201
|
Egg D, Schwab C, Gabrysch A, Arkwright PD, Cheesman E, Giulino-Roth L, Neth O, Snapper S, Okada S, Moutschen M, Delvenne P, Pecher AC, Wolff D, Kim YJ, Seneviratne S, Kim KM, Kang JM, Ojaimi S, McLean C, Warnatz K, Seidl M, Grimbacher B. Increased Risk for Malignancies in 131 Affected CTLA4 Mutation Carriers. Front Immunol 2018; 9:2012. [PMID: 30250467 PMCID: PMC6140401 DOI: 10.3389/fimmu.2018.02012] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023] Open
Abstract
Background: Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) is a negative immune regulator on the surface of T cells. In humans, heterozygous germline mutations in CTLA4 can cause an immune dysregulation syndrome. The phenotype comprises a broad spectrum of autoinflammatory, autoimmune, and immunodeficient features. An increased frequency of malignancies in primary immunodeficiencies is known, but their incidence in CTLA-4 insufficiency is unknown. Methods: Clinical manifestations and details of the clinical history were assessed in a worldwide cohort of 184 CTLA4 mutation carriers. Whenever a malignancy was reported, a malignancy-specific questionnaire was filled. Results: Among the 184 CTLA4 mutation carriers, 131 were considered affected, indicating a penetrance of 71.2%. We documented 17 malignancies, which amounts to a cancer prevalence of 12.9% in affected CTLA4 mutation carriers. There were ten lymphomas, five gastric cancers, one multiple myeloma, and one metastatic melanoma. Seven lymphomas and three gastric cancers were EBV-associated. Conclusion: Our findings demonstrate an elevated cancer risk for patients with CTLA-4 insufficiency. As more than half of the cancers were EBV-associated, the failure to control oncogenic viruses seems to be part of the CTLA-4-insufficient phenotype. Hence, lymphoproliferation and EBV viral load in blood should be carefully monitored, especially when immunosuppressing affected CTLA4 mutation carriers.
Collapse
Affiliation(s)
- David Egg
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center of the University Hospital, University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center of the University Hospital, University of Freiburg, Freiburg, Germany
| | - Annemarie Gabrysch
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center of the University Hospital, University of Freiburg, Freiburg, Germany
| | - Peter D Arkwright
- Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom
| | - Edmund Cheesman
- Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom
| | - Lisa Giulino-Roth
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Olaf Neth
- Seccion de Infectologia e Inmunopatologia, Unidad de Pediatria, Hospital Virgen del Rocio/Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Scott Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Children's Hospital Boston, Boston, MA, United States
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liege, Liege, Belgium
| | - Philippe Delvenne
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liege, Liege, Belgium
| | - Ann-Christin Pecher
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Yae-Jean Kim
- Division of Infectious Diseases and Immunodeficiency, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Suranjith Seneviratne
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Kyoung-Mee Kim
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Samar Ojaimi
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | | | - Klaus Warnatz
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center of the University Hospital, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center of the University Hospital, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center of the University Hospital, University of Freiburg, Freiburg, Germany
| |
Collapse
|
202
|
De Bruyne M, Bogaert DJ, Venken K, Van den Bossche L, Bonroy C, Roels L, Tavernier SJ, van de Vijver E, Driessen A, van Gijn M, Gámez-Diaz L, Elewaut D, Grimbacher B, Haerynck F, Moes N, Dullaers M. A novel LPS-responsive beige-like anchor protein (LRBA) mutation presents with normal cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and overactive T H17 immunity. J Allergy Clin Immunol 2018; 142:1968-1971. [PMID: 30193839 DOI: 10.1016/j.jaci.2018.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Marieke De Bruyne
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium; Department of Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - Delfien J Bogaert
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium; Department of Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium; Laboratory of Immunoregulation, VIB-UGent Inflammation Research Center, Ghent, Belgium
| | - Koen Venken
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB-UGent Inflammation Research Center, Ghent, Belgium
| | - Lien Van den Bossche
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Carolien Bonroy
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium; Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lisa Roels
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Simon J Tavernier
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium; Laboratory of Immunoregulation, VIB-UGent Inflammation Research Center, Ghent, Belgium
| | - Els van de Vijver
- Department of Pediatric Gastroenterology, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Ann Driessen
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium; Molecular imaging, Pathology, Radiotherapy & Oncology (MIPRO), Faculty of Medicine and Healthcare Sciences, University of Antwerp, Antwerp, Belgium
| | - Marielle van Gijn
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura Gámez-Diaz
- Center for Chronic Immunodeficiency, University Medical Center of Freiburg, University of Freiburg, Freiburg, Germany
| | - Dirk Elewaut
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB-UGent Inflammation Research Center, Ghent, Belgium
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Medical Center of Freiburg, University of Freiburg, Freiburg, Germany
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium; Department of Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - Nicolette Moes
- Department of Pediatric Gastroenterology, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium; Laboratory of Immunoregulation, VIB-UGent Inflammation Research Center, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
203
|
Cinetto F, Scarpa R, Rattazzi M, Agostini C. The broad spectrum of lung diseases in primary antibody deficiencies. Eur Respir Rev 2018; 27:27/149/180019. [PMID: 30158276 PMCID: PMC9488739 DOI: 10.1183/16000617.0019-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
Human primary immunodeficiency diseases (PIDs) represent a heterogeneous group of more than 350 disorders. They are rare diseases, but their global incidence is more relevant than generally thought. The underlying defect may involve different branches of the innate and/or adaptive immune response. Thus, the clinical picture may range from severe phenotypes characterised by a broad spectrum of infections to milder infectious phenotypes due to more selective (and frequent) immune defects. Moreover, infections may not be the main clinical features in some PIDs that might present with autoimmunity, auto-inflammation and/or cancer. Primary antibody deficiencies (PADs) represent a small percentage of the known PIDs but they are the most frequently diagnosed, particularly in adulthood. Common variable immunodeficiency (CVID) is the most prevalent symptomatic PAD. PAD patients share a significant susceptibility to respiratory diseases that represent a relevant cause of morbidity and mortality. Pulmonary complications include acute and chronic infection-related diseases, such as pneumonia and bronchiectasis. They also include immune-mediated interstitial lung diseases, such as granulomatous-lymphocytic interstitial lung disease (GLILD) and cancer. Herein we will discuss the main pulmonary manifestations of PADs, the associated functional and imaging findings, and the relevant role of pulmonologists and chest radiologists in diagnosis and surveillance. The spectrum of lung complications in primary antibody deficiency ranges from asthma or COPD to extremely rare and specific ILDs. Early diagnosis of the underlying immune defect might significantly improve patients' lung disease, QoL and long-term prognosis.http://ow.ly/5cP230kZvOB
Collapse
Affiliation(s)
- Francesco Cinetto
- Dept of Medicine - DIMED, University of Padova, Padova, Italy.,Medicina Interna I, Ca' Foncello Hospital, Treviso, Italy
| | - Riccardo Scarpa
- Dept of Medicine - DIMED, University of Padova, Padova, Italy.,Medicina Interna I, Ca' Foncello Hospital, Treviso, Italy
| | - Marcello Rattazzi
- Dept of Medicine - DIMED, University of Padova, Padova, Italy.,Medicina Interna I, Ca' Foncello Hospital, Treviso, Italy
| | - Carlo Agostini
- Dept of Medicine - DIMED, University of Padova, Padova, Italy.,Medicina Interna I, Ca' Foncello Hospital, Treviso, Italy
| |
Collapse
|
204
|
Delmonte OM, Fleisher TA. Flow cytometry: Surface markers and beyond. J Allergy Clin Immunol 2018; 143:528-537. [PMID: 30170120 DOI: 10.1016/j.jaci.2018.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Flow cytometry is a routinely available laboratory method to study cells in suspension from a variety of human sources. Application of this technology as a clinical laboratory method has evolved from the identification of cell-surface proteins to characterizing intracellular proteins and providing multiple different techniques to assess specific features of adaptive and innate immune function. This expanded menu of flow cytometric testing approaches has increased the utility of this platform in characterizing and diagnosing disorders of immune function.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Md.
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Md
| |
Collapse
|
205
|
Repetto D, Brockhaus J, Rhee HJ, Lee C, Kilimann MW, Rhee J, Northoff LM, Guo W, Reissner C, Missler M. Molecular Dissection of Neurobeachin Function at Excitatory Synapses. Front Synaptic Neurosci 2018; 10:28. [PMID: 30158865 PMCID: PMC6104133 DOI: 10.3389/fnsyn.2018.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 11/13/2022] Open
Abstract
Spines are small protrusions from dendrites where most excitatory synapses reside. Changes in number, shape, and size of dendritic spines often reflect changes of neural activity in entire circuits or at individual synapses, making spines key structures of synaptic plasticity. Neurobeachin is a multidomain protein with roles in spine formation, postsynaptic neurotransmitter receptor targeting and actin distribution. However, the contributions of individual domains of Neurobeachin to these functions is poorly understood. Here, we used mostly live cell imaging and patch-clamp electrophysiology to monitor morphology and function of spinous synapses in primary hippocampal neurons. We demonstrate that a recombinant full-length Neurobeachin from humans can restore mushroom spine density and excitatory postsynaptic currents in neurons of Neurobeachin-deficient mice. We then probed the role of individual domains of Neurobeachin by comparing them to the full-length molecule in rescue experiments of knockout neurons. We show that the combined PH-BEACH domain complex is highly localized in spine heads, and that it is sufficient to restore normal spine density and surface targeting of postsynaptic AMPA receptors. In addition, we report that the Armadillo domain facilitates the formation of filopodia, long dendritic protrusions which often precede the development of mature spines, whereas the PKA-binding site appears as a negative regulator of filopodial extension. Thus, our results indicate that individual domains of Neurobeachin sustain important and specific roles in the regulation of spinous synapses. Since heterozygous mutations in Neurobeachin occur in autistic patients, the results will also improve our understanding of pathomechanism in neuropsychiatric disorders associated with impairments of spine function.
