201
|
Pearson JA, Kakabadse D, Davies J, Peng J, Warden-Smith J, Cuff S, Lewis M, da Rosa LC, Wen L, Wong FS. Altered Gut Microbiota Activate and Expand Insulin B15-23-Reactive CD8+ T Cells. Diabetes 2019; 68:1002-1013. [PMID: 30796028 PMCID: PMC6477900 DOI: 10.2337/db18-0487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/13/2019] [Indexed: 01/13/2023]
Abstract
Insulin is a major autoantigen in type 1 diabetes, targeted by both CD8 and CD4 T cells. We studied an insulin-reactive T-cell receptor (TCR) α-chain transgenic NOD mouse on a TCRCα and proinsulin 2 (PI2)-deficient background, designated as A22Cα-/-PI2-/- NOD mice. These mice develop a low incidence of autoimmune diabetes. To test the role of gut microbiota on diabetes development in this model system, we treated the A22Cα-/-PI2-/- NOD mice with enrofloxacin, a broad-spectrum antibiotic. The treatment led to male mice developing accelerated diabetes. We found that enrofloxacin increased the frequency of the insulin-reactive CD8+ T cells and activated the cells in the Peyer's patches and pancreatic lymph nodes, together with induction of immunological effects on the antigen-presenting cell populations. The composition of gut microbiota differed between the enrofloxacin-treated and untreated mice and also between the enrofloxacin-treated mice that developed diabetes compared with those that remained normoglycemic. Our results provide evidence that the composition of the gut microbiota is important for determining the expansion and activation of insulin-reactive CD8+ T cells.
Collapse
Affiliation(s)
- James A Pearson
- Diabetes Research Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, U.K
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Dimitri Kakabadse
- Diabetes Research Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, U.K
| | - Joanne Davies
- Diabetes Research Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, U.K
| | - Jian Peng
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Jeremy Warden-Smith
- Diabetes Research Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, U.K
| | - Simone Cuff
- Diabetes Research Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, U.K
| | - Mark Lewis
- Diabetes Research Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, U.K
| | - Larissa Camargo da Rosa
- Diabetes Research Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, U.K
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - F Susan Wong
- Diabetes Research Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, U.K.
| |
Collapse
|
202
|
Mills S, Stanton C, Lane JA, Smith GJ, Ross RP. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients 2019; 11:nu11040923. [PMID: 31022973 PMCID: PMC6520976 DOI: 10.3390/nu11040923] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is a highly complex community which evolves and adapts to its host over a lifetime. It has been described as a virtual organ owing to the myriad of functions it performs, including the production of bioactive metabolites, regulation of immunity, energy homeostasis and protection against pathogens. These activities are dependent on the quantity and quality of the microbiota alongside its metabolic potential, which are dictated by a number of factors, including diet and host genetics. In this regard, the gut microbiome is malleable and varies significantly from host to host. These two features render the gut microbiome a candidate ‘organ’ for the possibility of precision microbiomics—the use of the gut microbiome as a biomarker to predict responsiveness to specific dietary constituents to generate precision diets and interventions for optimal health. With this in mind, this two-part review investigates the current state of the science in terms of the influence of diet and specific dietary components on the gut microbiota and subsequent consequences for health status, along with opportunities to modulate the microbiota for improved health and the potential of the microbiome as a biomarker to predict responsiveness to dietary components. In particular, in Part I, we examine the development of the microbiota from birth and its role in health. We investigate the consequences of poor-quality diet in relation to infection and inflammation and discuss diet-derived microbial metabolites which negatively impact health. We look at the role of diet in shaping the microbiome and the influence of specific dietary components, namely protein, fat and carbohydrates, on gut microbiota composition.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Fermoy P61 C996, Co Cork, Ireland.
| | - Jonathan A Lane
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - Graeme J Smith
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| |
Collapse
|
203
|
Hung LY, Boonma P, Unterweger P, Parathan P, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Neonatal Antibiotics Disrupt Motility and Enteric Neural Circuits in Mouse Colon. Cell Mol Gastroenterol Hepatol 2019; 8:298-300.e6. [PMID: 31022477 PMCID: PMC6717783 DOI: 10.1016/j.jcmgh.2019.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Lin Y Hung
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Prapaporn Boonma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas; Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Petra Unterweger
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Pavitha Parathan
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Ruth Ann Luna
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Jaime P P Foong
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
204
|
Gobbi A, Santini RG, Filippi E, Ellegaard-Jensen L, Jacobsen CS, Hansen LH. Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR. PLoS One 2019; 14:e0200979. [PMID: 30973938 PMCID: PMC6459482 DOI: 10.1371/journal.pone.0200979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/03/2019] [Indexed: 01/18/2023] Open
Abstract
Soil DNA extraction encounters numerous challenges that can affect both yield and purity of the recovered DNA. Clay particles lead to reduced DNA extraction efficiency, and PCR inhibitors from the soil matrix can negatively affect downstream analyses when applying DNA sequencing. Further, these effects impede molecular analysis of bacterial community compositions in lower biomass samples, as often observed in deeper soil layers. Many studies avoid these complications by using indirect DNA extraction with prior separation of the cells from the matrix, but such methods introduce other biases that influence the resulting microbial community composition. To address these issues, a direct DNA extraction method was applied in combination with the use of a commercial product, the G2 DNA/RNA Enhancer, marketed as being capable of improving the amount of DNA recovered after the lysis step. The results showed that application of G2 increased DNA yields from the studied clayey soils from layers from 1.00 to 2.20 m. Importantly, the use of G2 did not introduce bias, as it did not result in any significant differences in the biodiversity of the bacterial community measured in terms of alpha and beta diversity and taxonomical composition. Finally, this study considered a set of customised lysing tubes for evaluating possible influences on the DNA yield. Tubes customization included different bead sizes and amounts, along with lysing tubes coming from two suppliers. Results showed that the lysing tubes with mixed beads allowed greater DNA recovery compared to the use of either 0.1 or 1.4 mm beads, irrespective of the tube supplier. These outcomes may help to improve commercial products in DNA/RNA extraction kits, besides raising awareness about the optimal choice of additives, offering opportunities for acquiring a better understanding of topics such as vertical microbial characterisation and environmental DNA recovery in low biomass samples.
Collapse
Affiliation(s)
- Alex Gobbi
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Rui G. Santini
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Elisa Filippi
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | | | - Lars H. Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- * E-mail:
| |
Collapse
|
205
|
Xu J, Huang G, Nagy T, Teng Q, Guo TL. Sex-dependent effects of bisphenol A on type 1 diabetes development in non-obese diabetic (NOD) mice. Arch Toxicol 2019; 93:997-1008. [PMID: 30600366 PMCID: PMC6511313 DOI: 10.1007/s00204-018-2379-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by immune-mediated pancreatic β-cell destruction. The endocrine disrupting chemical bisphenol A (BPA) has widespread human exposure and can modulate immune function and the gut microbiome (GMB), which may contribute to the increasing T1D incidence worldwide. It was hypothesized that BPA had sex-dependent effects on T1D by modulating immune homeostasis and GMB. Adult female and male non-obese diabetic (NOD) mice were orally administered BPA at environmentally relevant doses (30 or 300 µg/kg). Antibiotic-treated adult NOD females were exposed to 0 or 30 µg/kg BPA. BPA accelerated T1D development in females, but delayed males from T1D. Consistently, females had a shift towards pro-inflammation (e.g., increased macrophages and Bacteroidetes), while males had increases in anti-inflammatory immune factors and a decrease in both anti- and pro-inflammatory GMB. Although bacteria altered during sub-acute BPA exposure differed from bacteria altered from chronic BPA exposure in both sexes, the GMB profile was consistently pro-inflammatory in females, while males had a general decrease of both anti- and pro-inflammatory gut microbes. However, treatment of females with the antibiotic vancomycin failed to prevent BPA-induced glucose intolerance, suggesting changes in Gram-positive bacteria were not a primary mechanism. In conclusion, BPA exposure was found to have sex dimorphic effects on T1D with detrimental effects in females, and immunomodulation was identified as the primary mechanism.
Collapse
Affiliation(s)
- Joella Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Guannan Huang
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Tamas Nagy
- Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Quincy Teng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
206
|
Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria. Sci Rep 2019; 9:4822. [PMID: 30886210 PMCID: PMC6423039 DOI: 10.1038/s41598-019-41195-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity and inactivity are major risk factors of feline diabetes mellitus (FDM) and human type II diabetes mellitus (T2DM). In recent years, changes in the gut microbiota have been suggested as a contributing factor to T2DM. Whether the gut microbiota (GM) composition plays a role in FDM remains unknown. The aim of the current study was firstly a cross-sectional comparison of the GM of diabetic cats, to that of lean, and of obese/overweight non-diabetic cats of a similar age. Specifically, fecal samples from 82 privately-owned cats from Denmark and Switzerland were sequenced using 16S rRNA gene amplicon metabarcoding. Secondly dietary intervention data was generated, by obtaining additional samples from a subset of cats after placing them on a high-protein diet for four weeks. The GM diversity of diabetic cats was lower than that of lean cats in the cross-sectional study, and lower compared to lean and to overweight/obese cats after diet intervention. Diabetic cats also exhibited fewer Anaerotruncus, Dialister, and unknown Ruminococcaceae than lean cats. Serum fructosamine levels correlated negatively with Prevotellaceae abundance and positively with Enterobacteriaceae abundance. In summary the intestinal microbiota of diabetic cats was characterized by decreased GM diversity and loss of butyrate producing bacterial genera.
Collapse
|
207
|
Hildonen M, Kodama M, Puetz LC, Gilbert MTP, Limborg MT. A comparison of storage methods for gut microbiome studies in teleosts: Insights from rainbow trout (Oncorhynchus mykiss). J Microbiol Methods 2019; 160:42-48. [PMID: 30885689 DOI: 10.1016/j.mimet.2019.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Immediate freezing is perhaps the most preferred method used for preserving gut microbial samples, but research on sample preservation has been principally based around samples from mammalian species, and little is known about the advantages or disadvantages relating to different storage methods for fish guts. Fish gut samples may pose additional challenges due to the different chemical and enzymatic profile, as well as the higher water content, which might affect the yield and purity of DNA recovered. To explore this, we took gut content and mucosal scrape samples from 10 rainbow trout (Oncorhynchus mykiss), and tested whether different preservation methods have any effect on the ability to construct high quality genomic libraries for shotgun and 16S rRNA gene sequencing. Four different storage methods were compared for the gut content samples (immediate freezing on dry ice, 96% ethanol, RNAlater and DNA/RNA shield), while two different methods were compared for mucosal scrape samples (96% ethanol and RNAlater). The samples were thereafter stored at -80 °C. Our findings concluded that 96% ethanol outperforms the other storage methods when considering DNA quantity, quality, cost and labor. Ethanol works consistently well for both gut content and mucosal scrape samples, and enables construction of DNA sequencing libraries of sufficient quantity and with a fragment length distribution suitable for shotgun sequencing. Two main conclusions from our study are i) sample storage optimisation is an important part of establishing a microbiome research program in a new species or sample type system, and ii) 96% ethanol is the preferred method for storing rainbow trout gut content and mucosal scrape samples.
