val(8)GLP-1 crosses the blood-brain barrier when administered via intraperitoneal injection. Val(8)GLP-1 protected LTP in 9- and 18-month-old Alzheimer's disease mice when given for 3 weeks at 25 nmol/kg intraperitoneally. LTP was also enhanced in 18-month-old wild type mice, indicating that Val(8)GLP-1 also ameliorates age-related synaptic degenerative processes. Paired-pulse facilitation was also enhanced. The number of beta-amyloid plaques and microglia activation in the cortex increased with age but was not reduced by Val(8)GLP-1. In 18-month-old mice, however, the number of Congo red positive dense-core amyloid plaques was reduced. Treatment with Val(8)GLP-1 might prevent or delay neurodegenerative processes.
Collapse
Affiliation(s)
- Simon Gengler
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | | | | | | |
Collapse
|
239
|
Actions of exendin-4 therapy on cognitive function and hippocampal synaptic plasticity in mice fed a high-fat diet. Int J Obes (Lond) 2010; 34:1341-4. [PMID: 20351729 DOI: 10.1038/ijo.2010.59] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-calorie diet has been shown to impair learning ability and hippocampal synaptic plasticity in rodents. This study examined effects of daily treatment with the glucagon-like peptide-1 mimetic, exendin-4, on cognitive function and hippocampal synaptic plasticity in a model of diet-induced obesity, which exhibits compromised cognitive performance. Mice fed a high-fat diet were treated with exendin-4 (25 nmol kg(-1) bodyweight; twice daily) or saline vehicle (0.9% (w/v) NaCl) over 21 days. In addition to improving metabolic control, exendin-4-treated mice exhibited a marked increase in recognition index highlighting improved learning and memory. High-fat diet resulted in the elimination of in vivo electrophysiological long-term potentiation, which was rescued following exendin-4 treatment. This study shows that exendin-4 therapy improves cognitive function and ameliorates impaired hippocampal synaptic plasticity in dietary-induced obesity.
Collapse
|
240
|
Mattson MP. The impact of dietary energy intake on cognitive aging. Front Aging Neurosci 2010; 2:5. [PMID: 20552045 PMCID: PMC2874403 DOI: 10.3389/neuro.24.005.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/27/2010] [Indexed: 01/21/2023] Open
Abstract
Rodents that are insulin resistant and obese as the result of genetic factors, overeating and/or a sedentary lifestyle, exhibit cognitive deficits that worsen with advancing age compared to their more svelte counterparts. Data from epidemiological and clinical studies suggest similar adverse effects of excessive dietary energy intake and insulin resistance on cognition in humans. Our findings from studies of animal models suggest that dietary energy restriction can enhance neural plasticity and reduce the vulnerability of the brain to age-related dysfunction and disease. Dietary energy restriction may exert beneficial effects on the brain by engaging adaptive cellular stress response pathways resulting in the up-regulation of genes that encode proteins that promote neural plasticity and cell survival (e.g., neurotrophic factors, protein chaperones and redox enzymes). Two energy state-sensitive factors that are proving particularly important in regulating energy balance and improving/preserving cognitive function are brain-derived neurotrophic factor and glucagon-like peptide 1. Alternate day calorie restriction, novel insulin-sensitizing and neuroprotective agents, and drugs that activate adaptive stress response pathways, are examples of approaches for preserving cognitive function that show promise in preclinical studies.
Collapse
Affiliation(s)
- Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research ProgramBaltimore, MD, USA
| |
Collapse
|
241
|
Asmar M, Holst JJ. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: new advances. Curr Opin Endocrinol Diabetes Obes 2010; 17:57-62. [PMID: 19881341 DOI: 10.1097/med.0b013e3283339051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This article highlights recent advances in our understanding of glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) physiology and their various sites of action beyond the incretin effect. RECENT FINDINGS Both GLP-1 and GIP stimulate insulin secretion in a glucose-dependent manner and are thus classified as incretins. Beyond glucose-dependent insulin secretion, the peptides have common actions on islet beta cells, leading beta-cell proliferation and resistance to apoptosis. However, the action of GLP-1 and GIP is not limited to the islet cells; they have regulatory functions in many organs. Recent evidence has suggested that GLP-1 has important beneficial effects in the cardiovascular system and central nervous system. GIP may play a role in promoting energy storage in humans, enhances bone formation via stimulation of osteoblast proliferation and inhibition of apoptosis and may play a role in central nervous system function. SUMMARY These new findings suggest further application of these hormones for the treatment of conditions such as cardiovascular disease and obesity.
