201
|
Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation. EUKARYOTIC CELL 2008; 7:610-8. [PMID: 18281597 DOI: 10.1128/ec.00017-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotes, acetyl coenzyme A (acetyl-CoA) produced during peroxisomal fatty acid beta-oxidation needs to be transported to mitochondria for further metabolism. Two parallel pathways for acetyl-CoA transport have been identified in Saccharomyces cerevisiae; one is dependent on peroxisomal citrate synthase (Cit), while the other requires peroxisomal and mitochondrial carnitine acetyltransferase (Cat) activities. Here we show that the human fungal pathogen Candida albicans lacks peroxisomal Cit, relying exclusively on Cat activity for transport of acetyl units. Deletion of the CAT2 gene encoding the major Cat enzyme in C. albicans resulted in a strain that had lost both peroxisomal and mitochondrion-associated Cat activities, could not grow on fatty acids or C(2) carbon sources (acetate or ethanol), accumulated intracellular acetyl-CoA, and showed greatly reduced fatty acid beta-oxidation activity. The cat2 null mutant was, however, not attenuated in virulence in a mouse model of systemic candidiasis. These observations support our previous results showing that peroxisomal fatty acid beta-oxidation activity is not essential for C. albicans virulence. Biofilm formation by the cat2 mutant on glucose was slightly reduced compared to that by the wild type, although both strains grew at the same rate on this carbon source. Our data show that C. albicans has diverged considerably from S. cerevisiae with respect to the mechanism of intracellular acetyl-CoA transport and imply that carnitine dependence may be an important trait of this human fungal pathogen.
Collapse
|
202
|
Lu Q, Minard KI, McAlister-Henn L. Dual compartmental localization and function of mammalian NADP+-specific isocitrate dehydrogenase in yeast. Arch Biochem Biophys 2008; 472:17-25. [PMID: 18275837 DOI: 10.1016/j.abb.2008.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 11/28/2022]
Abstract
Isozymes of NADP+-specific isocitrate dehydrogenase (IDP) provide NADPH in cytosolic, mitochondrial, and peroxisomal compartments of eukaryotic cells. Analyses of purified IDP isozymes from yeast and from mouse suggest a general correspondence of pH optima for catalysis and pI values with pH values reported for resident cellular compartments. However, mouse IDP2, which partitions between cytosolic and peroxisomal compartments in mammalian cells, exhibits a broad pH optimum and an intermediate pI value. Mouse IDP2 was found to similarly colocalize in both cellular compartments when expressed in yeast at levels equivalent to those of endogenous yeast isozymes. The mouse enzyme can compensate for loss of yeast cytosolic IDP2 and of peroxisomal IDP3. Removal of the peroxisomal targeting signal of the mouse enzyme precludes both localization in peroxisomes and compensation for loss of yeast IDP3.
Collapse
Affiliation(s)
- Qian Lu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
203
|
Montoudis A, Seidman E, Boudreau F, Beaulieu JF, Menard D, Elchebly M, Mailhot G, Sane AT, Lambert M, Delvin E, Levy E. Intestinal fatty acid binding protein regulates mitochondrion beta-oxidation and cholesterol uptake. J Lipid Res 2008; 49:961-72. [PMID: 18235139 DOI: 10.1194/jlr.m700363-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The role of intestinal fatty acid binding protein (I-FABP) in lipid metabolism remains elusive. To address this issue, normal human intestinal epithelial cells (HIEC-6) were transfected with cDNA to overexpress I-FABP and compared with cells treated with empty pQCXIP vector. I-FABP overexpression stimulated mitochondrial [U-14C]oleate oxidation to CO2 and acid-soluble metabolites via mechanisms including the upregulation of protein expression and the activity of carnitine palmitoyltransferase 1, a critical enzyme controlling the entry of fatty acid (FA) into mitochondria, and increased activity of 3-hydroxyacyl-CoA dehydrogenase, a mitochondrial beta-oxidation enzyme. On the other hand, the gene and protein expression of the key enzymes FA synthase and acetyl-coenzyme A carboxylase 2 was decreased, suggesting diminished lipogenesis. Furthermore, I-FABP overexpression caused a decline in [14C]free cholesterol (CHOL) incorporation. Accordingly, a significant lessening was observed in the gene expression of Niemann Pick C1-Like 1, a mediator of CHOL uptake, along with an increase in the transcripts and protein content of ABCA1 and ABCG5/ABCG8, acting as CHOL efflux pumps. Furthermore, I-FABP overexpression resulted in increased levels of mRNA, protein mass, and activity of HMG-CoA reductase, the rate-limiting step in CHOL synthesis. Scrutiny of the nuclear receptors revealed augmented peroxisome proliferator-activated receptor alpha,gamma and reduced liver X receptor-alpha in HIEC-6 overexpressing I-FABP. Finally, I-FABP overexpression did not influence acyl-coenzyme A oxidase 1, which catalyzes the first rate-limiting step in peroxisomal FA beta-oxidation. Overall, our data suggest that I-FABP may influence mitochondrial FA oxidation and CHOL transport by regulating gene expression and interaction with nuclear receptors.
Collapse
Affiliation(s)
- Alain Montoudis
- Department of Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Abstract
Experiments were carried out to characterize the transformation of lipids in activated sludge under aerobic conditions. Results showed that the overall lipid content in the effluent could not be reduced to values below 300 mg/L from an initial content of 2,000 mg/L. However, the contents of individual fatty acids underwent drastic decreases and increases during all microbial growth phases. These changes in contents of individual fatty acids showed that fatty acids were used as substrates by microorganisms as well as released into the wastewater as by-products. We have therefore suggested a novel model of transformation of lipids in activated sludge, showing that utilization of microbial activity for complete removal of lipids from wastewater is limited.
Collapse
Affiliation(s)
- Kangala B Chipasa
- Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk, Poland.
| | | |
Collapse
|
205
|
Cornell MJ, Alam I, Soanes DM, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Talbot NJ, Oliver SG. Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification in the fungi. Genes Dev 2007; 17:1809-22. [PMID: 17984228 PMCID: PMC2099590 DOI: 10.1101/gr.6531807] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 09/17/2007] [Indexed: 11/24/2022]
Abstract
The recent proliferation of genome sequencing in diverse fungal species has provided the first opportunity for comparative genome analysis across a eukaryotic kingdom. Here, we report a comparative study of 34 complete fungal genome sequences, representing a broad diversity of Ascomycete, Basidiomycete, and Zygomycete species. We have clustered all predicted protein-encoding gene sequences from these species to provide a means of investigating gene innovations, gene family expansions, protein family diversification, and the conservation of essential gene functions-empirically determined in Saccharomyces cerevisiae-among the fungi. The results are presented with reference to a phylogeny of the 34 fungal species, based on 29 universally conserved protein-encoding gene sequences. We contrast this phylogeny with one based on gene presence and absence and show that, while the two phylogenies are largely in agreement, there are differences in the positioning of some species. We have investigated levels of gene duplication and demonstrate that this varies greatly between fungal species, although there are instances of coduplication in distantly related fungi. We have also investigated the extent of orthology for protein families and demonstrate unexpectedly high levels of diversity among genes involved in lipid metabolism. These analyses have been collated in the e-Fungi data warehouse, providing an online resource for comparative genomic analysis of the fungi.
Collapse
Affiliation(s)
- Michael J. Cornell
- School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Intikhab Alam
- School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Darren M. Soanes
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Han Min Wong
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Cornelia Hedeler
- School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Norman W. Paton
- School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Magnus Rattray
- School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Simon J. Hubbard
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nicholas J. Talbot
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Stephen G. Oliver
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1 GA, United Kingdom
| |
Collapse
|
206
|
Kalpakcioglu B, Senel K. The interrelation of glutathione reductase, catalase, glutathione peroxidase, superoxide dismutase, and glucose-6-phosphate in the pathogenesis of rheumatoid arthritis. Clin Rheumatol 2007; 27:141-5. [PMID: 17912575 DOI: 10.1007/s10067-007-0746-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/30/2007] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is the most common form of inflammatory arthritis, a systemic autoimmune disease characterized by chronic inflammation of the synovial joints, ultimately leading to joint destruction and permanent disability, affecting 1% of the world population. Oxidative stress in rheumatoid inflammation, due to the fact that antioxidant systems are impaired in RA and caused by fee radicals, might have an essential role in etiology of RA. This review includes the interrelation of antioxidants against free radicals in RA patients. There is much evidence that antioxidant team that covers glutathione reductase, catalase, glutathione peroxidase, superoxide dismutase, and glucose-6-phopshate destroy reactive oxygen species and other free radicals through enzymatic as well as nonenzymatic means. The change in relative levels of antioxidants vis-à-vis free radical formation and level could be used as indicators for effective and earlier diagnosis of RA.