Collapse
Affiliation(s)
- Mathis Hildonen
- National History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Miyako Kodama
- National History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Lara C Puetz
- National History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - M Thomas P Gilbert
- National History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Morten T Limborg
- National History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| |
Collapse
|
208
|
Chen X, Wang J, Liu M, Yang W, Wang Y, Tang R, Zhang M. Crystallographic evidence for substrate-assisted catalysis of β-N-acetylhexosaminidas from Akkermansia muciniphila. Biochem Biophys Res Commun 2019; 511:833-839. [PMID: 30846208 DOI: 10.1016/j.bbrc.2019.02.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
β-N-acetylhexosaminidases from Akkermansia muciniphila was reported to perform the crystal structure with GlcNAc complex, which proved to be the substrate of Am2301. Domain II of Am2301 is consisted of amino acid residues 111-489 and is folded as a (β/α)8 barrel with the active site combined of the glycosyl hydrolases. Crystallographic evidence showed that Asp-278 and Glu-279 could be the catalytic site and Tyr-373 may plays a role on binding the substrate. Moreover, Am2301 prefers to bind Zn ion, which similar to other GH 20 family. Enzyme activity and kinetic parameters of wild-type Am2301 and mutants proved that Asp-278 and Glu-279 are the catalytic sites and they play a critical role on the catalytic process. Overall, our results demonstrate that Am2301 and its complex with GlcNAC provide obvious structural evidence for substrate-assisted catalysis. Obviously, this expands our understanding on the mode of substrate-assisted reaction for this enzyme family in Akkermansia muciniphila.
Collapse
Affiliation(s)
- Xi Chen
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Department of Biological and Food Engineering, Bozhou University, 2266 Tangwang Road, Bozhou, Anhui, China
| | - Junchao Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Mingjie Liu
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Wenyi Yang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Rupei Tang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| | - Min Zhang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
209
|
Meng X, Zhou HY, Shen HH, Lufumpa E, Li XM, Guo B, Li BZ. Microbe-metabolite-host axis, two-way action in the pathogenesis and treatment of human autoimmunity. Autoimmun Rev 2019; 18:455-475. [PMID: 30844549 DOI: 10.1016/j.autrev.2019.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The role of microorganism in human diseases cannot be ignored. These microorganisms have evolved together with humans and worked together with body's mechanism to maintain immune and metabolic function. Emerging evidence shows that gut microbe and their metabolites open up new doors for the study of human response mechanism. The complexity and interdependence of these microbe-metabolite-host interactions are rapidly being elucidated. There are various changes of microbial levels in models or in patients of various autoimmune diseases (AIDs). In addition, the relevant metabolites involved in mechanism mainly include short-chain fatty acids (SCFAs), bile acids (BAs), and polysaccharide A (PSA). Meanwhile, the interaction between microbes and host genes is also a factor that must be considered. It has been demonstrated that human microbes are involved in the development of a variety of AIDs, including organ-specific AIDs and systemic AIDs. At the same time, microbes or related products can be used to remodel body's response to alleviate or cure diseases. This review summarizes the latest research of microbes and their related metabolites in AIDs. More importantly, it highlights novel and potential therapeutics, including fecal microbial transplantation, probiotics, prebiotics, and synbiotics. Nonetheless, exact mechanisms still remain elusive, and future research will focus on finding a specific strain that can act as a biomarker of an autoimmune disease.
Collapse
Affiliation(s)
- Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Anhui, Hefei, China
| | - Eniya Lufumpa
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Xiao-Mei Li
- Department of Rheumatology & Immunology, Anhui Provincial Hospital, Anhui, Hefei, China
| | - Biao Guo
- The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
210
|
Gowd V, Xie L, Zheng X, Chen W. Dietary fibers as emerging nutritional factors against diabetes: focus on the involvement of gut microbiota. Crit Rev Biotechnol 2019; 39:524-540. [PMID: 30810398 DOI: 10.1080/07388551.2019.1576025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) increases the risk of cardiovascular diseases and other secondary complications, such as nephropathy, neuropathy, retinopathy, etc. The important risk factors for the pathogenesis of DM are aging, family history, sedentary lifestyle, unhealthy dietary habits, and obesity. Evidence from epidemiological studies also indicates that DM is characterized by specific alterations in the human gut microbiota (GM). GM transplantation in rodents and humans revealed that a specific GM constituent can be the cause and not just the consequence of the DM condition and complications. These findings suggest a potential role of GM in human health, disease prevention, and treatment. Dietary intervention studies using dietary fibers (DFs) suggested that modulation of the GM can suppress the metabolic risk markers in humans. However, a causal role of GM in such studies remains unexplored. Long-term follow-up studies disclosed that the diet rich in insoluble and non-viscous fibers are responsible for DF-mediated antidiabetic activities, while soluble and viscous fibers have little influence on DM despite having a profound impact on glycemia. However, general conclusions cannot be drawn simply based on these findings. Long-term follow-up studies are urgently required in this area to explore the therapeutic potential of different DFs in treating DM and to delineate the exact role of GM involvement. Here we review and discuss the signature of GM during DM, antidiabetic activity of metformin via GM modulation, DFs from different sources and their antidiabetic activity, and the possible role of GM involvement.
Collapse
Affiliation(s)
- Vemana Gowd
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou , PR China
| | - Lianghua Xie
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou , PR China
| | - Xiaodong Zheng
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou , PR China
| | - Wei Chen
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou , PR China
| |
Collapse
|
211
|
Milard M, Laugerette F, Durand A, Buisson C, Meugnier E, Loizon E, Louche-Pelissier C, Sauvinet V, Garnier L, Viel S, Bertrand K, Joffre F, Cheillan D, Humbert L, Rainteau D, Plaisancié P, Bindels LB, Neyrinck AM, Delzenne NM, Michalski MC. Milk Polar Lipids in a High-Fat Diet Can Prevent Body Weight Gain: Modulated Abundance of Gut Bacteria in Relation with Fecal Loss of Specific Fatty Acids. Mol Nutr Food Res 2019; 63:e1801078. [DOI: 10.1002/mnfr.201801078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/18/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Marine Milard
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Fabienne Laugerette
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Annie Durand
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Charline Buisson
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Emmanuelle Meugnier
- Univ Lyon; CarMeN Laboratory; INSERM; INRA; INSA Lyon; Université Claude Bernard Lyon 1; 69600 Oullins France
| | - Emmanuelle Loizon
- Univ Lyon; CarMeN Laboratory; INSERM; INRA; INSA Lyon; Université Claude Bernard Lyon 1; 69600 Oullins France
| | - Corinne Louche-Pelissier
- Centre de Recherche en Nutrition Humaine (CRNH) Rhône-Alpes; Centre Européen Pour la Nutrition et la Santé; Centre Hospitalier Lyon Sud; Université Claude Bernard Lyon 1; INSERM, Hospices Civils de Lyon F-69310 Pierre Bénite France
| | - Valérie Sauvinet
- Centre de Recherche en Nutrition Humaine (CRNH) Rhône-Alpes; Centre Européen Pour la Nutrition et la Santé; Centre Hospitalier Lyon Sud; Université Claude Bernard Lyon 1; INSERM, Hospices Civils de Lyon F-69310 Pierre Bénite France
| | - Lorna Garnier
- Laboratoire d'Immunologie; Hospices Civils de Lyon; Centre Hospitalier Lyon Sud; Pierre-Bénite France
| | - Sébastien Viel
- Laboratoire d'Immunologie; Hospices Civils de Lyon; Centre Hospitalier Lyon Sud; Pierre-Bénite France
| | | | | | - David Cheillan
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
- Service Biochimie et Biologie Moléculaire Grand Est; Centre de Biologie Est; Hospices Civils de Lyon; Lyon France
| | - Lydie Humbert
- Sorbonne Universités; UPMC Univ. Paris 06; École normale supérieure; PSL Research University; CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), 27 rue de Chaligny Paris 75005 France
| | - Dominique Rainteau
- Sorbonne Universités; UPMC Univ. Paris 06; École normale supérieure; PSL Research University; CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), 27 rue de Chaligny Paris 75005 France
| | - Pascale Plaisancié
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Laure B. Bindels
- Louvain Drug Research Institute; Metabolism and Nutrition Research Group; Université catholique de Louvain; Brussels Belgium
| | - Audrey M. Neyrinck
- Louvain Drug Research Institute; Metabolism and Nutrition Research Group; Université catholique de Louvain; Brussels Belgium
| | - Nathalie M. Delzenne
- Louvain Drug Research Institute; Metabolism and Nutrition Research Group; Université catholique de Louvain; Brussels Belgium
| | - Marie-Caroline Michalski
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| |
Collapse
|
212
|
Cream Cheese-Derived Lactococcus chungangensis CAU 28 Modulates the Gut Microbiota and Alleviates Atopic Dermatitis in BALB/c Mice. Sci Rep 2019; 9:446. [PMID: 30679532 PMCID: PMC6345912 DOI: 10.1038/s41598-018-36864-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Atopic dermatitis (AD) has a drastic impact on human health owing to complex skin, gut microbiota, and immune responses. Some lactic acid bacteria (LAB) are effective in ameliorating AD; however, the alleviative effects of dairy products derived from these LAB remain unclear. In this study, the efficacies of Lactococcus chungangensis CAU 28 (CAU 28) cream cheese and L. chungangensis CAU 28 dry cells were evaluated for treating AD in an AD mouse model. Overall, CAU 28 cream cheese administration was more effective against AD than L. chungangensis CAU 28 dry cells. Faeces from CAU 28 cream cheese-administered mice had increased short chain fatty acid, butyrate, acetate, and lactic acid levels, as well as butyrate-producing bacteria, including Akkermansia, Bacteroides, Lactobacillus, and Ruminococcus. Furthermore, oral CAU 28 cream cheese administration resulted in regulatory T cell (Treg)-mediated suppression of T helper type 2 (Th2) immune responses in serum and mRNA expression levels in the ileum. Oral CAU 28 cream cheese further reduced IgE levels, in addition to eosinophil and mast cell numbers. Therefore, CAU 28 cream cheese administration induced a coordinated immune response involving short-chain fatty acids and gut microbiota, indicating its potential for use as a supplement for AD mitigation.
