201
|
Morel A, Loup F, Magnin M, Jeanmonod D. Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 2002; 443:86-103. [PMID: 11793349 DOI: 10.1002/cne.10096] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution of the calcium-binding proteins calbindin-D28K (CB), parvalbumin (PV) and calretinin (CR), and of the nonphosphorylated neurofilament protein (with SMI-32) was investigated in the human basal ganglia to identify anatomofunctional territories. In the striatum, gradients of neuropil immunostaining define four major territories: The first (T1) includes all but the rostroventral half of the putamen and is characterized by enhanced matriceal PV and SMI-32 immunoreactivity (-ir). The second territory (T2) encompasses most part of the caudate nucleus (Cd) and rostral putamen (PuT), which show enhanced matriceal CB-ir. The third and fourth territories (T3 and T4) comprise rostroventral parts of Cd and PuT characterized by complementary patch/matrix distributions of CB- and CR-ir, and the accumbens nucleus (Acb), respectively. The latter is separated into lateral (prominently enhanced in CB-ir) and medial (prominently enhanced in CR-ir) subdivisions. In the pallidum, parallel gradients also delimit four territories, T1 in the caudal half of external (GPe) and internal (GPi) divisions, characterized by enhanced PV- and SMI-32-ir; T2 in their rostral half, characterized by enhanced CB-ir; and T3 and T4 in their rostroventral pole and in the subpallidal area, respectively, both expressing CB- and CR-ir but with different intensities. The subthalamic nucleus (STh) shows contrasting patterns of dense PV-ir (sparing only the most medial part) and low CB-ir. Expression of CR-ir is relatively low, except in the medial, low PV-ir, part of the nucleus, whereas SMI-32-ir is moderate across the whole nucleus. The substantia nigra is characterized by complementary patterns of high neuropil CB- and SMI-32-ir in pars reticulata (SNr) and high CR-ir in pars compacta (SNc) and in the ventral tegmental area (VTA). The compartmentalization of calcium-binding proteins and SMI-32 in the human basal ganglia, in particular in the striatum and pallidum, delimits anatomofunctional territories that are of significance for functional imaging studies and target selection in stereotactic neurosurgery.
Collapse
Affiliation(s)
- Anne Morel
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
202
|
Core and Shell of the Nucleus Accumbens are Interconnected Via Intrastriatal Projections. ADVANCES IN BEHAVIORAL BIOLOGY 2002. [DOI: 10.1007/978-1-4615-0715-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
203
|
Bar-Gad I, Bergman H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 2001; 11:689-95. [PMID: 11741019 DOI: 10.1016/s0959-4388(01)00270-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Albin-DeLong 'box and arrow' model has long been the accepted standard model for the basal ganglia network. However, advances in physiological and anatomical research have enabled a more detailed neural network approach. Recent computational models hold that the basal ganglia use reinforcement signals and local competitive learning rules to reduce the dimensionality of sparse cortical information. These models predict a steady-state situation with diminished efficacy of lateral inhibition and low synchronization. In this framework, Parkinson's disease can be characterized as a persistent state of negative reinforcement, inefficient dimensionality reduction, and abnormally synchronized basal ganglia activity.
Collapse
Affiliation(s)
- I Bar-Gad
- Department of Physiology, the Center for Neural Computation and the Eric Roland Center for Neurodegenerative Diseases, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
204
|
Inzelberg R, Plotnik M, Flash T, Schechtman E, Shahar I, Korczyn AD. Mental and motor switching in Parkinson's disease. J Mot Behav 2001; 33:377-85. [PMID: 11734412 DOI: 10.1080/00222890109601921] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Switching difficulties in Parkinson's disease (PD) are expressed in both mental and motor tasks. The authors of the present study investigated whether those deficits coexist in the same patient and are positively correlated. They tested 8 nondemented PD patients and 6 age-matched control participants by using the modified Wisconsin Card Sorting Test and a motor switching paradigm that is based on the task of reaching toward visual targets, the location of which could unexpectedly be altered within the reaction time. In both mental and motor tasks, patients performed significantly worse than controls. There were no significant correlations between the two types of pathology in individual patients. Mental and motor switching deteriorate in PD patients, but the deficits are not necessarily of parallel severity.
Collapse
Affiliation(s)
- R Inzelberg
- Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
205
|
Takada M, Tokuno H, Hamada I, Inase M, Ito Y, Imanishi M, Hasegawa N, Akazawa T, Hatanaka N, Nambu A. Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 2001; 14:1633-50. [PMID: 11860458 DOI: 10.1046/j.0953-816x.2001.01789.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cingulate motor areas reside within regions lining the cingulate sulcus and are divided into rostral and caudal parts. Recent studies suggest that the rostral and caudal cingulate motor areas participate in distinct aspects of motor function: the former plays a role in higher-order cognitive control of movements, whereas the latter is more directly involved in their execution. Here, we investigated the organization of cingulate motor areas inputs to the basal ganglia in the macaque monkey. Identified forelimb representations of the rostral and caudal cingulate motor areas were injected with different anterograde tracers and the distribution patterns of labelled terminals were analysed in the striatum and the subthalamic nucleus. Corticostriatal inputs from the rostral and caudal cingulate motor areas were located within the rostral striatum, with the highest density in the striatal cell bridges and the ventrolateral portions of the putamen, respectively. There was no substantial overlap between these input zones. Similarly, a certain segregation of input zones from the rostral and caudal cingulate motor areas occurred along the mediolateral axis of the subthalamic nucleus. It has also been revealed that corticostriatal and corticosubthalamic input zones from the rostral cingulate motor area considerably overlapped those from the presupplementary motor area, while the input zones from the caudal cingulate motor area displayed a large overlap with those from the primary motor cortex. The present results indicate that a parallel design underlies motor information processing in the cortico-basal ganglia loop derived from the rostral and caudal cingulate motor areas.
Collapse
Affiliation(s)
- M Takada
- Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
A 61-year-old man suddenly became euphoric and talkative. Later the same day, he developed hemichoreic movements of the left limbs. The patient fulfilled the DSM-IV criteria for a manic episode by abnormally and persistently elevated mood, decreased need for sleep, high distractibility, pressured speech, increased goal-directed activity, and hypersexuality. The mood changes persisted for several weeks. Magnetic resonance imaging of the brain showed a right thalamic infarction. The co-occurrence of hemichorea and mania caused by focal thalamic lesion is very rare. It may be explained by dysfunction in basal ganglia thalamocortical circuitry.
Collapse
Affiliation(s)
- R Inzelberg
- Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel
| | | | | | | | | |
Collapse
|
207
|
Smith Y, Charara A, Paquet M, Kieval JZ, Paré JF, Hanson JE, Hubert GW, Kuwajima M, Levey AI. Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J Chem Neuroanat 2001; 22:13-42. [PMID: 11470552 DOI: 10.1016/s0891-0618(01)00098-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The functions of glutamate and GABA in the CNS are mediated by ionotropic and metabotropic, G protein-coupled, receptors. Both receptor families are widely expressed in basal ganglia structures in primates and nonprimates. The recent development of highly specific antibodies and/or cDNA probes allowed the better characterization of the cellular localization of various GABA and glutamate receptor subtypes in the primate basal ganglia. Furthermore, the use of high resolution immunogold techniques at the electron microscopic level led to major breakthroughs in our understanding of the subsynaptic and subcellular localization of these receptors in primates. In this review, we will provide a detailed account of the current knowledge of the localization of these receptors in the basal ganglia of humans and monkeys.
