201
|
Lou X, Zhang J, Liu S, Xu N, Liao DJ. The other side of the coin: the tumor-suppressive aspect of oncogenes and the oncogenic aspect of tumor-suppressive genes, such as those along the CCND-CDK4/6-RB axis. Cell Cycle 2014; 13:1677-93. [PMID: 24799665 DOI: 10.4161/cc.29082] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although cancer-regulatory genes are dichotomized to oncogenes and tumor-suppressor gene s, in reality they can be oncogenic in one situation but tumor-suppressive in another. This dual-function nature, which sometimes hampers our understanding of tumor biology, has several manifestations: (1) Most canonically defined genes have multiple mRNAs, regulatory RNAs, protein isoforms, and posttranslational modifications; (2) Genes may interact at different levels, such as by forming chimeric RNAs or by forming different protein complexes; (3) Increased levels of tumor-suppressive genes in normal cells drive proliferation of cancer progenitor cells in the same organ or tissue by imposing compensatory proliferation pressure, which presents the dual-function nature as a cell-cell interaction. All these manifestations of dual functions can find examples in the genes along the CCND-CDK4/6-RB axis. The dual-function nature also underlies the heterogeneity of cancer cells. Gene-targeting chemotherapies, including that targets CDK4, are effective to some cancer cells but in the meantime may promote growth or progression of some others in the same patient. Redefining "gene" by considering each mRNA, regulatory RNA, protein isoform, and posttranslational modification from the same genomic locus as a "gene" may help in better understanding tumor biology and better selecting targets for different sub-populations of cancer cells in individual patients for personalized therapy.
Collapse
Affiliation(s)
- Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology; Cancer Institute; Chinese Academy of Medical Science; Beijing, PR China
| | - D Joshua Liao
- Hormel Institute; University of Minnesota; Austin, MN USA
| |
Collapse
|
202
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
203
|
Juan WC, Roca X, Ong ST. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing. PLoS One 2014; 9:e95210. [PMID: 24743263 PMCID: PMC3990581 DOI: 10.1371/journal.pone.0095210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022] Open
Abstract
Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3′ end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.
Collapse
Affiliation(s)
- Wen Chun Juan
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (XR); (STO)
| | - S. Tiong Ong
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Chapel Hill, North Carolina, United States of America
- * E-mail: (XR); (STO)
| |
Collapse
|
204
|
Homer1 alternative splicing is regulated by gonadotropin-releasing hormone and modulates gonadotropin gene expression. Mol Cell Biol 2014; 34:1747-56. [PMID: 24591653 DOI: 10.1128/mcb.01401-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) plays a critical role in reproductive physiology by regulating follicle-stimulating hormone (FSH) and luteinizing hormone (LH) gene expression in the pituitary. Analysis of gonadotrope deep-sequencing data identified a global regulation of pre-mRNA splicing by GnRH. Homer1, a gene encoding a postsynaptic density scaffolding protein, was selected for further study. Homer1 expresses a short splice form, Homer1a, and more-abundant long transcripts Homer1b/c. GnRH induced a modest increase in Homer1b/c expression and a dramatic increase in the Homer1a splice form. G protein knockdown studies suggested that the Homer1 induction, but not the regulated splicing, was Gαq/11 dependent. Phosphorylation of the splicing regulator SRp20 was found to be induced by GnRH. SRp20 depletion attenuated the GnRH-induced increase in the Homer1a-to-Homer1b/c ratio and modulated the effects of GnRH on FSHβ and LHβ expression. Homer1 gene knockdown resulted in increased GnRH-induced FSHβ and LHβ transcript levels. Furthermore, splice-form-specific reduction of Homer1b/c increased both FSHβ and LHβ mRNA induction, whereas reduction of Homer1a had the opposite effect on FSHβ induction. These results indicate that the regulation of Homer1 splicing by GnRH contributes to gonadotropin gene control.
Collapse
|
205
|
De Meulder B, Berger F, Bareke E, Depiereux S, Michiels C, Depiereux E. Meta-analysis and gene set analysis of archived microarrays suggest implication of the spliceosome in metastatic and hypoxic phenotypes. PLoS One 2014; 9:e86699. [PMID: 24497970 PMCID: PMC3908947 DOI: 10.1371/journal.pone.0086699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/10/2013] [Indexed: 12/17/2022] Open
Abstract
We propose to make use of the wealth of underused DNA chip data available in public repositories to study the molecular mechanisms behind the adaptation of cancer cells to hypoxic conditions leading to the metastatic phenotype. We have developed new bioinformatics tools and adapted others to identify with maximum sensitivity those genes which are expressed differentially across several experiments. The comparison of two analytical approaches, based on either Over Representation Analysis or Functional Class Scoring, by a meta-analysis-based approach, led to the retrieval of known information about the biological situation - thus validating the model - but also more importantly to the discovery of the previously unknown implication of the spliceosome, the cellular machinery responsible for mRNA splicing, in the development of metastasis.
Collapse
Affiliation(s)
- Bertrand De Meulder
- Microorganism Biology Research Unit -NARILIS, University of Namur, Namur, Belgium
| | - Fabrice Berger
- Microorganism Biology Research Unit -NARILIS, University of Namur, Namur, Belgium
| | - Eric Bareke
- Sainte Justine University Hospital Center Research Center, University of Montreal, Montreal, Canada
| | - Sophie Depiereux
- Environmental and Evolutional Research Unit, University of Namur, Namur, Belgium
| | - Carine Michiels
- Cellular Biology Research Unit - NARILIS, University of Namur, Namur, Belgium
| | - Eric Depiereux
- Microorganism Biology Research Unit -NARILIS, University of Namur, Namur, Belgium
- * E-mail:
| |
Collapse
|
206
|
Identification of p53 and its isoforms in human breast carcinoma cells. ScientificWorldJournal 2014; 2014:618698. [PMID: 24511294 PMCID: PMC3913390 DOI: 10.1155/2014/618698] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/12/2013] [Indexed: 02/03/2023] Open
Abstract
In breast carcinoma, disruption of the p53 pathway is one of the most common genetic alterations. The observation that the p53 can express multiple protein isoforms adds a novel level of complexity to the outcome of p53 mutations. p53 expression was analysed by Western immunoblotting and immunohistochemistry using monoclonal antibodies DO-7, Pab240, and polyclonal antiserum CM-1. The more frequently p53-positive nuclear staining has been found in the invasive breast tumors. One of the most intriguing findings is that mutant p53 appears as discrete dot-shaped regions within the nucleus of breast cancer cells. In many malignant cells, the nucleolar sequestration of p53 is evident. These observations support the view that the nucleolus is involved directly in the mediation of p53 function or indirectly by the control of the localization of p53 interplayers. p53 expressed in the nuclear fraction of breast cancer cells revealed a wide spectrum of isoforms. p53 isoforms ΔNp53 (47 kDa) and Δ133p53 β (35 kDa), known as dominant-negative repressors of p53 function, were detected as the most predominant variants in nuclei of invasive breast carcinoma cells. The isoforms expressed also varied between individual tumors, indicating potential roles of these p53 variants in human breast cancer.
Collapse
|
207
|
An integrative framework identifies alternative splicing events in colorectal cancer development. Mol Oncol 2013; 8:129-41. [PMID: 24189147 DOI: 10.1016/j.molonc.2013.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/17/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) is a common mechanism which creates diverse RNA isoforms from a single gene, potentially increasing protein variety. Growing evidence suggests that this mechanism is closely related to cancer progression. In this study, whole transcriptome analysis was performed with GeneChip Human exon 1.0 ST Array from 80 samples comprising 23 normal colon mucosa, 30 primary colorectal cancer and 27 liver metastatic specimens from 46 patients, to identify AS events in colorectal cancer progression. Differentially expressed genes and exons were estimated and AS events were reconstructed by combining exon-level analyses with AltAnalyze algorithms and transcript-level estimations (MMBGX probabilistic method). The number of AS genes in the transition from normal colon mucosa to primary tumor was the most abundant, but fell considerably in the next transition to liver metastasis. 206 genes with probable AS events in colon cancer development and progression were identified, that are involved in processes and pathways relevant to tumor biology, as cell-cell and cell-matrix interactions. Several AS events in VCL, CALD1, B3GNT6 and CTHRC1 genes, differentially expressed during tumor development were validated, at RNA and at protein level. Taken together, these results demonstrate that cancer-specific AS is common in early phases of colorectal cancer natural history.