Collapse
Affiliation(s)
- Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Hong J Rhee
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Chungku Lee
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Manfred W Kilimann
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jeongseop Rhee
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Lisa M Northoff
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Wenjia Guo
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| |
Collapse
|
206
|
Azizi G, Yazdani R, Rae W, Abolhassani H, Rojas M, Aghamohammadi A, Anaya JM. Monogenic polyautoimmunity in primary immunodeficiency diseases. Autoimmun Rev 2018; 17:1028-1039. [PMID: 30107266 DOI: 10.1016/j.autrev.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
Primary immunodeficiency diseases (PIDs) consist of a large group of genetic disorders that affect distinct components of the immune system. PID patients are susceptible to infection and non-infectious complications, particularly autoimmunity. A specific group of monogenic PIDs are due to mutations in genes that are critical for the regulation of immunological tolerance and immune responses. This group of monogenic PIDs is at high risk of developing polyautoimmunity (i.e., the presence of more than one autoimmune disease in a single patient) because of their impaired immunity. In this review, we discuss the mechanisms of autoimmunity in PIDs and the characteristics of polyautoimmunity in the following PIDs: IPEX; monogenic IPEX-like syndrome; LRBA deficiency; CTLA4 deficiency; APECED; ALPS; and PKCδ deficiency.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Wiliam Rae
- Department of Immunology, MP8, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| |
Collapse
|
207
|
Baumann U, Routes JM, Soler-Palacín P, Jolles S. The Lung in Primary Immunodeficiencies: New Concepts in Infection and Inflammation. Front Immunol 2018; 9:1837. [PMID: 30147696 PMCID: PMC6096054 DOI: 10.3389/fimmu.2018.01837] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin replacement therapy (IGRT) has contributed critically to the management of primary antibody deficiencies (PAD) and the decrease in pneumonia rate. However, despite adequate IGRT and improved prognosis, patients with PAD continue to experience recurrent respiratory tract infections, leading to bronchiectasis and continuing decline in lung function with a severe impact on their quality of life. Moreover, non-infectious inflammatory and interstitial lung complications, such as granulomatous-lymphocytic interstitial lung disease, contribute substantially to the overall morbidity of PAD. These conditions develop much more often than appreciated and represent a major therapeutic challenge. Therefore, a regular assessment of the structural and functional condition of the lung and the upper airways with appropriate treatment is required to minimize the deterioration of lung function. This work summarizes the knowledge on lung complications in PAD and discusses the currently available diagnostic tools and treatment options.
Collapse
Affiliation(s)
- Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - John M Routes
- Division of Asthma, Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
208
|
Shamriz O, Shadur B, NaserEddin A, Zaidman I, Simanovsky N, Elpeleg O, Kerem E, Reiter J, Stepensky P. Respiratory manifestations in LPS-responsive beige-like anchor (LRBA) protein-deficient patients. Eur J Pediatr 2018; 177:1163-1172. [PMID: 29777306 DOI: 10.1007/s00431-018-3171-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/28/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) protein deficiency is a rare syndrome of primary immune deficiency and immune dysregulation. In this study, we sought to summarize our experience with respiratory manifestations in LRBA-deficient patients. We conducted a retrospective analysis of the medical records of LRBA-deficient patients treated at Hadassah-Hebrew University Medical Center, Jerusalem, Israel. Data retrieved included pulmonary workup, disease course, treatment, and outcome. Ten patients were included. Mean age at presentation of LRBA deficiency-related symptoms was 4.65 years (range 3 months-14 years). Respiratory symptoms were noted in six patients and consisted of chronic cough. Computed tomography revealed consolidation in five patients, atelectasis and bronchiectasis in two patients each, and diffuse interstitial lung disease in two additional patients. Respiratory tract cultures yielded a bacterial pathogen in five patients. Seven patients required active therapy: intravenous immunoglobulins (six patients), immunosuppressive drugs (five patients), and one was successfully treated with abatacept. Two patients underwent successful bone marrow transplantation. Mean follow-up period was 4.5 (range 0.4-14.4) years. On their latest examination, seven patients had no respiratory symptoms. CONCLUSION Pulmonary manifestations are common in LRBA deficiency. Respiratory characteristics in LRBA-deficient patients should be investigated, monitored, and treated from the time of diagnosis. What is Known: • Lipopolysaccharide-responsive beige-like anchor (LRBA) deficiency is a syndrome of primary immune deficiency and immune dysregulation. • Studies concerning the pulmonary characteristics of LRBA-deficient patients are lacking. What is New: • Respiratory manifestations include infections, bronchiectasis, interstitial lung disease, thoracic lymphadenopathy, and clubbing. • Awareness to pulmonary morbidity in LRBA-deficient patients and involvement of a pulmonologist in the workup and clinical decision-making is important. • Respiratory characteristics in LRBA-deficient patients should be investigated, monitored, and treated from a young age.
Collapse
Affiliation(s)
- Oded Shamriz
- Pediatric Division, Hadassah-Hebrew University Medical Center, POB 12000, Kiryat Hadassah, 91120, Jerusalem, Israel.
| | - Bella Shadur
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Garvan Institute of Medical Research, Sydney, Australia
- University of New South Wales, Sydney, Australia
| | - Adeeb NaserEddin
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Natalia Simanovsky
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eitan Kerem
- Department of Pediatrics and Pediatric Pulmonology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Joel Reiter
- Department of Pediatrics and Pediatric Pulmonology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
209
|
The Treatment of Inflammatory Bowel Disease in Patients with Selected Primary Immunodeficiencies. J Clin Immunol 2018; 38:579-588. [DOI: 10.1007/s10875-018-0524-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/06/2018] [Indexed: 12/25/2022]
|
210
|
Kallen ME, Dulau-Florea A, Wang W, Calvo KR. Acquired and germline predisposition to bone marrow failure: Diagnostic features and clinical implications. Semin Hematol 2018; 56:69-82. [PMID: 30573048 DOI: 10.1053/j.seminhematol.2018.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
Bone marrow failure and related syndromes are rare disorders characterized by ineffective bone marrow hematopoiesis and peripheral cytopenias. Although many are associated with characteristic clinical features, recent advances have shown a more complicated picture with a spectrum of broad and overlapping phenotypes and imperfect genotype-phenotype correlations. Distinguishing acquired from inherited forms of marrow failure can be challenging, but is of crucial importance given differences in the risk of disease progression to myelodysplastic syndrome, acute myeloid leukemia, and other malignancies, as well as the potential to genetically screen relatives and select the appropriate donor if hematopoietic stem cell transplantation becomes necessary. Flow cytometry patterns in combination with morphology, cytogenetics, and history can help differentiate several diagnostic marrow failure and/or insufficiency entities and guide genetic testing. Herein we review several overlapping acquired marrow failure entities including aplastic anemia, hypoplastic myelodysplasia, and large granular lymphocyte disorders; and several bone marrow disorders with germline predisposition, including GATA2 deficiency, CTLA4 haploinsufficiency, dyskeratosis congenita and/or telomeropathies, Fanconi anemia, Shwachman-Diamond syndrome, congenital amegakaryocytic thrombocytopenia, severe congenital neutropenia, and Diamond-Blackfan anemia with a focus on advances related to pathophysiology, diagnosis, and management.
Collapse
Affiliation(s)
- Michael E Kallen
- National Cancer Institute, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Alina Dulau-Florea
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Weixin Wang
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA.
| |
Collapse
|
211
|
Nunes-Santos CDJ, Rosenzweig SD. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010-2017. Front Immunol 2018; 9:1423. [PMID: 29988375 PMCID: PMC6023996 DOI: 10.3389/fimmu.2018.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Bacille Calmette–Guerin (BCG) vaccine is widely used as a prevention strategy against tuberculosis. BCG is a live vaccine, usually given early in life in most countries. While safe to most recipients, it poses a risk to immunocompromised patients. Several primary immunodeficiency diseases (PIDD) have been classically associated with complications related to BCG vaccine. However, a number of new inborn errors of immunity have been described lately in which little is known about adverse reactions following BCG vaccination. The aim of this review is to summarize the existing data on BCG-related complications in patients diagnosed with PIDD described since 2010. When BCG vaccination status or complications were not specifically addressed in those manuscripts, we directly contacted the corresponding authors for further clarification. We also analyzed data on other mycobacterial infections in these patients. Based on our analysis, around 8% of patients with gain-of-function mutations in STAT1 had mycobacterial infections, including localized complications in 3 and disseminated disease in 4 out of 19 BCG-vaccinated patients. Localized BCG reactions were also frequent in activated PI3Kδ syndrome type 1 (3/10) and type 2 (2/18) vaccinated children. Also, of note, no BCG-related complications have been described in either CTLA4 or LRBA protein-deficient patients; and not enough information on BCG-vaccinated NFKB1 or NFKB2-deficient patients was available to drive any conclusions about these diseases. Despite the high prevalence of environmental mycobacterial infections in GATA2-deficient patients, only one case of BCG reaction has been reported in a patient who developed disseminated disease. In conclusion, BCG complications could be expected in some particular, recently described PIDD and it remains a preventable risk factor for pediatric PIDD patients.