Collapse
Affiliation(s)
- Y Smith
- Division of Neuroscience, Yerkes Regional Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Joel D. Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington's disease. Mov Disord 2001; 16:407-23. [PMID: 11391734 DOI: 10.1002/mds.1096] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The early stages of Huntington's disease (HD) present with motor, cognitive, and emotional symptoms. Correspondingly, current models implicate dysfunction of the motor, associative, and limbic basal ganglia-thalamocortical circuits. Available data, however, indicate that in the early stages of the disease, striatal damage is mainly restricted to the associative striatum. Based on an open interconnected model of basal ganglia-thalamocortical organization, we provide a detailed account of the mechanisms by which associative striatal pathology may lead to the complex pattern of motor, cognitive, and emotional symptoms of early HD. According to this account, the degeneration of a direct and several indirect pathways arising from the associative striatum leads to impaired functioning of: (1) the motor circuit, resulting in chorea and bradykinesia, (2) the associative circuit, resulting in abnormal eye movements, "frontal-like" cognitive deficits and "cognitive disinhibition," and (3) the limbic circuit, resulting in affective and psychiatric symptoms. When relevant, this analysis is aided by comparing the symptomatology of HD patients to that of patients with mild to moderate Parkinson's disease, since in the latter there is similar dysfunction of direct pathways but opposite dysfunction of indirect pathways. Finally, we suggest a potential novel treatment of HD and provide supportive evidence from a rat model of the disease.
Collapse
Affiliation(s)
- D Joel
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
209
|
Abstract
The distribution of corticostriatal neurons projecting to the caudate nucleus was examined in the cat by retrograde fluorescent tracers. Thus, Fast Blue and Diamidino Yellow were concomitantly injected in different rostrocaudal, dorsoventral, or mediolateral sectors of the caudate nucleus. The main findings of this study are: 1) few double-labeled cells were found after two injections in different sectors of the caudate nucleus; 2) double-labeled neurons were more abundant after adjacent injections and they were mainly located in 6 alpha beta, dorsolateral prefrontal, dorsomedial prefrontal, prelimbic, anterior limbic, sylvian anterior, and rostral part of cingulate cortical areas; and 3) there were variations in the spatial organization of the corticostriatal neurons in different cortical areas projecting to various parts of the caudate nucleus.
Collapse
Affiliation(s)
- A Rosell
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, Pamplona, Navarra, Spain
| | | |
Collapse
|
210
|
Baxter LR, Ackermann RF, Clark EC, Baxter JE. Brain mediation of Anolis social dominance displays. I. Differential basal ganglia activation. BRAIN, BEHAVIOR AND EVOLUTION 2001; 57:169-83. [PMID: 11641556 DOI: 10.1159/000047235] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ritualistic displays of aggressive intent are important social signals, often obviating physically dangerous engagement. To date, however, brain regions mediating such behaviors are not established. Here we used male Anolis carolinensis together with an in vivo 14C-2-deoxyglucose method to determine patterns of brain activation during elicitation of this animal's dominance displays vs. other behaviors. By patching one eye regional brain activation in the hemisphere receiving display-evocative visual stimuli ('seeing' side) was compared to activity in the contralateral brain that did not see specific stimuli ('patched' side); this was quantitated as the ratio of seeing/patched activity for brain regions of interest. Lone males displaying dominantly to mirrors activated dorsolateral basal ganglia (BG) in the seeing, compared to the patched hemisphere; this was not seen in various non-displaying controls. Degree of dorsolateral BG activation also correlated with a measure of dominant display activity, but not with locomotion. In socially stable pairs, displaying dominants showed similar activation of dorsolateral BG, but deactivated ventromedial BG; non-dominant cagemates displaying submissively had the opposite pattern. When cohabiting peacefully without displaying, paired dominants' and subordinates' brain activity patterns were similar to each other. Thus, different BG subsystems seem involved in dominant vs. submissive display behaviors. Given similarities in both social displays and BG organization, homologous brain systems might have similar functions in members of other amniote classes, including primates.
Collapse
Affiliation(s)
- L R Baxter
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL 35294-0017, USA.
| | | | | | | |
Collapse
|
211
|
Deransart C, Riban V, Lê B, Marescaux C, Depaulis A. Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience 2001; 100:335-44. [PMID: 11008171 DOI: 10.1016/s0306-4522(00)00266-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Inhibition of the substantia nigra pars reticulata has been shown to suppress seizures in different animal models of epilepsy. The striatum is the main input of the substantia nigra pars reticulata. The aim of the present study was to examine the role of dopaminergic neurotransmission within the striatum in the control of absence seizures in a genetic model in the rat. Injections of mixed dopaminergic D1/D2 or of selective D1 or D2 agonists or antagonists in the dorsal parts of the striatum led to suppression of absence seizures associated with strong behavioral and electroencephalographic side-effects. When injected in the ventral part of the striatum (i.e. the nucleus accumbens core), all these agonists and antagonists respectively decreased and increased absence seizures without behavioral or electroencephalographic side-effects. Combined injections of low doses of a D1 and a D2 agonist in the core of the nucleus accumbens had an additive effect in absence seizures suppression. Furthermore, combined injections of low doses of a GABA(A) agonist and a N-methyl-D-aspartate antagonist in the substantia nigra also had cumulative effects in absence seizures suppression. These results show that dopamine neurotransmission in the core of the nucleus accumbens is critical in the control of absence seizures. The modulatory and additive effects on absence seizures of dopaminergic neurotransmission through both the D1 and D2 receptors in the core of the nucleus accumbens further suggest that ventral pathways of the basal ganglia system are involved in the modulation of absence seizures.
Collapse
Affiliation(s)
- C Deransart
- Klinikum der Albert-Ludwigs-Universität, Neurozentrum, Sektion Klinische Neuropharmakologie, Breisacherstr. 64, D-79106, Freiburg im Breisgau, Germany.
| | | | | | | | | |
Collapse
|
212
|
Groenewegen HJ, Uylings HB. The prefrontal cortex and the integration of sensory, limbic and autonomic information. PROGRESS IN BRAIN RESEARCH 2001; 126:3-28. [PMID: 11105636 DOI: 10.1016/s0079-6123(00)26003-2] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- H J Groenewegen
- Vrije Universiteit (RIN-VU), Department of Anatomy, Faculty of Medicine, Amsterdam, The Netherlands.
| | | |
Collapse
|
213
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
214
|
Abstract
The goals of this article are to suggest a basic wiring diagram for the motor neural network that controls motivated behavior, and to provide a model for the organization of cerebral hemisphere inputs to this network. Cerebral projections mediate voluntary regulation of a behavior control column in the ventromedial upper brainstem that includes (from rostral to caudal) the medial preoptic, anterior hypothalamic, descending paraventricular, ventromedial, and premammillary nuclei, the mammillary body, and finally the substantia nigra and ventral tegmental area. The rostral segment of this column is involved in controlling ingestive (eating and drinking) and social (defensive and reproductive) behaviors, whereas the caudal segment is involved in controlling general exploratory or foraging behaviors (with locomotor and orienting components) that are required for obtaining any particular goal object. Virtually all parts of the cerebral hemispheres contribute to a triple descending projection - with cortical excitatory, striatal inhibitory, and pallidal disinhibitory components - to specific parts of the behavior control column. The functional dynamics of this circuitry remain to be established.
Collapse
Affiliation(s)
- L W Swanson
- The Neuroscience Program, Hedco Neuroscience Building, Rm. 428, University of Southern California, 3614 Watt Way, 90089-2520, Los Angeles, CA, USA.
| |
Collapse
|
215
|
Clark EC, Baxter LR. Mammal-like striatal functions in Anolis. I. Distribution of serotonin receptor subtypes, and absence of striosome and matrix organization. BRAIN, BEHAVIOR AND EVOLUTION 2000; 56:235-48. [PMID: 11251316 DOI: 10.1159/000047207] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serotonin (5-HT) 5-HT(2A) and 5-HT(2C) receptors are thought to play important roles in the mammalian striatum. As basal ganglia functions in general are thought highly conserved among amniotes, we decided to use in situ autoradiographic methods to determine the occurrence and distribution of pharmacologically mammal-like 5-HT(2A) and 5-HT(2C) receptors in the lizard, Anolis carolinensis, with particular attention to the striatum. We also determined the distributions of 5-HT(1A), 5-HT(1B/D), 5 HT(3), and 5-HT(uptake) receptors for comparison. All 5-HT receptors examined showed pharmacological binding specificity, and forebrain binding density distributions that resembled those reported for mammals. Anolis 5 HT(2A/C) and 5-HT(1A) site distributions were similar in both in vivo and ex vivo binding experiments. 5-HT(2A & C) receptors occur in both high and low affinity states, the former having preferential affinity for (125)I-(+/-)-2,5-dimethoxy-4-iodo-amphetamine hydrochloride ((125)I-DOI). In mammals (125)I-DOI binding shows a patchy density distribution in the striatum, being more dense in striosomes than in surrounding matrix. There was no evidence of any such patchy density of (125)I-DOI binding in the anole striatum, however. As a further indication that anoles do not possess a striosome and matrix striatal organization, neither (3)H-naloxone binding nor histochemical staining for acetylcholinesterase activity (AChE) were patchy. AChE did show a band-like striatal distribution, however, similar to that seen in birds.