Collapse
|
208
|
Liu S, Cheng C. Alternative RNA splicing and cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2013; 4:547-66. [PMID: 23765697 PMCID: PMC4426271 DOI: 10.1002/wrna.1178] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 01/04/2023]
Abstract
Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells.
Collapse
Affiliation(s)
- Sali Liu
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
209
|
Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ, Guccione E. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 2013; 27:1903-16. [PMID: 24013503 PMCID: PMC3778243 DOI: 10.1101/gad.219899.113] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
The tight control of gene expression at the level of both transcription and post-transcriptional RNA processing is essential for mammalian development. We here investigate the role of protein arginine methyltransferase 5 (PRMT5), a putative splicing regulator and transcriptional cofactor, in mammalian development. We demonstrate that selective deletion of PRMT5 in neural stem/progenitor cells (NPCs) leads to postnatal death in mice. At the molecular level, the absence of PRMT5 results in reduced methylation of Sm proteins, aberrant constitutive splicing, and the alternative splicing of specific mRNAs with weak 5' donor sites. Intriguingly, the products of these mRNAs are, among others, several proteins regulating cell cycle progression. We identify Mdm4 as one of these key mRNAs that senses the defects in the spliceosomal machinery and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in vivo. Our data demonstrate that PRMT5 is a master regulator of splicing in mammals and uncover a new role for the Mdm4 pre-mRNA, which could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Marco Bezzi
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Shun Xie Teo
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Julius Muller
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Wei Chuen Mok
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Sanjeeb Kumar Sahu
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Leah A. Vardy
- Institute of Medical Biology (IMB), A*STAR, Singapore 138673, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zahid Q. Bonday
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
210
|
Pérez-Carro R, Sánchez-Alcudia R, Pérez B, Navarrete R, Pérez-Cerdá C, Ugarte M, Desviat LR. Functional analysis and in vitro correction of splicing FAH mutations causing tyrosinemia type I. Clin Genet 2013; 86:167-71. [PMID: 23895425 DOI: 10.1111/cge.12243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/23/2013] [Indexed: 01/16/2023]
Abstract
Hereditary tyrosinemia type I (HT1) is a rare disease caused by a deficiency of fumarylacetoacetate hydrolase (FAH) in the tyrosine catabolic pathway, resulting mainly in hepatic alterations due to accumulation of the toxic metabolites fumarylacetoacetate, maleylacetoacetate and succinylacetone. We have characterized using minigenes four splicing mutations affecting exonic or intronic nucleotides of the FAH gene identified in two HT1 patients. Two of the mutations are novel, c.82-1G>A and c.913G>C and the other two have been previously associated with a splicing defect (c.836A>G and c.1062+5G>A). All mutations were confirmed to affect splicing in minigenes, resulting in exon skipping or activation of a cryptic splice site. We have analyzed the effect of different compounds known to modulate splicing (valproic acid, phenyl butyrate, M344, EIPA, and resveratrol) and the overexpression of splice factors of the SR protein family on the transcriptional profile of the mutant minigenes. For the c.836A>G mutation, a partial recovery of the correctly spliced transcript was observed. These results confirm the relevance of performing functional studies for mutations potentially affecting the splicing process and open the possibility of supplementary therapeutic approaches to diseases caused by splicing defects.
Collapse
Affiliation(s)
- R Pérez-Carro
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma, CIBERER, IdiPaz, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
211
|
Cox RH, Fromme SJ. A naturally occurring truncated Cav1.2 α1-subunit inhibits Ca2+ current in A7r5 cells. Am J Physiol Cell Physiol 2013; 305:C896-905. [PMID: 23926129 DOI: 10.1152/ajpcell.00217.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alternative splicing of the voltage-gated Ca(2+) (CaV) α1-subunit adds to the functional diversity of Ca(2+) channels. A variant with a 73-nt deletion in exon 15 of the Cav1.2 α1-subunit (Cav1.2Δ73) produced by alternative splicing that predicts a truncated protein has been described, but its function, if any, is unknown. We sought to determine if, by analogy to other truncated CaV α1-subunits, Cav1.2Δ73 acts as an inhibitor of wild-type Cav1.2 currents. HEK-293 cells were transfected with Cav1.2Δ73 in a pIRES vector with CD8 or in pcDNA3.1 with a V5/his COOH-terminal tag plus β2 and α2δ1 accessory subunits and pEGFP. Production of Cav1.2Δ73 protein was confirmed by Western blotting and immunofluorescence. Voltage-clamp studies revealed the absence of functional channels in transfected cells. In contrast, cells transfected with full-length Cav1.2 plus accessory subunits and pEGFP exhibited robust Ca(2+) currents. A7r5 cells exhibited endogenous Cav1.2-based currents that were greatly reduced (>80%) without a change in voltage-dependent activation when transfected with Cav1.2Δ73-IRES-CD8 compared with empty vector or pIRES-CD8 controls. Transfection of A7r5 cells with an analogous Cav2.3Δ73-IRES-CD8 had no effect on Ca(2+) currents. Immunofluorescence showed intracellular, but not plasma membrane, localization of Cav1.2Δ73-V5/his, as well as colocalization with an endoplasmic reticulum marker, ER Organelle Lights. Expression of Cav1.2Δ73 α1-subunits in A7r5 cells inhibits endogenous Cav1.2 currents. The fact that this variant arises naturally by alternative splicing raises the possibility that it may represent a physiological mechanism to modulate Cav1.2 functional activity.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Studies, Lankenau Institute for Medical Research, Main Line Health System, Wynnewood, Pennsylvania
| | | |
Collapse
|
212
|
Osteopontin and splice variant expression level in human malignant glioma: radiobiologic effects and prognosis after radiotherapy. Radiother Oncol 2013; 108:535-40. [PMID: 23891093 DOI: 10.1016/j.radonc.2013.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. MATERIAL AND METHODS The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. RESULTS Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. CONCLUSIONS OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival.
Collapse
|
213
|
Chen J, Yang JT, Doctor DL, Rawlins BA, Shields BC, Vaughn JC. 5'-UTR mediated translational control of splicing assembly factor RNP-4F expression during development of the Drosophila central nervous system. Gene 2013; 528:154-62. [PMID: 23892091 DOI: 10.1016/j.gene.2013.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022]
Abstract
Drosophila RNP-4F is a highly conserved protein from yeast to human and functions as a spliceosome assembly factor during pre-mRNA splicing. Two major developmentally regulated rnp-4f mRNA isoforms have been described during fly development, designated "long" and "short," differing by a 177-nt tract in the 5'-UTR. This region potentially folds into a single long stable stem-loop by pairing of intron 0 and part of exon 2. Since the coding potential for the two isoforms is identical, the interesting question arises as to the functional significance of this evolutionarily-conserved 5'-UTR feature. Here we describe the effects of wild-type and mutated stem-loop on modulation of rnp-4f gene expression in embryos using a GFP reporter assay. In this work, a new GFP expression vector designated pUAS-Neostinger was constructed. The UAS-GAL4 system was utilized to trigger GFP expression using tissue-specific promoter driver fly lines. Fluorescence microscopy visualization, Western blotting and real-time qRT-PÇR were used to study and quantify GFP reporter protein and mRNA levels. A significant increase in GFP reporter protein expression due to presence of the wild-type stem-loop sequence/structure was unexpectedly observed with no concomitant increase in GFP reporter mRNA levels, showing that the 177-nt region enhancement acts posttranscriptionally. The effects of potential cis-acting elements within the stem-loop were evaluated using the reporter assay in two mutant constructs. Results of GFP reporter over-expression show that RNP-4F translational regulation is highly sensitive in the developing fly central nervous system. The potential molecular mechanism behind the observed translational enhancement is discussed.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | |
Collapse
|
214
|
Maccioni L, Rachakonda PS, Bermejo JL, Planelles D, Requena C, Hemminki K, Nagore E, Kumar R. Variants at the 9p21 locus and melanoma risk. BMC Cancer 2013; 13:325. [PMID: 23816148 PMCID: PMC3702420 DOI: 10.1186/1471-2407-13-325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/27/2013] [Indexed: 12/16/2022] Open
Abstract
Background The influence of variants at the 9p21 locus on melanoma risk has been reported through investigation of CDKN2A variants through candidate gene approach as well as by genome wide association studies (GWAS). Methods In the present study we genotyped, 25 SNPs that tag 273 variants on chromosome 9p21 in 837 melanoma cases and 1154 controls from Spain. Ten SNPs were selected based on previous associations, reported in GWAS, with either melanocytic nevi or melanoma risk or both. The other 15 SNPs were selected to fine map the CDKN2A gene region. Results All the 10 variants selected from the GWAS showed statistically significant association with melanoma risk. Statistically significant association with melanoma risk was also observed for the carriers of the variant T-allele of rs3088440 (540 C>T) at the 3’ UTR of CDKN2A gene with an OR 1.52 (95% CI 1.14-2.04). Interaction analysis between risk associated polymorphisms and previously genotyped MC1R variants, in the present study, did not show any statistically significant association. Statistical significant association was observed for the interaction between phototypes and the rs10811629 (located in intron 5 of MTAP). The strongest association was observed between the homozygous carrier of the A–allele and phototype II with an OR of 15.93 (95% CI 5.34-47.54). Conclusions Our data confirmed the association of different variants at chromosome 9p21 with melanoma risk and we also found an association of a variant with skin phototypes.