Collapse
Affiliation(s)
- Cristiane de Jesus Nunes-Santos
- Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil.,Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
212
|
Cheung SW, Bi W. Novel applications of array comparative genomic hybridization in molecular diagnostics. Expert Rev Mol Diagn 2018; 18:531-542. [PMID: 29848116 DOI: 10.1080/14737159.2018.1479253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.
Collapse
Affiliation(s)
- Sau W Cheung
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Weimin Bi
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Baylor Genetics , Houston , TX , USA
| |
Collapse
|
213
|
Sharapova SO, Haapaniemi E, Sakovich IS, Rojas J, Gámez-Díaz L, Mareika YE, Guryanova IE, Migas AA, Mikhaleuskaya TM, Grimbacher B, Aleinikova OV. Novel LRBA Mutation and Possible Germinal Mosaicism in a Slavic Family. J Clin Immunol 2018; 38:471-474. [PMID: 29804237 DOI: 10.1007/s10875-018-0515-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/17/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Svetlana O Sharapova
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus.
| | - Emma Haapaniemi
- Department of Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Inga S Sakovich
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Jessica Rojas
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Yuliya E Mareika
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Irina E Guryanova
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Alexandr A Migas
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Taisiya M Mikhaleuskaya
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Olga V Aleinikova
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| |
Collapse
|
214
|
Jung S, Gámez-Díaz L, Proietti M, Grimbacher B. "Immune TOR-opathies," a Novel Disease Entity in Clinical Immunology. Front Immunol 2018; 9:966. [PMID: 29867948 PMCID: PMC5954032 DOI: 10.3389/fimmu.2018.00966] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiencies (PIDs) represent a group of mostly monogenic disorders caused by loss- or gain-of-function mutations in over 340 known genes that lead to abnormalities in the development and/or the function of the immune system. However, mutations in different genes can affect the same cell-signaling pathway and result in overlapping clinical phenotypes. In particular, mutations in the genes encoding for members of the phosphoinositide3-kinase (PI3K)/AKT/mTOR/S6 kinase (S6K) signaling cascade or for molecules interacting with this pathway have been associated with different PIDs that are often characterized by the coexistence of both immune deficiency and autoimmunity. The serine/threonine kinase mechanistic/mammalian target of rapamycin (mTOR), which acts downstream of PI3K and AKT, is emerging as a key regulator of immune responses. It integrates a variety of signals from the microenvironment to control cell growth, proliferation, and metabolism. mTOR plays therefore a central role in the regulation of immune cells’ differentiation and functions. Here, we review the different PIDs that share an impairment of the PI3K/AKT/mTOR/S6K pathway and we propose to name them “immune TOR-opathies” by analogy with a group of neurological disorders that has been originally defined by PB Crino and that are due to aberrant mTOR signaling (1). A better understanding of the role played by this complex intracellular cascade in the pathophysiology of “immune TOR-opathies” is crucial to develop targeted therapies.
Collapse
Affiliation(s)
- Sophie Jung
- CNRS, UPR 3572 (I2CT), Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg - Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
215
|
Königs C, Schultze-Strasser S, Quaiser A, Bochennek K, Schwabe D, Klingebiel TE, Koehl U, Cappel C, Rolle U, Bader P, Bremm M, Huenecke S, Bakhtiar S. An Exponential Regression Model Reveals the Continuous Development of B Cell Subpopulations Used as Reference Values in Children. Front Pediatr 2018; 6:121. [PMID: 29780793 PMCID: PMC5945839 DOI: 10.3389/fped.2018.00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
B lymphocytes are key players in humoral immunity, expressing diverse surface immunoglobulin receptors directed against specific antigenic epitopes. The development and profile of distinct subpopulations have gained awareness in the setting of primary immunodeficiency disorders, primary or secondary autoimmunity and as therapeutic targets of specific antibodies in various diseases. The major B cell subpopulations in peripheral blood include naïve (CD19+ or CD20+IgD+CD27-), non-switched memory (CD19+ or CD20+IgD+CD27+) and switched memory B cells (CD19+ or CD20+IgD-CD27+). Furthermore, less common B cell subpopulations have also been described as having a role in the suppressive capacity of B cells to maintain self-tolerance. Data on reference values for B cell subpopulations are limited and only available for older age groups, neglecting the continuous process of human B cell development in children and adolescents. This study was designed to establish an exponential regression model to produce continuous reference values for main B cell subpopulations to reflect the dynamic maturation of the human immune system in healthy children.
Collapse
Affiliation(s)
- Christoph Königs
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Andrea Quaiser
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Konrad Bochennek
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Dirk Schwabe
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas E. Klingebiel
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Ulrike Koehl
- GMP Development, Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-TX), Hannover Medical School, Institute of Cellular Therapeutics, Hannover, Germany
| | - Claudia Cappel
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Peter Bader
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Melanie Bremm
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sabine Huenecke
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Shahrzad Bakhtiar
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
216
|
You JY. [Features and management of very early onset inflammatory bowel disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:341-345. [PMID: 29764567 PMCID: PMC7389054 DOI: 10.7499/j.issn.1008-8830.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease of unknown etiology. This disease includes three main types: Crohn′s disease (CD), ulcerative colitis (UC), and IBD-unclassified (IBD-U). IBD is frequently presented in adults, but in recent years, there is a rising incidence in pediatric populations. Very early onset IBD (VEO-IBD) is a fraction of pediatric IBD, but they have exclusive phenotypic and genetic characteristics such that they are accompanied by severe disease course and resistance to conventional therapy. The purpose of this review is to provide a contemporary overview of the clinical features, pathogenesis, and management of VEO-IBD.
Collapse
Affiliation(s)
- Jie-Yu You
- Department of Gastroenterology, Hunan Children′s Hospital, Changsha 410000, China.
| |
Collapse
|
217
|
Novel molecular defects associated with very early-onset inflammatory bowel. Curr Opin Allergy Clin Immunol 2018; 17:317-324. [PMID: 28817385 DOI: 10.1097/aci.0000000000000393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Immune dysregulation disorders present with common clinical features of multiorgan autoimmunity. Gastrointestinal involvement is the hallmark of an impaired immune homeostasis. This review will give an overview on the novel phenotypes, highlighting the major points that will help to enable early diagnosis and treatment. RECENT FINDINGS The rapid progress on DNA sequencing technologies have led to the identification of monogenic defects that adversely impact the control of immune homeostasis. Lymphocytes may be present but dysfunctional, allowing for the development of excessive autoreactivity and resultant autoimmune disease. Regulatory T cells (Tregs) play an essential role in enforcing immune tolerance. Here we illustrate disorders caused by impairment of mechanisms ensuring Tregs function (Tregs related) in which autoimmunity is a hallmark of the clinical disease presentation and other disorders, affecting molecules more broadly involved in immune responses and indirectly causing immune dysregulation (Tregs unrelated). Clinical presentation is sometime mischievous and often symptoms are analogous in different diseases and can mislead diagnosis. SUMMARY The increasing comprehension of immunological concepts behind immune dysregulation diseases will allow better and in some cases possibly even targeted treatment. A genetic diagnosis therefore becomes important information in this group of patients, especially as some patients might require hematopoietic stem cell transplantation.
Collapse
|
218
|
Gámez-Díaz L, Sigmund EC, Reiser V, Vach W, Jung S, Grimbacher B. Rapid Flow Cytometry-Based Test for the Diagnosis of Lipopolysaccharide Responsive Beige-Like Anchor (LRBA) Deficiency. Front Immunol 2018; 9:720. [PMID: 29740429 PMCID: PMC5925005 DOI: 10.3389/fimmu.2018.00720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Elena C Sigmund
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Veronika Reiser
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.,Institute of Medical Biometry and Statistics, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Werner Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Sophie Jung
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.,Pôle de Médecine et de Chirurgie Bucco-Dentaires, University Hospital, Faculty of Dentistry, University of Strasbourg, Strasbourg, France
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.,Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
219
|
Yildirim M, Ayvaz DC, Konuskan B, Gocmen R, Tezcan I, Topcu M, Topaloglu H, Anlar B. Neurologic Involvement in Primary Immunodeficiency Disorders. J Child Neurol 2018; 33:320-328. [PMID: 29421957 DOI: 10.1177/0883073817754176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nervous system may be affected in primary immune deficiency (PID) syndromes through infectious, autoimmune, neoplastic mechanisms, or as a primary feature of the syndrome. However certain neurologic problems do not conform to these etiopathogenetic groups. We retrospectively examined PID patients seen in neurology consultation between 2014 and 2017 in order to determine the spectrum of nervous system involvement. Among patients with confirmed neurologic problems (n = 35), common manifestations were encephalopathy and global developmental/cognitive delay. In 13 (37%) instances, the neurologic signs had no apparent relation with a treatment-related, infectious, or vascular complication and were considered as primary findings: acquired microcephaly, central nervous system malformation, or peripheral neuropathy. The diagnosis of PID was made after, and based on, the neurologic manifestation in 6 of 35 (17%) patients. Neurologic presentation may constitute the initial manifestation in some types of primary immune deficiency.