Collapse
Affiliation(s)
- E C Clark
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, USA
| | | |
Collapse
|
216
|
Dujardin K, Krystkowiak P, Defebvre L, Blond S, Destée A. A case of severe dysexecutive syndrome consecutive to chronic bilateral pallidal stimulation. Neuropsychologia 2000; 38:1305-15. [PMID: 10865106 DOI: 10.1016/s0028-3932(00)00027-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In treatment for severe Parkinson's disease (PD), a recent procedure was developed which consists of implanting electrodes in the internal Globus Pallidus (GPi) for chronic electrical stimulation. The consequences on cognitive function of such an intervention are quite variable. Although most group studies observed no significant post-operative change, individual cases of post-operative cognitive impairment were reported. The present study reports the case of a PD patient who underwent bilateral implantation of deep brain stimulation electrodes in the GPi and who, after surgery, suffered from a severe dysexecutive syndrome. An extensive neuropsychological examination showed a selective negative effect of pallidal stimulation on tests assessing executive function. When the stimulation was turned off, the impairment was partly reversible. This observation emphasizes the role of the GPi in executive function.
Collapse
Affiliation(s)
- K Dujardin
- Neurologie A, CHRU de Lille, Hôpital Salengro, 59037 Lille, Cedex, France.
| | | | | | | | | |
Collapse
|
217
|
Barbas H. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 2000; 52:319-30. [PMID: 10922509 DOI: 10.1016/s0361-9230(99)00245-2] [Citation(s) in RCA: 419] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Distinct domains of the prefrontal cortex in primates have a set of connections suggesting that they have different roles in cognition, memory, and emotion. Caudal lateral prefrontal areas (areas 8 and 46) receive projections from cortices representing early stages in visual or auditory processing, and from intraparietal and posterior cingulate areas associated with oculomotor guidance and attentional processes. Cortical input to areas 46 and 8 is complemented by projections from the thalamic multiform and parvicellular sectors of the mediodorsal nucleus associated with oculomotor functions and working memory. In contrast, caudal orbitofrontal areas receive diverse input from cortices representing late stages of processing within every unimodal sensory cortical system. In addition, orbitofrontal and caudal medial (limbic) prefrontal cortices receive robust projections from the amygdala, associated with emotional memory, and from medial temporal and thalamic structures associated with long-term memory. Prefrontal cortices are linked with motor control structures related to their specific roles in central executive functions. Caudal lateral prefrontal areas project to brainstem oculomotor structures, and are connected with premotor cortices effecting head, limb and body movements. In contrast, medial prefrontal and orbitofrontal limbic cortices project to hypothalamic visceromotor centers for the expression of emotions. Lateral, orbitofrontal, and medial prefrontal cortices are robustly interconnected, suggesting that they participate in concert in central executive functions. Prefrontal limbic cortices issue widespread projections through their deep layers and terminate in the upper layers of lateral (eulaminate) cortices, suggesting a predominant role in feedback communication. In contrast, when lateral prefrontal cortices communicate with limbic areas they issue projections from their upper layers and their axons terminate in the deep layers, suggesting a role in feedforward communication. Through their widespread connections, prefrontal limbic cortices may exercise a tonic influence on lateral prefrontal cortices, inextricably linking areas associated with cognitive and emotional processes. The integration of cognitive, mnemonic and emotional processes is likely to be disrupted in psychiatric and neurodegenerative diseases which preferentially affect limbic cortices and consequently disconnect major feedback pathways to the neuraxis.
Collapse
Affiliation(s)
- H Barbas
- Department of Health Sciences, Boston University and Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02215, USA.
| |
Collapse
|
218
|
McPherson RJ, Marshall JF. Substantia nigra glutamate antagonists produce contralateral turning and basal ganglia Fos expression: interactions with D1 and D2 dopamine receptor agonists. Synapse 2000; 36:194-204. [PMID: 10819899 DOI: 10.1002/(sici)1098-2396(20000601)36:3<194::aid-syn4>3.0.co;2-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Experiments measuring behavior and immediate-early gene expression in the basal ganglia can reveal interactions between dopamine (DA) and glutamate neurotransmission. Nigrostriatal DA projections influence two striatal efferent pathways that, in turn, directly and indirectly influence the activity of the substantia nigra pars reticulata (SNr). This report tests the interactions between striatal DA receptors and nigral glutamate receptors on basal ganglia function by examining both contralateral turning and Fos immunoreactivity in striatum and pallidum following unilateral intranigral microinfusions of glutamate antagonists given to intact and 6-OHDA-lesioned rats. The NMDA antagonist AP5 (1 microg), or the AMPA/kainate antagonist DNQX (0.015-1.5 microg), injected into the SNr (0.5 microl) elicited contralateral turning as well as both striatal and pallidal Fos expression. Moreover, intranigral DNQX elicited more turning and greater numbers of Fos-positive striatal neurons in 6-OHDA-lesioned animals than in unlesioned controls, suggesting that the 6-OHDA injection induces functional changes in nigral glutamate transmission. In 6-OHDA-lesioned rats, systemic injections of the DA D1 receptor agonist SKF38393 (0.5 mg/kg, i.p.) increased striatal Fos expression due to intranigral DNQX. In contrast, the D2 agonist quinpirole (0.1 mg/kg, i.p.) decreased striatal Fos expression but increased the pallidal Fos arising from intranigral AP5. In additional experiments, both intact and 6-OHDA-lesioned rats were given simultaneous intranigral and intrastriatal infusions and turning and pallidal Fos expression were measured. 6-OHDA-lesioned rats given 5 microg of intrastriatal quinpirole exhibited both turning and pallidal Fos that was significantly increased by intranigral AP5. These results indicate that the opposing influences of D2 agonists and endogenous nigral glutamate transmission are mediated by striatal D2 receptors. Finally, the behavioral effects of intranigral glutamate antagonism can be dissociated from the effects on striatal or pallidal immediate-early gene expression.
Collapse
Affiliation(s)
- R J McPherson
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA
| | | |
Collapse
|
219
|
Jahanshahi M, Ardouin CM, Brown RG, Rothwell JC, Obeso J, Albanese A, Rodriguez-Oroz MC, Moro E, Benabid AL, Pollak P, Limousin-Dowsey P. The impact of deep brain stimulation on executive function in Parkinson's disease. Brain 2000; 123 ( Pt 6):1142-54. [PMID: 10825353 DOI: 10.1093/brain/123.6.1142] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or the internal segment of the globus pallidus (GPi) improves Parkinson's disease and increases frontal blood flow. We assessed the effects of bilateral DBS on executive function in Parkinson's disease patients, seven with electrodes implanted in the STN and six in the GPi. Patients were assessed off medication with stimulators off, on and off again. The groups showed differential change with stimulation on the Reitan Trail-Making test (TMT B) (STN more improved) and on some measures of random number generation and Wisconsin Card Sorting (STN improved, GPi worse with stimulation). Across the groups, stimulation speeded up responding (Stroop control trial, TMT A) and improved performance on paced serial addition and missing digit tests. Conversely, conditional associative learning became more errorful with stimulation across the two groups. In general, change in performance with stimulation was significant for the STN but not the GPi group. These results support two opposite predictions. In support of current models of Parkinson's disease, 'releasing the brake' on frontal function with DBS improved aspects of executive function. Conversely, disruption of basal ganglia outflow during DBS impaired performance on tests requiring changing behaviour in novel contexts as predicted by Marsden and Obeso in 1994.