Collapse
Affiliation(s)
- Livia Maccioni
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance. Int J Cell Biol 2013; 2013:973584. [PMID: 23935627 PMCID: PMC3713377 DOI: 10.1155/2013/973584] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/13/2013] [Indexed: 01/07/2023] Open
Abstract
Overexpression of human epidermal growth factor receptor (HER-2) occurs in 20-30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant Δ16HER-2 (results from exon 16 skipping) increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention) and p100 (results from intron 15 retention) inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. "Individualised" strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets.
Collapse
|
216
|
Carvalho RF, Feijão CV, Duque P. On the physiological significance of alternative splicing events in higher plants. PROTOPLASMA 2013; 250:639-50. [PMID: 22961303 DOI: 10.1007/s00709-012-0448-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 08/16/2012] [Indexed: 05/05/2023]
Abstract
Alternative splicing, which generates multiple transcripts from the same gene and potentially different protein isoforms, is a key posttranscriptional regulatory mechanism for expanding proteomic diversity and functional complexity in higher eukaryotes. The most recent estimates, based on whole transcriptome sequencing, indicate that about 95 % of human and 60 % of Arabidopsis multi-exon genes undergo alternative splicing, suggesting important roles for this mechanism in biological processes. However, while the misregulation of alternative splicing has been associated with many human diseases, its biological relevance in plant systems is just beginning to unfold. We review here the few plant genes for which the production of multiple splice isoforms has been reported to have a clear in vivo functional impact. These case studies implicate alternative splicing in the control of a wide range of physiological and developmental processes, including photosynthetic and starch metabolism, hormone signaling, seed germination, root growth and flowering, as well as in biotic and abiotic stress responses. Future functional characterization of alternative splicing events and identification of the transcripts targeted by major regulators of this versatile means of modulating gene expression should uncover the breadth of its physiological significance in higher plants.
Collapse
Affiliation(s)
- Raquel F Carvalho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | | |
Collapse
|
217
|
Spradling KD, Glenn JP, Garcia R, Shade RE, Cox LA. The baboon kidney transcriptome: analysis of transcript sequence, splice variants, and abundance. PLoS One 2013; 8:e57563. [PMID: 23637735 PMCID: PMC3634053 DOI: 10.1371/journal.pone.0057563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/24/2013] [Indexed: 12/25/2022] Open
Abstract
The baboon is an invaluable model for the study of human health and disease, including many complex diseases of the kidney. Although scientists have made great progress in developing this animal as a model for numerous areas of biomedical research, genomic resources for the baboon, such as a quality annotated genome, are still lacking. To this end, we characterized the baboon kidney transcriptome using high-throughput cDNA sequencing (RNA-Seq) to identify genes, gene variants, single nucleotide polymorphisms (SNPs), insertion-deletion polymorphisms (InDels), cellular functions, and key pathways in the baboon kidney to provide a genomic resource for the baboon. Analysis of our sequencing data revealed 45,499 high-confidence SNPs and 29,813 InDels comparing baboon cDNA sequences with the human hg18 reference assembly and identified 35,900 cDNAs in the baboon kidney, including 35,150 transcripts representing 15,369 genic genes that are novel for the baboon. Gene ontology analysis of our sequencing dataset also identified numerous biological functions and canonical pathways that were significant in the baboon kidney, including a large number of metabolic pathways that support known functions of the kidney. The results presented in this study catalogues the transcribed mRNAs, noncoding RNAs, and hypothetical proteins in the baboon kidney and establishes a genomic resource for scientists using the baboon as an experimental model.
Collapse
Affiliation(s)
- Kimberly D Spradling
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America.
| | | | | | | | | |
Collapse
|
218
|
Korvatska O, Strand NS, Berndt JD, Strovas T, Chen DH, Leverenz JB, Kiianitsa K, Mata IF, Karakoc E, Greenup JL, Bonkowski E, Chuang J, Moon RT, Eichler EE, Nickerson DA, Zabetian CP, Kraemer BC, Bird TD, Raskind WH. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum Mol Genet 2013; 22:3259-68. [PMID: 23595882 DOI: 10.1093/hmg/ddt180] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We report a novel gene for a parkinsonian disorder. X-linked parkinsonism with spasticity (XPDS) presents either as typical adult onset Parkinson's disease or earlier onset spasticity followed by parkinsonism. We previously mapped the XPDS gene to a 28 Mb region on Xp11.2-X13.3. Exome sequencing of one affected individual identified five rare variants in this region, of which none was missense, nonsense or frame shift. Using patient-derived cells, we tested the effect of these variants on expression/splicing of the relevant genes. A synonymous variant in ATP6AP2, c.345C>T (p.S115S), markedly increased exon 4 skipping, resulting in the overexpression of a minor splice isoform that produces a protein with internal deletion of 32 amino acids in up to 50% of the total pool, with concomitant reduction of isoforms containing exon 4. ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in Parkinson's disease. Reduction of the full-size ATP6AP2 transcript in XPDS cells and decreased level of ATP6AP2 protein in XPDS brain may compromise V-ATPase function, as seen with siRNA knockdown in HEK293 cells, and may ultimately be responsible for the pathology. Another synonymous mutation in the same exon, c.321C>T (p.D107D), has a similar molecular defect of exon inclusion and causes X-linked mental retardation Hedera type (MRXSH). Mutations in XPDS and MRXSH alter binding sites for different splicing factors, which may explain the marked differences in age of onset and manifestations.
Collapse
Affiliation(s)
- Olena Korvatska
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
First deep intronic mutation in the NOTCH3 gene in a family with late-onset CADASIL. Neurobiol Aging 2013; 34:2234.e9-12. [PMID: 23587639 DOI: 10.1016/j.neurobiolaging.2013.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 03/02/2013] [Accepted: 03/11/2013] [Indexed: 11/24/2022]
Abstract
CADASIL is the most prominent inherited form of vascular dementia. The main clinical features include migraine with aura, stroke, mood disturbances, and cognitive decline, with a mid-life (30s-60s) adult onset. Genetic testing is the gold standard for the diagnosis. CADASIL is caused mostly by missense mutations in the NOTCH3 gene, invariably involving a cysteine residue. Only a couple of splice site mutations have been reported. In a few pathologically defined patients, genetic mutations remain unidentified. We report a family with late-onset CADASIL phenotype carrying a novel intronic deletion in the NOTCH3 gene (c.341-26_24delAAC). Transcript analysis revealed a splicing alteration, with the complete intron 3 retention. The insertion was in-frame and encoded an extra 25 amino acids, including 1 cysteine. This is the first report of an aberrant splicing event of the NOTCH3 gene associated with a mutation far away from the canonical splice site. Our finding suggests that the assays used to evaluate splicing should be mandatory in the diagnostic setting of genetically undefined CADASIL cases.