Collapse
Affiliation(s)
- Banu Kalpakcioglu
- Physical Therapy and Rehabilitation, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey.
| | | |
Collapse
|
207
|
Sun Q, Bi L, Su X, Tsurugi K, Mitsui K. Valproate induces apoptosis by inducing accumulation of neutral lipids which was prevented by disruption of theSIR2gene inSaccharomyces cerevisiae. FEBS Lett 2007; 581:3991-5. [PMID: 17673205 DOI: 10.1016/j.febslet.2007.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/04/2007] [Accepted: 07/13/2007] [Indexed: 11/29/2022]
Abstract
We investigated the participation of HDACs in VPA induced apoptosis in Saccharomyces cerevisiae. VPA (20 mM) induced apoptosis in several HDAC mutants, including PRD3 and HDA1-disrupted cells and SIR2 over expressing cells, as well as in wild-type cells but not SIR2-disrupted cells. Intracellular reactive oxygen species and neutral lipid content increased markedly in all kinds of HDAC mutant cells tested except for SIR2-disrupted cells. Thus, these results suggest that 20 mM VPA induces neutral lipid accumulation and apoptosis-like features in S. cerevisiae, and that VPA-induced apoptosis was evaded by deletion of SIR2.
Collapse
Affiliation(s)
- Qi Sun
- Department of Biochemistry 2nd, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuou, Yamanashi 409-3898, Japan
| | | | | | | | | |
Collapse
|
208
|
Pedrini N, Crespo R, Juárez MP. Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:124-137. [PMID: 17052960 DOI: 10.1016/j.cbpc.2006.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 08/15/2006] [Accepted: 08/20/2006] [Indexed: 11/27/2022]
Abstract
The biochemical interaction between fungal pathogens and their insect host epicuticle was studied by examining fungal hydrocarbon degrading ability. As a contact insecticide, entomopathogenic fungi invade their host through the cuticle, covered by an outermost lipid layer mainly composed of highly stable, very long chain structures. Strains of Beauveria bassiana and Metarhizium anisopliae (Deuteromycotina: Hyphomycetes), pathogenic both to the blood-sucking bug Triatoma infestans (Hemiptera: Reduviidae) and the bean-weevil Acanthoscelides obtectus (Coleoptera, Bruchidae), were grown on different carbon sources. Alkane-grown cells showed a lipid pattern different from that of glucose-grown cells, evidenced by a major switch in the triacylglycerol and sterol components. Radiolabelled hydrocarbons were used to investigate the catabolic pathway and the by-product incorporation into fungal cellular components. The first oxidation round is presumably carried out by a cytochrome P450 enzyme system, the metabolites will traverse the peroxisomal membrane, and after successive transformations will eventually provide the appropriate fatty acyl CoA for complete degradation in the peroxisomes, the site of beta-oxidation in fungi. In this review, we will show the relationship between fungal ability to catabolize very long chain hydrocarbons and virulence parameters.
Collapse
Affiliation(s)
- Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de CienciasMedicas, calles 60 y 120, La Plata, 1900, Argentina
| | - Rosana Crespo
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de CienciasMedicas, calles 60 y 120, La Plata, 1900, Argentina
| | - M Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de CienciasMedicas, calles 60 y 120, La Plata, 1900, Argentina.
| |
Collapse
|
209
|
Boumba VA, Ziavrou KS, Vougiouklakis T. Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci Int 2007; 174:133-51. [PMID: 17452087 DOI: 10.1016/j.forsciint.2007.03.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/13/2007] [Accepted: 03/21/2007] [Indexed: 11/23/2022]
Abstract
In this contribution are presented the fermentations of the main substrates present in a decaying corpse, namely carbohydrates, amino acids, glycerol and fatty acids, generating the post-mortem volatile compounds that could be detected along with ethanol during the forensic ethanol analysis. The available literature (preferably reviews) on microbial metabolic pathways (enzymes, substrates, conditions) that are implicated in the formation of these volatiles has been reviewed. The microbial formation of the following volatiles is supported by the presented biochemical data: ethanol, acetaldehyde, acetone, 2-propanol, 1-propanol, 1-butanol, isobutanol, isoamyl alcohol, d-amyl alcohol, acetate, propionate, butyrate, isobutyrate and ethyl esters (mainly ethyl acetate). The extracted information was correlated with the existing forensic literature on the post-mortem detected volatiles. The significance of the microbial produced volatiles on the selection of an appropriate internal standard for the ethanol analysis has been considered. Finally, the possible contribution of the presence of volatiles in the interpretation of ethanol analysis results in post-mortem cases is discussed.
Collapse
Affiliation(s)
- Vassiliki A Boumba
- Department of Forensic Medicine and Toxicology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | | | | |
Collapse
|
210
|
Tanaka T, Morishige JI, Iwawaki D, Fukuhara T, Hamamura N, Hirano K, Osumi T, Satouchi K. Metabolic pathway that produces essential fatty acids from polymethylene-interrupted polyunsaturated fatty acids in animal cells. FEBS J 2007; 274:2728-37. [PMID: 17451430 DOI: 10.1111/j.1742-4658.2007.05807.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sciadonic acid (20:3 Delta-5,11,14) and juniperonic acid (20:4 Delta-5,11,14,17) are polyunsaturated fatty acids (PUFAs) that lack the Delta-8 double bond of arachidonic acid (20:4 Delta-5,8,11,14) and eicosapentaenoic acid (20:5 Delta-5,8,11,14,17), respectively. Here, we demonstrate that these conifer oil-derived PUFAs are metabolized to essential fatty acids in animal cells. When Swiss 3T3 cells were cultured with sciadonic acid, linoleic acid (18:2 Delta-9,12) accumulated in the cells to an extent dependent on the concentration of sciadonic acid. At the same time, a small amount of 16:2 Delta-7,10 appeared in the cellular lipids. Both 16:2 Delta-7,10 and linoleic acid accumulated in sciadonic acid-supplemented CHO cells, but not in peroxisome-deficient CHO cells. We confirmed that 16:2 Delta-7,10 was effectively elongated to linoleic acid in rat liver microsomes. These results indicate that sciadonic acid was partially degraded to 16:2 Delta-7,10 by two cycles of beta-oxidation in peroxisomes, then elongated to linoleic acid in microsomes. Supplementation of Swiss 3T3 cells with juniperonic acid, an n-3 analogue of sciadonic acid, induced accumulation of alpha-linolenic acid (18:3 Delta-9,12,15) in cellular lipids, suggesting that juniperonic acid was metabolized in a similar manner to sciadonic acid. This PUFA remodeling is thought to be a process that converts unsuitable fatty acids into essential fatty acids required by animals.
Collapse
Affiliation(s)
- Tamotsu Tanaka
- Department of Applied Biological Science, Fukuyama University, Higashimura, Fukuyama, Hiroshima 729-0292, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Abstract
Epoxyeicosatrienoic acids (EETs), which function primarily as autocrine and paracrine mediators in the cardiovascular and renal systems, are synthesized from arachidonic acid by cytochrome P-450 epoxygenases. They activate smooth muscle large-conductance Ca(2+)-activated K(+) channels, producing hyperpolarization and vasorelaxation. EETs also have anti-inflammatory effects in the vasculature and kidney, stimulate angiogenesis, and have mitogenic effects in the kidney. Many of the functional effects of EETs occur through activation of signal transduction pathways and modulation of gene expression, events probably initiated by binding to a putative cell surface EET receptor. However, EETs are rapidly taken up by cells and are incorporated into and released from phospholipids, suggesting that some functional effects may occur through a direct interaction between the EET and an intracellular effector system. In this regard, EETs and several of their metabolites activate peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma, suggesting that some functional effects may result from PPAR activation. EETs are metabolized primarily by conversion to dihydroxyeicosatrienoic acids (DHETs), a reaction catalyzed by soluble epoxide hydrolase (sEH). Many potentially beneficial actions of EETs are attenuated upon conversion to DHETs, which do not appear to be essential under routine conditions. Therefore, sEH is considered a potential therapeutic target for enhancing the beneficial functions of EETs.