Collapse
Affiliation(s)
- M Jahanshahi
- Department of Clinical Neurology, Institute of Neruology, The National Hospital for Neurology and Neurosurgery, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
The basal ganglia are a group of subcortical nuclei involved in a variety of processes including motor, cognitive and mnemonic functions. One of their major roles is to integrate sensorimotor, associative and limbic information in the production of context-dependent behaviours. These roles are exemplified by the clinical manifestations of neurological disorders of the basal ganglia. Recent advances in many fields, including pharmacology, anatomy, physiology and pathophysiology have provided converging data that have led to unifying hypotheses concerning the functional organisation of the basal ganglia in health and disease. The major input to the basal ganglia is derived from the cerebral cortex. Virtually the whole of the cortical mantle projects in a topographic manner onto the striatum, this cortical information is 'processed' within the striatum and passed via the so-called direct and indirect pathways to the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata. The basal ganglia influence behaviour by the projections of these output nuclei to the thalamus and thence back to the cortex, or to subcortical 'premotor' regions. Recent studies have demonstrated that the organisation of these pathways is more complex than previously suggested. Thus the cortical input to the basal ganglia, in addition to innervating the spiny projection neurons, also innervates GABA interneurons, which in turn provide a feed-forward inhibition of the spiny output neurons. Individual neurons of the globus pallidus innervate basal ganglia output nuclei as well as the subthalamic nucleus and substantia nigra pars compacta. About one quarter of them also innervate the striatum and are in a position to control the output of the striatum powerfully as they preferentially contact GABA interneurons. Neurons of the pallidal complex also provide an anatomical substrate, within the basal ganglia, for the synaptic integration of functionally diverse information derived from the cortex. It is concluded that the essential concept of the direct and indirect pathways of information flow through the basal ganglia remains intact but that the role of the indirect pathway is more complex than previously suggested and that neurons of the globus pallidus are in a position to control the activity of virtually the whole of the basal ganglia.
Collapse
Affiliation(s)
- J P Bolam
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, UK.
| | | | | | | |
Collapse
|
221
|
Joel D, Weiner I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 2000; 96:451-74. [PMID: 10717427 DOI: 10.1016/s0306-4522(99)00575-8] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This Commentary compares the connections of the dopaminergic system with the striatum in rats and primates with respect to two levels of striatal organization: a tripartite functional (motor, associative and limbic) subdivision and a compartmental (patch/striosome-matrix) subdivision. The topography of other basal ganglia projections to the dopaminergic system with respect to their tripartite functional subdivision is also reviewed. This examination indicates that, in rats and primates, the following observations can be made. (1) The limbic striatum reciprocates its dopaminergic input and in addition innervates most of the dopaminergic neurons projecting to the associative and motor striatum, whereas the motor and associative striatum reciprocate only part of their dopaminergic input. Therefore, the connections of the three striatal subregions with the dopaminergic system are asymmetrical, but the direction of asymmetry differs between the limbic versus the motor and associative striatum. (2) The limbic striatum provides the main striatal input to dopamine cell bodies and proximal dendrites, with some contribution from a subset of neurons in the associative and motor striatum (patch neurons in rats; an unspecified group of neurons in primates), while striatal input to the ventrally extending dopamine dendrites arises mainly from a subset of neurons in the associative and motor striatum (matrix neurons in rats; an unspecified group of neurons in primates). (3) Projections from functionally corresponding subdivisions of the striatum, pallidum and subthalamic nucleus to the dopaminergic system overlap, but the specific targets (dopamine cells, dopamine dendrites, GABA cells) of these projections differ. Major differences include the following. (1) In rats, neurons projecting to the motor and associative striatum reside in distinct regions, while in primates they are arranged in interdigitating clusters. (2) In rats, the terminal fields of projections arising from the motor and associative striatum are largely segregated, while in primates they are not. (3) In rats, patch- and matrix-projecting dopamine cells are organized in spatially, morphologically, histochemically and hodologically distinct ventral and dorsal tiers, while in primates there is no (bi)division of the dopaminergic system that results in two areas which have all the characteristics of the two tiers in rats. Based on the anatomical data and known dopamine cell physiology, we forward an hypothesis regarding the influence of the basal ganglia on dopamine cell activity which captures at least part of the complex interplay taking place within the substantia nigra between projections arising from the different basal ganglia nuclei. Finally, we incorporate the striatal connections with the dopaminergic system into an open-interconnected scheme of basal ganglia-thalamocortical circuitry.
Collapse
Affiliation(s)
- D Joel
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel.
| | | |
Collapse
|
222
|
Zahm DS. An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 2000; 24:85-105. [PMID: 10654664 DOI: 10.1016/s0149-7634(99)00065-2] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuroanatomical substrates associated in the literature with adaptive responding are discussed, with a focus on the nucleus accumbens. While it is emphasized that the accumbens exhibits multiple levels of complex organization, a fairly complete list of brief descriptions of recent studies devoted specifically to the accumbens shell and core subterritories is presented in tabular format. The distinct patterns of connectivity of the accumbens core and shell and structures related to them by connections are described. Multiple inputs, outputs and abundant reciprocity of connections within the ventral parts of the basal ganglia are emphasized and the implications for "through-put" of impulses is considered. It is noted, at least on neuroanatomical grounds, that there is ample reason to expect feed forward processing from shell and structures with which it is associated to core and structures with which it is associated. Furthermore, the potential for additional feed forward processing involving several forebrain functional anatomical systems, inlcuding the ventral striatopallidum, extended amygdala and magnocellular basal forebrain complex is considered. It is intended that from the considerations recorded here a conceptual framework will begin to emerge that is amenable to further experimental substantiation as regards how multiple basal forebrain systems and the cortices to which they are related by connections work together to fashion a unitary object--the adaptive response.
Collapse
Affiliation(s)
- D S Zahm
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, MO 63104, USA.
| |
Collapse
|
223
|
Parkinson JA, Willoughby PJ, Robbins TW, Everitt BJ. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: Further evidence for limbic cortical–ventral striatopallidal systems. Behav Neurosci 2000. [DOI: 10.1037/0735-7044.114.1.42] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
224
|
Fukai T. Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: a model of the basal ganglia-thalamo-cortical loops. Neural Netw 1999; 12:975-987. [PMID: 12662640 DOI: 10.1016/s0893-6080(99)00057-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A computational model that is able to generate sequences at arbitrary rates in a given serial order is presented for the cortico-basal ganglia (BG)-thalamic neural circuitry. Upon generating a sequence, this model stores information on the serial order of components in a cortical buffer by means of theta-nested gamma frequency oscillations observed experimentally in cortico-striatal neurons. This model assumes the existence of at least two functionally different classes of striatal spiny neurons. One class of striatal projection neurons (S-cells) select the first component in the cortical buffer through a temporal winner-take-all mechanism implemented by lateral inhibition. The inhibition should last for at least a few hundred milliseconds. In reality, it may be mediated by GABA(B) receptors at the presynaptic terminals of the cortico-striatal projection. The other class of striatal projection neurons (M-cells) retain the currently executed component in a cortico-BG-thalamic loop, for which the strong nonlinearity in transitions between up and down states of striatal neurons is crucial. For sequence generation at the level of striatum, the cortical neurons encoding the component selected for execution are inactivated by the feedback from the activated cortico-BG-thalamic loop. This model predicts that the transition to next component is triggered by a single external signal, i.e. the subthalamic input to the globus pallidum. This input gives a neural substrate for adjusting the rate of sequence generation.