Collapse
|
220
|
Yang W, Ni L, Silveyra P, Wang G, Noutsios GT, Singh A, DiAngelo SL, Sanusi O, Raval M, Floros J. Motifs within the CA-repeat-rich region of Surfactant Protein B (SFTPB) intron 4 differentially affect mRNA splicing. JOURNAL OF MOLECULAR BIOCHEMISTRY 2013; 2:40-55. [PMID: 23687636 PMCID: PMC3656664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The first half of the surfactant protein B (SP-B) gene intron 4 is a CA-repeat-rich region that contains 11 motifs. To study the role of this region on SP-B mRNA splicing, minigenes were generated by systematic removal of motifs from either the 5' or 3' end. These were transfected in CHO cells to study their splicing efficiency. The latter was determined as the ratio of completely to incompletely spliced SP-B RNA. Our results indicate that SP-B intron 4 motifs differentially affect splicing. Motifs 8 and 9 significantly enhanced and reduced splicing of intron 4, respectively. RNA mobility shift assays performed with a Motif 8 sequence that contains a CAUC cis-element and cell extracts resulted in a RNA:protein shift that was lost upon mutation of the element. Furthermore, in silico analysis of mRNA secondary structure stability for minigenes with and without motif 8 indicated a correlation between mRNA stability and splicing ratio. We conclude that differential loss of specific intron 4 motifs results in one or more of the following: a) altered splicing, b) differences in RNA stability and c) changes in secondary structure. These, in turn, may affect SP-B content in lung health or disease.
Collapse
Affiliation(s)
- Wenjun Yang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Lan Ni
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Patricia Silveyra
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Guirong Wang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Georgios T Noutsios
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Anamika Singh
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Susan L DiAngelo
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Olabisi Sanusi
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Manmeet Raval
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
- Department of Obstetrics and Gynecology, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
221
|
Dasgupta T, Stillwagon SJ, Ladd AN. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice. PLoS One 2013; 8:e56590. [PMID: 23437181 PMCID: PMC3577904 DOI: 10.1371/journal.pone.0056590] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/11/2013] [Indexed: 01/04/2023] Open
Abstract
Members of the CUG-BP, Elav-like family (CELF) regulate alternative splicing in the heart. In MHC-CELFΔ transgenic mice, CELF splicing activity is inhibited postnatally in heart muscle via expression of a nuclear dominant negative CELF protein under an α-myosin heavy chain promoter. MHC-CELFΔ mice develop dilated cardiomyopathy characterized by alternative splicing defects, enlarged hearts, and severe contractile dysfunction. In this study, gene expression profiles in the hearts of wild type, high- and low-expressing lines of MHC-CELFΔ mice were compared using microarrays. Gene ontology and pathway analyses identified contraction and calcium signaling as the most affected processes. Network analysis revealed that the serum response factor (SRF) network is highly affected. Downstream targets of SRF were up-regulated in MHC-CELFΔ mice compared to the wild type, suggesting an increase in SRF activity. Although SRF levels remained unchanged, known inhibitors of SRF activity were down-regulated. Conversely, we found that these inhibitors are up-regulated and downstream SRF targets are down-regulated in the hearts of MCKCUG-BP1 mice, which mildly over-express CELF1 in heart and skeletal muscle. This suggests that changes in SRF activity are a consequence of changes in CELF-mediated regulation rather than a secondary result of compensatory pathways in heart failure. In MHC-CELFΔ males, where the phenotype is only partially penetrant, both alternative splicing changes and down-regulation of inhibitors of SRF correlate with the development of cardiomyopathy. Together, these results strongly support a role for CELF-mediated alternative splicing in the regulation of contractile gene expression, achieved in part through modulating the activity of SRF, a key cardiac transcription factor.
Collapse
Affiliation(s)
- Twishasri Dasgupta
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Samantha J. Stillwagon
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrea N. Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
222
|
Coelho Ribeiro MDL, Espinosa J, Islam S, Martinez O, Thanki JJ, Mazariegos S, Nguyen T, Larina M, Xue B, Uversky VN. Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome. PeerJ 2013; 1:e2. [PMID: 23638354 PMCID: PMC3628832 DOI: 10.7717/peerj.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/01/2012] [Indexed: 12/29/2022] Open
Abstract
Recent studies revealed that a significant fraction of any given proteome is presented by proteins that do not have unique 3D structures as a whole or in significant parts. These intrinsically disordered proteins possess dramatic structural and functional variability, being especially enriched in signaling and regulatory functions since their lack of fixed structure defines their ability to be involved in interaction with several proteins and allows them to be re-used in multiple pathways. Among recognized disorder-based protein functions are interactions with nucleic acids and multi-target binding; i.e., the functions ascribed to many spliceosomal proteins. Therefore, the spliceosome, a multimegadalton ribonucleoprotein machine catalyzing the excision of introns from eukaryotic pre-mRNAs, represents an attractive target for the focused analysis of the abundance and functionality of intrinsic disorder in its proteinaceous components. In yeast cells, spliceosome consists of five small nuclear RNAs (U1, U2, U4, U5, and U6) and a range of associated proteins. Some of these proteins constitute cores of the corresponding snRNA-protein complexes known as small nuclear ribonucleoproteins (snRNPs). Other spliceosomal proteins have various auxiliary functions. To gain better understanding of the functional roles of intrinsic disorder, we have studied the prevalence of intrinsically disordered proteins in the yeast spliceosome using a wide array of bioinformatics methods. Our study revealed that similar to the proteins associated with human spliceosomes (Korneta & Bujnicki, 2012), proteins found in the yeast spliceosome are enriched in intrinsic disorder.
Collapse
Affiliation(s)
- Maria de Lourdes Coelho Ribeiro
- Cancer Imaging Metabolism, H. Lee Moffitt Cancer Center & Research Institute , United States ; Department of Molecular Medicine, University of South Florida , Tampa, Florida , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
224
|
Ruirui K, Ray P, Yang M, Wen P, Zhu L, Liu J, Fushimi K, Kar A, Liu Y, He R, Kuo D, Wu JY. Alternative Pre-mRNA Splicing, Cell Death, and Cancer. Cancer Treat Res 2013; 158:181-212. [PMID: 24222359 DOI: 10.1007/978-3-642-31659-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alternative splicing is one of the most powerful mechanisms for generating functionally distinct products from a single genetic loci and for fine-tuning gene activities at the post-transcriptional level. Alternative splicing plays important roles in regulating genes critical for cell death. These cell death genes encode death ligands, cell surface death receptors, intracellular death regulators, signal transduction molecules, and death executor enzymes such as caspases and nucleases. Alternative splicing of these genes often leads to the formation of functionally different products, some of which have antagonistic effects that are either cell death-promoting or cell death-preventing. Differential alternative splicing can affect expression, subcellular distribution, and functional activities of the gene products. Molecular defects in splicing regulation of cell death genes have been associated with cancer development and resistance to treatment. Studies using molecular, biochemical, and systems-based approaches have begun to reveal mechanisms underlying the regulation of alternative splicing of cell death genes. Systematic studies have begun to uncover the multi-level interconnected networks that regulate alternative splicing. A global picture of the complex mechanisms that regulate cell death genes at the pre-mRNA splicing level has thus begun to emerge.
Collapse
Affiliation(s)
- Kong Ruirui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Ghigna C, Riva S, Biamonti G. Alternative splicing of tumor suppressors and oncogenes. Cancer Treat Res 2013; 158:95-117. [PMID: 24222355 DOI: 10.1007/978-3-642-31659-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alternative splicing is a fundamental mechanism to modulate gene expression programs in response to different growth and environmental stimuli. There is now ample evidence that alternative splicing errors, caused by mutations in cis-acting elements and defects and/or imbalances in trans-acting factors, may be causatively associated to cancer progression. Recent work indicates the existence of an intricate network of interactions between alternative splicing events and signal transduction pathways. In this network, splicing factors occupy a central position and appear to function both as targets and effectors of regulatory circuits. Thus, a change in their activity deeply affects alternative splicing profiles and hence the cell behavior. Here, we discuss a number of cases that exemplify the involvement of deregulated alternative splicing in tumor progression.