Collapse
|
213
|
Lindenberg FCB, Ellekilde M, Thörn AC, Kihl P, Larsen CS, Hansen CHF, Metzdorff SB, Aalbæk B, Hansen AK. Dietary LPS traces influences disease expression of the diet-induced obese mouse. Res Vet Sci 2019; 123:195-203. [PMID: 30682583 DOI: 10.1016/j.rvsc.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharides (LPS) from Gram negative bacteria are generally present in laboratory animal chow diets in unknown amounts, which has been correlated to significant immunological differences between animals receiving diets with either low or high "naturally" occurring LPS content. LPS in the blood stream has been linked to glucose intolerance through Toll-like receptor mediated release of pro-inflammatory cytokines, metabolic endotoxemia, adipose tissue inflammation. LPS uptake increases when co-administered with fat, therefore uncontrolled LPS levels in a high-fat diet may increase variation in development of disease when high-fat diets are used to induce obesity and type 2 diabetes. Three experiments were conducted, in which C57BL/6NTac mice received high-fat (60%) or low fat (10%) diets with or without LPS for 8 or 20 weeks investigating the short and long term effects. Three different doses of LPS were used to investigate dosage effect, and ampicillin to isolate the effect of dietary LPS. Dietary LPS increased LPS levels in the blood stream, and affected the level of glycated haemoglobin (HbA1c), a key parameter in this model, in a dose dependant manner (p < 0.05). There was a strong tendency toward slower glucose uptake in the LPS supplemented groups once obesity was established, but the differences disappeared after 20 weeks. A high-fat diet slightly increased serum LPS and altered ileal expression of il10 and tnfa (p < 0.05). In conclusion, LPS seems to affect the glucose metabolism in a time-dose dependant manner, and uncontrolled variation in LPS levels of a diet may therefore increase inter-study variation.
Collapse
Affiliation(s)
- Frederikke C B Lindenberg
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark; Brogaarden Diets Ltd., DK-3540 Lynge, Denmark.
| | - Merete Ellekilde
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Anna C Thörn
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Pernille Kihl
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Christian S Larsen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Camilla H F Hansen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Stine B Metzdorff
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Bent Aalbæk
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| | - Axel K Hansen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Groennegaardsvej 15, DK 1870 Frederiksberg C, Denmark
| |
Collapse
|
214
|
Lv Y, Yan Z, Zhao X, Gang X, He G, Sun L, Li Z, Wang G. The effects of gut microbiota on metabolic outcomes in pregnant women and their offspring. Food Funct 2019; 9:4537-4547. [PMID: 30101246 DOI: 10.1039/c8fo00601f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic diseases such as gestational diabetes mellitus and obesity during pregnancy have become severe health issues due to adverse pregnant outcomes in recent years. Maternal metabolic disorders can influence the long-term health of mothers and their offspring. Current evidence demonstrated that gut microbiota plays a crucial role in metabolic dysfunction during gestation. Maternal status is associated with alterations in the compositions and diversity of the intestinal microbiota community during gestation. Antibiotic treatments may disturb the gut microbiota of pregnant women, and scientific probiotic and prebiotic supplements have positive effects on mothers and their offspring. This review discusses the role of gut microbiota on metabolic outcomes in pregnant women and their offspring, and further illustrates the impact of interventions on metabolic disorders in pregnancy. Our study may provide a novel target for health management during pregnancy.
Collapse
Affiliation(s)
- You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Zakariassen HL, Bendtsen KM, Tougaard P, Hansen AK. Reduced early life mucosal integrity decreases thymic cell counts and increases local, but not thymic regulatory, T cell recruitment: Gut mucosal integrity breach and thymic T cells. EUR J INFLAMM 2019. [DOI: 10.1177/2058739218823466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Early life immune gut microbiota contact is critical for regulatory T cell–mediated oral tolerance induction. We induced a mucosal integrity breach with low dextran sulfate sodium dose right after weaning in BALB/c mice along with a standard high dose to study the impact of increased gut microbiota lymphatic tissue contact on the thymus. Both doses increased gut permeability, which caused a short-term generalized thymic involution and regulatory T cell induction in the mesenteric lymph nodes, even in the absence of clinically apparent inflammation in the low-dose group. The thymic regulatory T cells resisted thymic involution. In the low-dose group, we found acutely altered gut mobilization patterns characterized by changed gut-homing marker CD103 expression on mesenteric lymph node CD4+ T cells as well as on mature CD8+ T cells and developing CD4−/CD8− thymocytes. Furthermore, CD218a (IL-18-receptor-a) expression was acutely decreased on both mature CD8+ T cells and regulatory T cells, while increased on the mesenteric lymph node CD8+ T cells, indicating a direct link between the thymus and the mesenteric lymph nodes with CD218a in a functional role in thymic involution. Acute and non-persisting regulatory responses in the mesenteric lymph nodes were induced in the form of a relative regulatory T cell increase. We saw no changes in total thymic regulatory T cells and thus the thymus does not seem to play a major role of in the regulatory immunity induced by increased gut microbiota lymphatic tissue contact around weaning, which in our study primarily was located to the gut.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Katja Maria Bendtsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Tougaard
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Axel Kornerup Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
216
|
Kihl P, Krych L, Deng L, Kildemoes AO, Laigaard A, Hansen LH, Hansen CHF, Buschard K, Nielsen DS, Hansen AK. Oral LPS Dosing Induces Local Immunological Changes in the Pancreatic Lymph Nodes in Mice. J Diabetes Res 2019; 2019:1649279. [PMID: 30956991 PMCID: PMC6431374 DOI: 10.1155/2019/1649279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
Lacking the initial contact between the immune system and microbial-associated molecular patterns (MAMPs), such as lipopolysaccharides (LPS), early in life, may be regarded as one of the causal factors of the increasing global increase in the incidence of autoimmune diseases, such as type 1 diabetes (T1D). Previously, a reduced incidence of T1D accompanied by dramatically increased abundances of both the mucin-metabolising bacterium Akkermansia muciniphila, and LPS-carrying Proteobacteria was observed, when vancomycin was given to pups of nonobese diabetic (NOD) mice. While the T1D incidence reducing effect of A. muciniphila has been shown in further studies, little is known as to whether the increased abundance of LPS-carrying bacteria also has a protective effect. Therefore, we fed NOD pups with Eschericia coli LPS orally from birth to weaning, which decreased the gene expressions of TNFα, IL-10, IL-6, IFNγ, IL-1β, IL-2, IL-4, and FoxP3 in the pancreatic lymph nodes, while the same gene expression profile in the spleen was unaffected. However, no significant difference in the incidence of T1D, gut microbiota composition, or ileum expression of the genetic markers of gut permeability, Claudin8, Occludin, Zonulin-1 (Tjp1), Claudin15, Muc1, and Muc2 were observed in relation to LPS ingestion. It is, therefore, concluded that early life oral E. coli LPS has an impact on the local immune response, which, however, did not influence T1D incidence in NOD mice later in life.
Collapse
Affiliation(s)
- Pernille Kihl
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Ling Deng
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Anna Overgaard Kildemoes
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Ann Laigaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Lars Hestbjerg Hansen
- Department of Environmental Sciences, University of Århus, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Karsten Buschard
- Bartholin Institute, Rigshospitalet, Ole Måløesvej 5, 2200 Copenhagen N, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| |
Collapse
|
217
|
Yang M, Liu Y, Xie H, Wen Z, Zhang Y, Wu C, Huang L, Wu J, Xie C, Wang T, Peng W, Liu S, Chen L, Liu X. Gut Microbiota Composition and Structure of the Ob/Ob and Db/Db Mice. Int J Endocrinol 2019; 2019:1394097. [PMID: 30984260 PMCID: PMC6432735 DOI: 10.1155/2019/1394097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/28/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Gut microbiota is involved in the progression of metabolic diseases such as obesity and type 2 diabetes. The ob/ob and db/db mice are extensively used as models in studies on the pathogenesis of these diseases. The goal of this study is to characterize the composition and structure of gut microbiota in these model mice at different ages. MATERIALS AND METHODS High-throughput sequencing was used to obtain the sequences of the highly variable 16S rRNA V3-V4 region from fecal samples. The taxa with high abundance in both model mice were identified by bioinformatics analysis. Moreover, the taxa with divergent abundance in one model mice at different ages or in both model mice at the same age were also recognized. DISCUSSION AND CONCLUSION The high abundance of Bacteroidetes and Firmicutes in microbiota composition and their imbalanced ratio in both model mice reflect the state of metabolic disorders of these mice. Differences in microbiota composition between the two model mice of the same age or in one model mice with different ages were assumed to be closely linked to the fluctuation of their blood glucose levels with age. The data on gut microbiota in ob/ob and db/db mice investigated herein has broad implications for the pathogenesis study and drug discovery on obesity and related complications.