Collapse
Affiliation(s)
- T Fukai
- Department of Electronics, Tokai University, Kitakaname 1117, Hiratsuka, Japan
| |
Collapse
|
225
|
Chouinard G, Miller R. A rating scale for psychotic symptoms (RSPS) part I: theoretical principles and subscale 1: perception symptoms (illusions and hallucinations). Schizophr Res 1999; 38:101-22. [PMID: 10463458 DOI: 10.1016/s0920-9964(99)00012-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The authors present a new rating scale for the psychotic symptoms of schizophrenia and related psychoses. The scale links specific symptoms of psychopathology to dysfunction and overactivity of dopaminergic mechanisms underlying the processes of reward and selective attention. The Rating Scale for Psychotic Symptoms (RSPS) is a 44-item rating instrument with a seven-point severity scale for each item. Psychotic symptoms are classified into three groups: Pathological amplification of mental images (perception symptoms) (subscale 1), Distraction symptoms (including catatonia and passivity experiences) (subscale 2), and Delusions (subscale 3). A dimensional, rather than a categorical, conceptualization of psychosis is assumed. Rating is accomplished through a manual and a semi-structured interview (SSCI-RSPS). In this first of two papers, general issues about the construction of the scale and the derivation of symptom groups are discussed. Dopamine-mediated modification of cortico-striatal synapses is seen as being of critical importance in all three groups of symptoms. In this first paper, we present subscale I (perception symptoms), which includes both amplified perceptual images (illusions) and hallucinations. A total of seven illusions and 11 hallucinations are rated as individual items.
Collapse
Affiliation(s)
- G Chouinard
- Department of Psychiatry, University of Montreal, Canada
| | | |
Collapse
|
226
|
Ruskin DN, Bergstrom DA, Mastropietro CW, Twery MJ, Walters JR. Dopamine agonist-mediated rotation in rats with unilateral nigrostriatal lesions is not dependent on net inhibitions of rate in basal ganglia output nuclei. Neuroscience 1999; 91:935-46. [PMID: 10391472 DOI: 10.1016/s0306-4522(98)00689-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Current models of basal ganglia function predict that dopamine agonist-induced motor activation is mediated by decreases in basal ganglia output. This study examines the relationship between dopamine agonist effects on firing rate in basal ganglia output nuclei and rotational behavior in rats with nigrostriatal lesions. Extracellular single-unit activity ipsilateral to the lesion was recorded in awake, locally-anesthetized rats. Separate rats were used for behavioral experiments. Low i.v. doses of D1 agonists (SKF 38393, SKF 81297, SKF 82958) were effective in producing rotation, yet did not change average firing rate in the substantia nigra pars reticulata or entopeduncular nucleus. At these doses, firing rate effects differed from neuron to neuron, and included increases, decreases, and no change. Higher i.v. doses of D1 agonists were effective in causing both rotation and a net decrease in rate of substantia nigra pars reticulata neurons. A low s.c. dose of the D1/D2 agonist apomorphine (0.05 mg/kg) produced both rotation and a robust average decrease in firing rate in the substantia nigra pars reticulata, yet the onset of the net firing rate decrease (at 13-16 min) was greatly delayed compared to the onset of rotation (at 3 min). Immunostaining for the immediate-early gene Fos indicated that a low i.v. dose of SKF 38393 (that produced rotation but not a net decrease in firing rate in basal ganglia output nuclei) induced Fos-like immunoreactivity in the striatum and subthalamic nucleus, suggesting an activation of both inhibitory and excitatory afferents to the substantia nigra and entopeduncular nucleus. In addition, D1 agonist-induced Fos expression in the striatum and subthalamic nucleus was equivalent in freely-moving and awake, locally-anesthetized rats. The results show that decreases in firing rate in basal ganglia output nuclei are not necessary for dopamine agonist-induced motor activation. Motor-activating actions of dopamine agonists may be mediated by firing rate decreases in a small subpopulation of output nucleus neurons, or may be mediated by other features of firing activity besides rate in these nuclei such as oscillatory firing pattern or interneuronal firing synchrony. Also, the results suggest that dopamine receptors in both the striatum and at extrastriatal sites (especially the subthalamic nucleus) are likely to be involved in dopamine agonist influences on firing rates in the substantia nigra pars reticulata and entopeduncular nucleus.
Collapse
Affiliation(s)
- D N Ruskin
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1406, USA
| | | | | | | | | |
Collapse
|
227
|
Abstract
The nucleus accumbens and its associated circuitry subserve behaviors linked to natural or biological rewards, such as feeding, drinking, sex, exploration, and appetitive learning. We have investigated the functional role of neurotransmitter and intracellular transduction mechanisms in behaviors subserved by the core and shell subsystems within the accumbens. Local infusion of the selective NMDA antagonist, AP-5, into the accumbens core, but not the shell, completely blocked acquisition of a bar-press response for food in hungry rats. This effect was apparent only when infused during the early stages of learning. We have also recently shown that infusion of certain protein kinase inhibitors into the core also impairs learning in the same paradigm. These results suggest that plasticity-related mechanisms within the accumbens core, involving glutamate-linked intracellular second messengers, are important for response-reinforcement learning. In contrast to the core, which primarily connects to somatic motor output systems, the shell is more intimately linked to viscero-endocrine effector systems. We have shown that both AMPA and GABA receptors within the medial shell (but not the core) are critically involved in controlling the brain's feeding pathways, via activation of the lateral hypothalamus (LH). This effect is blocked by local inhibition of the LH in double-cannulae experiments and also strongly and selectively activates Fos expression in the LH. These results provide a newly emerging picture of the differentiated functions of this forebrain region and suggest an integrated role in the elaboration of adaptive motor actions.
Collapse
Affiliation(s)
- A E Kelley
- Department of Psychiatry, University of Wisconsin-Madison Medical School, Madison 53719, USA.
| |
Collapse
|
228
|
Gallhofer B, Lis S, Meyer-Lindenberg A, Krieger S. Cognitive dysfunction in schizophrenia: a new set of tools for the assessment of cognition and drug effects. Acta Psychiatr Scand 1999; 395:118-28. [PMID: 10225341 DOI: 10.1111/j.1600-0447.1999.tb05991.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cognitive impairment in schizophrenia must be seen as a disturbance of cortico-sub-cortical connectivity with a neurotransmitter imbalance in a circuitry system, which connects thalamic input with prefrontal processing and supplementary motor cortex and basal ganglia output. The concept of maze-solving behaviour as a continuous cognitive task evoking a conflict between prefrontal cortex and basal ganglia activity is explained and introduced to distinguish between the effects of D2 blocking agents and substances with a predominant 5HT2A receptor affinity, such as clozapine and risperidone. Complex mazes show a cognitive deficit in untreated schizophrenic patients that are impaired by conventional and improved by atypical antipsychotic substances. Processing speed improves most on clozapine, while parallel processing is best supported by the non-sedative atypical substance risperidone. Maze paradigms are presented.
Collapse
Affiliation(s)
- B Gallhofer
- Centre for Psychiatry, Justus-Liebig-University Medical School, Giessen, Germany
| | | | | | | |
Collapse
|
229
|
Groenewegen HJ, Galis-de Graaf Y, Smeets WJ. Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem Neuroanat 1999; 16:167-85. [PMID: 10422737 DOI: 10.1016/s0891-0618(99)00009-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The frontal lobe and the basal ganglia are involved in a number of parallel, functionally segregated circuits. Information is thought to pass from distinct parts of the (pre)frontal cortex, via the striatum, the pallidum/substantia nigra and the thalamus, back to the premotor/prefrontal cortices. Currently, different views exist as to whether these circuits are to be considered as open or closed loops, as well as to the degree of interconnection between different circuits. The main goal of the present study is to answer some of these questions for the limbic corticostriatal circuits. The latter circuits involve the nucleus accumbens, the ventral pallidum/dorsomedial substantia nigra pars reticulata, the medial parts of the mediodorsal and ventromedial thalamic nuclei and the prefrontal cortex. Within the nucleus accumbens, a core and a shell region are recognized on the basis of anatomical and functional criteria. The shell of the nucleus accumbens projects predominantly to the mediodorsal, the midline and the reticular thalamic nuclei via the ventral pallidum, whereas the core reaches primarily the medial part of the ventromedial thalamic nucleus, the intralaminar and mediodorsal thalamic nuclei via a relay in the dorsomedial substantia nigra pars reticulata. By means of double labeling experiments with injections of anterograde tracers in both the ventral pallidum and the substantia nigra of rats, we were able to demonstrate that circuits involving the shell and the core of the nucleus accumbens remain largely segregated at the level of the thalamus. Only restricted areas of overlap of ventral pallidal and reticular nigral projections occur in the mediodorsal and ventromedial thalamic nuclei, which allows for a limited degree of integration, at the thalamic level, of information passing through the two circuits.