Collapse
Affiliation(s)
- Mirac Yildirim
- 1 Department of Pediatric Neurology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Deniz Cagdas Ayvaz
- 2 Department of Pediatric Immunology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Bahadir Konuskan
- 1 Department of Pediatric Neurology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Rahsan Gocmen
- 3 Department of Radiology, Hacettepe University Hospitals, Ankara, Turkey
| | - Ilhan Tezcan
- 2 Department of Pediatric Immunology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Meral Topcu
- 1 Department of Pediatric Neurology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Haluk Topaloglu
- 1 Department of Pediatric Neurology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Banu Anlar
- 1 Department of Pediatric Neurology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| |
Collapse
|
220
|
Precision medicine in the treatment of primary immunodeficiency diseases. Curr Opin Allergy Clin Immunol 2018; 18:159-166. [DOI: 10.1097/aci.0000000000000431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
221
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
222
|
Azizi G, Abolhassani H, Zaki-Dizaji M, Habibi S, Mohammadi H, Shaghaghi M, Yazdani R, Anaya JM, Rezaei N, Hammarström L, Aghamohammadi A. Polyautoimmunity in Patients with LPS-Responsive Beige-Like Anchor (LRBA) Deficiency. Immunol Invest 2018. [PMID: 29528757 DOI: 10.1080/08820139.2018.1446978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Polyautoimmunity is defined as the presence of more than one autoimmune disorder in a single patient. Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) deficiency is one of the monogenic causes of polyautoimmunity. The aim of this study was to report the characteristics of polyautoimmunity in patients with LRBA deficiency. METHODS A total of 14 LRBA deficiency patients with confirmed autoimmunity were enrolled in this study. For those patients with polyautoimmunity, demographic information, clinical records, laboratory, and molecular data were collected. We also compared our results with the currently reported patients with LRBA deficiency associated with polyautoimmunity. RESULTS In 64.2% (9 out of 14) of patients, autoimmunity presented as polyautoimmunity. In these patients, autoimmune cytopenias were the most frequent complication, observed in seven patients. Three patients presented with four different types of autoimmune conditions. The review of the literature showed that 41 of 72 reported LRBA deficient patients (74.5%) had also polyautoimmunity, with a wide spectrum of autoimmune diseases described. Hematopoietic stem cell transplantation is increasingly used as the treatment for patients with severe polyautoimmunity associated to LRBA deficiency. CONCLUSIONS Mutation in LRBA gene is one of the causes of monogenic polyautoimmunity. Awareness of this association is important in order to make an early diagnosis and prompt treatment.
Collapse
Affiliation(s)
- Gholamreza Azizi
- a Non-Communicable Diseases Research Center , Alborz University of Medical Sciences , Karaj , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Primary Immunodeficiency Diseases Network (PIDNet) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Majid Zaki-Dizaji
- e Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Sima Habibi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Primary Immunodeficiency Diseases Network (PIDNet) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Hamed Mohammadi
- f Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammadreza Shaghaghi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Reza Yazdani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Juan-Manuel Anaya
- h Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences , Universidad del Rosario , Bogotá , Colombia
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Lennart Hammarström
- d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Primary Immunodeficiency Diseases Network (PIDNet) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
223
|
Richardson AM, Moyer AM, Hasadsri L, Abraham RS. Diagnostic Tools for Inborn Errors of Human Immunity (Primary Immunodeficiencies and Immune Dysregulatory Diseases). Curr Allergy Asthma Rep 2018; 18:19. [PMID: 29470720 DOI: 10.1007/s11882-018-0770-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an overview of diagnostic testing in primary immunodeficiency and immune dysregulatory disorders (PIDDs), particularly focusing on flow cytometry and genetic techniques, utilizing specific examples of PIDDs. RECENT FINDINGS Flow cytometry remains a vital tool in the diagnosis and monitoring of immunological diseases. Its utility ranges from cellular analysis and specific protein quantitation to functional assays and signaling pathway analysis. Mass cytometry combines flow cytometry and mass spectrometry to dramatically increase the throughput of multivariate single-cell analysis. Next-generation sequencing in combination with other molecular techniques and processing algorithms has become more widely available and identified the diverse and heterogeneous genetic underpinnings of these disorders. As the spectrum of disease is further clarified by increasing immunological, genetic, and epigenetic knowledge, the careful application of these diagnostic tools and bioinformatics will assist not only in our understanding of these complex disorders, but also enable the implementation of personalized therapeutic approaches for disease management.
Collapse
Affiliation(s)
- Annely M Richardson
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
224
|
Sood AK, Funkhouser W, Handly B, Weston B, Wu EY. Granulomatous-Lymphocytic Interstitial Lung Disease in 22q11.2 Deletion Syndrome: a Case Report and Literature Review. Curr Allergy Asthma Rep 2018; 18:14. [PMID: 29470661 PMCID: PMC5935501 DOI: 10.1007/s11882-018-0769-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Granulomatous-lymphocytic interstitial lung disease (GLILD) has classically been associated with common variable immune deficiency (CVID), but is increasingly being reported in other immunodeficiencies. We describe the second reported case of GLILD in a patient with 22q11.2 deletion syndrome (22q11.2DS) and review the recent literature surrounding GLILD. RECENT FINDINGS GLILD is characterized by granulomata and lymphoproliferation. Consensus statements and retrospective and case-control studies have better elucidated the clinicopathological and radiographic manifestations of GLILD, allowing for its differentiation from similar conditions like sarcoidosis. Gaps of knowledge remain, however, particularly regarding optimal management strategies. Combination therapies targeting T and B cell populations have recently shown favorable results. GLILD is associated with poorer outcomes in CVID. Its recognition as a rare complication of 22q11.2DS and other immunodeficiencies therefore has important therapeutic and prognostic implications. Additional research is needed to better understand the natural history and pathogenesis of GLILD and to develop evidence-based practice guidelines.
Collapse
Affiliation(s)
- Amika K Sood
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of North Carolina, Chapel Hill, NC, USA.
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Road, CB #7310, Chapel Hill, NC, 27599-7310, USA.
| | - William Funkhouser
- Deparment of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Brian Handly
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Brent Weston
- Department of Pediatrics, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Eveline Y Wu
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
225
|
Gomez-Ramos A, Picher AJ, García E, Garrido P, Hernandez F, Soriano E, Avila J. Validation of Suspected Somatic Single Nucleotide Variations in the Brain of Alzheimer's Disease Patients. J Alzheimers Dis 2018; 56:977-990. [PMID: 28106558 DOI: 10.3233/jad-161053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Next-generation sequencing techniques and genome-wide association study analyses have provided a huge amount of data, thereby enabling the identification of DNA variations and mutations related to disease pathogenesis. New techniques and software tools have been developed to improve the accuracy and reliability of this identification. Most of these tools have been designed to discover and validate single nucleotide variants (SNVs). However, in addition to germ-line mutations, human tissues bear genomic mosaicism, which implies that somatic events are present only in low percentages of cells within a given tissue, thereby hindering the validation of these variations using standard genetic tools. Here we propose a new method to validate some of these somatic mutations. We combine a recently developed software with a method that cuts DNA by using restriction enzymes at the sites of the variation. The non-cleaved molecules, which bear the SNV, can then be amplified and sequenced using Sanger's technique. This procedure, which allows the detection of alternative alleles present in as few as 10% of cells, could be of value for the identification and validation of low frequency somatic events in a variety of tissues and diseases.
Collapse
Affiliation(s)
- Alberto Gomez-Ramos
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Angel J Picher
- Sygnis S.L.U. Parque Científico de Madrid. Cantoblanco, Madrid, Spain
| | - Esther García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Patricia Garrido
- Sygnis S.L.U. Parque Científico de Madrid. Cantoblanco, Madrid, Spain
| | - Felix Hernandez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Eduardo Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Department of Cell Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Vall d'Hebrón Institut de Recerca (VHIR), Barcelona, Spain.,ICREA Academia, Barcelona, Spain
| | - Jesús Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
226
|
Common Variable Immunodeficiency and Gastric Malignancies. Int J Mol Sci 2018; 19:ijms19020451. [PMID: 29393912 PMCID: PMC5855673 DOI: 10.3390/ijms19020451] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency (CVID) is an immunodeficiency disorder with a high incidence of gastrointestinal manifestations and an increased risk of gastric carcinoma and lymphoma. This review discusses the latest advancements into the immunological, clinical and diagnostic aspects of gastric malignancies in patients with CVID. The exact molecular pathways underlying the relationships between CVID and gastric malignancies remain poorly understood. These include genetics, immune dysregulation and chronic infections by Helicobacter pylori. Further studies are needed to better stratify the risk for cancer in these patients, to elaborate surveillance programs aimed at preventing these complications, and to develop new and more effective therapeutic approaches.
Collapse
|
227
|
Slatter MA, Gennery AR. Hematopoietic cell transplantation in primary immunodeficiency - conventional and emerging indications. Expert Rev Clin Immunol 2018; 14:103-114. [PMID: 29300535 DOI: 10.1080/1744666x.2018.1424627] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation (HSCT) is an established curative treatment for many primary immunodeficiencies. Advances in donor selection, graft manipulation, conditioning and treatment of complications, mean that survival for many conditions is now around 90%. Next generation sequencing is identifying new immunodeficiencies, many of which are treatable with HSCT. Challenges remain however with short and long-term sequalae. This article reviews latest developments in HSCT for conventional primary immunodeficiencies and presents data on outcome for emerging diseases, Areas covered: This article reviews recently published literature detailing advances, particularly in conditioning regimens and new methods of T-lymphocyte depletion, as well as new information regarding approach and out come of transplanting patients with conventional primary immunodeficiencies. The article reviews data regarding transplant outcomes for newly described primary immunodeficiencies, particularly those associated with gain-of-function mutations. Expert commentary: New methods of graft manipulation have had significant impact on HSCT outcomes, with the range of PIDs treated using T-lymphocyte depletion significantly expanded. Outcomes for newly described diseases with variable phenotypes and clinical features, transplanted when the diagnosis was unknown are beginning to be described, and will improve as patients are identified earlier, and targeted therapies such as JAK inhibitors are used as a bridge to transplantation.