Collapse
Affiliation(s)
- Mingsheng Yang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Yixin Liu
- College of Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hengchang Xie
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Zhengzheng Wen
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Yunxia Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Li Huang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Jie Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Chensheng Xie
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Tao Wang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Weifeng Peng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Shangqi Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Long Chen
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| |
Collapse
|
218
|
Zachariassen LF, Krych L, Rasmussen SH, Nielsen DS, Kot W, Holm TL, Hansen AK, Hansen CHF. Cesarean Section Induces Microbiota-Regulated Immune Disturbances in C57BL/6 Mice. THE JOURNAL OF IMMUNOLOGY 2018; 202:142-150. [DOI: 10.4049/jimmunol.1800666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
|
219
|
Cornejo-Pareja I, Muñoz-Garach A, Clemente-Postigo M, Tinahones FJ. Importance of gut microbiota in obesity. Eur J Clin Nutr 2018; 72:26-37. [DOI: 10.1038/s41430-018-0306-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
220
|
An Early Life Mucosal Insult Temporarily Decreases Acute Oxazolone-Induced Inflammation in Mice. Inflammation 2018; 41:1437-1447. [PMID: 29666981 DOI: 10.1007/s10753-018-0790-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory priming of immune cells in early life may optimize the response to a subsequent inflammatory challenge later in life. To prime the immune cells in the gut in vivo through a short inflammatory insult, we administered a low dose of dextran sulfate sodium (DSS) to 5-weeks-old BALB/c mice in the drinking water. We hypothesized that DSS-primed mice would show decreased inflammation and difference in immunological profiling, when subjected to presensitizing and oxazolone-induced colitis by rectal instillation at 9 weeks compared to non-DSS-primed control mice. In fact, this low-dose DSS priming apparently decreased the acute inflammation, as colitis scores along with IFNγ, IL-1ß, and IL-4 were significantly decreased with the same tendency for IL-5, TNFα, and IL-2 on day 3 post-induction compared to control mice. On day 7, both DSS-primed and control mice had significantly higher numbers of FoxP3+CD8+ regulatory T cells, while they did not differ in any inflammation parameters. No significant differences were found for intraepithelial lymphocytes or mesenteric lymphocytes at any time point after colitis induction. In conclusion, the priming did decrease local acute tissue inflammation of the colon in this commonly applied mouse model of T helper cell type 2-dominated model of inflammatory bowel disease.
Collapse
|
221
|
Barnett JA, Gibson DL. H 2Oh No! The importance of reporting your water source in your in vivo microbiome studies. Gut Microbes 2018; 10:261-269. [PMID: 30442070 PMCID: PMC6546325 DOI: 10.1080/19490976.2018.1539599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 02/03/2023] Open
Abstract
Water is a fundamental part of any in vivo microbiome experiment however, it is also one of the most overlooked and underreported variables within the literature. Currently there is no established standard for drinking water quality set by the Canadian Council on Animal Care. Most water treatment methods focus on inhibiting bacterial growth within the water while prolonging the shelf-life of bottles once poured. When reviewing the literature, it is clear that some water treatment methods, such as water acidification, alter the gut microbiome of experimental animals resulting in dramatic differences in disease phenotype progression. Furthermore, The Jackson Lab, one of the world's leading animal vendors, provides acidified water to their in-house animals and is often cited in the literature as having a dramatically different gut microbiome than animals acquired from either Charles River or Taconic. While we recognize that it is impossible to standardize water across all animal facilities currently conducting microbiome research, we hope that by drawing attention to the issue in this commentary, researchers will consider water source as an experimental variable and report their own water sources to facilitate experimental reproducibility. Moreover, researchers should be cognisant of potential phenotypic differences observed between commercial animal vendors due to changes in the gut microbiome as a result of various sources of water used.
Collapse
Affiliation(s)
| | - Deanna L. Gibson
- Department of Biology, Okanagan campus, Kelowna, BC, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia Kelowna, BC, Canada
| |
Collapse
|
222
|
Xie R, Sun Y, Wu J, Huang S, Jin G, Guo Z, Zhang Y, Liu T, Liu X, Cao X, Wang B, Cao H. Maternal High Fat Diet Alters Gut Microbiota of Offspring and Exacerbates DSS-Induced Colitis in Adulthood. Front Immunol 2018; 9:2608. [PMID: 30483266 PMCID: PMC6243010 DOI: 10.3389/fimmu.2018.02608] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Accumulating evidence shows that high fat diet is closely associated with inflammatory bowel disease. However, the effects and underlying mechanisms of maternal high fat diet (MHFD) on the susceptibility of offspring to colitis in adulthood lacks confirmation. Methods: C57BL/6 pregnant mice were given either a high fat (60 E% fat, MHFD group) or control diet [10 E% fat, maternal control diet (MCD) group] during gestation and lactation. The intestinal development, mucosal barrier function, microbiota, and mucosal inflammation of 3-week old offspring were assessed. After weaning all mice were fed a control diet until 8 weeks of age when the microbiota was analyzed. Offspring were also treated with 2% DSS solution for 5 days and the severity of colitis was assessed. Results: The offspring in MHFD group were significantly heavier than those in MCD group only at 2–4 weeks of age, while no differences were found in the body weight between two groups at other measured time points. Compared with MCD group, MHFD significantly inhibited intestinal development and disrupted barrier function in 3-week old offspring. Although H&E staining showed no obvious microscopic inflammation in both groups of 3-week old offspring, increased production of inflammatory cytokines indicated low-grade inflammation was induced in MHFD group. Moreover, fecal analysis of the 3-week old offspring indicated that the microbiota compositions and diversity were significantly changed in MHFD group. Interestingly after 5 weeks consumption of control diet in both groups, the microbiota composition of offspring in MHFD group was still different from that in MCD group, although the bacterial diversity was partly recovered at 8 weeks of age. Finally, after DSS treatment in 8-week old offspring, MHFD significantly exacerbated the severity of colitis and increased the production of proinflammatory cytokine. Conclusions: Our data reveal that MHFD in early life can inhibit intestinal development, induce dysbiosis and low-grade inflammation and lead to the disruption of intestinal mucosal barrier in offspring, and enhance DSS-induced colitis in adulthood.
Collapse
Affiliation(s)
- Runxiang Xie
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Shumin Huang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
223
|
Possible Prevention of Diabetes with a Gluten-Free Diet. Nutrients 2018; 10:nu10111746. [PMID: 30428550 PMCID: PMC6266002 DOI: 10.3390/nu10111746] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Gluten seems a potentially important determinant in type 1 diabetes (T1D) and type 2 diabetes (T2D). Intake of gluten, a major component of wheat, rye, and barley, affects the microbiota and increases the intestinal permeability. Moreover, studies have demonstrated that gluten peptides, after crossing the intestinal barrier, lead to a more inflammatory milieu. Gluten peptides enter the pancreas where they affect the morphology and might induce beta-cell stress by enhancing glucose- and palmitate-stimulated insulin secretion. Interestingly, animal studies and a human study have demonstrated that a gluten-free (GF) diet during pregnancy reduces the risk of T1D. Evidence regarding the role of a GF diet in T2D is less clear. Some studies have linked intake of a GF diet to reduced obesity and T2D and suggested a role in reducing leptin- and insulin-resistance and increasing beta-cell volume. The current knowledge indicates that gluten, among many environmental factors, may be an aetiopathogenic factors for development of T1D and T2D. However, human intervention trials are needed to confirm this and the proposed mechanisms.
Collapse
|
224
|
Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, Castellano-Castillo D, Moreno-Indias I, Urda-Cardona A, Tinahones FJ, Fernández-García JC, Queipo-Ortuño MI. Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study. Diabetes Care 2018; 41:2385-2395. [PMID: 30224347 DOI: 10.2337/dc18-0253] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/26/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes of the young 2 (MODY2), a monogenic cause of diabetes. Gut microbiota of type 1 diabetes, MODY2, and healthy control subjects was compared. RESEARCH DESIGN AND METHODS This was a case-control study in 15 children with type 1 diabetes, 15 children with MODY2, and 13 healthy children. Metabolic control and potential factors modifying gut microbiota were controlled. Microbiome composition was determined by 16S rRNA pyrosequencing. RESULTS Compared with healthy control subjects, type 1 diabetes was associated with a significantly lower microbiota diversity, a significantly higher relative abundance of Bacteroides, Ruminococcus, Veillonella, Blautia, and Streptococcus genera, and a lower relative abundance of Bifidobacterium, Roseburia, Faecalibacterium, and Lachnospira. Children with MODY2 showed a significantly higher Prevotella abundance and a lower Ruminococcus and Bacteroides abundance. Proinflammatory cytokines and lipopolysaccharides were increased in type 1 diabetes, and gut permeability (determined by zonulin levels) was significantly increased in type 1 diabetes and MODY2. The PICRUSt analysis found an increment of genes related to lipid and amino acid metabolism, ABC transport, lipopolysaccharide biosynthesis, arachidonic acid metabolism, antigen processing and presentation, and chemokine signaling pathways in type 1 diabetes. CONCLUSIONS Gut microbiota in type 1 diabetes differs at taxonomic and functional levels not only in comparison with healthy subjects but fundamentally with regard to a model of nonautoimmune diabetes. Future longitudinal studies should be aimed at evaluating if the modulation of gut microbiota in patients with a high risk of type 1 diabetes could modify the natural history of this autoimmune disease.
Collapse
Affiliation(s)
- Isabel Leiva-Gea
- Pediatric Endocrinology, Hospital Materno-Infantil, Málaga, Spain
| | - Lidia Sánchez-Alcoholado
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
| | | | - Daniel Castellano-Castillo
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | | | - Francisco J Tinahones
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain .,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
225
|
Abstract
Akkermansia muciniphila, a symbiotic bacterium of the mucus layer, can utilize mucin as its sole carbon, nitrogen, and energy source. As an abundant resident in the intestinal tract of humans and animals, the probiotic effects of A. muciniphila including metabolic modulation, immune regulation and gut health protection, have been widely investigated. Various diseases such as metabolic syndromes and auto-immnue diseases have been reported to be associated with the disturbance of the abundance of A. muciniphila. In this review, we describe the biological characterization of A. muciniphia, the factors that influence its colonization of the intestinal tract; and discuss the current state of our knowledge on its role in host health and disease.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Saisai Feng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Narbad Arjan
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China.,Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| |
Collapse
|
226
|
Sane F, Scuotto A, Pierrat V, Kacet N, Hober D, Romond MB. Diabetes progression and alterations in gut bacterial translocation: prevention by diet supplementation with human milk in NOD mice. J Nutr Biochem 2018; 62:108-122. [PMID: 30292969 DOI: 10.1016/j.jnutbio.2018.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/19/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Impaired intestinal barrier function occurs before type 1 diabetes (T1D) onset with a possible contribution of microbial translocation. Breastfeeding is associated with enhanced mucosal intestinal integrity and T1D protection. Our aim was to study the potential of human milk (HM) to prevent diabetes onset and modulate the translocation of gut bacteria susceptible to breastfeeding or associated to diabetes onset. We show that HM intake can prevent T1D in nonobese diabetic mice independently of bifidobacteria colonization. Prior to diabetes onset, HM mice harbored splenic bacterial counts and plasma lipopolysaccharides level similar to control mice but exhibited a reduced expansion of Anaerotruncus sp. in pancreas and Lactobacillus johnsonii and Barnesiella in Peyer's patches (PP). Surprisingly, pancreas and PP bacterial expansion did not correlate with their own gut localization but with ileal Escherichia coli and cecal HM-susceptible bacteria (the promoted L. murinus and Bacteroides vulgatus, and the repressed B. fragilis and E. coli), respectively. Besides, higher colonic B. vulgatus counts induced by HM intake were associated with low islet infiltration and pancreatic E. coli expansion. On another hand, splenic dendritic cells (DCs) were identified as negative covariate of PP Barnesiella, suggesting a possible HM contribution to preserving splenic DCs through the reduction of Barnesiella translocation. Fecal B. vulgatus also negatively correlated with PP Barnesiella expansion, indicating that the mouse coprophagic behavior likely added to HM effect. Our findings provide evidence that HM has a multilevel impact and cooperates with some gut bacteria for controlling bacterial translocation at the earliest stage of insulitis.