Collapse
Affiliation(s)
- Arthur A Spector
- Dept. of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
212
|
Abstract
In this review, we describe the current state of knowledge about the biochemistry of mammalian peroxisomes, especially human peroxisomes. The identification and characterization of yeast mutants defective either in the biogenesis of peroxisomes or in one of its metabolic functions, notably fatty acid beta-oxidation, combined with the recognition of a group of genetic diseases in man, wherein these processes are also defective, have provided new insights in all aspects of peroxisomes. As a result of these and other studies, the indispensable role of peroxisomes in multiple metabolic pathways has been clarified, and many of the enzymes involved in these pathways have been characterized, purified, and cloned. One aspect of peroxisomes, which has remained ill defined, is the transport of metabolites across the peroxisomal membrane. Although it is clear that mammalian peroxisomes under in vivo conditions are closed structures, which require the active presence of metabolite transporter proteins, much remains to be learned about the permeability properties of mammalian peroxisomes and the role of the four half ATP-binding cassette (ABC) transporters therein.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Disease, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
213
|
Froemming MK, Sames D. Fluoromorphic substrates for fatty acid metabolism: highly sensitive probes for mammalian medium-chain acyl-CoA dehydrogenase. Angew Chem Int Ed Engl 2007; 45:637-42. [PMID: 16365837 DOI: 10.1002/anie.200502675] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mary K Froemming
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | | |
Collapse
|
214
|
Brenman JE, Temple BRS. Opinion: alternative views of AMP-activated protein kinase. Cell Biochem Biophys 2007; 47:321-31. [PMID: 17652778 DOI: 10.1007/s12013-007-0005-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
Abstract
Genes most closely related to adenosine monophosphate (AMP)-activated protein kinase, including SAD kinases and Par-1 regulate cell polarity, although AMP-activated protein kinase (AMPK) modulates cellular energy status. LKB1 (Par-4) is required for normal activation of AMPK in the liver and also regulates cell polarity. AMPK is proposed to inhibit energy consuming activity while initiating energy producing activity during energy limitation. Demonstration that metformin, a common drug for Type 2 diabetes, requires LKB1 for full therapeutic benefit has increased interest in AMPK signaling. Despite the potential importance of AMPK signaling for diabetes, metabolic syndrome and even cancer, the developmental processes regulated by AMPK in genetically mutant animals require further elucidation. Mouse conditional null mutants for AMPK activity will allow genetic elucidation of AMPK function in vivo. This perspective focuses on sequence and structural moieties of AMPK and genetic analysis of AMPK mutations. Interestingly, the predicted protein structure of the carboxy-terminus of AMPKalpha resembles the carboxy-terminal KA-1 domain of MARK3, a Par-1 orthologue.
Collapse
Affiliation(s)
- Jay E Brenman
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
215
|
Klose J, Kronstad JW. The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. EUKARYOTIC CELL 2006; 5:2047-61. [PMID: 16998075 PMCID: PMC1694828 DOI: 10.1128/ec.00231-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 09/14/2006] [Indexed: 11/20/2022]
Abstract
The transition from yeast-like to filamentous growth in the biotrophic fungal phytopathogen Ustilago maydis is a crucial event for pathogenesis. Previously, we showed that fatty acids induce filamentation in U. maydis and that the resulting hyphal cells resemble the infectious filaments observed in planta. To explore the potential metabolic role of lipids in the morphological transition and in pathogenic development in host tissue, we deleted the mfe2 gene encoding the multifunctional enzyme that catalyzes the second and third reactions in beta-oxidation of fatty acids in peroxisomes. The growth of the strains defective in mfe2 was attenuated on long-chain fatty acids and abolished on very-long-chain fatty acids. The mfe2 gene was not generally required for the production of filaments during mating in vitro, but loss of the gene blocked extensive proliferation of fungal filaments in planta. Consistent with this observation, mfe2 mutants exhibited significantly reduced virulence in that only 27% of infected seedlings produced tumors compared to 88% tumor production upon infection by wild-type strains. Similarly, a defect in virulence was observed in developing ears upon infection of mature maize plants. Specifically, the absence of the mfe2 gene delayed the development of teliospores within mature tumor tissue. Overall, these results indicate that the ability to utilize host lipids contributes to the pathogenic development of U. maydis.
Collapse
Affiliation(s)
- Jana Klose
- Michael Smith Laboratories, The University of British Columbia, #301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | | |
Collapse
|
216
|
Bettegowda C, Huang X, Lin J, Cheong I, Kohli M, Szabo SA, Zhang X, Diaz LA, Velculescu VE, Parmigiani G, Kinzler KW, Vogelstein B, Zhou S. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat Biotechnol 2006; 24:1573-80. [PMID: 17115055 PMCID: PMC9338427 DOI: 10.1038/nbt1256] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/26/2006] [Indexed: 11/08/2022]
Abstract
Bacteriolytic anti-cancer therapies employ attenuated bacterial strains that selectively proliferate within tumors. Clostridium novyi-NT spores represent one of the most promising of these agents, as they generate potent anti-tumor effects in experimental animals. We have determined the 2.55-Mb genomic sequence of C. novyi-NT, identifying a new type of transposition and 139 genes that do not have homologs in other bacteria. The genomic sequence was used to facilitate the detection of transcripts expressed at various stages of the life cycle of this bacterium in vitro as well as in infections of tumors in vivo. Through this analysis, we found that C. novyi-NT spores contained mRNA and that the spore transcripts were distinct from those in vegetative forms of the bacterium.
Collapse
Affiliation(s)
- Chetan Bettegowda
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics & Therapeutics, The Sidney Kimmel Comprehensive Cancer Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Morais S, Knoll-Gellida A, André M, Barthe C, Babin PJ. Conserved expression of alternative splicing variants of peroxisomal acyl-CoA oxidase 1 in vertebrates and developmental and nutritional regulation in fish. Physiol Genomics 2006; 28:239-52. [PMID: 17090698 DOI: 10.1152/physiolgenomics.00136.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The acyl-coenzyme A oxidase 1 (ACOX1) catalyzes the first, rate-limiting step in peroxisomal beta-oxidation of medium to very long straight-chain fatty acids. Zebrafish (Danio rerio) acox1 was characterized and compared with homologs from other sequenced genomes, revealing a remarkable conservation of structure in the vertebrate lineage. Strictly conserved regions of the deduced proteins included acyl-CoA oxidase and FAD binding domains, as well as a COOH-terminal peroxisomal targeting signal. Whole mount in situ hybridization showed that zebrafish acox1 transcripts were diffusely distributed in early-stage embryonic cells, then discreetly expressed in the brain and widely present in the liver and intestine at later stages. An evolutionarily conserved alternative splicing of the corresponding acox1 primary transcript was identified in teleosts and tetrapods including mammals, giving rise, after exon skipping, to two splice variants, ACOX1-3I and ACOX1-3II. Real-time quantitative RT-PCR on zebrafish adult tissues indicated high levels of both variants in the liver, anterior intestine, and to a lesser extent, in the brain. However, the ACOX1-3II transcript variant was expressed seven times more in zebrafish brain than the ACOX1-3I variant. These data suggest a tissue-specific modulation of ACOX1 activity by exchanging exon 3 duplicated isoforms containing amino acid sequences that are potentially implicated in fatty acyl chain specificity. In addition, a significant pretranslational up-regulation of zebrafish and rainbow trout (Oncorhynchus mykiss) acox1 expression was observed in the anterior intestine after feeding. Taken together, these data indicate that ACOX1 alternative splicing isoforms play a key conserved role in the vertebrate fatty acid metabolism.
Collapse
Affiliation(s)
- Sofia Morais
- Génomique et Physiologie des Poissons, Université Bordeaux 1, UMR NuAGe, 33405 Talence cedex, France
| | | | | | | | | |
Collapse
|
218
|
Wanders RJA, Visser WF, van Roermund CWT, Kemp S, Waterham HR. The peroxisomal ABC transporter family. Pflugers Arch 2006; 453:719-34. [PMID: 17039367 DOI: 10.1007/s00424-006-0142-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
This review describes the current state of knowledge about the ABCD family of peroxisomal half adenosine-triphosphate-binding cassette (ABC) transporters. ABCDs are predicted to be present in a variety of eukaryotic organisms, although at present, only ABCDs in the yeast Saccharomyces cerevisiae, the plant Arabidopsis thaliana, and different mammalian species have been identified and characterized to any significant extent. The functional role of none of these ABCDs has been established definitively and awaits successful reconstitution of ABCDs, either as homo- or heterodimers into liposomes, followed by transport studies. Data obtained in S. cerevisiae suggest that the two ABCDs, which have been identified in this organism, form a heterodimer, which actually transports acyl coenzyme A esters across the peroxisomal membrane. In mammals, four ABCDs have been identified, of which one [adrenoleukodystrophy protein (ALDP)] has been implicated in the transport of the coenzyme A esters of very-long-chain fatty acids. Mutations in the gene (ABCD1) encoding ALDP are the cause of a severe X-linked disease, called X-linked adrenoleukodystrophy. The availability of mutant mice in which Abcd1, Abcd2, or Abcd3 have been disrupted will help to resolve the true role of the peroxisomal half-ABC transporters.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Laboratory Genetic Metabolic Diseases, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
219
|
Ramos-Pamplona M, Naqvi NI. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol Microbiol 2006; 61:61-75. [PMID: 16824095 DOI: 10.1111/j.1365-2958.2006.05194.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In lower eukaryotes, beta-oxidation of fatty acids is restricted primarily to the peroxisomes and the resultant acetyl-CoA molecules (and the chain-shortened fatty acids) are transported via the cytosol into the mitochondria for further breakdown and usage. Using a loss-of-function mutation in the Magnaporthe grisea PEROXIN6 orthologue, we define an essential role for peroxisomal acetyl-CoA during the host invasion step of the rice-blast disease. We show that an Mgpex6Delta strain lacks functional peroxisomes and is incapable of beta-oxidation of long-chain fatty acids. The Mgpex6Delta mutant lacked appressorial melanin and host penetration, and was completely non-pathogenic. We further show that a peroxisome-associated carnitine acetyl-transferase (Crat1) activity is essential for such appressorial function in Magnaporthe. CRAT1-minus appressoria showed reduced melanization, but were surprisingly incapable of elaborating penetration pegs or infection hyphae. Exogenous addition of excess glucose during infection stage caused partial remediation of the pathogenicity defects in the crat1Delta strain. Moreover, Mgpex6Delta and crat1Delta mycelia showed increased sensitivity to Calcofluor white, suggesting that weakened cell wall biosynthesis in a glucose-deficient environment leads to appressorial dysfunction in these mutants. Interestingly, CRAT1 was itself essential for growth on acetate and long-chain fatty acids. Thus, carnitine-dependent metabolic activities associated with the peroxisomes, cooperatively facilitate the appressorial function of host invasion during rice-blast infections.