Collapse
Affiliation(s)
- H J Groenewegen
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, Department of Anatomy, Faculty of Medicine, Vrije Universiteit, The Netherlands.
| | | | | |
Collapse
|
230
|
de las Heras S, Mengual E, Giménez-Amaya JM. Double retrograde tracer study of the thalamostriatal projections to the cat caudate nucleus. Synapse 1999; 32:80-92. [PMID: 10231128 DOI: 10.1002/(sici)1098-2396(199905)32:2<80::aid-syn2>3.0.co;2-p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The distribution of thalamostriatal neurons projecting to the cat caudate nucleus was examined by retrograde fluorescent tracers. Thus, Fast Blue and Diamidino Yellow were concomitantly injected in different rostrocaudal, dorsoventral, or mediolateral sectors of the caudate nucleus. The main findings of this study are as follows: (1) few double-labeled cells were found after two injections in different sectors of the caudate nucleus; (2) double-labeled neurons were more abundant after adjacent injections and they were mainly located in the caudal intralaminar nuclei, in the rhomboid nucleus and in the dorsal mediodorsal nucleus; and (3) there were variations in the spatial organization of the thalamostriatal neurons projecting to various sectors of the caudate nucleus in the different thalamic nuclei known to project to this part of the striatum.
Collapse
Affiliation(s)
- S de las Heras
- Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
231
|
Deransart C, Riban V, Lê BT, Hechler V, Marescaux C, Depaulis A. Evidence for the involvement of the pallidum in the modulation of seizures in a genetic model of absence epilepsy in the rat. Neurosci Lett 1999; 265:131-4. [PMID: 10327186 DOI: 10.1016/s0304-3940(99)00113-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of the subthalamic nucleus (STN) has been shown to suppress seizures in different animal models of epilepsy. The aim of this study was to examine the role of the pallidal inputs to the STN in the control of absence seizures in a genetic model in the rat. Disinhibition of the globus pallidus or the ventral pallidum, by local injections of a GABA(A) antagonist, suppressed absence seizures. Conversely, inhibition of the ventral pallidum by a GABA(A) agonist aggravated absence seizures. Furthermore, the antiepileptic effects of intrapallidal injections of a GABA(A) antagonist were correlated with a decrease of extracellular levels of glutamate in the substantia nigra. Our results show that both the globus pallidus and the ventral pallidum exert a modulatory influence on absence seizures and suggest that these effects are mediated through the STN.
Collapse
Affiliation(s)
- C Deransart
- Neurobiologie et Neuropharmacologie des Epilepsies Généralisées, INSERM U. 398, Faculté de Médecine, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
232
|
Angyán L, Angyán Z. Characterization of cardiorespiratory responses to electrical stimulation of the globus pallidus in cat. Physiol Behav 1999; 66:53-8. [PMID: 10222473 DOI: 10.1016/s0031-9384(98)00253-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to describe the characteristics of the electrically elicited cardiorespiratory responses from the globus pallidus (GP) in cat. GP stimulation caused an increase in the arterial blood pressure (BP), heart rate (HR), and respiratory rate (RR) in freely moving cats. Threshold, medium, and high intensity for stimulation at 100 Hz were determined by the somatomotor effects of stimulation. The higher stimulus intensity the higher increase in cardiorespiratory functions was obtained. The electrical stimulation within different segments of the GP caused changed effects. A continuous rise in BP, HR, and RR was induced by stimulating in the external segment (GPe). On the contrary, the stimulation in the internal segment (GPi) produced complex sequence of changes. At the beginning of the 10-s long stimulation the increase in diastolic pressure was more steep than that of the systolic pressure, so the pulse pressure decreased. However, 2-3 s after the onset of stimulation the diastolic pressure reduced; therefore, the pulse pressure increased. Simultaneously, the HR decreased below the prestimulation level. Occasionally, similar slowing in RR appeared as well. The blockade of the alpha 1-receptors by phentolamine, or neurotoxic lesion within the GP by kainic acid, reduced significantly the BP effects of GP stimulation of identical parameters. It is concluded that GP plays an intricate role in the adjustment of cardiorespiratory functions to the somatomotor activities.
Collapse
Affiliation(s)
- L Angyán
- Institute of Physiology, Medical University of Pécs, Hungary.
| | | |
Collapse
|
233
|
Heimer L, de Olmos J, Alheid G, Pearson J, Sakamoto N, Shinoda K, Marksteiner J, Switzer R. The human basal forebrain. Part II. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
234
|
Graybiel AM, Penney JB. Chemical architecture of the basal ganglia. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0924-8196(99)80025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
235
|
Raeva S, Vainberg N, Tikhonov Y, Tsetlin I. Analysis of evoked activity patterns of human thalamic ventrolateral neurons during verbally ordered voluntary movements. Neuroscience 1999; 88:377-92. [PMID: 10197761 DOI: 10.1016/s0306-4522(98)00230-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the human thalamic ventralis lateralis nucleus the responses of 184 single units to verbally ordered voluntary movements and some somatosensory stimulations were studied by microelectrode recording technique during 38 stereotactic operations on parkinsonian patients. The tests were carried out on the same previously examined population of neurons classified into two groups, named A- and B-types according to the functional criteria of their intrinsic structure of spontaneous activity patterns. The evaluation of the responses of these units during functionally different phases of a voluntary movement (preparation, initiation, execution, after-effect) by means of the principal component analysis and correlation techniques confirmed the functional differences between A- and B-types of neurons and their polyvalent convergent nature. Four main conclusions emerge from the studies. (1) The differences of the patterns of A- and B-unit responses during the triggering and the execution phases of a voluntary movement indicate the functionally different role of these two cell types in the mechanisms of motor signal transmission. (2) The universal non-specific form of anticipatory A- and B-unit responses during the movement preparation and initiation of various kinds of voluntary movements reflect the integrative "triggering" processes connected with the processing and programming of some generalized parameters of a motor signal and not with the performance of a certain forthcoming motor act. (3) The expressed intensity of these "triggered" non-specific processes in the anterior parts of the ventralis lateralis nucleus indicates their relation not only to the motor but to the cognitive attentional functions forming a verbally ordered voluntary movement. (4) The appearance of the transient cross-correlations between the activities of adjacent A- and B-cells and also the synchronization of their 5 +/- 1 Hz frequency during and/or after motor test performances point to the contribution of these two populations to central mechanisms of the voluntary movement and the parkinsonian tremor. The functional role of two A- and B-cell types is discussed with references to the central mechanisms of verbally ordered voluntary movements and the parkinsonian tremor.