Collapse
Affiliation(s)
- Claudia Ghigna
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, 27100, Italy
| | | | | |
Collapse
|
226
|
Transcription and Posttranscriptional Processes. Mol Biol 2013. [DOI: 10.1007/978-3-642-45361-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
227
|
Aten E, Sun Y, Almomani R, Santen GWE, Messemaker T, Maas SM, Breuning MH, den Dunnen JT. Exome sequencing identifies a branch point variant in Aarskog-Scott syndrome. Hum Mutat 2012; 34:430-4. [PMID: 23169394 DOI: 10.1002/humu.22252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 11/08/2012] [Indexed: 11/07/2022]
Abstract
Aarskog-Scott syndrome (ASS) is a rare disorder with characteristic facial, skeletal, and genital abnormalities. Mutations in the FGD1 gene (Xp11.21) are responsible for ASS. However, mutation detection rates are low. Here, we report a family with ASS where conventional Sanger sequencing failed to detect a pathogenic change in FGD1. To identify the causative gene, we performed whole-exome sequencing in two patients. An initial analysis did not reveal a likely candidate gene. After relaxing our filtering criteria, accepting larger intronic segments, we unexpectedly identified a branch point (BP) variant in FGD1. Analysis of patient-derived RNA showed complete skipping of exon 13, leading to premature translation termination. The BP variant detected is one of very few reported so far proven to affect splicing. Our results show that besides digging deeper to reveal nonobvious variants, isolation and analysis of RNA provides a valuable but under-appreciated tool to resolve cases with unknown genetic defects.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/genetics
- Dwarfism/diagnosis
- Dwarfism/genetics
- Exome
- Exons
- Face/abnormalities
- Female
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/genetics
- Genitalia, Male/abnormalities
- Guanine Nucleotide Exchange Factors/genetics
- Hand Deformities, Congenital/diagnosis
- Hand Deformities, Congenital/genetics
- Heart Defects, Congenital/diagnosis
- Heart Defects, Congenital/genetics
- Humans
- Male
- Mutation
- Phenotype
- Polymorphism, Single Nucleotide
- Sequence Analysis, DNA/methods
- Sequence Analysis, RNA/methods
Collapse
Affiliation(s)
- Emmelien Aten
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Tardito S, Negrini S, Conteduca G, Ferrera F, Parodi A, Battaglia F, Kalli F, Fenoglio D, Cutolo M, Filaci G. Indoleamine 2,3 dioxygenase gene polymorphisms correlate with CD8+ Treg impairment in systemic sclerosis. Hum Immunol 2012. [PMID: 23200754 DOI: 10.1016/j.humimm.2012.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Systemic sclerosis (SSc) is characterized by tissue fibrosis, vasculopathy and autoimmunity. Indoleamine 2,3 dioxygenase (IDO) plays a pivotal role in immunological tolerance modulating regulatory T cell (Treg) generation and function. Single nucleotide polymorphisms (SNPs) of IDO gene could impact on Treg function and predispose to autoimmunity. Here, the existence of an association between specific IDO SNPs and SSc was analyzed. Five specific SNPs in IDO gene were searched in 31 SSc patients and 37 healthy controls by gene sequencing or restriction fragment length polymorphism. The function of both CD4+CD25+ and CD8+ Treg from SSc patients was analyzed by proliferation suppression assay. SNP rs7820268 was statistically more frequent in SSc patients than in controls. Notably, SSc patients bearing the T allelic variant of the rs7820268 SNP showed impaired CD8+ Treg function. Our unprecedented data show that a specific IDO gene SNP is associated with an autoimmune disease such as SSc.
Collapse
Affiliation(s)
- Samuele Tardito
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa 16132, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Transcription Factors and Gene Expression. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
230
|
Choi HH, Choi HK, Jung SY, Hyle J, Kim BJ, Yoon K, Cho EJ, Youn HD, Lahti JM, Qin J, Kim ST. CHK2 kinase promotes pre-mRNA splicing via phosphorylating CDK11(p110). Oncogene 2012. [PMID: 23178491 DOI: 10.1038/onc.2012.535] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Checkpoint kinase 2 (CHK2) kinase is a key mediator in many cellular responses to genotoxic stresses, including ionizing radiation (IR) and topoisomerase inhibitors. Upon IR, CHK2 is activated by ataxia telangiectasia mutated kinase and regulates the S-phase and G1-S checkpoints, apoptosis and DNA repair by phosphorylating downstream target proteins, such as p53 and Brca1. In addition, CHK2 is thought to be a multi-organ cancer susceptibility gene. In this study, we used a tandem affinity purification strategy to identify proteins that interact with CHK2 kinase. Cyclin-dependent kinase 11 (CDK11)(p110) kinase, implicated in pre-mRNA splicing and transcription, was identified as a CHK2-interacting protein. CHK2 kinase phosphorylated CDK11(p110) on serine 737 in vitro. Unexpectedly, CHK2 kinase constitutively phosphorylated CDK11(p110) in a DNA damage-independent manner. At a molecular level, CDK11(p110) phosphorylation was required for homodimerization without affecting its kinase activity. Overexpression of CHK2 promoted pre-mRNA splicing. Conversely, CHK2 depletion decreased endogenous splicing activity. Mutation of the phosphorylation site in CDK11(p110) to alanine abrogated its splicing-activating activity. These results provide the first evidence that CHK2 kinase promotes pre-mRNA splicing via phosphorylating CDK11(p110).
Collapse
Affiliation(s)
- H-H Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - H-K Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - S Y Jung
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| | - J Hyle
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - B-J Kim
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| | - K Yoon
- School of Life Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - E-J Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - H-D Youn
- National Research Laboratory for Metabolic Checkpoint, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J M Lahti
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - J Qin
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| | - S-T Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| |
Collapse
|
231
|
Singh NN, Seo J, Rahn SJ, Singh RN. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes. PLoS One 2012. [PMID: 23185376 PMCID: PMC3501452 DOI: 10.1371/journal.pone.0049595] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Humans have two near identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 coupled with the predominant skipping of SMN2 exon 7 causes spinal muscular atrophy (SMA), a neurodegenerative disease. SMA patient cells devoid of SMN1 provide a powerful system to examine splicing pattern of various SMN2 exons. Until now, similar system to examine splicing of SMN1 exons was unavailable. We have recently screened several patient cell lines derived from various diseases, including SMA, Alzheimer’s disease, Parkinson’s disease and Batten disease. Here we report a Batten disease cell line that lacks functional SMN2, as an ideal system to examine pre-mRNA splicing of SMN1. We employ a multiple-exon-skipping detection assay (MESDA) to capture simultaneously skipping of multiple exons. Our results show surprising diversity of splice isoforms and reveal novel splicing events that include skipping of exon 4 and co-skipping of three adjacent exons of SMN. Contrary to the general belief, MESDA captured oxidative-stress induced skipping of SMN1 exon 5 in several cell types, including non-neuronal cells. We further demonstrate that the predominant SMN2 exon 7 skipping induced by oxidative stress is modulated by a combinatorial control that includes promoter sequence, endogenous context, and the weak splice sites. We also show that an 8-mer antisense oligonucleotide blocking a recently described GC-rich sequence prevents SMN2 exon 7 skipping under the conditions of oxidative stress. Our findings bring new insight into splicing regulation of an essential housekeeping gene linked to neurodegeneration and infant mortality.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Sarah J. Rahn
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
232
|
Villa R, Mandel AL, Jones BD, La Clair JJ, Burkart MD. Structure of FD-895 revealed through total synthesis. Org Lett 2012; 14:5396-9. [PMID: 23072504 PMCID: PMC3518397 DOI: 10.1021/ol3023006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total synthesis of FD-895 was completed through a strategy that featured the use of a tandem esterification ring-closing metathesis (RCM) process to construct the 12-membered macrolide and a modified Stille coupling to append the side chain. These studies combined with detailed analysis of all four possible C16-C17 stereoisomers were used to confirm the structure of FD-895 and identify an analog with an enhanced subnanomolar bioactivity.