Collapse
Affiliation(s)
- Marilou Ramos-Pamplona
- Fungal Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | | |
Collapse
|
220
|
Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1413-26. [PMID: 17028011 DOI: 10.1016/j.bbamcr.2006.08.034] [Citation(s) in RCA: 338] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 12/15/2022]
Abstract
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Collapse
Affiliation(s)
- Yves Poirier
- Department of Plant Molecular Biology, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
221
|
Morbidoni HR, Vilchèze C, Kremer L, Bittman R, Sacchettini JC, Jacobs WR. Dual inhibition of mycobacterial fatty acid biosynthesis and degradation by 2-alkynoic acids. ACTA ACUST UNITED AC 2006; 13:297-307. [PMID: 16638535 DOI: 10.1016/j.chembiol.2006.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 12/29/2005] [Accepted: 01/05/2006] [Indexed: 11/24/2022]
Abstract
2-Hexadecynoic acid and 2-octadecynoic acid have cidal activity against Mycobacterium smegmatis and Mycobacterium bovis BCG. At subinhibitory concentrations, M. smegmatis rapidly transformed [1-(14)C]-2-hexadecynoic acid into endogenous fatty acids and elongated them into mycolic acids. Toxic concentrations of 2-hexadecynoic acid resulted in accumulation of 3-ketohexadecanoic acid, which blocked fatty acid biosynthesis, and 3-hexadecynoic acid, an inhibitor of fatty acid degradation. The combination of these two metabolites is necessary to achieve the inhibition of M. smegmatis. We conclude that 2- and 3-hexa/octadecynoic acids inhibit mycolic acid biosynthesis, fatty acid biosynthesis, and fatty acid degradation, pathways of significant importance for mycobacteria.
Collapse
Affiliation(s)
- Hector R Morbidoni
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
222
|
Sundaramoorthy R, Micossi E, Alphey MS, Germain V, Bryce JH, Smith SM, Leonard GA, Hunter WN. The Crystal Structure of a Plant 3-Ketoacyl-CoA Thiolase Reveals the Potential for Redox Control of Peroxisomal Fatty Acid β-Oxidation. J Mol Biol 2006; 359:347-57. [PMID: 16630629 DOI: 10.1016/j.jmb.2006.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/07/2006] [Accepted: 03/15/2006] [Indexed: 11/30/2022]
Abstract
Crystal structures of peroxisomal Arabidopsis thaliana 3-ketoacyl-CoA thiolase (AtKAT), an enzyme of fatty acid beta-oxidation, are reported. The subunit, a typical thiolase, is a combination of two similar alpha/beta domains capped with a loop domain. The comparison of AtKAT with the Saccharomyces cerevisiae homologue (ScKAT) structure reveals a different placement of subunits within the functional dimers and that a polypeptide segment forming an extended loop around the open catalytic pocket of ScKAT converts to alpha-helix in AtKAT, and occludes the active site. A disulfide is formed between Cys192, on this helix, and Cys138, a catalytic residue. Access to Cys138 is determined by the structure of this polypeptide segment. AtKAT represents an oxidized, previously unknown inactive form, whilst ScKAT is the reduced and active enzyme. A high level of sequence conservation is observed, including Cys192, in eukaryotic peroxisomal, but not mitochondrial or prokaryotic KAT sequences, for this labile loop/helix segment. This indicates that KAT activity in peroxisomes is influenced by a disulfide/dithiol change linking fatty acid beta-oxidation with redox regulation.
Collapse
Affiliation(s)
- Ramasubramanian Sundaramoorthy
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Distler AM, Kerner J, Peterman SM, Hoppel CL. A targeted proteomic approach for the analysis of rat liver mitochondrial outer membrane proteins with extensive sequence coverage. Anal Biochem 2006; 356:18-29. [PMID: 16876102 DOI: 10.1016/j.ab.2006.03.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 11/19/2022]
Abstract
Membrane proteins play an important role in cellular function. However, their analysis by mass spectrometry often is hindered by their hydrophobicity and/or low abundance. In this article, we present a method for the mass spectrometric analysis of membrane proteins based on the isolation of the resident membranes, isolation of the proteins by gel electrophoresis, and electroelution followed by enzymatic digestion by both trypsin and proteinase K. With this method, we have achieved 82-99% sequence coverage for the membrane proteins carnitine palmitoyltransferase-I (CPT-I), long-chain acyl-CoA synthetase (LCAS), and voltage-dependent anion channel (VDAC), isolated from rat liver mitochondrial outer membranes, including the transmembrane domains of these integral membrane proteins. This high sequence coverage allowed the identification of the isoforms of the proteins under study. This methodology provides a targeted approach for examining membrane proteins in detail.
Collapse
Affiliation(s)
- Anne M Distler
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
224
|
Abstract
Bacterial metabolism has been studied intensively since the first observations of these 'animalcules' by Leeuwenhoek and their isolation in pure cultures by Pasteur. Metabolic studies have traditionally focused on a small number of model organisms, primarily the Gram negative bacillus Escherichia coli, adapted to artificial culture conditions in the laboratory. Comparatively little is known about the physiology and metabolism of wild microorganisms living in their natural habitats. For approximately 500-1000 species of commensals and symbionts, and a smaller number of pathogenic bacteria, that habitat is the human body. Emerging evidence suggests that the metabolism of bacteria grown in vivo differs profoundly from their metabolism in axenic cultures.
Collapse
Affiliation(s)
- Ernesto J Muñoz-Elías
- Laboratory of Infection Biology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
225
|
Chipasa KB, Medrzycka K. Behavior of lipids in biological wastewater treatment processes. J Ind Microbiol Biotechnol 2006; 33:635-45. [PMID: 16491352 DOI: 10.1007/s10295-006-0099-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 02/03/2006] [Indexed: 11/28/2022]
Abstract
Lipids (characterized as oils, greases, fats and long-chain fatty acids) are important organic components of wastewater. Their amount, for example, in municipal wastewater is approximately 30-40% of the total chemical oxygen demand. The concern over the behavior of lipids in biological treatment systems has led to many studies, which have evaluated their removal, but still the exact behavior of lipids in these processes is not well understood. In this review, we discuss the current knowledge of how lipids/fatty acids affect both aerobic and anaerobic processes and specific methods that have been used in an attempt to enhance their removal from wastewater. Overall, the literature shows that lipids/fatty acids are readily removed by biological treatment methods, inhibitory to microbial growth as well as the cause of foaming, growth of filamentous bacteria and floc flotation.
Collapse
Affiliation(s)
- K B Chipasa
- Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-952, Gdansk, Poland.
| | | |
Collapse
|
226
|
Froemming MK, Sames D. Fluoromorphic Substrates for Fatty Acid Metabolism: Highly Sensitive Probes for Mammalian Medium-Chain Acyl-CoA Dehydrogenase. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
227
|
Taskinen JP, Kiema TR, Hiltunen JK, Wierenga RK. Structural Studies of MFE-1: the 1.9Å Crystal Structure of the Dehydrogenase Part of Rat Peroxisomal MFE-1. J Mol Biol 2006; 355:734-46. [PMID: 16330050 DOI: 10.1016/j.jmb.2005.10.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 10/26/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The 1.9 A structure of the C-terminal dehydrogenase part of the rat peroxisomal monomeric multifunctional enzyme type 1 (MFE-1) has been determined. In this construct (residues 260-722 and referred to as MFE1-DH) the N-terminal hydratase part of MFE-1 has been deleted. The structure of MFE1-DH shows that it consists of an N-terminal helix, followed by a Rossmann-fold domain (domain C), followed by two tightly associated helical domains (domains D and E), which have similar topology. The structure of MFE1-DH is compared with the two known homologous structures: human mitochondrial 3-hydroxyacyl-CoA dehydrogenase (HAD; sequence identity is 33%) (which is dimeric and monofunctional) and with the dimeric multifunctional alpha-chain (alphaFOM; sequence identity is 28%) of the bacterial fatty acid beta-oxidation alpha2beta2-multienzyme complex. Like MFE-1, alphaFOM has an N-terminal hydratase part and a C-terminal dehydrogenase part, and the structure comparisons show that the N-terminal helix of MFE1-DH corresponds to the alphaFOM linker helix, located between its hydratase and dehydrogenase part. It is also shown that this helix corresponds to the C-terminal helix-10 of the hydratase/isomerase superfamily, suggesting that functionally it belongs to the N-terminal hydratase part of MFE-1.