Collapse
Affiliation(s)
- S Raeva
- Laboratory of Human Cell Neurophysiology, Institute of Chemical Physics, Russian Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
236
|
Winn P. Frontal syndrome as a consequence of lesions in the pedunculopontine tegmental nucleus: a short theoretical review. Brain Res Bull 1998; 47:551-63. [PMID: 10078613 DOI: 10.1016/s0361-9230(98)00136-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In this review, it is argued that the consequence of bilateral damage to the pedunculopontine tegmental nucleus (PPTg) in experimental animals is the production of a form of frontal syndrome. Frontal syndrome is a term used to describe the behavioural consequences of damage to the frontal lobes in human patients. These behavioural changes can be classified as disinhibition of behaviour (a release of behavioural control), the production of inappropriate behaviour (which in patients can be either inappropriate actions or verbal behaviour), and the production of perseverative behaviour (the maintenance of an action beyond the point at which it should have been terminated). The psychological changes which underlie these behavioural changes are thought to involve executive functions, which include such things as the prospective planning of sequences of actions, attentional shifting and working memory. In this review, I attempt to demonstrate two things: first, that there are significant anatomical connections from frontostriatal systems to the PPTg. The motor cortex projects directly to the PPTg while the prefrontal cortex contacts it via striatal circuitry, forming clear routes by which the frontal lobes can communicate with the PPTg. Second, having established the existence of connections between frontostriatal systems and the PPTg, behavioural data are described. Experimental animals bearing bilateral lesions of the PPTg have been examined in a wide variety of tasks. Animals bearing such lesions are not impaired in basic processes of feeding, drinking, locomotion, or grooming and simple observation of lesioned rats' normal behaviour reveals no obvious gross impairment in function. However, the results of more subtle tests reveal a wide variety of deficits in various tasks. The outcome of these experiments are in many ways contradictory, but in the vast majority of cases, the changes can be described as involving disinhibition of behaviour, the release of inappropriate behaviour, and the production of perseverative behaviour. Anatomical and behavioural data support the conclusion that there are functional connections between frontal systems and the PPTg. This review also discusses what psychological processes might be served by such connections.
Collapse
Affiliation(s)
- P Winn
- School of Psychology, University of St. Andrews, Fife, UK.
| |
Collapse
|
237
|
Bianchi L, Colivicchi MA, Bolam JP, Della Corte L. The release of amino acids from rat neostriatum and substantia nigra in vivo: a dual microdialysis probe analysis. Neuroscience 1998; 87:171-80. [PMID: 9722150 DOI: 10.1016/s0306-4522(98)00090-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has previously been demonstrated, in dual probe microdialysis studies, that stimulation of the neostriatum with kainic acid causes the release of GABA both locally within the neostriatum and distally in the substantia nigra, observations that are consistent with the known anatomy of the basal ganglia. The object of the present study was to further examine the characteristics of GABA release and to determine whether taurine, which has been proposed to be present in striatonigral neurons, has similar characteristics of release, and to examine the release of excitatory amino acids under the same conditions. To this end, dual probe microdialysis studies were carried out on freely-moving rats. The application of kainic acid to neostriatum enhanced the release of GABA, taurine, aspartate and glutamate locally in the neostriatum and distally in the substantia nigra. The distal release of each amino acid in the substantia nigra was sensitive to the administration of 6,7-dinitroquinoxaline-2,3-dione and tetrodotoxin to the neostriatum. Similarly the local release of GABA, aspartate and glutamate but not taurine was sensitive to the intrastriatal application of 6,7-dinitroquinoxaline-2,3-dione or tetrodotoxin. It is concluded that the release of taurine from the substantia nigra has similar characteristics to that of GABA and may be released from the terminals of striatonigral neurons following the stimulation of their cell bodies in the neostriatum. The release of taurine in the neostriatum however, is likely to be mediated mainly by different mechanisms and not related to neuronal activity. The release of excitatory amino acids is likely to involve indirect effects in the neostriatum and polysynaptic pathways in the substantia nigra.
Collapse
Affiliation(s)
- L Bianchi
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Italy
| | | | | | | |
Collapse
|
238
|
Dopamine depletion reorganizes projections from the nucleus accumbens and ventral pallidum that mediate opioid-induced motor activity. J Neurosci 1998. [PMID: 9742174 DOI: 10.1523/jneurosci.18-19-08074.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Motor activity elicited pharmacologically from the nucleus accumbens by the mu-opioid receptor agonist D-Ala-Tyr-Gly-NMePhe-Gly-OH (DAMGO) is augmented in rats sustaining dopamine depletions. GABAergic projections from the nucleus accumbens to ventral pallidum and ventral tegmental area (VTA) are involved because stimulation of GABAB receptors in the VTA (by baclofen) or GABAA receptors in the ventral pallidum (by muscimol) inhibit the motor response induced by the microinjection of DAMGO into the nucleus accumbens. The present study was done to determine which of these projections is mediating the augmented DAMGO-induced motor activity that follows 6-hydroxydopamine lesions of the nucleus accumbens. The inhibition of DAMGO-induced activation by pallidal injections of muscimol was markedly attenuated in lesioned animals, whereas the inhibition by VTA injections with baclofen was greatly enhanced. A similar switch in emphasis from pallidal to mesencephalic efferents was not observed for dopamine-induced motor activity, because muscimol microinjections inhibited the response elicited by dopamine microinjection into the nucleus accumbens in all subjects. The stimulation of mu-opioid receptors in the ventral pallidum also elicits motor activation, and this is blocked by baclofen microinjection into the VTA. However, after dopamine depletion in the nucleus accumbens, baclofen in the VTA was ineffective in blocking the motor response by DAMGO in the ventral pallidum. These data reveal that dopamine depletion in the nucleus accumbens produces a lesion-induced plasticity that alters the effect of mu-opioid receptor stimulation on efferent projections from the nucleus accumbens and ventral pallidum.
Collapse
|
239
|
Deransart C, Vercueil L, Marescaux C, Depaulis A. The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 1998; 32:213-23. [PMID: 9761322 DOI: 10.1016/s0920-1211(98)00053-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the last two decades, evidence has accumulated to demonstrate the existence, in the central nervous system, of an endogenous mechanism that exerts an inhibitory control over different forms of epileptic seizures. The substantia nigra and the superior colliculus have been described as key structures in this control circuit; inhibition of GABAergic neurons of the substantia nigra pars reticulata results in suppression of seizures in various animal models of epilepsy. The role in this control mechanism of the direct GABAergic projection from the striatum to the substantia nigra and of the indirect pathway, from the striatum through the globus pallidus and the subthalamic nucleus, was examined in a genetic model of absence seizures in the rat. In this model, pharmacological manipulations of both the direct and indirect pathways resulted in modulation of absence seizures. Activation of the direct pathway or inhibition of the indirect pathway suppressed absence seizures through disinhibition of neurons in the deep and intermediate layers of the superior colliculus. Dopamine D1 and D2 receptors in the nucleus accumbens, appear to be critical in these suppressive effects. Along with data from the literature, our results suggest that basal ganglia circuits play a major role in the modulation of absence seizures and provide a framework to understand the role of these circuits in the modulation of generalized seizures.
Collapse
Affiliation(s)
- C Deransart
- Neurobiologie et neuropharmacologie des Epilepsies Généralisées, U398 INSERM, Faculté de Médecine, Strasbourg, France.
| | | | | | | |
Collapse
|
240
|
Gorbachevskaya AI. Spatial organization of amygdaloid, nigral, and tegmental projections in the dog neostriatum. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1998; 28:260-7. [PMID: 9682230 DOI: 10.1007/bf02462955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Axonal transport of retrograde markers was used to study the distribution of projections from functionally diverse subcortical structures (the substantia nigra, the ventral tegmental area, and the amygdaloid body) in the caudate nucleus and putamen of the dog. Striatal structures were found to contain regions receiving projections from limbic structures or formations involved largely in motor acts. These structures also contained regions with concordant terminal fields from neurons of these and other functional structures. These results provide a morphological basis for interactions of information currents of different functional significance in the striatum, as well as providing a foundation for their functional heterogeneity. These allow a deeper understanding of their roles in the systems organization of behavior and integrative brain activity.