Collapse
Affiliation(s)
- Reymundo Villa
- Department of Chemistry and Biochemistry, University of Calfornia, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | | | | | | | |
Collapse
|
233
|
Carvalho SD, Saraiva R, Maia TM, Abreu IA, Duque P. XBAT35, a novel Arabidopsis RING E3 ligase exhibiting dual targeting of its splice isoforms, is involved in ethylene-mediated regulation of apical hook curvature. MOLECULAR PLANT 2012; 5:1295-309. [PMID: 22628544 DOI: 10.1093/mp/sss048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Arabidopsis XBAT35 is one of five structurally related ankyrin repeat-containing Really Interesting New Gene (RING) E3 ligases involved in ubiquitin-mediated protein degradation, which plays key roles in a wide range of cellular processes. Here, we show that the XBAT35 gene undergoes alternative splicing, generating two transcripts that are constitutively expressed in all plant tissues. The two splice variants derive from an exon skipping event that excludes an in-frame segment from the XBAT35 precursor mRNA, giving rise to two protein isoforms that differ solely in the presence of a nuclear localization signal (NLS). Transient expression assays indicate that the isoform lacking the NLS localizes in the cytoplasm of plant cells, whereas the other is targeted to the nucleus, accumulating in nuclear speckles. Both isoforms are functional E3 ligases, as assessed by in vitro ubiquitination assays. Two insertion mutant alleles and RNA-interference (RNAi) silencing lines for XBAT35 display no evident phenotypes under normal growth conditions, but exhibit hypersensitivity to the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) during apical hook exaggeration in the dark, which is rescued by an inhibitor of ethylene perception. Independent expression of each XBAT35 splice variant in the mutant background indicates that the two isoforms may differentially contribute to apical hook formation but are both functional in this ethylene-mediated response. Thus, XBAT35 defines a novel player in ethylene signaling involved in negatively regulating apical hook curvature, with alternative splicing controlling dual targeting of this E3 ubiquitin ligase to the nuclear and cytoplasmic compartments.
Collapse
Affiliation(s)
- Sofia D Carvalho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
234
|
Dembowski JA, An P, Scoulos-Hanson M, Yeo G, Han J, Fu XD, Grabowski PJ. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain. J Nucleic Acids 2012; 2012:816237. [PMID: 23008758 PMCID: PMC3447378 DOI: 10.1155/2012/816237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/10/2012] [Indexed: 12/29/2022] Open
Abstract
Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5' splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide.
Collapse
Affiliation(s)
- Jill A. Dembowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Gene Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joonhee Han
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paula J. Grabowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
235
|
Abstract
Persistent infection with cancer risk-related viruses leads to molecular, cellular and immune response changes in host organisms that in some cases direct cellular transformation. Alternative splicing is a conserved cellular process that increases the coding complexity of genomes at the pre-mRNA processing stage. Human and other animal tumour viruses use alternative splicing as a process to maximize their transcriptomes and proteomes. Medical therapeutics to clear persistent viral infections are still limited. However, specific lessons learned in some viruses [e.g. HIV and HCV (hepatitis C virus)] suggest that drug-directed inhibition of alternative splicing could be useful for this purpose. The present review describes the basic mechanisms of constitutive and alternative splicing in a cellular context and known splicing patterns and the mechanisms by which these might be achieved for the major human infective tumour viruses. The roles of splicing-related proteins expressed by these viruses in cellular and viral gene regulation are explored. Moreover, we discuss some currently available drugs targeting SR (serine/arginine-rich) proteins that are the main regulators of constitutive and alternative splicing, and their potential use in treatment for so-called persistent viral infections.
Collapse
|
236
|
Cui R, Gale RP, Xu Z, Qin T, Fang L, Zhang H, Pan L, Zhang Y, Xiao Z. Clinical importance of SF3B1 mutations in Chinese with myelodysplastic syndromes with ring sideroblasts. Leuk Res 2012; 36:1428-33. [PMID: 22921018 DOI: 10.1016/j.leukres.2012.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023]
Abstract
Recent studies report SF3B1 mutations in about 20% of persons of European descent with myelodysplastic syndromes (MDS). Mutations are especially common in persons with ring sideroblasts (RS). SF3B1 mutation state was determined in 104 Chinese with MDS-RS. SF3B1 mutations were found in 55 subjects (53%) including 25 of 39 with refractory anemia and RS (RARS), 26 of 45 (58%) of those with refractory cytopenia with multi-lineage dysplasia and RS (RCMD-RS), 3 of 6 with refractory anemia with excess blasts-1-RS (RAEB1-RS) and 1 of 14 with RAEB2-RS. There were significant correlations between SF3B1 mutation state and platelet levels (P=0.007), mean RBC corpuscular volume (MCV; (P<0.001), proportion of RS (P<0.001) and percent bone marrow erythroblasts (P=0.012) and myeloblasts (P=0.044). Multivariate analyses using a Cox proportional hazards regression model including sex, age, SF3B1 mutation state, hemoglobin concentration, absolute neutrophil level, platelet level, MCV, international prognostic scoring system (IPSS) cytogenetics category, WHO morphologic category and treatment showed SF3B1 mutation state to independently predict survival. These data increase our knowledge of the impact of SF3B1 mutations in persons with MDS. They indicate a similar favorable impact of SF3B1 mutation on survival in Chinese with MDS as reported for persons of European descent.
Collapse
Affiliation(s)
- Rui Cui
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 2012; 120:3173-86. [PMID: 22826563 DOI: 10.1182/blood-2012-05-430876] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Whole exome/genome sequencing has been fundamental in the identification of somatic mutations in the spliceosome machinery in myelodysplastic syndromes (MDSs) and other hematologic disorders. SF3B1, splicing factor 3b subunit 1 is mutated in 60%-80% of refractory anemia with ring sideroblasts (RARS) and RARS associated with thrombocytosis (RARS-T), 2 distinct subtypes of MDS and MDS/myeloproliferative neoplasms (MDSs/MPNs). An idiosyncratic feature of RARS/RARS-T is the presence of abnormal sideroblasts characterized by iron overload in the mitochondria, called RS. Based on the high frequency of mutations of SF3B1 in RARS/RARS-T, we investigated the consequences of SF3B1 alterations. Ultrastructurally, SF3B1 mutants showed altered iron distribution characterized by coarse iron deposits compared with wild-type RARS patients by transmission electron microscopy. SF3B1 knockdown experiments in K562 cells resulted in down-regulation of U2-type intron-splicing by RT-PCR. RNA-sequencing analysis of SF3B1 mutants showed differentially used genes relevant in MDS pathogenesis, such as ASXL1, CBL, EZH, and RUNX families. A SF3B pharmacologic inhibitor, meayamycin, induced the formation of RS in healthy BM cells. Further, BM aspirates of Sf3b1 heterozygous knockout mice showed RS by Prussian blue. In conclusion, we report the first experimental evidence of the association between SF3B1 and RS phenotype. Our data suggest that SF3B1 haploinsufficiency leads to RS formation.
Collapse
|
238
|
Abstract
Proper splicing of pre-mRNA is required for protein synthesis and therefore is a fundamental cellular function. The discovery of a variety of somatic spliceosomal mutations in haematological malignancies, including myeloid neoplasms and chronic lymphocytic leukaemia has pointed to a new leukaemogenic pathway involving spliceosomal dysfunction. Theoretically, spliceosomal mutations can lead to activation of incorrect splice sites, intron retention or aberrant alternative splicing occurring in patterns generated by mutations of individual spliceosomal proteins. Such events can produce a defective balance between protein isoforms leading to functional consequences including defective regulation of proliferation and differentiation. The observed pattern of occurrence of highly specific missense mutations, coupled with the lack of nonsense mutations and deletions, implies a gain-of-function or better gain-of-dysfunction mechanism. Incorrect splicing of downstream genes, such as tumour suppressor genes, may result in haploinsufficient expression through nonsense-mediated mRNA decay. Thus, spliceosomal mutations may, depending on the pattern of affected proteins, lead to similar functional effects on tumour suppressor genes as chromosomal deletions, epigenetic silencing or inactivating/hypomorphic mutations. The prognostic value of the most common mutations and their phenotypic association in the clinical setting is currently under investigation. It is likely that spliceosomal mutations may indicate sensitivity to spliceosome inhibitors applied in the form of a synthetic lethal approach. This review discusses the most current aspects of spliceosomal research in the context of haematological malignancies.