Collapse
Affiliation(s)
- Jukka P Taskinen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014, Finland
| | | | | | | |
Collapse
|
228
|
Bhaumik P, Koski MK, Glumoff T, Hiltunen JK, Wierenga RK. Structural biology of the thioester-dependent degradation and synthesis of fatty acids. Curr Opin Struct Biol 2005; 15:621-8. [PMID: 16263264 DOI: 10.1016/j.sbi.2005.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 07/14/2005] [Accepted: 10/21/2005] [Indexed: 12/30/2022]
Abstract
The fatty acid degradation and synthesis pathways consist of the same four chemical transformations. These transformations are facilitated by conjugating the fatty acid, via a thioester bond, to coenzyme A or acyl carrier protein in, respectively, the degradation and synthesis pathways. These pathways are compartmentalized in the peroxisomes, mitochondria and cytosol of eukaryotic cells. Current structural knowledge of the enzymes comprising these pathways shows that the approximately 130 entries in the RCSB Protein Data Bank can be grouped into seven superfamilies. Multifunctional enzymes are important in both pathways.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Linnanmaa, PO Box 3000, FIN-90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
229
|
Ward PG, O' Connor KE. Induction and quantification of phenylacyl-CoA ligase enzyme activities inPseudomonas putidaCA-3 grown on aromatic carboxylic acids. FEMS Microbiol Lett 2005; 251:227-32. [PMID: 16165317 DOI: 10.1016/j.femsle.2005.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/05/2005] [Accepted: 08/05/2005] [Indexed: 11/30/2022] Open
Abstract
Three phenylacyl-CoA ligase activities were detected in extracts of Pseudomonas putida CA-3 cells grown with a variety of aromatic carboxylic acids. The three phenylacyl-CoA enzyme activities measured were phenylpropyl-CoA ligase (acting on both phenylpropanoic acid and cinnamic acid), a phenylacetyl-CoA ligase, and a medium chain length phenylalkanoyl-CoA ligase acting on aromatic substrates with 5 or more carbons in the acyl moiety. The rate of each enzyme activity detected in extracts of P. putida CA-3 cells is dependent on the growth substrate supplied. High rates of phenylpropyl-CoA ligase activity were observed with extracts of cells grown on phenylpropanoic acid, cinnamic acid or medium chain length phenylalkanoic acids with an uneven number of carbons in the acyl moiety. Extracts of P. putida CA-3 cells exhibited high rates of phenylacetyl-CoA ligase activity when grown on phenylacetic acid or medium chain length phenylalkanoic acids with an even number of carbons in the acyl moiety. In addition, high rates of medium chain length phenylalkanoyl-CoA ligase activity, towards phenylvaleric acid and phenylhexanoic acid, were exhibited by extracts of cells grown on all medium chain length phenylalkanoic acids. Low levels of the various phenylacyl-CoA ligase activities were found in extracts of cells grown on benzoic acid and glucose. Benzoyl-CoA ligase activity was not detected in any cell free extracts generated in this study.
Collapse
Affiliation(s)
- Patrick G Ward
- Department of Industrial Microbiology, Centre for Synthesis and Chemical Biology, Conway Institute for Biomolecular and Biomedical Research, National University of Ireland, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | |
Collapse
|
230
|
Abstract
Production of NADPH in Saccharomyces cerevisiae cells grown on glucose has been attributed to glucose-6-phosphate dehydrogenase (Zwf1p) and a cytosolic aldehyde dehydrogenase (Ald6p) (Grabowska, D., and Chelstowska, A. (2003) J. Biol. Chem. 278, 13984-13988). This was based on compensation by overexpression of Ald6p for phenotypes associated with ZWF1 gene disruption and on the apparent lethality resulting from co-disruption of ZWF1 and ALD6 genes. However, we have found that a zwf1Delta ald6Delta mutant can be constructed by mating when tetrads are dissected on plates with a nonfermentable carbon source (lactate), a condition associated with expression of another enzymatic source of NADPH, cytosolic NADP+-specific isocitrate dehydrogenase (Idp2p). We demonstrated previously that a zwf1Delta idp2Delta mutant loses viability when shifted to medium with oleate or acetate as the carbon source, apparently because of the inadequate supply of NADPH for cellular antioxidant systems. In contrast, the zwf1Delta ald6Delta mutant grows as well as the parental strain in similar shifts. In addition, the zwf1Delta ald6Delta mutant grows slowly but does not lose viability when shifted to culture medium with glucose as the carbon source, and the mutant resumes growth when the glucose is exhausted from the medium. Measurements of NADP(H) levels revealed that NADPH may not be rapidly utilized in the zwf1Delta ald6Delta mutant in glucose medium, perhaps because of a reduction in fatty acid synthesis associated with loss of Ald6p. In contrast, levels of NADP+ rise dramatically in the zwf1Delta idp2Delta mutant in acetate medium, suggesting a decrease in production of NADPH reducing equivalents needed both for biosynthesis and for antioxidant functions.
Collapse
Affiliation(s)
- Karyl I Minard
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
231
|
Bogdawa H, Delessert S, Poirier Y. Analysis of the contribution of the β-oxidation auxiliary enzymes in the degradation of the dietary conjugated linoleic acid 9-cis-11-trans-octadecadienoic acid in the peroxisomes of Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:204-13. [PMID: 16040271 DOI: 10.1016/j.bbalip.2005.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 05/25/2005] [Accepted: 06/09/2005] [Indexed: 11/16/2022]
Abstract
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
Collapse
Affiliation(s)
- Heique Bogdawa
- Département de Biologie Moléculaire Végétale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
232
|
Goepfert S, Vidoudez C, Rezzonico E, Hiltunen JK, Poirier Y. Molecular identification and characterization of the Arabidopsis delta(3,5),delta(2,4)-dienoyl-coenzyme A isomerase, a peroxisomal enzyme participating in the beta-oxidation cycle of unsaturated fatty acids. PLANT PHYSIOLOGY 2005; 138:1947-56. [PMID: 16040662 PMCID: PMC1183386 DOI: 10.1104/pp.105.064311] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.
Collapse
Affiliation(s)
- Simon Goepfert
- Département de Biologie Moléculaire Végétale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
233
|
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85:1093-129. [PMID: 15987803 DOI: 10.1152/physrev.00006.2004] [Citation(s) in RCA: 1466] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The alterations in myocardial energy substrate metabolism that occur in heart failure, and the causes and consequences of these abnormalities, are poorly understood. There is evidence to suggest that impaired substrate metabolism contributes to contractile dysfunction and to the progressive left ventricular remodeling that are characteristic of the heart failure state. The general concept that has recently emerged is that myocardial substrate selection is relatively normal during the early stages of heart failure; however, in the advanced stages there is a downregulation in fatty acid oxidation, increased glycolysis and glucose oxidation, reduced respiratory chain activity, and an impaired reserve for mitochondrial oxidative flux. This review discusses 1) the metabolic changes that occur in chronic heart failure, with emphasis on the mechanisms that regulate the changes in the expression of metabolic genes and the function of metabolic pathways; 2) the consequences of these metabolic changes on cardiac function; 3) the role of changes in myocardial substrate metabolism on ventricular remodeling and disease progression; and 4) the therapeutic potential of acute and long-term manipulation of cardiac substrate metabolism in heart failure.
Collapse
Affiliation(s)
- William C Stanley
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-4970, USA.
| | | | | |
Collapse
|
234
|
Pracharoenwattana I, Cornah JE, Smith SM. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. THE PLANT CELL 2005; 17:2037-48. [PMID: 15923350 PMCID: PMC1167550 DOI: 10.1105/tpc.105.031856] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We tested the hypothesis that peroxisomal citrate synthase (CSY) is required for carbon transfer from peroxisomes to mitochondria during respiration of triacylglycerol in Arabidopsis thaliana seedlings. Two genes encoding peroxisomal CSY are expressed in Arabidopsis seedlings, and seeds from plants with both CSY genes disrupted were dormant and did not metabolize triacylglycerol. Germination was achieved by removing the seed coat and supplying sucrose, but the seedlings still did not use triacylglycerol. The mutant seedlings were resistant to 2,4-dichlorophenoxybutyric acid, indicating a block in peroxisomal beta-oxidation, and were unable to develop further after transfer to soil. The mutant phenotype was complemented with a cDNA encoding CSY with either its native peroxisomal targeting sequence (PTS2) or a heterologous PTS1 sequence from pumpkin (Cucurbita pepo) malate synthase. These results suggest that peroxisomal CSY in Arabidopsis is not only a key enzyme of the glyoxylate cycle but also catalyzes an essential step in the respiration of fatty acids. We conclude that citrate is exported from the peroxisome during fatty acid respiration, whereas in yeast, acetylcarnitine is exported.