Collapse
Affiliation(s)
- Mary A Slatter
- a Institute of Cellular Medicine , Newcastle University , Newcastle Upon Tyne , UK.,b Paediatric Immunology and HSCT , Great North Children's Hospital , Newcastle Upon Tyne , UK
| | - Andrew R Gennery
- a Institute of Cellular Medicine , Newcastle University , Newcastle Upon Tyne , UK.,b Paediatric Immunology and HSCT , Great North Children's Hospital , Newcastle Upon Tyne , UK
| |
Collapse
|
228
|
Besnard C, Levy E, Aladjidi N, Stolzenberg MC, Magerus-Chatinet A, Alibeu O, Nitschke P, Blanche S, Hermine O, Jeziorski E, Landman-Parker J, Leverger G, Mahlaoui N, Michel G, Pellier I, Suarez F, Thuret I, de Saint-Basile G, Picard C, Fischer A, Neven B, Rieux-Laucat F, Quartier P. Pediatric-onset Evans syndrome: Heterogeneous presentation and high frequency of monogenic disorders including LRBA and CTLA4 mutations. Clin Immunol 2018; 188:52-57. [PMID: 29330115 DOI: 10.1016/j.clim.2017.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Evans syndrome (ES) is defined by the combination of autoimmune hemolytic anemia and immune thrombocytopenia. Clinical presentation includes manifestations of immune dysregulation, found in primary immune deficiencies, autoimmune lymphoproliferative syndrome with FAS (ALPS-FAS), Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) and Lipopolysaccharide-Responsive vesicle trafficking Beige-like and Anchor protein (LRBA) defects. We report the clinical history and genetic results of 18 children with ES after excluding ALPS-FAS. Thirteen had organomegaly, five lymphocytic infiltration of non-lymphoid organs, nine hypogammaglobulinemia and fifteen anomalies in lymphocyte phenotyping. Seven patients had genetic defects: three CTLA4 mutations (c.151C>T; c.109+1092_568-512del; c.110-2A>G) identified by Sanger sequencing and four revealed by Next Generation Sequencing: LRBA (c.2450+1C>T), STAT3 gain-of-function (c.2147C>T; c.2144C>T) and KRAS (c.37G>T). No feature emerged to distinguish patients with or without genetic diagnosis. Our data on pediatric-onset ES should prompt physicians to perform extensive screening for mutations in the growing pool of genes involved in primary immune deficiencies with autoimmunity.
Collapse
Affiliation(s)
- Caroline Besnard
- INSERM UMR 1163, Laboratory of Immunogenetics of pediatric autoimmune diseases, Paris, France; Pediatric immuno-hematology and rhumatology unit, RAISE reference centre for pediatric inflammatory rheumatic diseases and systemic autoimmune diseases, Necker-Enfants Malades University Hospital, Assistance publique - Hôpitaux de Paris, France; Sorbonne Universités, UPMC université Paris 06, Paris, France
| | - Eva Levy
- INSERM UMR 1163, Laboratory of Immunogenetics of pediatric autoimmune diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Nathalie Aladjidi
- Pediatric Hematology Oncology Immunology, Centre de Référence National des Cytopénies Auto-immunes de l'enfant, CEREVANCE, CIC 1401, CHU Bordeaux, France
| | - Marie-Claude Stolzenberg
- INSERM UMR 1163, Laboratory of Immunogenetics of pediatric autoimmune diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Aude Magerus-Chatinet
- INSERM UMR 1163, Laboratory of Immunogenetics of pediatric autoimmune diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Olivier Alibeu
- Genomic Platform, INSERM UMR 1163, Paris Descartes Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Patrick Nitschke
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; INSERM UMR 1163, Bioinformatics Department, Imagine Institute, Paris, France
| | - Stéphane Blanche
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric immuno-hematology and rhumatology unit, RAISE reference centre for pediatric inflammatory rheumatic diseases and systemic autoimmune diseases, Necker-Enfants Malades University Hospital, Assistance publique - Hôpitaux de Paris, France
| | - Olivier Hermine
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Hematology, Immunology, Infectiology, Hôpital Necker-Enfants Malades, Assistance publique - Hôpitaux de Paris, Paris, France
| | - Eric Jeziorski
- Pediatrics, Infectiology, Rhumatology, Hôpital Arnaud de Villeneuve, CHRU de Montpellier, France
| | - Judith Landman-Parker
- Sorbonne Universités, UPMC université Paris 06, Paris, France; Pediatric hematology, Immunology, Oncology, Hôpital d'Enfants Armand Trousseau, Assistance publique - Hôpitaux de Paris, Paris, France
| | - Guy Leverger
- Pediatric hematology, Immunology, Oncology, Hôpital d'Enfants Armand Trousseau, Assistance publique - Hôpitaux de Paris, Paris, France
| | - Nizar Mahlaoui
- Pediatric immuno-hematology and rhumatology unit, RAISE reference centre for pediatric inflammatory rheumatic diseases and systemic autoimmune diseases, Necker-Enfants Malades University Hospital, Assistance publique - Hôpitaux de Paris, France
| | - Gérard Michel
- Department of Pediatric Hematology and Oncology, Research Unit EA 3279, Aix-Marseille University, Timone Hospital, Marseille, France
| | - Isabelle Pellier
- Pediatric Oncology, Hematology, Immunology, CHU d'Angers, Angers, France
| | - Felipe Suarez
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Adult hematology, Necker-Enfants Malades University Hospital, APHP, Paris, France; Inserm U1163, CNRS ERL 8254, Imagine Institute, Paris, France
| | - Isabelle Thuret
- Pediatrics and Pediatric hematology, Hôpital de la Timone, Marseille, France
| | - Geneviève de Saint-Basile
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; INSERM UMR 1163, Laboratory of Normal and pathological homeostasis of the immune system, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Necker Medical School, Paris, France
| | - Capucine Picard
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric immuno-hematology and rhumatology unit, RAISE reference centre for pediatric inflammatory rheumatic diseases and systemic autoimmune diseases, Necker-Enfants Malades University Hospital, Assistance publique - Hôpitaux de Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Necker Medical School, Paris, France
| | - Alain Fischer
- INSERM UMR 1163, Laboratory of Immunogenetics of pediatric autoimmune diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric immuno-hematology and rhumatology unit, RAISE reference centre for pediatric inflammatory rheumatic diseases and systemic autoimmune diseases, Necker-Enfants Malades University Hospital, Assistance publique - Hôpitaux de Paris, France; Collège de France, Paris, France
| | - Bénédicte Neven
- INSERM UMR 1163, Laboratory of Immunogenetics of pediatric autoimmune diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric immuno-hematology and rhumatology unit, RAISE reference centre for pediatric inflammatory rheumatic diseases and systemic autoimmune diseases, Necker-Enfants Malades University Hospital, Assistance publique - Hôpitaux de Paris, France
| | - Frédéric Rieux-Laucat
- INSERM UMR 1163, Laboratory of Immunogenetics of pediatric autoimmune diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| | - Pierre Quartier
- INSERM UMR 1163, Laboratory of Immunogenetics of pediatric autoimmune diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric immuno-hematology and rhumatology unit, RAISE reference centre for pediatric inflammatory rheumatic diseases and systemic autoimmune diseases, Necker-Enfants Malades University Hospital, Assistance publique - Hôpitaux de Paris, France
| | | |
Collapse
|
229
|
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood 2018; 131:58-67. [PMID: 29118008 PMCID: PMC6317697 DOI: 10.1182/blood-2017-06-741033] [Citation(s) in RCA: 816] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023] Open
Abstract
CD28 and CTLA-4 are members of a family of immunoglobulin-related receptors that are responsible for various aspects of T-cell immune regulation. The family includes CD28, CTLA-4, and ICOS as well as other proteins, including PD-1, BTLA, and TIGIT. These receptors have both stimulatory (CD28, ICOS) and inhibitory roles (CTLA-4, PD-1, BTLA, and TIGIT) in T-cell function. Increasingly, these pathways are targeted as part of immune modulatory strategies to treat cancers, referred to generically as immune checkpoint blockade, and conversely to treat autoimmunity and CTLA-4 deficiency. Here, we focus on the biology of the CD28/CTLA-4 pathway as a framework for understanding the impacts of therapeutic manipulation of this pathway.
Collapse
Affiliation(s)
- Behzad Rowshanravan
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
230
|
Hauck F, Voss R, Urban C, Seidel MG. Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J Allergy Clin Immunol 2018; 141:59-68.e4. [DOI: 10.1016/j.jaci.2017.06.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/19/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
|
231
|
Pai SY, Notarangelo LD. Congenital Disorders of Lymphocyte Function. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
232
|
Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int 2018; 67:43-54. [PMID: 28684198 DOI: 10.1016/j.alit.2017.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/09/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of inherited diseases of the immune system. The definite diagnosis of PID is ascertained by genetic analysis; however, this takes time and is costly. Flow cytometry provides a rapid and highly sensitive tool for diagnosis of PIDs. Flow cytometry can evaluate specific cell populations and subpopulations, cell surface, intracellular and intranuclear proteins, biologic effects associated with specific immune defects, and certain functional immune characteristics, each being useful for the diagnosis and evaluation of PIDs. Flow cytometry effectively identifies major forms of PIDs, including severe combined immunodeficiency, X-linked agammaglobulinemia, hyper IgM syndromes, Wiskott-Aldrich syndrome, X-linked lymphoproliferative syndrome, familial hemophagocytic lymphohistiocytosis, autoimmune lymphoproliferative syndrome, IPEX syndrome, CTLA 4 haploinsufficiency and LRBA deficiency, IRAK4 and MyD88 deficiencies, Mendelian susceptibility to mycobacterial disease, chronic mucocuneous candidiasis, and chronic granulomatous disease. While genetic analysis is the definitive approach to establish specific diagnoses of PIDs, flow cytometry provides a tool to effectively evaluate patients with PIDs at relatively low cost.