Collapse
Affiliation(s)
- A I Gorbachevskaya
- Laboratory for the Physiology of Higher Nervous Activity, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
241
|
Rosenberg DR, Keshavan MS. A.E. Bennett Research Award. Toward a neurodevelopmental model of of obsessive--compulsive disorder. Biol Psychiatry 1998; 43:623-40. [PMID: 9582996 DOI: 10.1016/s0006-3223(97)00443-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neurobiological models for obsessive-compulsive disorder (OCD) have consistently implicated ventral prefrontal cortical and striatal circuits in the pathophysiology of this disorder, but typically have not utilized a developmental framework for conceptualizing the illness. METHODS We describe an integrated series of neurobiologic studies aimed at testing the hypothesis that neurodevelopmental abnormalities of ventral prefrontal-striatal circuits may be involved in and contribute to the etiology and presentation of the illness. RESULTS Using studies of oculomotor physiology, we have identified a selective deficit in neurobehavioral response suppression in OCD that may be related to failures in the developmental maturation of frontostriatal circuitry. Magnetic resonance imaging studies showed that treatment-naive pediatric OCD patients had significant volumetric abnormalities in ventral prefrontal cortical and striatal regions but no abnormalities in dorsolateral prefrontal cortex. Severity of OCD symptoms but not illness duration was related to ventral prefrontal cortical and striatal volumes. CONCLUSIONS Critical neurodevelopmental changes in ventral prefrontal-striatal circuitry may be associated with the initial presentation of OCD, and a developmentally mediated network dysplasia may underlie OCD. Such dysplasia in ventral prefrontal cortical circuits could manifest clinically by disrupting brain functions that mediate ongoing purposive behaviors.
Collapse
Affiliation(s)
- D R Rosenberg
- Department of Psychiatry & Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | |
Collapse
|
242
|
Smith Y, Shink E, Sidibe M. Neuronal Circuitry and Synaptic Connectivity of the Basal Ganglia. Neurosurg Clin N Am 1998. [DOI: 10.1016/s1042-3680(18)30260-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
243
|
Waddington JL, Lane A, Scully PJ, Larkin C, O'Callaghan E. Neurodevelopmental and neuroprogressive processes in schizophrenia. Antithetical or complementary, over a lifetime trajectory of disease? Psychiatr Clin North Am 1998; 21:123-49. [PMID: 9551494 DOI: 10.1016/s0193-953x(05)70364-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurodevelopmental model of schizophrenia maintains ascendancy among current etiopathologic perspectives on schizophrenia. However, inconsistencies across studies and the absence thus far of pathognomic brain changes suggest the need for complex conceptualization of neurodevelopmental arrest, including some reconciliation with the competing neurodegenerative model of schizophrenia. This article critically reviews the preponderance of evidence for each model and provides an account of how these may interact or synergize to produce the characteristic clinical expression of schizophrenia.
Collapse
Affiliation(s)
- J L Waddington
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland
| | | | | | | | | |
Collapse
|
244
|
Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 1998; 21:32-8. [PMID: 9464684 DOI: 10.1016/s0166-2236(97)01151-x] [Citation(s) in RCA: 406] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two views as to the character of basal-ganglia processing - processing by segregated parallel circuits or by information sharing. To distinguish between these views, we studied the simultaneous activity of neurons in the output stage of the basal ganglia with cross-correlation techniques. The firing of neurons in the globus pallidus of normal monkeys is almost always uncorrelated. However, after dopamine depletion and induction of parkinsonism by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), oscillatory activity appeared and the firing of many neurons became correlated. We conclude that the normal dopaminergic system supports segregation of the functional subcircuits of the basal ganglia, and that a breakdown of this independent processing is a hallmark of Parkinson's disease.
Collapse
Affiliation(s)
- H Bergman
- Dept of Physiology and the Center for Neural Computation, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
245
|
Jeste DV, Symonds LL, Harris MJ, Paulsen JS, Palmer BW, Heaton RK. Nondementia nonpraecox dementia praecox? Late-onset schizophrenia. Am J Geriatr Psychiatry 1997; 5:302-17. [PMID: 9363287 DOI: 10.1097/00019442-199700540-00005] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Schizophrenia has traditionally been viewed as a psychotic disorder with onset in adolescence or early adulthood and a deteriorating course. Over the past decade, the authors have been studying patients meeting DSM-III-R as well as specified research criteria for late-onset schizophrenia (onset after age 45) and several comparison groups with psychiatric, neurologic, neuropsychologic, brain-imaging, psychophysiological, and psychosocial assessments. Results to date suggest a number of similarities and differences between late-onset schizophrenia and comparison groups of other older patients with psychoses (including earlier-onset schizophrenia). Later-onset schizophrenia is probably a neurobiologically distinct subtype of schizophrenia. Differential involvement of cortico-striato-pallido-thalamic circuitry may explain differences in age at onset. The authors propose a new conceptual model for level of functioning at different stages of life in late-onset schizophrenia.
Collapse
Affiliation(s)
- D V Jeste
- Department of Psychiatry, University of California, San Diego, USA.
| | | | | | | | | | | |
Collapse
|
246
|
Abstract
Organisms exposed to a stimulus which has no significant consequences, show subsequently latent inhibition (LI), namely, retarded conditioning to this stimulus. LI is considered to index the capacity to ignore irrelevant stimuli and its disruption has recently received increasing interest as an animal model of cognitive deficits in schizophrenia. Initial studies indicated that LI is disrupted by systemic or intra-accumbens injections of amphetamine and hippocampal lesions, and potentiated by systemic administration of neuroleptics. On the basis of these findings, the switching model of LI proposed that LI depends on the subicular input to the nucleus accumbens (NAC). Subsequent studies supported and refined this proposition. Lesion studies show that LI is indeed disrupted by severing the subicular input to the NAC, and further implicate the entorhinal/ventral subicular portion of this pathway projecting to the shell subterritory of the NAC. There is a functional dissociation between the shell and core subterritories of the NAC, with lesions of the former but not of the latter disrupting LI. This suggests that the shell is necessary for the expression and the core for the disruption of LI. The involvement of the NAC has been also demonstrated by findings that LI is disrupted by intra-accumbens injection of amphetamine and potentiated by DA depletion or blockade in this structure. Disruption and potentiation of LI by systemic administration of amphetamine and neuroleptics, respectively, have been firmly established, and in addition, have been shown to be sensitive to parametric manipulations of the LI procedure. LI is unaffected by lesions and DA manipulations of medial prefrontal cortex and lesions of basolateral amygdala. The implications of these findings for LI as an animal model of schizophrenia are discussed.
Collapse
Affiliation(s)
- I Weiner
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Israel.
| | | |
Collapse
|
247
|
Gorbachevskaya AI. Projections of the ventral tegmental area of the midbrain, the substantia nigra, and the amygdaloid body in different parts of the putamen in the dog. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1997; 27:496-502. [PMID: 9353767 DOI: 10.1007/bf02463891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A I Gorbachevskaya
- Laboratory for the Physiology of Higher Nervous Activity, O. P. Pavlov Institute of Physiology, St. Petersburg
| |
Collapse
|
248
|
Abstract
Tourette syndrome is a genetic disorder characterized by chronic multiple motor and vocal tics with a fluctuating course and modulated by internal and external environmental events. Tourette syndrome is more prevalent in males than females, and is associated with behavioural disorders such as obsessive-compulsive disorder and attention deficit hyperactivity disorder. Tourette syndrome symptoms are commonly attenuated by dopaminergic antagonists and adrenergic agonists, and usually exacerbated by psychostimulants. In this paper, I propose that dysfunction centered on the nucleus accumbens represents the neurobiological basis of Tourette syndrome. Recent evidence indicates that nucleus accumbens has a micro-organization characterized by modules of distinct neurochemical and neuroanatomical features. Our model assumes that external and internal events occurring during the development of the nervous system interact with products derived from the expression of the putative gene for Tourette syndrome, thereby inducing modular changes in nucleus accumbens. The clinical presentation, associated behavioural disturbances and response to drugs would depend on the pattern of modular dysfunction.
Collapse
Affiliation(s)
- G N Brito
- Setor de Neurociencias, Instituto Fernandes Figueira-FIOCRUZ, Brasil.
| |
Collapse
|
249
|
Shink E, Sidib� M, Smith Y. Efferent connections of the internal globus pallidus in the squirrel monkey: II. topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970609)382:3%3c348::aid-cne4%3e3.0.co;2-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
250
|
Shink E, Sidib� M, Smith Y. Efferent connections of the internal globus pallidus in the squirrel monkey: II. topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970609)382:3<348::aid-cne4>3.0.co;2-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|