Collapse
Affiliation(s)
- Itsara Pracharoenwattana
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| | | | | |
Collapse
|
235
|
El-Sohemy A, Cornelis MC, Park YW, Bae SC. Catalase and PPARgamma2 genotype and risk of rheumatoid arthritis in Koreans. Rheumatol Int 2005; 26:388-92. [PMID: 15988600 DOI: 10.1007/s00296-005-0013-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 05/15/2005] [Indexed: 01/24/2023]
Abstract
Catalase (CAT) and peroxisome proliferator activated receptor-gamma2 (PPARgamma2) are important regulators of oxidative stress and inflammation, and may contribute to the development of rheumatoid arthritis (RA). We investigated the association between CAT and PPARgamma2 genotypes and risk and severity of RA using 474 cases and 400 controls. Genotyping for the -262C-->T polymorphism of CAT and the Pro12Ala polymorphism of PPARgamma2 was performed by PCR-RFLP analysis. Severity of RA was assessed by the anatomical stage according to Steinbrocker, and a Korean language version of a Health Assessment Questionnaire (KHAQ). No association was observed between CAT and PPARgamma2 genotypes and risk of RA. Our results suggest that genetic polymorphisms of CAT and PPARgamma2 do not play a significant role in the susceptibility to RA among Koreans.
Collapse
Affiliation(s)
- Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
236
|
Robert J, Marchesini S, Delessert S, Poirier Y. Analysis of the β-oxidation of trans-unsaturated fatty acid in recombinant Saccharomyces cerevisiae expressing a peroxisomal PHA synthase reveals the involvement of a reductase-dependent pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:169-77. [PMID: 15904873 DOI: 10.1016/j.bbalip.2005.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/24/2005] [Accepted: 02/24/2005] [Indexed: 11/29/2022]
Abstract
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.
Collapse
Affiliation(s)
- Julien Robert
- Département de Biologie Moléculaire Végétale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
237
|
van Roermund CWT, de Jong M, IJlst L, van Marle J, Dansen TB, Wanders RJA, Waterham HR. The peroxisomal lumen in Saccharomyces cerevisiae is alkaline. J Cell Sci 2005; 117:4231-7. [PMID: 15316083 DOI: 10.1242/jcs.01305] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisomes have a central function in lipid metabolism, including the beta-oxidation of various fatty acids. The products and substrates involved in the beta-oxidation have to cross the peroxisomal membrane, which previously has been demonstrated to constitute a closed barrier, implying the existence of specific transport mechanisms. Fatty acid transport across the yeast peroxisomal membrane may follow two routes: one for activated fatty acids, dependent on the peroxisomal ABC half transporter proteins Pxa1p and Pxa2p, and one for free fatty acids, which depends on the peroxisomal acyl-CoA synthetase Faa2p and the ATP transporter Ant1p. A proton gradient across the peroxisomal membrane as part of a proton motive force has been proposed to be required for proper peroxisomal function, but the nature of the peroxisomal pH has remained inconclusive and little is known about its generation. To determine the pH of Sacharomyces cerevisiae peroxisomes in vivo, we have used two different pH-sensitive yellow fluorescent proteins targeted to the peroxisome by virtue of a C-terminal SKL and found the peroxisomal matrix in wild-type cells to be alkaline (pH(per) 8.2), while the cytosolic pH was neutral (pH(cyt) 7.0). No Delta pH was present in ant1 Delta cells, indicating that the peroxisomal pH is regulated in an ATP-dependent way and suggesting that Ant1p activity is directly involved in maintenance of the peroxisomal pH. Moreover, we found a high peroxisomal pH of >8.6 in faa2 Delta cells, while the peroxisomal pH remained 8.1+/-0.2 in pxa2 Delta cells. Our combined results suggest that the proton gradient across the peroxisomal membrane is dependent on Ant1p activity and required for the beta-oxidation of medium chain fatty acids.
Collapse
Affiliation(s)
- Carlo W T van Roermund
- Department of Clinical Chemistry, University of Amsterdam, Academic Medical Centre, PO Box 22700, 1100 DE, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
238
|
Brodal BP, Eliassen KA, Rönning H, Osmundsen H. Effects of dietary polyamines and clofibrate on metabolism of polyamines in the rat. J Nutr Biochem 2005; 10:700-8. [PMID: 15539269 DOI: 10.1016/s0955-2863(99)00058-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1998] [Accepted: 08/04/1999] [Indexed: 11/21/2022]
Abstract
The activities of catalase, polyamine oxidase, diamine oxidase, ornithine decarboxylase, and peroxisomal beta-oxidation were assayed in homogenates from liver and small intestinal mucosa of rats which had been fed either a diet very low in polyamines or a diet containing five times the levels of dietary polyamines (putrescine, spermine, and spermidine) found in a standard rat diet. In rats fed the high polyamine diet, hepatic activities of catalase and polyamine oxidase were significantly decreased. Levels of the other activities were unchanged, except that intestinal ornithine decarboxylase was decreased. In rats treated simultaneously with clofibrate, the high polyamine diet restored activities of catalase, ornithine decarboxylase, and polyamine oxidase back to levels found in rats fed the low polyamine diet. The expected increase in activity of peroxisomal beta-oxidation was observed, although this was somewhat diminished in rats fed the high polyamine diet. Intestinal diamine oxidase activity was stimulated by clofibrate, particularly in rats fed the high polyamine diet. For the duration of the experiment (20 days), levels of putrescine, spermine, and spermidine in blood remained remarkably constant irrespective of treatment, suggesting that polyamine homeostasis is essentially independent of dietary supply of polyamines. It is suggested that intestinal absorption/metabolism of polyamines is of significance in this respect. Treatment with clofibrate appeared to alter polyamine homeostasis.
Collapse
Affiliation(s)
- B P Brodal
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
239
|
Kursula P, Sikkilä H, Fukao T, Kondo N, Wierenga RK. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I. J Mol Biol 2005; 347:189-201. [PMID: 15733928 DOI: 10.1016/j.jmb.2005.01.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/05/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
Thiolases belong to a superfamily of condensing enzymes that includes also beta-ketoacyl acyl carrier protein synthases (KAS enzymes), involved in fatty acid synthesis. Here, we describe the high resolution structure of human cytosolic acetoacetyl-CoA thiolase (CT), both unliganded (at 2.3 angstroms resolution) and in complex with CoA (at 1.6 angstroms resolution). CT catalyses the condensation of two molecules of acetyl-CoA to acetoacetyl-CoA, which is the first reaction of the metabolic pathway leading to the synthesis of cholesterol. CT is a homotetramer of exact 222 symmetry. There is an excess of positively charged residues at the interdimer surface leading towards the CoA-binding pocket, possibly important for the efficient capture of substrates. The geometry of the catalytic site, including the three catalytic residues Cys92, His 353, Cys383, and the two oxyanion holes, is highly conserved between the human and bacterial Zoogloea ramigera thiolase. In human CT, the first oxyanion hole is formed by Wat38 (stabilised by Asn321) and NE2(His353), and the second by N(Cys92) and N(Gly385). The active site of this superfamily is constructed on top of four active site loops, near Cys92, Asn321, His353, and Cys383, respectively. These loops were used for the superpositioning of CT on the bacterial thiolase and on the Escherichia coli KAS I. This comparison indicates that the two thiolase oxyanion holes also exist in KAS I at topologically equivalent positions. Interestingly, the hydrogen bonding interactions at the first oxyanion hole are different in thiolase and KAS I. In KAS I, the hydrogen bonding partners are two histidine NE2 atoms, instead of a water and a NE2 side-chain atom in thiolase. The second oxyanion hole is in both structures shaped by corresponding main chain peptide NH-groups. The possible importance of bound water molecules at the catalytic site of thiolase for the reaction mechanism is discussed.