Collapse
Affiliation(s)
- Meena Asmar
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
242
|
Abstract
Type 2 diabetes has been identified as a risk factor for Alzheimer's disease (AD). The underlying mechanism behind this unexpected link is most likely linked to the observed desensitization of insulin receptors in the brain. Insulin acts as a growth factor in the brain and supports neuronal repair, dendritic sprouting, and differentiation. Several drugs have been developed to treat type 2 diabetes which re-synthesize insulin receptors and may be of use to prevent neurodegenerative developments in AD. The incretin glucagon-like peptide-1 (GLP-1) is a hormone that facilitates insulin release under high blood sugar conditions. Interestingly, GLP-1 also has very similar growth factor like properties as insulin, and has been shown to protect neurons from toxic effects. In preclinical studies, GLP-1 and longer lasting analogues reduce apoptosis, protect neurons from oxidative stress, induce neurite outgrowth, protect synaptic plasticity and memory formation from the detrimental effects of β-amyloid, and reduce plaque formation and the inflammation response in the brains of mouse models of AD. An advantage of GLP-1 is that it does not affect blood sugar levels in nondiabetic people. Furthermore, recent research has shown that some GLP-1 analogues can cross the blood-brain barrier, including two that are on the market as a treatment for type 2 diabetes. Therefore, GLP-1 analogues show great promise as a novel treatment for AD or other neurodegenerative conditions.
Collapse
|
243
|
Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW, Tweedie D, Perry T, Mattson MP, Kapogiannis D, Sambamurti K, Lahiri DK, Greig NH. GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer's disease. J Alzheimers Dis 2010; 19:1205-19. [PMID: 20308787 PMCID: PMC2948479 DOI: 10.3233/jad-2010-1314] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type 2 (T2) diabetes mellitus (DM) has been associated with an increased incidence of neurodegenerative disorders, including Alzheimer's disease (AD). Several pathological features are shared between diabetes and AD, including dysfunctional insulin signaling and a dysregulation of glucose metabolism. It has therefore been suggested that not only may the two conditions share specific molecular mechanisms but also that agents with proven efficacy in one may be useful against the other. Hence, the present study characterized the effects of a clinically approved long-acting analogue, exendin-4 (Ex-4), of the endogenous insulin releasing incretin, glucagon-like peptide-1 (GLP-1), on stress-induced toxicity in neuronal cultures and on amyloid-beta protein (Abeta) and tau levels in triple transgenic AD (3xTg-AD) mice with and without streptozocin (STZ)-induced diabetes. Ex-4 ameliorated the toxicity of Abeta and oxidative challenge in primary neuronal cultures and human SH-SY5Y cells in a concentration-dependent manner. When 11 to 12.5 month old female 3xTg AD mice were challenged with STZ or saline, and thereafter treated with a continuous subcutaneous infusion of Ex-4 or vehicle, Ex-4 ameliorated the diabetic effects of STZ in 3xTg-AD mice, elevating plasma insulin and lowering both plasma glucose and hemoglobin A1c (HbA1c) levels. Furthermore, brain levels of Abeta protein precursor and Abeta, which were elevated in STZ 3xTg-AD mice, were significantly reduced in Ex-4 treated mice. Brain tau levels were unaffected following STZ challenge, but showed a trend toward elevation that was absent following Ex-4 treatment. Together, these results suggest a potential value of Ex-4 in AD, particularly when associated with T2DM or glucose intolerance.