Collapse
|
233
|
Schmidt RE, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol 2017; 14:7-18. [PMID: 29255211 DOI: 10.1038/nrrheum.2017.198] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Reinhold E Schmidt
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Bodo Grimbacher
- Centre for Chronic Immunodeficiency, University Medical Centre, University of Freiburg, Faculty of Medicine, Breisacher Straße 115, D-79106 Freiburg, Germany
| | - Torsten Witte
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| |
Collapse
|
234
|
Lo B, Abdel-Motal UM. Lessons from CTLA-4 deficiency and checkpoint inhibition. Curr Opin Immunol 2017; 49:14-19. [DOI: 10.1016/j.coi.2017.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
|
235
|
Walter JE, Farmer JR, Foldvari Z, Torgerson TR, Cooper MA. Mechanism-Based Strategies for the Management of Autoimmunity and Immune Dysregulation in Primary Immunodeficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 4:1089-1100. [PMID: 27836058 DOI: 10.1016/j.jaip.2016.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
Abstract
A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population.
Collapse
Affiliation(s)
- Jolan E Walter
- Department of Pediatrics & Medicine, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy & Immunology, Massachusetts General Hospital for Children, Boston, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass.
| | - Jocelyn R Farmer
- Department of Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Zsofia Foldvari
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K. G. Jebsen Centers for Cancer Immunotherapy and for Inflammation Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St Louis, Mo
| |
Collapse
|
236
|
Ameratunga R, Koopmans W, Woon ST, Leung E, Lehnert K, Slade CA, Tempany JC, Enders A, Steele R, Browett P, Hodgkin PD, Bryant VL. Epistatic interactions between mutations of TACI ( TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus. Clin Transl Immunology 2017; 6:e159. [PMID: 29114388 PMCID: PMC5671988 DOI: 10.1038/cti.2017.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Common variable immunodeficiency disorders (CVID) are a group of primary immunodeficiencies where monogenetic causes account for only a fraction of cases. On this evidence, CVID is potentially polygenic and epistatic although there are, as yet, no examples to support this hypothesis. We have identified a non-consanguineous family, who carry the C104R (c.310T>C) mutation of the Transmembrane Activator Calcium-modulator and cyclophilin ligand Interactor (TACI, TNFRSF13B) gene. Variants in TNFRSF13B/TACI are identified in up to 10% of CVID patients, and are associated with, but not solely causative of CVID. The proband is heterozygous for the TNFRSF13B/TACI C104R mutation and meets the Ameratunga et al. diagnostic criteria for CVID and the American College of Rheumatology criteria for systemic lupus erythematosus (SLE). Her son has type 1 diabetes, arthritis, reduced IgG levels and IgA deficiency, but has not inherited the TNFRSF13B/TACI mutation. Her brother, homozygous for the TNFRSF13B/TACI mutation, is in good health despite profound hypogammaglobulinemia and mild cytopenias. We hypothesised that a second unidentified mutation contributed to the symptomatic phenotype of the proband and her son. Whole-exome sequencing of the family revealed a de novo nonsense mutation (T168fsX191) in the Transcription Factor 3 (TCF3) gene encoding the E2A transcription factors, present only in the proband and her son. We demonstrate mutations of TNFRSF13B/TACI impair immunoglobulin isotype switching and antibody production predominantly via T-cell-independent signalling, while mutations of TCF3 impair both T-cell-dependent and -independent pathways of B-cell activation and differentiation. We conclude that epistatic interactions between mutations of the TNFRSF13B/TACI and TCF3 signalling networks lead to the severe CVID-like disorder and SLE in the proband.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Wikke Koopmans
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Euphemia Leung
- Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Charlotte A Slade
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Allergy and Clinical Immunology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jessica C Tempany
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Anselm Enders
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research and Centre for Personalised Immunology, Australian National University, Canberra, ACT, Australia
| | - Richard Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Peter Browett
- Department of Hematology, LabPlus, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine, and Pathology University of Auckland, Auckland, New Zealand
| | - Philip D Hodgkin
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Allergy and Clinical Immunology, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
237
|
Liu Y, Yang J, Wu Q, Han R, Yan W, Yuan J, Ji X, Li Y, Yao W, Ni C. LRBA Gene Polymorphisms and Risk of Coal Workers' Pneumoconiosis: A Case-Control Study from China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101138. [PMID: 28953250 PMCID: PMC5664639 DOI: 10.3390/ijerph14101138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/28/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
Abstract
The lipopolysaccharide (LPS)-responsive beige-like anchor protein (LRBA) is a member of the WDL-BEACH-WD (WBW) gene family. Defects in this gene are associated with the disordered autoimmunity in various diseases, including pulmonary fibrosis. In this study, we investigated the association between the functional polymorphisms in LRBA and risk of coal workers’ pneumoconiosis (CWP) in a Chinese population. Three potentially functional polymorphisms (rs2290846, rs3749574, and rs1782360) in LRBA were genotyped and analyzed in a case–control study, including 703 CWP cases and 705 controls. Genotyping was performed by the ABI 7900HT Real Time PCR system. Our results suggested that genotype rs2290846 AA was significantly associated with decreased risk of CWP (Adjusted OR = 0.61, 95% CI = 0.41–0.92), and the recessive model also supported the protective role of the genotype (Adjusted OR = 0.60, 95% CI = 0.40–0.89). Further, the polymorphism of rs2290846 decreased the CWP risk among cases over 27 years of dust exposure (adjusted OR = 0.51, 95% CI = 0.28–0.94) and non-smokers (adjusted OR = 0.58, 95% CI = 0.34–1.00). A potential role of rs2290846 AA has been proposed by expression quantitative trait loci (eQTL) and The Cancer Genome Atlas (TCGA). The present results suggest that LRBA SNPs are associated with CWP susceptibility in a Chinese population. Further studies focused on detailed mechanism or larger cohorts are warranted to validate our findings.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jingjin Yang
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qiuyun Wu
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ruhui Han
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Weiwen Yan
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jiali Yuan
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xiaoming Ji
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yan Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Wenxi Yao
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
238
|
Kostel Bal S, Haskologlu S, Serwas NK, Islamoglu C, Aytekin C, Kendirli T, Kuloglu Z, Yavuz G, Dalgic B, Siklar Z, Kansu A, Ensari A, Boztug K, Dogu F, Ikinciogullari A. Multiple Presentations of LRBA Deficiency: a Single-Center Experience. J Clin Immunol 2017; 37:790-800. [PMID: 28956255 PMCID: PMC7086713 DOI: 10.1007/s10875-017-0446-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022]
Abstract
Introduction LPS-responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency categorized as common variable immunodeficiency associated with autoimmune manifestations and inflammatory bowel diseases; however, the clinical spectrum has been extended. Here, we present our cohort of Turkish LRBA-deficient patients from a single center, demonstrating a diversity of clinical manifestations. Method Seven affected individuals from five families were assessed retrospectively in this study. Results Of the seven patients with LRBA deficiency, four had homozygous, and two had compound heterozygous mutations. One patient remained disease free until the last follow-up (age 17 years). The most common clinical manifestations of the six symptomatic patients were organomegaly (6/6), autoimmunity (6/6), and chronic diarrhea (5/6). Recurrent infectious episodes were observed in three patients. None of the patients had hypogammaglobulinemia at presentation. B cell subpopulation analysis revealed low numbers of switched-memory B cell numbers in two of the four tested patients. During the disease course, three of the patients died, two of them underwent successful hematopoietic stem cell transplantation (HSCT) from matched sibling donors, and one is under abatacept therapy. Conclusion LRBA defects should always be kept in mind as a differential diagnosis for patients with autoimmune disease affecting multiple organs, chronic diarrhea, and organomegalies. In our experience, early HSCT is a life-saving therapeutic strategy.
Collapse
Affiliation(s)
- Sevgi Kostel Bal
- Department of Pediatric Allergy and Immunology, Ankara University School of Medicine, Cebeci, 06590, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Allergy and Immunology, Ankara University School of Medicine, Cebeci, 06590, Ankara, Turkey
| | - Nina K Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Candan Islamoglu
- Department of Pediatric Allergy and Immunology, Ankara University School of Medicine, Cebeci, 06590, Ankara, Turkey
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Tanil Kendirli
- Department of Pediatric Intensive Care, Ankara University School of Medicine, Ankara, Turkey
| | - Zarife Kuloglu
- Department of Pediatric Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Gulsan Yavuz
- Department of Pediatric Oncology, Ankara University School of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatric Gastroenterology, Gazi University School of Medicine, Ankara, Turkey
| | - Zeynep Siklar
- Department of Pediatric Endocrinology, Ankara University School of Medicine, Ankara, Turkey
| | - Aydan Kansu
- Department of Pediatric Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Arzu Ensari
- Department of Pathology, Ankara University School of Medicine, Ankara, Turkey
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Figen Dogu
- Department of Pediatric Allergy and Immunology, Ankara University School of Medicine, Cebeci, 06590, Ankara, Turkey
| | - Aydan Ikinciogullari
- Department of Pediatric Allergy and Immunology, Ankara University School of Medicine, Cebeci, 06590, Ankara, Turkey.