Collapse
Affiliation(s)
- Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland, OH, USA
| | - Richard A Padgett
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
239
|
Ritchie EK. Safety and efficacy of azacitidine in the treatment of elderly patients with myelodysplastic syndrome. Clin Interv Aging 2012; 7:165-73. [PMID: 22791989 PMCID: PMC3393359 DOI: 10.2147/cia.s24659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The goals of treating older patients with myelodysplastic syndrome (MDS) are different than for younger patients. Few elderly patients are able to pursue an allogeneic stem cell transplant for potential cure of the disease. The focus for the treatment of older patients with MDS is therefore not curative, but rather alleviation of symptoms, improvement in quality of life, maintenance or improvement of functional status, and continued independent living. Prolongation of survival is only important if functional status and quality of life can be maintained, and there is greater risk of losing these outcomes in elderly patients. Azacitidine is an important drug for the treatment of older patients with MDS. Data from the AZA-001 trial has shown a survival benefit for patients with high-risk disease treated with azacitidine. Importantly, treatment has also been shown to improve quality of life for MDS patients. Subset analysis of the data has shown that the drug can be used safely in even the oldest patients with MDS and is superior to treatment with other established regimens, such as low-dose cytarabine. Given the delay between the initiation of treatment and the clinical response, patients may need aggressive supportive care with antiemetics, prophylactic antibiotics, and transfusions to maintain them through therapy. Azacitidine provides a better quality of response when it is used beyond the first response, so ongoing treatment is generally recommended in responding patients. A new oral preparation of the drug is in development that will make the treatment more feasible and comfortable for elderly patients.
Collapse
Affiliation(s)
- Ellen K Ritchie
- Leukemia Program, Weill Medical College of Cornell University and The New York Presbyterian Hospital, New York, NY 10065, USA.
| |
Collapse
|
240
|
Bettencourt C, Raposo M, Ros R, Montiel R, Bruges-Armas J, Lima M. Transcript diversity of Machado-Joseph disease gene (ATXN3) is not directly determined by SNPs in exonic or flanking intronic regions. J Mol Neurosci 2012; 49:539-43. [PMID: 22706685 DOI: 10.1007/s12031-012-9832-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Alternative splicing (AS) of pre-mRNA is an important regulatory mechanism that enables one gene to produce multiple mature transcripts and, therefore, multiple protein isoforms. Besides the information content of core splicing signals, additional cis-regulatory elements (splicing enhancers and silencers) are needed to precisely define exons. AS is well documented in ATXN3 gene, which encodes for ataxin-3 and, when mutated, is responsible for Machado-Joseph disease (MJD). By studying MJD patients and controls, we have previously identified 56 alternative transcript variants for this gene; some were predicted to encode "protective" ataxin-3 isoforms, making then pertinent to understand AS regulation. The present study aims to investigate the relationship between variation in ATXN3 cis-regulatory motifs and AS variants found for each individual. We have sequenced exonic and flanking intronic ATXN3 regions, in genomic DNA from MJD patients and controls previously studied. None of the 10 single nucleotide polymorphisms (SNPs) that were found was located in core splicing signals. In silico analysis showed those SNPs implied losses and gains of recognition motifs for splicing factors. Each particular allele was not directly reflected in alterations of the resulting splicing variants, indicating that AS cannot be determined solely by these cis-elements, but should result from a more complex mode of regulation.
Collapse
Affiliation(s)
- Conceição Bettencourt
- Institute for Molecular and Cell Biology (IBMC), University of Porto, 4150, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
241
|
White SJ, Haralambieva IH, Ovsyannikova IG, Vierkant RA, O'Byrne MM, Poland GA. Replication of associations between cytokine and cytokine receptor single nucleotide polymorphisms and measles-specific adaptive immunophenotypic extremes. Hum Immunol 2012; 73:636-40. [PMID: 22504412 PMCID: PMC3368081 DOI: 10.1016/j.humimm.2012.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/08/2012] [Accepted: 03/19/2012] [Indexed: 11/25/2022]
Abstract
Our objective was to replicate previously reported associations between cytokine and cytokine receptor SNPs and humoral and CMI (cell-mediated immune) responses to measles vaccine. All subjects (n=758) received two doses of MMR (measles/mumps/rubella) vaccine. From these subjects, candidate cytokine and cytokine receptor SNPs were genotyped and analyzed in 29-30 subjects falling into one of four "extreme" humoral (Ab(high/low)) and CMI (CMI(high/low)) response quadrants. Associations between seven SNPs (out of 11 in the discovery study) and measles-specific neutralizing antibody levels and IFN-γ ELISPOT responses were evaluated using chi-square tests. We found one replicated association for SNP rs372889 in the IL12RB1 gene (P=0.03 for Ab(high)CMI(high) vs. Ab(low)CMI(low)). Our findings demonstrate the importance of replicating genotypic-phenotypic associations, which can be achieved using immunophenotypic extremes and smaller sample sizes. We speculate that IL12RB1 polymorphisms may affect IL-12 and IL-23 binding and downstream effects, which are critical cytokines in the CMI response to measles vaccine.
Collapse
Affiliation(s)
- Sarah J White
- Mayo Clinic Vaccine Research Group, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
242
|
Buroker NE, Ning XH, Zhou ZN, Li K, Cen WJ, Wu XF, Zhu WZ, Scott CR, Chen SH. EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. Blood Cells Mol Dis 2012; 49:67-73. [PMID: 22595196 DOI: 10.1016/j.bcmd.2012.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 04/12/2012] [Indexed: 01/28/2023]
Abstract
High altitude sickness (HAS) occurs among humans visiting or inhabiting high altitude environments. Genetic differences in the EPAS1 and EGLN1 genes have been found between lowland (Han) and highland (Tibetan) Chinese. Three SNPs within EPAS1 and EGLN1 were evaluated in Han and Tibetan patients with acute mountain sickness (AMS) and chronic mountain sickness (CMS). We compared 85 patients with AMS to 79 Han unaffected with mountain sickness (MS) as well as 45 CMS patients to 34 unaffected Tibetan subjects. The three SNPs studied were EPAS1 [ch2: 46441523 (hg18], EGLN1 (rs480902) and (rs516651). Direct sequencing was used to identify individual genotypes for the three SNPs. Age was found to be significantly associated with the EPAS1 SNP in the CMS patients while heart rate (HR) and oxygen saturation level of hemoglobin (SaO(2)) were found to be significantly associated with the EGLN1 (rs480902) SNP in the Han patients with AMS. The individuals with CMS were found to diverge significantly for the EPAS1 SNP compared to their Tibetan control group as measured by genetic distance (0.123) indicating positive selection of the EPAS-G allele with age and illness. The EGLN1 (rs480902) SNP had a significant correlation with hematocrit (HCT), HR and SaO(2) in AMS patients. AMS and CMS were found to be significantly associated with the EPAS1 and EGLN1 SNPs compared to their Han and Tibetan control groups, respectively, indicating these nucleotide alterations have a physiological effect for the development of high altitude sickness.
Collapse
Affiliation(s)
- Norman E Buroker
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Visconte V, Makishima H, Maciejewski JP, Tiu RV. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 2012; 26:2447-54. [PMID: 22678168 DOI: 10.1038/leu.2012.130] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In humans, the majority of all protein-coding transcripts contain introns that are removed by mRNA splicing carried out by spliceosomes. Mutations in the spliceosome machinery have recently been identified using whole-exome/genome technologies in myelodysplastic syndromes (MDS) and in other hematological disorders. Alterations in splicing factor 3 subunit b1 (SF3b1) were the first spliceosomal mutations described, immediately followed by identification of other splicing factor mutations, including U2 small nuclear RNA auxillary factor 1 (U2AF1) and serine arginine-rich splicing factor 2 (SRSF2). SF3b1/U2AF1/SRSF2 mutations occur at varying frequencies in different disease subtypes, each contributing to differences in survival outcomes. However, the exact functional consequences of these spliceosomal mutations in the pathogenesis of MDS and other hematological malignancies remain largely unknown and subject to intense investigation. For SF3b1, a gain of function mutation may offer the promise of new targeted therapies for diseases that carry this molecular abnormality that can potentially lead to cure. This review aims to provide a comprehensive overview of the emerging role of the spliceosome machinery in the biology of MDS/hematological disorders with an emphasis on the functional consequences of mutations, their clinical significance, and perspectives on how they may influence our understanding and management of diseases affected by these mutations.
Collapse
Affiliation(s)
- V Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | |
Collapse
|
244
|
St Laurent G, Savva YA, Kapranov P. Dark matter RNA: an intelligent scaffold for the dynamic regulation of the nuclear information landscape. Front Genet 2012; 3:57. [PMID: 22539933 PMCID: PMC3336093 DOI: 10.3389/fgene.2012.00057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 03/28/2012] [Indexed: 01/15/2023] Open
Abstract
Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as “junk DNA,” that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these micro-domains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events.