Collapse
Affiliation(s)
- Yazhou Li
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer's disease. Eur J Pharmacol 2009; 630:158-62. [PMID: 20035739 DOI: 10.1016/j.ejphar.2009.12.023] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 11/25/2009] [Accepted: 12/15/2009] [Indexed: 01/27/2023]
Abstract
Type 2 diabetes has been identified as a risk factor for patients with Alzheimer's disease. Insulin signalling is often impaired in Alzheimer's disease, contributing to the neurodegenerative process. One potential strategy to help prevent this is the normalisation of insulin signalling in the brain. Therefore, the present study was designed to test the effects of novel enzyme-resistant analogues of the insulin-releasing incretin hormone, glucagon-like peptide 1 (GLP-1). The effects of Liraglutide (Victoza) and other novel GLP-1 analogues were tested on synaptic plasticity (LTP) in area CA1 of the hippocampus. At a dose of 15nmol in 5microl i.c.v., Liraglutide (P<0.005), Asp(7)GLP-1 (P<0.001), N-glyc-GLP-1 (P<0.01), and Pro(9)GLP-1 (P<0.001). In contrast, the GLP-1 receptor antagonist exendin(9-39)amide impaired LTP (P<0.001). Co-injection of exendin(9-39) and Liraglutide showed no effect on LTP. These results clearly demonstrate that Liraglutide and other GLP-1 analogues elicit effects on neurotransmission in the brain. Furthermore, GLP-1 peptides are not only effective in modulating insulin-release and achieving glycaemic control in type 2 diabetes, but are also effective in modulating synaptic plasticity. These findings are consistent with our previous observations that the novel analogue (Val(8))GLP-1 enhances LTP and reverses the impairments of LTP induced by beta-amyoid fragments. Therefore, the drug effects seen here could potentially ameliorate the impairments in neuronal communication and cognitive processes observed in Alzheimer's disease.
Collapse
|
245
|
Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: Interaction between type 2 diabetes and Alzheimer's disease. Behav Brain Res 2009; 205:265-71. [DOI: 10.1016/j.bbr.2009.06.035] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/20/2009] [Accepted: 06/22/2009] [Indexed: 12/12/2022]
|
246
|
Microglial downregulation in a double transgenic mouse model associated with early-onset Alzheimer's disease (AD) after intraventricular implantation of alginate encapsulated Glukagon-like-peptide-1 (GLP-1) producing human mesenchymal stem-cells. Cerebrospinal Fluid Res 2009. [PMCID: PMC2786122 DOI: 10.1186/1743-8454-6-s2-s15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
247
|
Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 2009; 20:1161-6. [PMID: 19617854 DOI: 10.1097/wnr.0b013e32832fbf14] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glucagon-like-peptide-1 is an incretin hormone that also has neuroprotective properties. Here we analyse where glucagon-like-peptide-1 receptors are expressed in the brain. The receptor is found only on neurons, not on glia cells. The pyramidal cell layer of the CA region and the granule cell layer of the dentate gyrus in the hippocampus show intense staining. In the neocortex, larger pyramidal neurons express the receptor. In the cerebellum, only Purkinje neurons express the receptor. Dendrites of larger neurons were stained; in particular, pyramidal cells in area CA and dendrites of Purkinje cells. The fact that the receptor is located on neurons and dendrites suggests that the neuroprotective action is caused by the modulation of neuronal excitation.
Collapse
|
248
|
Thathiah A, De Strooper B. G protein-coupled receptors, cholinergic dysfunction, and Abeta toxicity in Alzheimer's disease. Sci Signal 2009; 2:re8. [PMID: 19843960 DOI: 10.1126/scisignal.293re8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The beta-amyloid (Abeta) peptide is associated with the pathogenesis of Alzheimer's disease (AD). Evidence gathered over the last two decades suggests that the gradual accumulation of soluble and insoluble Abeta peptide species triggers a cascade of events that leads to the clinical manifestation of AD. Abeta accumulation has also been associated with the cholinergic dysfunction observed in AD, which is characterized by diminished acetylcholine release and impaired coupling of the muscarinic acetylcholine receptors (mAChRs) to heterotrimeric GTP-binding proteins (G proteins). Although the mechanism of Abeta-mediated toxicity is not clearly understood, evidence shows that Abeta accumulation has an effect on the oligomerization of the angiotensin II (AngII) AT(2) (angiotensin type 2) receptor and sequestration of the Galpha(q/11) family of G proteins. Sequestration of Galpha(q/11) results in dysfunctional coupling and signaling between M(1) mAChR and Galpha(q/11) and accompanies neurodegeneration, tau phosphorylation, and neuronal loss in an AD transgenic mouse model. Collectively, these results provide a putative link among Abeta toxicity, AT(2) receptor oligomerization, and disruption of the signaling pathway through M(1) mAChR and Galpha(q/11) and potentially contribute to our understanding of the cholinergic deficit observed in AD.