Collapse
Affiliation(s)
- Famara Sane
- Université Lille et CHU de Lille Laboratoire de Virologie EA3610, F-59037 Lille, France
| | | | - Véronique Pierrat
- CHRU Lille, Hôpital Jeanne de Flandres, Lactarium Régional, Lille 59133, France
| | - Nadine Kacet
- CHRU Lille, Hôpital Jeanne de Flandres, Lactarium Régional, Lille 59133, France
| | - Didier Hober
- Université Lille et CHU de Lille Laboratoire de Virologie EA3610, F-59037 Lille, France
| | | |
Collapse
|
227
|
Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ. Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocr Rev 2018; 39:629-663. [PMID: 30060120 DOI: 10.1210/er.2017-00191] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
There has been an alarming increase in the prevalence of obesity in people with type 1 diabetes in recent years. Although obesity has long been recognized as a major risk factor for the development of type 2 diabetes and a catalyst for complications, much less is known about the role of obesity in the initiation and pathogenesis of type 1 diabetes. Emerging evidence suggests that obesity contributes to insulin resistance, dyslipidemia, and cardiometabolic complications in type 1 diabetes. Unique therapeutic strategies may be required to address these comorbidities within the context of intensive insulin therapy, which promotes weight gain. There is an urgent need for clinical guidelines for the prevention and management of obesity in type 1 diabetes. The development of these recommendations will require a transdisciplinary research strategy addressing metabolism, molecular mechanisms, lifestyle, neuropsychology, and novel therapeutics. In this review, the prevalence, clinical impact, energy balance physiology, and potential mechanisms of obesity in type 1 diabetes are described, with a special focus on the substantial gaps in knowledge in this field. Our goal is to provide a framework for the evidence base needed to develop type 1 diabetes-specific weight management recommendations that account for the competing outcomes of glycemic control and weight management.
Collapse
Affiliation(s)
- Karen D Corbin
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - Kimberly A Driscoll
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado.,Barbara Davis Center for Diabetes, Aurora, Colorado
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - David M Maahs
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
228
|
Zheng P, Li Z, Zhou Z. Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev 2018; 34:e3043. [PMID: 29929213 PMCID: PMC6220847 DOI: 10.1002/dmrr.3043] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease, which is characterized by the destruction of islet β cells in the pancreas triggered by genetic and environmental factors. In past decades, extensive familial and genome-wide association studies have revealed more than 50 risk loci in the genome. However, genetic susceptibility cannot explain the increased incidence of T1D worldwide, which is very likely attributed by the growing impact of environmental factors, especially gut microbiome. Recently, the role of gut microbiome in the pathogenesis of T1D has been uncovered by the increasing evidence from both human subjects and animal models, strongly indicating that gut microbiome might be a pivotal hub of T1D-triggering factors, especially environmental factors. In this review, we summarize the current aetiological and mechanism studies of gut microbiome in T1D. A better understanding of the role of gut microbiome in T1D may provide us with powerful prognostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Peilin Zheng
- Department of Metabolism and Endocrinology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaChina
| | - Zhixia Li
- Department of Metabolism and Endocrinology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaChina
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaChina
| |
Collapse
|
229
|
Abstract
PURPOSE OF REVIEW The incidence of type 1 diabetes (T1D) is rising drastically for the past decades at a rate that cannot be explained by genetic changes alone. Environmental changes are considered to be the main drivers of this change. Recently, the gut microbiota has been suggested as a missing link between known environmental disease modulators and T1D promotion. Lifestyle factors have changed over time and have altered the gut microbiota-host interaction affecting T1D development. The purpose of this review is to discuss recent data emphasizing the modulatory potential of early lifestyle factors on gut microbiota and to elucidate their implication for T1D. RECENT FINDINGS Recent findings show that lifestyle factors, especially those that affect the early establishment of gut homeostasis and the education of the immune system, are crucial disease modulators. Changing lifestyle factors affecting the early establishment of gut homeostasis are suggested to be key drivers of the rising T1D incidence.
Collapse
Affiliation(s)
- Elke Gülden
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
230
|
Pearson JA, Agriantonis A, Wong FS, Wen L. Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Hum Vaccin Immunother 2018; 14:2580-2596. [PMID: 30156993 PMCID: PMC6314421 DOI: 10.1080/21645515.2018.1514354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/29/2018] [Accepted: 08/17/2018] [Indexed: 02/08/2023] Open
Abstract
T1D is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing β-cells in the pancreatic islets of Langerhans, resulting in hyperglycemia, with patients requiring lifelong insulin treatment. Many studies have shown that genetics alone are not sufficient for the increase in T1D incidence and thus other factors have been suggested to modify the disease risk. T1D incidence has sharply increased in the developed world, especially amongst youth. In Europe, T1D incidence is increasing at an annual rate of 3-4%. Increasing evidence shows that gut microbiota, as one of the environmental factors influencing diabetes development, play an important role in development of T1D. Here, we summarize the current knowledge about the relationship between the microbiota and T1D. We also discuss the possibility of T1D prevention by changing the composition of gut microbiota.
Collapse
Affiliation(s)
- James A. Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - Andrew Agriantonis
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
231
|
Oral treatment with Lactobacillus rhamnosus 64 during the early postnatal period improves the health of adult rats with TNBS-induced colitis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
232
|
Chhabra P, Spano AJ, Bowers D, Ren T, Moore DJ, Timko MP, Wu M, Brayman KL. Evidence for the Role of the Cecal Microbiome in Maintenance of Immune Regulation and Homeostasis. Ann Surg 2018; 268:541-549. [PMID: 29994931 DOI: 10.1097/sla.0000000000002930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE (S) Our objective was to investigate alterations in the cecal microbial composition during the development of type 1 diabetes (T1D) with or without IgM therapy, and correlate these alterations with the corresponding immune profile. METHODS (1) Female nonobese diabetic (NOD) mice treated with IgM or saline (n = 20/group) were divided into 5-week-old nondiabetic; 9 to 12-week-old prehyperglycemic stage-1; ≥13-week-old prehyperglycemic stage-2; and diabetic groups. 16S rRNA libraries were prepared from bacterial DNA and deep-sequenced. (2) New-onset diabetic mice were treated with IgM (200 μg on Days 1, 3, and 5) and their blood glucose monitored for 2 months. RESULTS Significant dysbiosis was observed in the cecal microbiome with the progression of T1D development. The alteration in microbiome composition was characterized by an increase in the bacteroidetes:firmicutes ratio. In contrast, IgM conserved normal bacteroidetes:firmicutes ratio and this effect was long-lasting. Furthermore, oral gavage using cecal content from IgM-treated mice significantly diminished the incidence of diabetes compared with controls, indicating that IgM specifically affected mucosa-associated microbes, and that the affect was causal and not an epiphenomenon. Also, regulatory immune cell populations (myeloid-derived suppressor cells and regulatory T cells) were expanded and insulin autoantibody production diminished in the IgM-treated mice. In addition, IgM therapy reversed hyperglycemia in 70% of new-onset diabetic mice (n = 10) and the mice remained normoglycemic for the entire post-treatment observation period. CONCLUSIONS The cecal microbiome appears to be important in maintaining immune homeostasis and normal immune responses.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Anthony J Spano
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Daniel Bowers
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Tiantian Ren
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Daniel J Moore
- Department of Pediatrics, Vanderbilt University, Nashville, TN
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
233
|
Zhang X, Hu BX, Ren H, Zhang J. Composition and functional diversity of microbial community across a mangrove-inhabited mudflat as revealed by 16S rDNA gene sequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:518-528. [PMID: 29579663 DOI: 10.1016/j.scitotenv.2018.03.158] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 05/25/2023]
Abstract
The gradient distribution of microbial communities has been detected in profiles along many natural environments. In a mangrove seedlings inhabited mudflat, the microbes drive a variety of biogeochemical processes and are associated with a dramatically changed environment across the tidal zones of mudflat. A better understanding of microbial composition, diversity and associated functional profiles in relation to physicochemical influences could provide more insights into the ecological functions of microbes in a coastal mangrove ecosystem. In this study, the variation of microbial community along successive tidal flats inhabited by mangrove seedlings were characterized based on the 16S rDNA gene sequences, and then the factors that shape the bacterial and archaeal communities were determined. Results showed that the tidal cycles strongly influence the distribution of bacterial and archaeal communities. Dissimilarity and gradient distribution of microbial communities were found among high tidal flat, mid-low tidal flat and seawater. Discrepancies were also as well observed from the surface to subsurface layers specifically in the high tidal flat. For example, Alphaproteobacteria displayed an increasing trend from low tidal to high tidal flat and vice versa for Deltaproteobacteria; Cyanobacteria and Thaumarchaeota were more dominant in the surface layer than the subsurface. In addition, by classifying the microorganisms into metabolic functional groups, we were able to identify the biogeochemical pathway that was dominant in each zone. The (oxygenic) photoautotrophy and nitrate reduction were enhanced in the mangrove inhabited mid tidal flat. It revealed the ability of xenobiotic metabolism microbes to degrade, transform, or accumulate environmental hydrocarbon pollutants in seawater, increasing sulfur-related respiration from high tidal to low tidal flat. An opposite distribution was found for major nitrogen cycling processes. The shift of both composition and function of microbial communities were significantly related to light, oxygen availability and total dissolved nitrogen instead of sediment types or salinity.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Institute of Groundwater and Earth Sciences, Jinan University, 510632 Guangzhou, China; Department of Ecology, Jinan University, 510632 Guangzhou, China.
| | - Bill X Hu
- Institute of Groundwater and Earth Sciences, Jinan University, 510632 Guangzhou, China; School of Water Resources and Environment, China University of Geosciences (Beijing), 100083 Beijing, China.