Collapse
Affiliation(s)
- Georges St Laurent
- Immunovirology - Biogenesis Group, University of Antioquia, Medellin, Colombia
| | | | | |
Collapse
|
245
|
Rienzo M, Casamassimi A, Schiano C, Grimaldi V, Infante T, Napoli C. Distinct alternative splicing patterns of mediator subunit genes during endothelial progenitor cell differentiation. Biochimie 2012; 94:1828-32. [PMID: 22531626 DOI: 10.1016/j.biochi.2012.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Mediator (MED) is a fundamental component of the RNA polymerase II-mediated transcription machinery playing a pivotal role in the regulation of eukaryotic mRNA synthesis. Human MED complexes contain at least 30 distinct MED subunits. Our previous study, aimed to analyse MED complex during the pattern of endothelial progenitor cells (EPCs) differentiation, found an alternative transcript of MED30 subunit expressed only in circulating immature progenitor cells. Here, we report two novel transcripts of MED12 and MED19 subunits both generated by alternative splicing and displaying similar expression patterns, thereby indicating their involvement during endothelial cell differentiation.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of General Pathology, Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
246
|
Trebušak Podkrajšek K, Stirn Kranjc B, Hovnik T, Kovač J, Battelino T. GPR143 gene mutation analysis in pediatric patients with albinism. Ophthalmic Genet 2012; 33:167-70. [PMID: 22486324 DOI: 10.3109/13816810.2011.559651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND X-linked ocular albinism type 1 is difficult to differentiate clinically from other forms of albinism in young patients. X-linked ocular albinism type 1 is caused by mutations in the GPR143 gene, encoding melanosome specific G-protein coupled receptor. Patients typically present with moderately to severely reduced visual acuity, nystagmus, strabismus, photophobia, iris translucency, hypopigmentation of the retina, foveal hypoplasia and misrouting of optic nerve fibers at the chiasm. MATERIALS AND METHODS Following clinical ophthalmological evaluation, GPR143 gene mutational analyses were performed in a cohort of 15 pediatric male patients with clinical signs of albinism. RESULTS Three different mutations in the GPR143 gene were identified in four patients, including a novel c.886G>A (p.Gly296Arg) mutation occurring "de novo" and a novel intronic c.360 + 5G>A mutation, identified in two related boys. CONCLUSIONS Four patients with X-linked ocular albinism type 1 were identified from a cohort of 15 boys with clinical signs of albinism using mutation detection methods. Genetic analysis offers the possibility of early definitive diagnosis of ocular albinism type 1 in a significant portion of boys with clinical signs of albinism.
Collapse
|
247
|
Subgroup-specific alternative splicing in medulloblastoma. Acta Neuropathol 2012; 123:485-499. [PMID: 22358458 DOI: 10.1007/s00401-012-0959-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/13/2012] [Accepted: 02/11/2012] [Indexed: 12/22/2022]
Abstract
Medulloblastoma comprises four distinct molecular variants: WNT, SHH, Group 3, and Group 4. We analyzed alternative splicing usage in 14 normal cerebellar samples and 103 medulloblastomas of known subgroup. Medulloblastoma samples have a statistically significant increase in alternative splicing as compared to normal fetal cerebella (2.3-times; P < 6.47E-8). Splicing patterns are distinct and specific between molecular subgroups. Unsupervised hierarchical clustering of alternative splicing events accurately assigns medulloblastomas to their correct subgroup. Subgroup-specific splicing and alternative promoter usage was most prevalent in Group 3 (19.4%) and SHH (16.2%) medulloblastomas, while observed less frequently in WNT (3.2%), and Group 4 (9.3%) tumors. Functional annotation of alternatively spliced genes reveals overrepresentation of genes important for neuronal development. Alternative splicing events in medulloblastoma may be regulated in part by the correlative expression of antisense transcripts, suggesting a possible mechanism affecting subgroup-specific alternative splicing. Our results identify additional candidate markers for medulloblastoma subgroup affiliation, further support the existence of distinct subgroups of the disease, and demonstrate an additional level of transcriptional heterogeneity between medulloblastoma subgroups.
Collapse
|
248
|
Abstract
NF1 (neurofibromatosis type I) is a common genetic disease that affects one in 3500 individuals. The disease is completely penetrant but shows variable phenotypic expression in patients. NF1 is a large gene, and its pre-mRNA undergoes alternative splicing. The NF1 protein, neurofibromin, is involved in diverse signalling cascades. One of the best characterized functions of NF1 is its function as a Ras-GAP (GTPase-activating protein). NF1 exon 23a is an alternative exon that lies within the GAP-related domain of neurofibromin. This exon is predominantly included in most tissues, and it is skipped in CNS (central nervous system) neurons. The isoform in which exon 23a is skipped has 10 times higher Ras-GAP activity than the isoform in which exon 23a is included. Exon 23a inclusion is tightly regulated by at least three different families of RNA-binding proteins: CELF {CUG-BP (cytosine-uridine-guanine-binding protein) and ETR-3 [ELAV (embryonic lethal abnormal vision)-type RNA-binding protein]-like factor}, Hu and TIA-1 (T-cell intracellular antigen 1)/TIAR (T-cell intracellular antigen 1-related protein). The CELF and Hu proteins promote exon 23a skipping, while the TIA-1/TIAR proteins promote its inclusion. The widespread clinical variability that is observed among NF1 patients cannot be explained by NF1 mutations alone and it is believed that modifier genes may have a role in the variability. We suggest that the regulation of alternative splicing may act as a modifier to contribute to the variable expression in NF1 patients.
Collapse
|
249
|
Padgett RA. New connections between splicing and human disease. Trends Genet 2012; 28:147-54. [PMID: 22397991 DOI: 10.1016/j.tig.2012.01.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/18/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022]
Abstract
The removal by splicing of introns from the primary transcripts of most mammalian genes is an essential step in gene expression. Splicing is performed by large, complex ribonucleoprotein particles termed spliceosomes. Mammals contain two types that splice out mutually exclusive types of introns. However, the role of the minor spliceosome has been poorly studied. Recent reports have now shown that mutations in one minor spliceosomal snRNA, U4atac, are linked to a rare autosomal recessive developmental defect. In addition, very exciting recent results of exome deep-sequencing have found that recurrent, somatic, heterozygous mutations of other splicing factors occur at high frequencies in particular cancers and pre-cancerous conditions, suggesting that alterations in the core splicing machinery can contribute to tumorigenesis. Mis-splicing of crucial genes may underlie the pathologies of all of these diseases. Identifying these genes and understanding the mechanisms involved in their mis-splicing may lead to advancements in diagnosis and treatment.
Collapse
Affiliation(s)
- Richard A Padgett
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
250
|
Wysokinski D, Zaras M, Dorecka M, Waszczyk M, Szaflik J, Blasiak J, Szaflik JP. An association between environmental factors and the IVS4+44C>A polymorphism of the DMT1 gene in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2012; 250:1057-65. [PMID: 22371024 PMCID: PMC3382657 DOI: 10.1007/s00417-012-1966-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 12/14/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is an ocular disease affecting macula — the central part of the retina, resulting in the degeneration of photoreceptors and retinal epithelium and causing severe central vision impairment. The pathophysiology of the disease is not completely known, but a significant role is attributed to genetic factors. The contribution of oxidative stress in AMD as a trigger of the degenerative process is well-established. Iron ions may act as a source of reactive oxygen species; therefore, maintaining iron homeostasis is important for redox balance in the organism. Diversity in iron homeostasis genes may counterpart in unbalanced redox state, and thus be involved in AMD pathophysiology. Methods In this work, we searched for an association between some single nucleotide polymorphisms in the divalent metal transporter 1 (DMT1) gene intronic IVS4+44C>A (rs224589) and 3’-UTR c.2044T>C (rs2285230) and environmental factors and AMD. Genotyping was performed using the PCR-RFLP method. DNA was obtained from 436 AMD patients and 168 controls. Results We did not find any association between the genotypes of the two polymorphisms and AMD occurrence. However, we observed that AMD patients living in a rural environment and having the CC genotype of the IVS4+44C>A polymorphism had an increased risk of AMD, while individuals with the CA genotype or the A allele had a decreased risk of the disease. Moreover, in male AMD patients the C allele increased the risk of the disease, while the AA genotype decreased it. Conclusions These results suggest that the VS4+44C>A polymorphism of the DMT1 gene may interact with place of living and gender to modulate the risk of AMD.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|