| |
Collapse
|
239
|
Ochs HD, Petroni D. From clinical observations and molecular dissection to novel therapeutic strategies for primary immunodeficiency disorders. Am J Med Genet A 2017; 176:784-803. [DOI: 10.1002/ajmg.a.38480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Hans D. Ochs
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| | - Daniel Petroni
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| |
Collapse
|
240
|
Jordan MB. Modeling primary immune regulatory disorders: Ferrari or Yugo? Immunol Cell Biol 2017; 95:739-740. [PMID: 28925382 DOI: 10.1038/icb.2017.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael B Jordan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
241
|
Vogl C, Butola T, Haag N, Hausrat TJ, Leitner MG, Moutschen M, Lefèbvre PP, Speckmann C, Garrett L, Becker L, Fuchs H, Hrabe de Angelis M, Nietzsche S, Kessels MM, Oliver D, Kneussel M, Kilimann MW, Strenzke N. The BEACH protein LRBA is required for hair bundle maintenance in cochlear hair cells and for hearing. EMBO Rep 2017; 18:2015-2029. [PMID: 28893864 DOI: 10.15252/embr.201643689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/27/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide-responsive beige-like anchor protein (LRBA) belongs to the enigmatic class of BEACH domain-containing proteins, which have been attributed various cellular functions, typically involving intracellular protein and membrane transport processes. Here, we show that LRBA deficiency in mice leads to progressive sensorineural hearing loss. In LRBA knockout mice, inner and outer hair cell stereociliary bundles initially develop normally, but then partially degenerate during the second postnatal week. LRBA deficiency is associated with a reduced abundance of radixin and Nherf2, two adaptor proteins, which are important for the mechanical stability of the basal taper region of stereocilia. Our data suggest that due to the loss of structural integrity of the central parts of the hair bundle, the hair cell receptor potential is reduced, resulting in a loss of cochlear sensitivity and functional loss of the fraction of spiral ganglion neurons with low spontaneous firing rates. Clinical data obtained from two human patients with protein-truncating nonsense or frameshift mutations suggest that LRBA deficiency may likewise cause syndromic sensorineural hearing impairment in humans, albeit less severe than in our mouse model.
Collapse
Affiliation(s)
- Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry Göttingen, Göttingen, Germany
| | - Natja Haag
- Institute for Biochemistry I, University Hospital Jena, Jena, Germany
| | - Torben J Hausrat
- Department for Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael G Leitner
- Department of Physiology, Philipps University Marburg, Marburg, Germany
| | - Michel Moutschen
- Department of Immunology and Infectious Diseases, University of Liège CHU Liège, Liège, Belgium
| | - Philippe P Lefèbvre
- Department of Otorhinolaryngology, University of Liège CHU Liège, Liège, Belgium
| | - Carsten Speckmann
- Division of Pediatric Hematology and Oncology, Center for Chronic Immunodeficiency and Department of Pediatrics and Adolescent Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, München, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Michael M Kessels
- Institute for Biochemistry I, University Hospital Jena, Jena, Germany
| | - Dominik Oliver
- Department of Physiology, Philipps University Marburg, Marburg, Germany
| | - Matthias Kneussel
- Department for Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Manfred W Kilimann
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Nicola Strenzke
- Auditory Systems Physiology Group Department of Otolaryngology University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
242
|
Sowerby JM, Thomas DC, Clare S, Espéli M, Guerrero JA, Hoenderdos K, Harcourt K, Marsden M, Abdul-Karim J, Clement M, Antrobus R, Umrania Y, Barton PR, Flint SM, Juss JK, Condliffe AM, Lyons PA, Humphreys IR, Chilvers ER, Ouwehand WH, Dougan G, Smith KG. NBEAL2 is required for neutrophil and NK cell function and pathogen defense. J Clin Invest 2017; 127:3521-3526. [PMID: 28783043 PMCID: PMC5669559 DOI: 10.1172/jci91684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/23/2017] [Indexed: 12/02/2022] Open
Abstract
Mutations in the human NBEAL2 gene cause gray platelet syndrome (GPS), a bleeding diathesis characterized by a lack of α granules in platelets. The functions of the NBEAL2 protein have not been explored outside platelet biology, but there are reports of increased frequency of infection and abnormal neutrophil morphology in patients with GPS. We therefore investigated the role of NBEAL2 in immunity by analyzing the phenotype of Nbeal2-deficient mice. We found profound abnormalities in the Nbeal2-deficient immune system, particularly in the function of neutrophils and NK cells. Phenotyping of Nbeal2-deficient neutrophils showed a severe reduction in granule contents across all granule subsets. Despite this, Nbeal2-deficient neutrophils had an enhanced phagocyte respiratory burst relative to Nbeal2-expressing neutrophils. This respiratory burst was associated with increased expression of cytosolic components of the NADPH oxidase complex. Nbeal2-deficient NK cells were also dysfunctional and showed reduced degranulation. These abnormalities were associated with increased susceptibility to both bacterial (Staphylococcus aureus) and viral (murine CMV) infection in vivo. These results define an essential role for NBEAL2 in mammalian immunity.
Collapse
Affiliation(s)
- John M. Sowerby
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David C. Thomas
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Marion Espéli
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- INSERM UMR-996, Inflammation, Chemokines and Immunopathology, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Jose A. Guerrero
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kim Hoenderdos
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Morgan Marsden
- Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Juneid Abdul-Karim
- Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mathew Clement
- Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Yagnesh Umrania
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Philippa R. Barton
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Shaun M. Flint
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jatinder K. Juss
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alison M. Condliffe
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Paul A. Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ian R. Humphreys
- Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Willem H. Ouwehand
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Gordon Dougan
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Kenneth G.C. Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
243
|
Kurtenbach S, Gießl A, Strömberg S, Kremers J, Atorf J, Rasche S, Neuhaus EM, Hervé D, Brandstätter JH, Asan E, Hatt H, Kilimann MW. The BEACH Protein LRBA Promotes the Localization of the Heterotrimeric G-protein G olf to Olfactory Cilia. Sci Rep 2017; 7:8409. [PMID: 28814779 PMCID: PMC5559528 DOI: 10.1038/s41598-017-08543-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
BEACH domain proteins are involved in membrane protein traffic and human diseases, but their molecular mechanisms are not understood. The BEACH protein LRBA has been implicated in immune response and cell proliferation, and human LRBA mutations cause severe immune deficiency. Here, we report a first functional and molecular phenotype outside the immune system of LRBA-knockout mice: compromised olfaction, manifesting in reduced electro-olfactogram response amplitude, impaired food-finding efficiency, and smaller olfactory bulbs. LRBA is prominently expressed in olfactory and vomeronasal chemosensory neurons of wild-type mice. Olfactory impairment in the LRBA-KO is explained by markedly reduced concentrations (20–40% of wild-type levels) of all three subunits αolf, β1 and γ13 of the olfactory heterotrimeric G-protein, Golf, in the sensory cilia of olfactory neurons. In contrast, cilia morphology and the concentrations of many other proteins of olfactory cilia are not or only slightly affected. LRBA is also highly expressed in photoreceptor cells, another cell type with a specialized sensory cilium and heterotrimeric G-protein-based signalling; however, visual function appeared unimpaired by the LRBA-KO. To our knowledge, this is the first observation that a BEACH protein is required for the efficient subcellular localization of a lipid-anchored protein, and of a ciliary protein.
Collapse
Affiliation(s)
- Stefan Kurtenbach
- Department of Cell Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Siv Strömberg
- Department of Neuroscience, Uppsala University, S-75124, Uppsala, Sweden
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, D-91054, Erlangen, Germany.,Department of Anatomy II, Friedrich-Alexander University Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Sebastian Rasche
- Department of Cell Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Eva M Neuhaus
- Department of Pharmacology and Toxikology, University Hospital Jena, D-07747, Jena, Germany
| | - Denis Hervé
- Inserm UMR-S839, Institut du Fer a Moulin, Universite Pierre et Marie Curie, F-75005, Paris, France
| | | | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Würzburg, D-97070, Würzburg, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Manfred W Kilimann
- Department of Neuroscience, Uppsala University, S-75124, Uppsala, Sweden. .,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, D-37075, Göttingen, Germany.
| |
Collapse
|
244
|
Vairo FP, Boczek NJ, Cousin MA, Kaiwar C, Blackburn PR, Conboy E, Lanpher BC, Gavrilova RH, Pichurin PN, Lazaridis KN, Babovic-Vuksanovic D, Klee EW. The prevalence of diseases caused by lysosome-related genes in a cohort of undiagnosed patients. Mol Genet Metab Rep 2017; 13:46-51. [PMID: 28831385 PMCID: PMC5554961 DOI: 10.1016/j.ymgmr.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/08/2023] Open
Abstract
Lysosomal diseases (LD) comprise a group of approximately 60 hereditary conditions caused by progressive accumulation of metabolites due to defects in lysosomal enzymes and degradation pathways, which lead to a wide range of clinical manifestations. The estimated combined incidence of LD is between 1 in 4000 to 1 in 13,000 live births, with recent data from pilot newborn screening studies showing even higher incidence. We aimed to determine the prevalence of the classical LD and other diseases caused by lysosome-related genes in our cohort of diagnostic odyssey patients. The Individualized Medicine Clinic at Mayo Clinic is increasingly utilizing whole exome sequencing (WES) to determine the genetic etiology of undiagnosed Mendelian disease. From September 2012 to April 2017, WES results from 350 patients with unexplained symptoms were reviewed. Disease-causing variants were identified in MYO6, CLN6, LRBA, KCTD7, and ARSB revealing a genetic diagnosis of a LD in 8 individuals from 5 families. Based on our findings, lysosome-related disorders may be collectively common, reaching up to 1.5% prevalence in a cohort of patients with undiagnosed diseases presenting to a genetics clinic.