| | - Hejun Ren
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 130021 Changchun, China
| | - Jin Zhang
- Institute of Urban Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
234
|
Rosa CP, Brancaglion GA, Miyauchi-Tavares TM, Corsetti PP, de Almeida LA. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions. Life Sci 2018; 207:480-491. [DOI: 10.1016/j.lfs.2018.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
|
235
|
Hänninen A, Toivonen R, Pöysti S, Belzer C, Plovier H, Ouwerkerk JP, Emani R, Cani PD, De Vos WM. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 2018; 67:1445-1453. [PMID: 29269438 DOI: 10.1136/gutjnl-2017-314508] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intestinal microbiota is implicated in the pathogenesis of autoimmune type 1 diabetes in humans and in non-obese diabetic (NOD) mice, but evidence on its causality and on the role of individual microbiota members is limited. We investigated if different diabetes incidence in two NOD colonies was due to microbiota differences and aimed to identify individual microbiota members with potential significance. DESIGN We profiled intestinal microbiota between two NOD mouse colonies showing high or low diabetes incidence by 16S ribosomal RNA gene sequencing and colonised the high-incidence colony with the microbiota of the low-incidence colony. Based on unaltered incidence, we identified a few taxa which were not effectively transferred and thereafter, transferred experimentally one of these to test its potential significance. RESULTS Although the high-incidence colony adopted most microbial taxa present in the low-incidence colony, diabetes incidence remained unaltered. Among the few taxa which were not transferred, Akkermansia muciniphila was identified. As A. muciniphila abundancy is inversely correlated to the risk of developing type 1 diabetes-related autoantibodies, we transferred A. muciniphila experimentally to the high-incidence colony. A. muciniphila transfer promoted mucus production and increased expression of antimicrobial peptide Reg3γ, outcompeted Ruminococcus torques from the microbiota, lowered serum endotoxin levels and islet toll-like receptor expression, promoted regulatory immunity and delayed diabetes development. CONCLUSION Transfer of the whole microbiota may not reduce diabetes incidence despite a major change in gut microbiota, but single symbionts such as A. muciniphila with beneficial metabolic and immune signalling effects may reduce diabetes incidence when administered as a probiotic.
Collapse
Affiliation(s)
- Arno Hänninen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.,Turku University Hospital, Hospital District of Southwest Finland, Turku, Finland
| | - Raine Toivonen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Sakari Pöysti
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Clara Belzer
- Laboratory of Microbiology, Wagenigen University, Wageningen, The Netherlands
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Universite Catholique de Louvain, Brussels, Belgium
| | - Janneke P Ouwerkerk
- Laboratory of Microbiology, Wagenigen University, Wageningen, The Netherlands
| | - Rohini Emani
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Universite Catholique de Louvain, Brussels, Belgium
| | - Willem M De Vos
- Laboratory of Microbiology, Wagenigen University, Wageningen, The Netherlands.,RPU Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
236
|
Mithieux G. Does Akkermansia muciniphila play a role in type 1 diabetes? Gut 2018; 67:1373-1374. [PMID: 29440234 DOI: 10.1136/gutjnl-2017-315732] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, Lyon, Rhône-Alpes, France.,Claude Bernard University Lyon 1, Villeurbanne, France.,University of Lyon, Lyon, France
| |
Collapse
|
237
|
Zhang XS, Li J, Krautkramer KA, Badri M, Battaglia T, Borbet TC, Koh H, Ng S, Sibley RA, Li Y, Pathmasiri W, Jindal S, Shields-Cutler RR, Hillmann B, Al-Ghalith GA, Ruiz VE, Livanos A, van 't Wout AB, Nagalingam N, Rogers AB, Sumner SJ, Knights D, Denu JM, Li H, Ruggles KV, Bonneau R, Williamson RA, Rauch M, Blaser MJ. Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity. eLife 2018; 7:37816. [PMID: 30039798 PMCID: PMC6085123 DOI: 10.7554/elife.37816] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
The early-life intestinal microbiota plays a key role in shaping host immune system development. We found that a single early-life antibiotic course (1PAT) accelerated type 1 diabetes (T1D) development in male NOD mice. The single course had deep and persistent effects on the intestinal microbiome, leading to altered cecal, hepatic, and serum metabolites. The exposure elicited sex-specific effects on chromatin states in the ileum and liver and perturbed ileal gene expression, altering normal maturational patterns. The global signature changes included specific genes controlling both innate and adaptive immunity. Microbiome analysis revealed four taxa each that potentially protect against or accelerate T1D onset, that were linked in a network model to specific differences in ileal gene expression. This simplified animal model reveals multiple potential pathways to understand pathogenesis by which early-life gut microbiome perturbations alter a global suite of intestinal responses, contributing to the accelerated and enhanced T1D development.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Jackie Li
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Kimberly A Krautkramer
- Department of Biomolecular Chemistry, Wisconsin Institute for Discovery, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Michelle Badri
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States.,Center for Data Science, New York University, New York, United States
| | - Thomas Battaglia
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Timothy C Borbet
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Hyunwook Koh
- Department of Population Health, New York University Langone Medical Center, New York, United States
| | - Sandy Ng
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Rachel A Sibley
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Yuanyuan Li
- Nutrition Research Institute, University of North Carolina at Chapel Hill School of Public Health, Kannapolis, United States
| | - Wimal Pathmasiri
- Nutrition Research Institute, University of North Carolina at Chapel Hill School of Public Health, Kannapolis, United States
| | - Shawn Jindal
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Robin R Shields-Cutler
- Computer Science and Engineering, BioTechnology Institute, University of Minnesota, St. Paul, United States
| | - Ben Hillmann
- Computer Science and Engineering, BioTechnology Institute, University of Minnesota, St. Paul, United States
| | - Gabriel A Al-Ghalith
- Computer Science and Engineering, BioTechnology Institute, University of Minnesota, St. Paul, United States
| | - Victoria E Ruiz
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Alexandra Livanos
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Angélique B van 't Wout
- Janssen Prevention Center London, Janssen Pharmaceutical Companies of Johnson and Johnson, London, United Kingdom
| | - Nabeetha Nagalingam
- Janssen Prevention Center London, Janssen Pharmaceutical Companies of Johnson and Johnson, London, United Kingdom
| | - Arlin B Rogers
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, United States
| | - Susan Jenkins Sumner
- Nutrition Research Institute, University of North Carolina at Chapel Hill School of Public Health, Kannapolis, United States
| | - Dan Knights
- Computer Science and Engineering, BioTechnology Institute, University of Minnesota, St. Paul, United States
| | - John M Denu
- Department of Biomolecular Chemistry, Wisconsin Institute for Discovery, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Huilin Li
- Department of Population Health, New York University Langone Medical Center, New York, United States
| | - Kelly V Ruggles
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Richard Bonneau
- Center for Data Science, New York University, New York, United States
| | - R Anthony Williamson
- Janssen Prevention Center London, Janssen Pharmaceutical Companies of Johnson and Johnson, London, United Kingdom
| | - Marcus Rauch
- Janssen Prevention Center London, Janssen Pharmaceutical Companies of Johnson and Johnson, London, United Kingdom
| | - Martin J Blaser
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States.,Department of Microbiology, New York Uniersity Langone Medical Center, New York, United States
| |
Collapse
|
238
|
Cheng RY, Li M, Li SS, He M, Yu XH, Shi L, He F. Vancomycin and ceftriaxone can damage intestinal microbiota and affect the development of the intestinal tract and immune system to different degrees in neonatal mice. Pathog Dis 2018; 75:4091429. [PMID: 28957452 DOI: 10.1093/femspd/ftx104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023] Open
Abstract
This study aimed to determine how antibiotic-driven intestinal dysbiosis impairs the development and differentiation of the digestive tract and immune organs of host animals. BALB/C neonatal mice were orally administered ceftriaxone or vancomycin from postnatal day 1 to day 21 and sacrificed on day 21. The diversity and abundance of the intestinal bacteria, morphological changes and barrier function of intestinal tract, and the splenic CD4+CD25+Foxp3+ T cells were investigated. The gut microbiota and intestinal tissue were damaged, and the numbers of Ki67-, Muc2- and ZO-1-positive cells were significantly decreased in the antibiotic treatment groups. Furthermore, the administration of ceftriaxone, but not vancomycin, led to a significant reduction in the abundance of splenic CD4+CD25+Foxp3+ T cells. Each antibiotic caused intestinal dysbiosis and characteristically influenced the regeneration of intestinal epithelial cells, formation of the intestinal mucus layer and tight junctions, and differentiation of splenic Foxp3+ Treg cells of the neonatal mice before any clinical side effects were observed. The potent ability of each antibiotic to affect the makeup of intestinal commensal microbiota may be a key determinant of the spectrum of antibiotics and influence the health of the host animal, at least partly.
Collapse
Affiliation(s)
- Ru Yue Cheng
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ming Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shan Shan Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Miao He
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiao Hong Yu
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Lei Shi
- Department of Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fang He
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
239
|
Crusell MKW, Hansen TH, Nielsen T, Allin KH, Rühlemann MC, Damm P, Vestergaard H, Rørbye C, Jørgensen NR, Christiansen OB, Heinsen FA, Franke A, Hansen T, Lauenborg J, Pedersen O. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. MICROBIOME 2018; 6:89. [PMID: 29764499 PMCID: PMC5952429 DOI: 10.1186/s40168-018-0472-x] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/26/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Imbalances of gut microbiota composition are linked to a range of metabolic perturbations. In the present study, we examined the gut microbiota of women with gestational diabetes mellitus (GDM) and normoglycaemic pregnant women in late pregnancy and about 8 months postpartum. METHODS Gut microbiota profiles of women with GDM (n = 50) and healthy (n = 157) pregnant women in the third trimester and 8 months postpartum were assessed by 16S rRNA gene amplicon sequencing of the V1-V2 region. Insulin and glucose homeostasis were evaluated by a 75 g 2-h oral glucose tolerance test during and after pregnancy. RESULTS Gut microbiota of women with GDM was aberrant at multiple levels, including phylum and genus levels, compared with normoglycaemic pregnant women. Actinobacteria at phylum level and Collinsella, Rothia and Desulfovibrio at genus level had a higher abundance in the GDM cohort. Difference in abundance of 17 species-level operational taxonomic units (OTUs) during pregnancy was associated with GDM. After adjustment for pre-pregnancy body mass index (BMI), 5 of the 17 OTUs showed differential abundance in the GDM cohort compared with the normoglycaemic pregnant women with enrichment of species annotated to Faecalibacterium and Anaerotruncus and depletion of species annotated to Clostridium (sensu stricto) and to Veillonella. OTUs assigned to Akkermansia were associated with lower insulin sensitivity while Christensenella OTUs were associated with higher fasting plasma glucose concentration. OTU richness and Shannon index decreased from late pregnancy to postpartum regardless of metabolic status. About 8 months after delivery, the microbiota of women with previous GDM was still characterised by an aberrant composition. Thirteen OTUs were differentially abundant in women with previous GDM compared with women with previous normoglycaemic pregnancy. CONCLUSION GDM diagnosed in the third trimester of pregnancy is associated with a disrupted gut microbiota composition compared with normoglycaemic pregnant women, and 8 months after pregnancy, differences in the gut microbiota signatures are still detectable. The gut microbiota composition of women with GDM, both during and after pregnancy, resembles the aberrant microbiota composition reported in non-pregnant individuals with type 2 diabetes and associated intermediary metabolic traits.