Collapse
Affiliation(s)
- Petri Kursula
- Department of Biochemistry and Biocenter Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
240
|
Alphey MS, Yu W, Byres E, Li D, Hunter WN. Structure and Reactivity of Human Mitochondrial 2,4-Dienoyl-CoA Reductase. J Biol Chem 2005; 280:3068-77. [PMID: 15531764 DOI: 10.1074/jbc.m411069200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid catabolism by beta-oxidation mainly occurs in mitochondria and to a lesser degree in peroxisomes. Poly-unsaturated fatty acids are problematic for beta-oxidation, because the enzymes directly involved are unable to process all the different double bond conformations and combinations that occur naturally. In mammals, three accessory proteins circumvent this problem by catalyzing specific isomerization and reduction reactions. Central to this process is the NADPH-dependent 2,4-dienoyl-CoA reductase. We present high resolution crystal structures of human mitochondrial 2,4-dienoyl-CoA reductase in binary complex with cofactor, and the ternary complex with NADP(+) and substrate trans-2,trans-4-dienoyl-CoA at 2.1 and 1.75 A resolution, respectively. The enzyme, a homotetramer, is a short-chain dehydrogenase/reductase with a distinctive catalytic center. Close structural similarity between the binary and ternary complexes suggests an absence of large conformational changes during binding and processing of substrate. The site of catalysis is relatively open and placed beside a flexible loop thereby allowing the enzyme to accommodate and process a wide range of fatty acids. Seven single mutants were constructed, by site-directed mutagenesis, to investigate the function of selected residues in the active site thought likely to either contribute to the architecture of the active site or to catalysis. The mutant proteins were overexpressed, purified to homogeneity, and then characterized. The structural and kinetic data are consistent and support a mechanism that derives one reducing equivalent from the cofactor, and one from solvent. Key to the acquisition of a solvent-derived proton is the orientation of substrate and stabilization of a dienolate intermediate by Tyr-199, Asn-148, and the oxidized nicotinamide.
Collapse
Affiliation(s)
- Magnus S Alphey
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
241
|
Pantazaki AA, Ioannou AK, Kyriakidis DA. A thermostable #x003B2;-ketothiolase of polyhydroxyalkanoates (PHAs) in Thermus thermophilus: Purification and biochemical properties. Mol Cell Biochem 2005; 269:27-36. [PMID: 15786714 DOI: 10.1007/s11010-005-2992-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyalkanoates (HAs) synthesised by numerous bacteria as intracellular carbon and energy storage compounds which accumulate as granules in the cytoplasm of the cells. The biosynthesis of PHAs, in the thermophilic bacterium T. thermophilus grown in a mineral medium supplemented with sodium gluconate as sole carbon source has been recently reported. Here, we report the purification at apparent homogeneity of a beta-ketoacyl-CoA thiolase from T. thermophilus, the first enzyme of the most common biosynthetic pathway for PHAs. B-Ketoacyl-CoA thiolase appeared as a single band of 45.5-kDa molecular mass on SDS/PAGE. The enzyme was purified 390-fold with 7% recovery. The native enzyme is a multimeric protein of a molecular mass of approximately of 182 kDa consisting of four identical subunits of 45.5 kDa, as identified by an in situ renaturation experiment on SDS-PAGE. The enzyme exhibited an optimal pH of approximately 8.0 and highest activity at 65 degrees C for both direction of the reaction. The thiolysis reaction showed a substrate inhibition at high concentrations; when one of the substrates (acetoacetyl CoA or CoA) is varied, while the concentrations of the second substrates (CoA or acetoacetyl CoA respectively) remain constant. The initial velocity kinetics showed a pattern of a family of parallel lines, which is in accordance with a ping-pong mechanism. beta-Ketothiolase had a relative low Km of 0.25 mM for acetyl-CoA and 11 microM and 25 microM for CoA and acetoacetyl-CoA, respectively. The enzyme was inhibited by treatment with 1 mM N-ethylmaleimide either in the presence or in the absence of 0.5 mM of acetyl-CoA suggesting that possibly a cysteine is located at/or near the active site of beta-ketothiolase.
Collapse
Affiliation(s)
- Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | |
Collapse
|
242
|
Fitzpatrick PF, Orville AM, Nagpal A, Valley MP. Nitroalkane oxidase, a carbanion-forming flavoprotein homologous to acyl-CoA dehydrogenase. Arch Biochem Biophys 2005; 433:157-65. [PMID: 15581574 DOI: 10.1016/j.abb.2004.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/20/2004] [Indexed: 11/21/2022]
Abstract
While several flavoproteins will oxidize nitroalkanes in addition to their physiological substrates, nitroalkane oxidase (NAO) is the only one which does not require the anionic nitroalkane. This, in addition to the induction of NAO by nitroethane seen in Fusarium oxysporum, suggests that oxidation of a nitroaliphatic species is the physiological role of the enzyme. Mechanistic studies of the reaction with nitroethane as substrate have established many of the details of the enzymatic reaction. The enzyme is unique in being the only flavoprotein to date for which a carbanion is definitively established as an intermediate in catalysis. Recent structural analyses show that NAO is homologous to the acyl-CoA dehydrogenase and acyl-CoA oxidase families of enzymes. In NAO, the glutamate which acts as the active site base in the latter enzymes is replaced by an aspartate.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Biophysics, Texas A and M University, College Station, TX 77843-2128, USA.
| | | | | | | |
Collapse
|
243
|
Contreras-Shannon V, Lin AP, McCammon MT, McAlister-Henn L. Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases. J Biol Chem 2004; 280:4469-75. [PMID: 15574419 DOI: 10.1074/jbc.m410140200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To compare kinetic properties of homologous isozymes of NADP+-specific isocitrate dehydrogenase, histidine-tagged forms of yeast mitochondrial (IDP1) and cytosolic (IDP2) enzymes were expressed and purified. The isozymes were found to share similar apparent affinities for cofactors. However, with respect to isocitrate, IDP1 had an apparent Km value approximately 7-fold lower than that of IDP2, whereas, with respect to alpha-ketoglutarate, IDP2 had an apparent Km value approximately 10-fold lower than that of IDP1. Similar Km values for substrates and cofactors in decarboxylation and carboxylation reactions were obtained for IDP2, suggesting a capacity for bidirectional catalysis in vivo. Concentrations of isocitrate and alpha-ketoglutarate measured in extracts from the parental strain were found to be similar with growth on different carbon sources. For mutant strains lacking IDP1, IDP2, and/or the mitochondrial NAD+-specific isocitrate dehydrogenase (IDH), metabolite measurements indicated that major cellular flux is through the IDH-catalyzed reaction in glucose-grown cells and through the IDP2-catalyzed reaction in cells grown with a nonfermentable carbon source (glycerol and lactate). A substantial cellular pool of alpha-ketoglutarate is attributed to IDH function during glucose growth, and to both IDP1 and IDH function during growth on glycerol/lactate. Complementation experiments using a strain lacking IDH demonstrated that overexpression of IDP1 partially compensated for the glutamate auxotrophy associated with loss of IDH. Collectively, these results suggest an ancillary role for IDP1 in cellular glutamate synthesis and a role for IDP2 in equilibrating and maintaining cellular levels of isocitrate and alpha-ketoglutarate.
Collapse
Affiliation(s)
- Veronica Contreras-Shannon
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
244
|
Abstract
Beta-oxidation (beta-ox) occurs exclusively in the peroxisomes of Saccharomyces cerevisiae and other yeasts, leading to the supposition that fungi lack mitochondrial beta-ox. Here we present unequivocal evidence that the filamentous fungus Aspergillus nidulans houses both peroxisomal and mitochondrial beta-ox. While growth of a peroxisomal beta-ox disruption mutant (DeltafoxA) was eliminated on a very long-chain fatty acid (C(22:1)), growth was only partially impeded on a long-chain fatty acid (C(18:1)) and was not affected at all on short chain (C4-C6) fatty acids. In contrast, growth of a putative enoyl-CoA hydratase mutant (DeltaechA) was abolished on short-chain and severely restricted on long- and very long-chain fatty acids. Furthermore fatty acids inhibited growth of the DeltaechA mutant but not the DeltafoxA mutant in the presence of an alternate carbon source (lactose). Disruption of echA led to a 28-fold reduction in 2-butenoyl-CoA hydratase activity in a preparation of organelles. EchA was also required for growth on isoleucine and valine. The subcellular localization of the FoxA and EchA proteins was confirmed through the use of red and green fluorescent protein fusions.