Collapse
|
249
|
Belsham DD, Fick LJ, Dalvi PS, Centeno ML, Chalmers JA, Lee PKP, Wang Y, Drucker DJ, Koletar MM. Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons. FASEB J 2009; 23:4256-65. [PMID: 19703933 DOI: 10.1096/fj.09-133454] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The distinct lack of cell lines derived from the adult brain is evident. Ciliary neurotrophic factor (CNTF) triggers neurogenesis in primary culture from adult mouse hypothalamus, as detected by bromodeoxyuridine and Ki67 immunostaining. Using SV-40 T-antigen, we immortalized dividing neurons and generated clonal cell lines expressing neuropeptides and receptors involved in neuroendocrine function. We hypothesized that proglucagon-derived peptides may be the mechanistic downstream effectors of CNTF due to documented neuroprotective and proliferative effects. Indeed, proglucagon gene expression was induced by CNTF, and exposure of primary cells to glucagon-like peptide-1 receptor (GLP-1) agonist, exendin-4, induced cell proliferation. Intracerebroventricular injection of CNTF into adult mice caused increased expression of proglucagon peptide in the hypothalamus. Using a specific GLP-1-receptor antagonist, we found that neurogenesis was significantly attenuated and primary culture from GLP-1-receptor-knockout mice lacked CNTF-mediated neuronal proliferation, thus linking the induction of neurogenesis in the hypothalamus to GLP-1-receptor signaling.
Collapse
Affiliation(s)
- Denise D Belsham
- Department of Physiology, University of Toronto, Medical Sciences Bldg. 3247A, 1 King's College Cir., Toronto, ON M5S1A8, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Heile AMB, Wallrapp C, Klinge PM, Samii A, Kassem M, Silverberg G, Brinker T. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett 2009; 463:176-81. [PMID: 19638295 DOI: 10.1016/j.neulet.2009.07.071] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE "Naked" human mesenchymal stem cells (MSC) are neuro-protective in experimental brain injury (TBI). In a controlled cortical impact (CCI) rat model, we investigated whether encapsulated MSC (eMSC) act similarly, and whether efficacy is augmented using cells transfected to produce the neuro-protective substance glucagon-like peptide-1 (GLP-1). METHODS Thirty two Sprague-Dawley rats were randomized to five groups: controls (no CCI), CCI-only, CCI+eMSC, CCI+GLP-1 eMSC, and CCI+empty capsules. On day 14, cisternal cerebro-spinal fluid (CSF) was sampled for measurement of GLP-1 concentration. Brains were immuno-histochemically assessed using specific antibody staining for NeuN, MAP-2 and GFAP. In another nine healthy rats, in vitro. RESULTS GLP-1 production rates were measured from cells explanted after 2, 7 and 14 days. GLP-1 production rate in transfected cells, before implantation, was 7.03 fmol/capsule/h. Cells were still secreting GLP-1 at a rate of 3.68+/-0.49, 2.85+/-0.45 and 3.53+/-0.55 after 2, 7 and 14 days, respectively. In both of the stem cell treated CCI groups, hippocampal cell loss was reduced, along with an attenuation of cortical neuronal and glial abnormalities, as measured by MAP-2 and GFAP expression. The effects were more pronounced in animals treated with GLP-1 secreting eMSC. This group displayed an increased CSF level of GLP-1 (17.3+/-3.4pM). CONCLUSIONS Hippocampal neuronal cell loss, and cortical glial and neuronal cyto-skeletal abnormalities, after CCI are reduced following transplantation of encapsulated eMSC. These effects were augmented by GLP-1 transfected eMSC.
Collapse
Affiliation(s)
- Anna M B Heile
- International Neuroscience Institute GmbH, Rudolf-Pichlmayr-Str. 4, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|