Collapse
Affiliation(s)
- Mie Korslund Wiinblad Crusell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Tue Haldor Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kristine Højgaard Allin
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Department of Clinical Epidemiology, Bispebjerg and Frederiksberg Hospital, Hovedvejen 5, Nordre Fasanvej 57, 2000 Frederiksberg, Copenhagen Denmark
| | - Malte C. Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamdsvej 3B, 2200 Copenhagen N, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820 Gentofte, Denmark
| | - Christina Rørbye
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Kettegaards Allé 30, 2650 Hvidovre, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
- OPEN, Odense Patient Data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 9 A, 3. sal, 5000 Odense, Denmark
| | - Ole Bjarne Christiansen
- Department of Obstetrics and Gynaecology, Rigshospitalet University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
- Fertility Clinic 4071, Rigshospitalet University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Reberbansgade, 9000 Aalborg, Denmark
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jeannet Lauenborg
- Department of Obstetrics and Gynaecology, Herlev University Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
240
|
Fietz K, Rye Hintze CO, Skovrind M, Kjærgaard Nielsen T, Limborg MT, Krag MA, Palsbøll PJ, Hestbjerg Hansen L, Rask Møller P, Gilbert MTP. Mind the gut: genomic insights to population divergence and gut microbial composition of two marine keystone species. MICROBIOME 2018; 6:82. [PMID: 29720271 PMCID: PMC5932900 DOI: 10.1186/s40168-018-0467-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/26/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Deciphering the mechanisms governing population genetic divergence and local adaptation across heterogeneous environments is a central theme in marine ecology and conservation. While population divergence and ecological adaptive potential are classically viewed at the genetic level, it has recently been argued that their microbiomes may also contribute to population genetic divergence. We explored whether this might be plausible along the well-described environmental gradient of the Baltic Sea in two species of sand lance (Ammodytes tobianus and Hyperoplus lanceolatus). Specifically, we assessed both their population genetic and gut microbial composition variation and investigated not only which environmental parameters correlate with the observed variation, but whether host genome also correlates with microbiome variation. RESULTS We found a clear genetic structure separating the high-salinity North Sea from the low-salinity Baltic Sea sand lances. The observed genetic divergence was not simply a function of isolation by distance, but correlated with environmental parameters, such as salinity, sea surface temperature, and, in the case of A. tobianus, possibly water microbiota. Furthermore, we detected two distinct genetic groups in Baltic A. tobianus that might represent sympatric spawning types. Investigation of possible drivers of gut microbiome composition variation revealed that host species identity was significantly correlated with the microbial community composition of the gut. A potential influence of host genetic factors on gut microbiome composition was further confirmed by the results of a constrained analysis of principal coordinates. The host genetic component was among the parameters that best explain observed variation in gut microbiome composition. CONCLUSIONS Our findings have relevance for the population structure of two commercial species but also provide insights into potentially relevant genomic and microbial factors with regards to sand lance adaptation across the North Sea-Baltic Sea environmental gradient. Furthermore, our findings support the hypothesis that host genetics may play a role in regulating the gut microbiome at both the interspecific and intraspecific levels. As sequencing costs continue to drop, we anticipate that future studies that include full genome and microbiome sequencing will be able to explore the full relationship and its potential adaptive implications for these species.
Collapse
Affiliation(s)
- Katharina Fietz
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.
- Marine Evolution and Conservation, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Christian Olaf Rye Hintze
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Mikkel Skovrind
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Environmental Science, Environmental Microbial Genomics Group, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Morten T Limborg
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Marcus A Krag
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Per J Palsbøll
- Marine Evolution and Conservation, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Environmental Microbial Genomics Group, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Peter Rask Møller
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.
- NTNU University Museum, 7491, Trondheim, Norway.
| |
Collapse
|
241
|
Stephens RW, Arhire L, Covasa M. Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity (Silver Spring) 2018; 26:801-809. [PMID: 29687647 DOI: 10.1002/oby.22179] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This review summarizes the current understanding of the relationship between gut microbiota and the host as it pertains to the regulation of energy balance and obesity. METHODS The paper begins with a brief description of the gut microbiota environment, distribution, and its unique symbiotic relationship with the host. The way that enviromental factors influence microbiota composition and subsequent impact on the host are then described. Next, the mechanisms linking gut dysbiosis with obesity are discussed, and finally current challenges and limitations in understanding the role of gut microbiota in control of obesity are presented. RESULTS Gut microbiota has been implicated in regulation of fat storage, as well as gut dysbiosis, thus contributing to the development of obesity, insulin resistance, hyperglycemia and hyperlipidemia. However, the underlying mechanisms of these processes are far from being clear and will require complex preclinical and clinical interdisciplinary studies of bacteria and host cell-to-cell interactions. CONCLUSIONS There is a need for a better understanding of how changes in gut microbiota composition can impact energy balance and thus control weight gain. This may represent a promising avenue in the race to develop nonsurgical treatments for obesity.
Collapse
Affiliation(s)
- Richard W Stephens
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Lidia Arhire
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Clinical Hospital Sf. Spiridon, Iasi, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California, USA
- Department of Health and Human Development, University of Suceava, Romania
| |
Collapse
|
242
|
Haupt-Jorgensen M, Larsen J, Josefsen K, Jørgensen TZ, Antvorskov JC, Hansen AK, Buschard K. Gluten-free diet during pregnancy alleviates signs of diabetes and celiac disease in NOD mouse offspring. Diabetes Metab Res Rev 2018; 34:e2987. [PMID: 29392873 DOI: 10.1002/dmrr.2987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Gluten-free (GF) diet during pregnancy ameliorates autoimmune diabetes in nonobese diabetic (NOD) mouse offspring. Due to comorbidity of celiac disease in type 1 diabetes, we hypothesized that GF diet in utero alleviates the humoral and histopathological signs of celiac disease in NOD mice. We aimed to establish the mechanisms behind the diabetes-protective effect of GF diet in utero. METHODS Breeding pairs of NOD mice were fed a GF or gluten-containing standard (STD) diet until parturition. The offspring were nursed by mothers on STD diet and continued on this diet until ages 4 and 13 weeks. Analyses of serum antitissue transglutaminase (anti-tTG) intestine and islet histology, islet transglutaminase (TG) activity, and cytokine expression in T cells from lymphoid organs were performed. RESULTS GF versus STD diet in utero led to reduced serum anti-tTG titre and increased villus-to-crypt ratio at both ages. Insulitis along with systemic and local inflammation were decreased, but islet TG activity was unchanged in 13-week-old GF mice. These mice had unchanged beta-cell volumes, but increased islet numbers throughout the prediabetic period. CONCLUSIONS Collectively, GF diet administered during pregnancy improves signs of celiac disease and autoimmune diabetes in the offspring. The diabetes-ameliorative effect of GF diet in utero is followed by dampening of inflammation, unchanged beta-cell volume, but increased islet numbers.
Collapse
Affiliation(s)
| | - Jesper Larsen
- The Bartholin Institute, Rigshospitalet, Copenhagen, Denmark
| | - Knud Josefsen
- The Bartholin Institute, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
243
|
Ayala DJ, Munk P, Lundgreen RBC, Traving SJ, Jaspers C, Jørgensen TS, Hansen LH, Riemann L. Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci Rep 2018; 8:6156. [PMID: 29670123 PMCID: PMC5906606 DOI: 10.1038/s41598-018-24388-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/03/2018] [Indexed: 11/17/2022] Open
Abstract
Limited insight into eel larvae feeding and diet prevents a holistic overview of the life-cycle of catadromous eels and an understanding of the ecological position of their early stages in marine waters. The present study evaluated the diet of larval European eel, Anguilla anguilla - a critically endangered species. Next-generation 18S rRNA gene sequencing data of Sargasso Sea eel larvae gut contents and marine snow aggregates was compared with a reference plankton database to assess the trophic relations of eel larvae. Gut contents of A. anguilla larvae were not well explained by the eukaryotic composition of marine snow aggregates; gut contents being dominated by gene sequences of Hydrozoa taxa (phylum Cnidaria), while snow aggregates were dominated by Crustacea taxa. Pronounced differences between gut contents and marine snow aggregates were also seen in the prokaryotic 16S rRNA gene composition. The findings, in concert with significant abundances of Hydrozoa in the study area, suggest that Hydrozoa plankton are important in the diet of A. anguilla larvae, and that consideration of these organisms would further our understanding of A. anguilla feeding strategies in the oligotrophic Sargasso Sea, which may be important for potential future rearing of A. anguilla larvae in captivity.
Collapse
Affiliation(s)
- Daniel J Ayala
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kgs, Lyngby, Denmark
| | - Peter Munk
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kgs, Lyngby, Denmark
| | - Regitze B C Lundgreen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Sachia J Traving
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Cornelia Jaspers
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kgs, Lyngby, Denmark.,Evolutionary Ecology of Marine Fishes, GEOMAR - Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Tue S Jørgensen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Lars H Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
| |
Collapse
|
244
|
Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics. Sci Rep 2018; 8:5416. [PMID: 29615808 PMCID: PMC5882891 DOI: 10.1038/s41598-018-23835-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
In the apolipoprotein E–deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoetm1sage (Apoe−/−) rats fed either a Western diet or a low-fat control diet with or without gluten, which is known to promote gut microbiota changes, until 20 weeks of age. We hypothesized that the manifestation of atherosclerosis would be more severe in Apoe−/− rats fed the Western high-fat diet, as compared with rats fed the low-fat diet, and that atherosclerosis would be accelerated by gluten. Both Western diet-feeding and gluten resulted in significant changes in gut microbiota, but the microbiota impact of gluten was transient. Compared with Apoe−/− rats fed a low-fat diet, Western diet-fed Apoe−/− rats were heavier and became glucose intolerant with increased levels of oxidative stress. They developed early fatty streak lesions in their aortic sinus, while there was no evidence of atherosclerosis in the thoracic aorta. No conclusions could be made on the impact of gluten on atherosclerosis. Although Western diet-fed Apoe−/− rats exhibited a more human-like LDL dominated blood lipid profile, signs of obesity, type 2 diabetes and cardiovascular disease were modest.