Collapse
Affiliation(s)
- Lori A Maggio-Hall
- Department of Plant Pathology, University of Wisconsin-Madison, 882 Russell Labs, 1630 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
245
|
Macdonald GA, Prins JB. Peroxisomal fatty acid metabolism, peroxisomal proliferator-activated receptors and non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2004; 19:1335-7. [PMID: 15610304 DOI: 10.1111/j.1440-1746.2004.03562.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
246
|
Hoffmeister M, Piotrowski M, Nowitzki U, Martin W. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem 2004; 280:4329-38. [PMID: 15569691 DOI: 10.1074/jbc.m411010200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under anaerobiosis, Euglena gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. An important enzyme of this unusual pathway is trans-2-enoyl-CoA reductase (EC 1.3.1.44), which catalyzes reduction of enoyl-CoA to acyl-CoA. Trans-2-enoyl-CoA reductase from Euglena was purified 1700-fold to electrophoretic homogeneity and was active with NADH and NADPH as the electron donor. The active enzyme is a monomer with molecular mass of 44 kDa. The amino acid sequence of tryptic peptides determined by electrospray ionization mass spectrometry were used to clone the corresponding cDNA, which encoded a polypeptide that, when expressed in Escherichia coli and purified by affinity chromatography, possessed trans-2-enoyl-CoA reductase activity close to that of the enzyme purified from Euglena. Trans-2-enoyl-CoA reductase activity is present in mitochondria and the mRNA is expressed under aerobic and anaerobic conditions. Using NADH, the recombinant enzyme accepted crotonyl-CoA (km=68 microm) and trans-2-hexenoyl-CoA (km=91 microm). In the crotonyl-CoA-dependent reaction, both NADH (km=109 microm) or NADPH (km=119 microm) were accepted, with 2-3-fold higher specific activities for NADH relative to NADPH. Trans-2-enoyl-CoA reductase homologues were not found among other eukaryotes, but are present as hypothetical reading frames of unknown function in sequenced genomes of many proteobacteria and a few Gram-positive eubacteria, where they occasionally occur next to genes involved in fatty acid and polyketide biosynthesis. Trans-2-enoyl-CoA reductase assigns a biochemical activity, NAD(P)H-dependent acyl-CoA synthesis from enoyl-CoA, to one member of this gene family of previously unknown function.
Collapse
Affiliation(s)
- Meike Hoffmeister
- Institute of Botany III, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
247
|
Saha PK, Kojima H, Martinez-Botas J, Sunehag AL, Chan L. Metabolic Adaptations in the Absence of Perilipin. J Biol Chem 2004; 279:35150-8. [PMID: 15197189 DOI: 10.1074/jbc.m405499200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Targeted disruption of the lipid droplet protein, perilipin, in mice leads to constitutional lipolysis associated with marked reduction in white adipose tissue as a result of unbridled lipolysis. To investigate the metabolic adaptations in response to the constitutive lipolysis, we studied perilipin-null (plin(-/-)) mice in terms of their fatty acid oxidation and glycerol and glucose metabolism homeostasis by using dynamic biochemical testing and clamp and tracer infusion methods. plin(-/-) mice showed increased beta-oxidation in muscle, liver, and adipose tissue resulting from a coordinated regulation of the enzymes and proteins involved in beta-oxidation. The increased beta-oxidation helped remove the extra free fatty acids created by the constitutive lipolysis. An increase in the expression of the transcripts for uncoupling proteins-2 and -3 also accompanied this increase in fatty acid oxidation. Adult plin(-/-) mice had normal plasma glucose but a reduced basal hepatic glucose production (46% that of plin(+/+)). Insulin infusion during low dose hyperinsulinemic-euglycemic clamp further lowered the glucose production in plin(-/-) mice, but plin(-/-) mice also showed a 36% decrease (p < 0.007) in glucose disposal rate during the low dose insulin clamp, indicating peripheral insulin resistance. However, compared with plin(+/+) mice, 14-week-old plin(-/-) mice showed no significant difference in glucose disposal rate during the high dose hyperinsulinemic clamp, whereas 42-week-old plin(-/-) mice displayed significant insulin resistance on high dose hyperinsulinemic clamp. Despite increasing insulin resistance with age, plin(-/-) mice at different ages maintained a normal glucose response during an intraperitoneal glucose tolerance curve, being compensated by the increased beta-oxidation and reduced hepatic glucose production. These experiments uncover the metabolic adaptations associated with the constitutional lipolysis in plin(-/-) mice that allowed the mice to continue to exhibit normal glucose tolerance in the presence of peripheral insulin resistance.
Collapse
Affiliation(s)
- Pradip K Saha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
248
|
Ishikawa M, Tsuchiya D, Oyama T, Tsunaka Y, Morikawa K. Structural basis for channelling mechanism of a fatty acid beta-oxidation multienzyme complex. EMBO J 2004; 23:2745-54. [PMID: 15229654 PMCID: PMC514956 DOI: 10.1038/sj.emboj.7600298] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 06/04/2004] [Indexed: 12/29/2022] Open
Abstract
The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta-oxidation cycle. The alpha2beta2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), L-3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'-phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha-helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta-oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.
Collapse
Affiliation(s)
- Momoyo Ishikawa
- Biomolecular Engineering Research Institute, Furuedai, Suita, Osaka, Japan
| | - Daisuke Tsuchiya
- Biomolecular Engineering Research Institute, Furuedai, Suita, Osaka, Japan
| | - Takuji Oyama
- Biomolecular Engineering Research Institute, Furuedai, Suita, Osaka, Japan
| | - Yasuo Tsunaka
- Biomolecular Engineering Research Institute, Furuedai, Suita, Osaka, Japan
| | - Kosuke Morikawa
- Biomolecular Engineering Research Institute, Furuedai, Suita, Osaka, Japan
- Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan. Tel.: +81 66 872 8211; Fax: +81 66 872 8210; E-mail:
| |
Collapse
|
249
|
Schiedel AC, Oeljeklaus S, Minihan P, Dyer JH. Cloning, expression, and purification of glyoxysomal 3-oxoacyl-CoA thiolase from sunflower cotyledons. Protein Expr Purif 2004; 33:25-33. [PMID: 14680958 DOI: 10.1016/j.pep.2003.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Indexed: 11/16/2022]
Abstract
The glyoxysomal beta-oxidation system in sunflower (Helianthus annuus L.) cotyledons is distinguished by the coexistence of two different thiolase isoforms, thiolase I and II. So far, this phenomenon has only been described for glyoxysomes from sunflower cotyledons. Thiolase I (acetoacetyl-CoA thiolase, EC 2.3.1.9) recognizes acetoacetyl-CoA only, while thiolase II (3-oxoacyl-CoA thiolase, EC 2.3.1.16) exhibits a more broad substrate specificity towards 3-oxoacyl-CoA esters of different chain length. Here, we report on the cloning of thiolase II from sunflower cotyledons. The known DNA sequence of Cucumis sativus 3-oxoacyl-CoA thiolase was used to generate primers for cloning the corresponding thiolase from sunflower cotyledons. RT-PCR was then used to generate an internal fragment of the sunflower thiolase gene and the termini were isolated using 5'- and 3'-RACE. Full-length cDNA was generated using RT-PCR with sunflower thiolase-specific primers flanking the coding region. The resultant gene encodes a thiolase sharing at least 80% identity with other plant thiolases at the amino acid level. The recombinant sunflower thiolase II was expressed in a bacterial system in an active form and purified to apparent homogeneity in a single step using Ni-NTA agarose chromatography. The enzyme was purified 53.4-fold and had a specific activity of 235 nkat/mg protein. Pooled fractions from the Ni-NTA column resulted in an 83% yield of active enzyme to be used for further characterization.
Collapse
Affiliation(s)
- Anke C Schiedel
- Cell Biology, MSB, New York University Medical Center, New York, NY 10016, USA
| | | | | | | |
Collapse
|
250
|
Ren Y, Aguirre J, Ntamack AG, Chu C, Schulz H. An alternative pathway of oleate beta-oxidation in Escherichia coli involving the hydrolysis of a dead end intermediate by a thioesterase. J Biol Chem 2004; 279:11042-50. [PMID: 14707139 DOI: 10.1074/jbc.m310032200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The degradation of 2-trans,5-cis-tetradecadienoyl-CoA, a metabolite of oleic acid, by the purified complex of fatty acid oxidation from Escherichia coli was studied to determine how much of the metabolite is converted to 3,5-cis-tetradecadienoyl-CoA and thereby diverted from the classical, isomerase-dependent pathway of oleate beta-oxidation. Approximately 10% of the 2,5-intermediate was converted to the 3,5-isomer. When the latter compound was allowed to accumulate, it strongly inhibited the flux through the main pathway. Since Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase was not detected in E. coli cells grown on oleate, the 3,5-intermediate cannot be metabolized via the reductase-dependent pathway. However, it was hydrolyzed by a thioesterase, which was most active with 3,5-cis-tetradecadienoyl-CoA as substrate and which was induced by growth of E. coli on oleate. An analysis of fatty acids present in the medium after growth of E. coli on oleate revealed the presence of 3,5-tetradecadienoate, which was not detected after cells were grown on palmitate or glucose. Altogether, these data prompt the conclusion that oleate is mostly degraded via the classical, isomerase-dependent pathway in E. coli but that a small amount of 2-trans,5-cis-tetradecadienoyl-CoA is diverted from the pathway via conversion to 3,5-cis-tetradecadienoyl-CoA by Delta(3),Delta(2)-enoyl-CoA isomerase. The 3,5-intermediate, which would strongly inhibit beta-oxidation if allowed to accumulate, is hydrolyzed, and the resultant 3,5-tetradecadienoate is excreted into the growth medium. This study provides evidence for the novel function of a thioesterase in beta-oxidation.
Collapse
Affiliation(s)
- Ying Ren
- Department of Chemistry, City College and Graduate School of the City University of New York, New York, New York 10031, USA
| | | | | | | | | |
Collapse
|