Collapse
|
245
|
Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders. Mediators Inflamm 2018; 2018:7946431. [PMID: 29563853 PMCID: PMC5833470 DOI: 10.1155/2018/7946431] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states, there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota, and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in order to be able to develop innovative treatment strategies for pancreatic disorders.
Collapse
|
246
|
Krych Ł, Kot W, Bendtsen KM, Hansen AK, Vogensen FK, Nielsen DS. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR. J Microbiol Methods 2018; 144:1-7. [DOI: 10.1016/j.mimet.2017.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/29/2023]
|
247
|
Chen YG, Mathews CE, Driver JP. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 2018; 9:51. [PMID: 29527189 PMCID: PMC5829040 DOI: 10.3389/fendo.2018.00051] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For more than 35 years, the NOD mouse has been the primary animal model for studying autoimmune diabetes. During this time, striking similarities to the human disease have been uncovered. In both species, unusual polymorphisms in a major histocompatibility complex (MHC) class II molecule confer the most disease risk, disease is caused by perturbations by the same genes or different genes in the same biological pathways and that diabetes onset is preceded by the presence of circulating autoreactive T cells and autoantibodies that recognize many of the same islet antigens. However, the relevance of the NOD model is frequently challenged due to past failures translating therapies from NOD mice to humans and because the appearance of insulitis in mice and some patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune diabetes research for its usefulness as a preclinical model and because it provides access to invasive procedures as well as tissues that are rarely procured from patients or controls. The current article is focused on approaches to improve the NOD mouse by addressing reasons why immune therapies have failed to translate from mice to humans. We also propose new strategies for mixing and editing the NOD genome to improve the model in ways that will better advance our understanding of human diabetes. As proof of concept, we report that diabetes is completely suppressed in a knock-in NOD strain with a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports that similar non-aspartic acid substitutions at residue 57 of variants of the human class II HLA-DQβ homolog confer diabetes risk.
Collapse
Affiliation(s)
- Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - John P. Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- *Correspondence: John P. Driver,
| |
Collapse
|
248
|
Kimer N, Pedersen JS, Tavenier J, Christensen JE, Busk TM, Hobolth L, Krag A, Al-Soud WA, Mortensen MS, Sørensen SJ, Møller S, Bendtsen F. Rifaximin has minor effects on bacterial composition, inflammation, and bacterial translocation in cirrhosis: A randomized trial. J Gastroenterol Hepatol 2018; 33:307-314. [PMID: 28671712 DOI: 10.1111/jgh.13852] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Decompensated cirrhosis is characterized by disturbed hemodynamics, immune dysfunction, and high risk of infections. Translocation of viable bacteria and bacterial products from the gut to the blood is considered a key driver in this process. Intestinal decontamination with rifaximin may reduce bacterial translocation (BT) and decrease inflammation. A randomized, placebo-controlled trial investigated the effects of rifaximin on inflammation and BT in decompensated cirrhosis. METHODS Fifty-four out-patients with cirrhosis and ascites were randomized, mean age 56 years (± 8.4), and model for end-stage liver disease score 12 (± 3.9). Patients received rifaximin 550-mg BD (n = 36) or placebo BD (n = 18). Blood and fecal (n = 15) sampling were conducted at baseline and after 4 weeks. Bacterial DNA in blood was determined by real-time qPCR 16S rRNA gene quantification. Bacterial composition in feces was analyzed by 16S rRNA gene sequencing. RESULTS Circulating markers of inflammation, including tumor necrosis factor alpha, interleukins 6, 10, and 18, stromal cell-derived factor 1-α, transforming growth factor β-1, and high sensitivity C-reactive protein, were unaltered by rifaximin treatment. Rifaximin altered abundance of bacterial taxa in blood marginally, only a decrease in Pseudomonadales was observed. In feces, rifaximin decreased bacterial richness, but effect on particular species was not observed. Subgroup analyses on patients with severely disturbed hemodynamics (n = 34) or activated lipopolysaccharide binding protein (n = 37) revealed no effect of rifaximin. CONCLUSION Four weeks of treatment with rifaximin had no impact on the inflammatory state and only minor effects on BT and intestinal bacterial composition in stable, decompensated cirrhosis (NCT01769040).
Collapse
Affiliation(s)
- Nina Kimer
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Centre of Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Julie S Pedersen
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Juliette Tavenier
- Clinical Research Centre, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jeffrey E Christensen
- Vaiomer SAS, Toulouse, France.,Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM U1048, Toulouse, France
| | - Troels M Busk
- Centre of Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Lise Hobolth
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Gastroenterology and Hepatology, Copenhagen University Hospital Bispebjerg, Bispebjerg, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Waleed Abu Al-Soud
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin S Mortensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Møller
- Centre of Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | |
Collapse
|
249
|
Rizzatti G, Ianiro G, Gasbarrini A. Antibiotic and Modulation of Microbiota: A New Paradigm? J Clin Gastroenterol 2018; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S74-S77. [PMID: 29912755 DOI: 10.1097/mcg.0000000000001069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently new insights on gut microbiota have revolutionized many concepts of the modern medicine. The alteration of microbiota, which is called dysbiosis, has been associated with an expanding list of diseases and conditions. The development of next-generation sequencing techniques allowed comprehensive analysis of gut microbiota composition without the limitations of classic culture methods. Furthermore, introduction of functional techniques such as metabolomics and proteomics allowed for integrated analysis thus obtaining more robust insights on microbiota functions in health and disease. These tools allow to address the role of factors able to modify the gut microbiota, the so called "microbiota influencers." These data are useful to explain the physiopathology of several disease and thus to identify new potential therapeutic targets. Among microbiota influencers, many studies focused on the impact of antibiotic administration on the gut microbiota, because of their widespread use. Notably, beside the known beneficial effect of antibiotic in treating infectious diseases, these drugs have shown detrimental effects on gut microbiota which, in turn, might have long-term consequences on the host. Finally, therapeutic modulation of gut microbiota, by means of selected antibiotics with eubiotic effects, probiotics and with fecal microbiota transplantation seems of great interest as it might be able to prevent or even revert antibiotic-induced dysbiosis.
Collapse
|
250
|
de Groot PF, Belzer C, Aydin Ö, Levin E, Levels JH, Aalvink S, Boot F, Holleman F, van Raalte DH, Scheithauer TP, Simsek S, Schaap FG, Olde Damink SWM, Roep BO, Hoekstra JB, de Vos WM, Nieuwdorp M. Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS One 2017; 12:e0188475. [PMID: 29211757 PMCID: PMC5718513 DOI: 10.1371/journal.pone.0188475] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Environmental factors driving the development of type 1 diabetes (T1D) are still largely unknown. Both animal and human studies have shown an association between altered fecal microbiota composition, impaired production of short-chain fatty acids (SCFA) and T1D onset. However, observational evidence on SCFA and fecal and oral microbiota in adults with longstanding T1D vs healthy controls (HC) is lacking. RESEARCH DESIGN AND METHODS We included 53 T1D patients without complications or medication and 50 HC matched for age, sex and BMI. Oral and fecal microbiota, fecal and plasma SCFA levels, markers of intestinal inflammation (fecal IgA and calprotectin) and markers of low-grade systemic inflammation were measured. RESULTS Oral microbiota were markedly different in T1D (eg abundance of Streptococci) compared to HC. Fecal analysis showed decreased butyrate producing species in T1D and less butyryl-CoA transferase genes. Also, plasma levels of acetate and propionate were lower in T1D, with similar fecal SCFA. Finally, fecal strains Christensenella and Subdoligranulum correlated with glycemic control, inflammatory parameters and SCFA. CONCLUSIONS We conclude that T1D patients harbor a different amount of intestinal SCFA (butyrate) producers and different plasma acetate and propionate levels. Future research should disentangle cause and effect and whether supplementation of SCFA-producing bacteria or SCFA alone can have disease-modifying effects in T1D.
Collapse
Affiliation(s)
- Pieter F. de Groot
- Department of Internal and Vascular Medicine, Academic Medical Center–University of Amsterdam, Amsterdam, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Ömrüm Aydin
- Department of Internal and Vascular Medicine, Academic Medical Center–University of Amsterdam, Amsterdam, the Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Academic Medical Center–University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes H. Levels
- Department of Internal and Vascular Medicine, Academic Medical Center–University of Amsterdam, Amsterdam, the Netherlands
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Fransje Boot
- Department of Internal and Vascular Medicine, Academic Medical Center–University of Amsterdam, Amsterdam, the Netherlands
| | - Frits Holleman
- Department of Internal and Vascular Medicine, Academic Medical Center–University of Amsterdam, Amsterdam, the Netherlands
| | - Daniël H. van Raalte
- Department of Internal medicine, VU University Medical Center, Amsterdam, The Netherlands
- ICAR, VU University Medical Center, Amsterdam, The Netherlands
| | - Torsten P. Scheithauer
- Department of Internal and Vascular Medicine, Academic Medical Center–University of Amsterdam, Amsterdam, the Netherlands
- Department of Internal medicine, VU University Medical Center, Amsterdam, The Netherlands
- ICAR, VU University Medical Center, Amsterdam, The Netherlands
| | - Suat Simsek
- Department of Internal Medicine, Medisch Centrum Alkmaar, Alkmaar, the Netherlands
| | - Frank G. Schaap
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, the Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Bart O. Roep
- Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Beckman Research Institute, DMRI, City of Hope, Duarte, CA, United States of America
| | - Joost B. Hoekstra
- Department of Internal and Vascular Medicine, Academic Medical Center–University of Amsterdam, Amsterdam, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
- RPU Immunobiology, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Academic Medical Center–University of Amsterdam, Amsterdam, the Netherlands
- Department of Internal medicine, VU University Medical Center, Amsterdam, The Netherlands
- ICAR, VU University Medical Center, Amsterdam, The Netherlands
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|