Collapse
Affiliation(s)
- Filippo Pinto Vairo
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nicole J. Boczek
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Margot A. Cousin
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Charu Kaiwar
- Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Patrick R. Blackburn
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Erin Conboy
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Brendan C. Lanpher
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Ralitza H. Gavrilova
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Pavel N. Pichurin
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Konstantinos N. Lazaridis
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eric W. Klee
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Biomedical Informatics, Mayo Clinic, Rochester, MN, USA
- Corresponding author at: 200 First Street SW, Rochester, MN, 55905, USA.200 First Street SWRochesterMN55905USA
| |
Collapse
|
245
|
Johnson MB, De Franco E, Lango Allen H, Al Senani A, Elbarbary N, Siklar Z, Berberoglu M, Imane Z, Haghighi A, Razavi Z, Ullah I, Alyaarubi S, Gardner D, Ellard S, Hattersley AT, Flanagan SE. Recessively Inherited LRBA Mutations Cause Autoimmunity Presenting as Neonatal Diabetes. Diabetes 2017; 66:2316-2322. [PMID: 28473463 PMCID: PMC5524180 DOI: 10.2337/db17-0040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/26/2017] [Indexed: 12/30/2022]
Abstract
Young-onset autoimmune diabetes associated with additional autoimmunity usually reflects a polygenic predisposition, but rare cases result from monogenic autoimmunity. Diagnosing monogenic autoimmunity is crucial for patients' prognosis and clinical management. We sought to identify novel genetic causes of autoimmunity presenting with neonatal diabetes (NDM) (diagnosis <6 months). We performed exome sequencing in a patient with NDM and autoimmune lymphoproliferative syndrome and his unrelated, unaffected parents and identified compound heterozygous null mutations in LRBA Biallelic LRBA mutations cause common variable immunodeficiency-8; however, NDM has not been confirmed in this disorder. We sequenced LRBA in 169 additional patients with diabetes diagnosed <1 year without mutations in the 24 known NDM genes. We identified recessive null mutations in 8 additional probands, of which, 3 had NDM (<6 months). Diabetes was the presenting feature in 6 of 9 probands. Six of 17 (35%) patients born to consanguineous parents and with additional early-onset autoimmunity had recessive LRBA mutations. LRBA testing should be considered in patients with diabetes diagnosed <12 months, particularly if they have additional autoimmunity or are born to consanguineous parents. A genetic diagnosis is important as it can enable personalized therapy with abatacept, a CTLA-4 mimetic, and inform genetic counseling.
Collapse
Affiliation(s)
- Matthew B Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Hana Lango Allen
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | | | - Nancy Elbarbary
- Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Zeynep Siklar
- Ankara University School of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Merih Berberoglu
- Ankara University School of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Zineb Imane
- Rabat Children's Hospital, Université Mohammed V Souissi, Rabat, Morocco
| | - Alireza Haghighi
- Division of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Zahra Razavi
- Department of Pediatrics, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Irfan Ullah
- Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Daphne Gardner
- Academia Endocrinology Department, Singapore General Hospital, Singapore
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
246
|
Azizi G, Abolhassani H, Mahdaviani SA, Chavoshzadeh Z, Eshghi P, Yazdani R, Kiaee F, Shaghaghi M, Mohammadi J, Rezaei N, Hammarström L, Aghamohammadi A. Clinical, immunologic, molecular analyses and outcomes of iranian patients with LRBA deficiency: A longitudinal study. Pediatr Allergy Immunol 2017; 28:478-484. [PMID: 28512785 DOI: 10.1111/pai.12735] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) deficiency is a combined immunodeficiency caused by mutation in LRBA gene. The patients have a variety of clinical symptoms including hypogammaglobulinemia, recurrent infections, autoimmunity, and enteropathy. METHODS A total of 17 LRBA-deficient patients were enrolled in this longitudinal study. For all patients, demographic information, clinical records, laboratory, and molecular data were collected. RESULT Hypogammaglobulinemia was reported in 14 (82.4%), CD4+ T-cell deficiency in five (29.4%), NK cell deficiency in three (21.4%), and CD19+ B-cell deficiency in 11 (64.7%) patients. All patients had history of infectious complications; pneumonia was the most common (76.5%) occurring infection. A history of lymphoproliferative disorders was observed in 14 (82.3%), enteropathy in 13 (76.5%), allergic symptoms in six (35.5%), neurologic problems in four (23.5), and autoimmunity (mostly autoimmune cytopenia) in 13 (76.5%) patients. Sirolimus treatment improved enteropathy of patients with remarkable success. The 20-year overall survival rate declined to 70.6%. CONCLUSION LRBA deficiency has a very broad and variable phenotype and should be considered, especially in children with early-onset hypogammaglobulinemia, severe autoimmune manifestations, enteropathy, lymphoproliferation, and recurrent respiratory tract infections.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Kiaee
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
247
|
Gámez-Díaz L, Neumann J, Jäger F, Proietti M, Felber F, Soulas-Sprauel P, Perruzza L, Grassi F, Kögl T, Aichele P, Kilimann M, Grimbacher B, Jung S. Immunological phenotype of the murine Lrba knockout. Immunol Cell Biol 2017; 95:789-802. [PMID: 28652580 DOI: 10.1038/icb.2017.52] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023]
Abstract
Biallelic mutations in the human lipopolysaccharide responsive beige-like anchor (LRBA) gene lead to a primary immunodeficiency known as LRBA deficiency, characterized by a broad range of clinical manifestations including autoimmunity, organomegaly, hypogammaglobulinemia and recurrent infections. Considering the phenotypic heterogeneity in patients and the severity of the disease, our aim was to assess the role of LRBA in immune cells and to understand the underlying pathomechanisms through the study of a Lrba knockout (Lrba-/-) mouse model. LRBA-deficient mice did not show severe clinical or immunological signs of disease, either at steady state under specific-pathogen-free conditions, after vaccination with T-dependent and T-independent antigens, or in the context of acute infections with lymphocytic choriomeningitis virus (LCMV) or Salmonella Typhimurium. Although Lrba-/- mice were able to produce normal serum immunoglobulin M (IgM) and IgG and to mount a specific immune response after immunization, they showed elevated serum and secretory basal IgA levels. LRBA was dispensable for B- and T-cell development, as well as for in vitro B-cell proliferation, survival, isotype switching and plasmablast differentiation. Interestingly, Lrba-/- mice displayed decreased cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) expression by regulatory T cells and activated conventional CD4+ and CD8+ T lymphocytes, reduced frequency of peritoneal B-1a cells along with diminished interleukin-10 production and increased percentages of T follicular helper cells in Peyer's patches, but without developing overt signs of autoimmunity. Our findings expand the role of LRBA in immune regulatory mechanisms previously reported in patients, and suggest a novel role in IgA production that is crucial for the protection of mucosal surfaces and gut-associated immune tolerance.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Center for Chronic Immunodeficiency (CCI), Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julika Neumann
- Center for Chronic Immunodeficiency (CCI), Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fiona Jäger
- Center for Chronic Immunodeficiency (CCI), Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felicitas Felber
- Center for Chronic Immunodeficiency (CCI), Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572 'Immunopathology and Therapeutic Chemistry', Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, University Hospital, Strasbourg, France.,Faculty of Pharmacy, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Fabio Grassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy.,Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Tamara Kögl
- Department of Immunology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- Department of Immunology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Manfred Kilimann
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Sophie Jung
- Center for Chronic Immunodeficiency (CCI), Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Hôpitaux universitaires de Strasbourg, Pôle de Médecine et de Chirurgie Bucco-dentaires, Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| |
Collapse
|
248
|
Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of Next-Generation Sequencing Technologies for the Diagnosis of Primary Immunodeficiencies. Front Immunol 2017; 8:847. [PMID: 28791010 PMCID: PMC5522848 DOI: 10.3389/fimmu.2017.00847] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are genetic disorders impairing host immunity, leading to life-threatening infections, autoimmunity, and/or malignancies. Genomic technologies have been critical for expediting the discovery of novel genetic defects underlying PIDs, expanding our knowledge of the complex clinical phenotypes associated with PIDs, and in shifting paradigms of PID pathogenesis. Once considered Mendelian, monogenic, and completely penetrant disorders, genomic studies have redefined PIDs as a heterogeneous group of diseases found in the global population that may arise through multigenic defects, non-germline transmission, and with variable penetrance. This review examines the uses of next-generation DNA sequencing (NGS) in the diagnosis of PIDs. While whole genome sequencing identifies variants throughout the genome, whole exome sequencing sequences only the protein-coding regions within a genome, and targeted gene panels sequence only a specific cohort of genes. The advantages and limitations of each sequencing approach are compared. The complexities of variant interpretation and variant validation remain the major challenge in wide-spread implementation of these technologies. Lastly, the roles of NGS in newborn screening and precision therapeutics for individuals with PID are also addressed.
Collapse
Affiliation(s)
- Michael Seleman
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | | | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
249
|
Verma N, Burns SO, Walker LSK, Sansom DM. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin Exp Immunol 2017; 190:1-7. [PMID: 28600865 DOI: 10.1111/cei.12997] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/15/2022] Open
Abstract
Immune deficiency disorders are a heterogeneous group of diseases of variable genetic aetiology. While the hallmark of immunodeficiency is susceptibility to infection, it is increasingly clear that autoimmunity is prevalent, suggestive of a more general immune dysregulation in some cases. With the increasing use of genetic technologies, the underlying causes of immune dysregulation are beginning to emerge. Here we provide a review of the heterozygous mutations found in the immune checkpoint protein CTLA-4, identified in cases of common variable immunodeficiency disorders (CVID) with accompanying autoimmunity. Study of these mutations provides insights into the biology of CTLA-4 as well as suggesting approaches for rational treatment of these patients.
Collapse
Affiliation(s)
- N Verma
- Clinical Immunology Department, Royal Free Hospital, London, UK
| | - S O Burns
- Clinical Immunology Department, Royal Free Hospital, London, UK.,Division of Infection and Immunity, School of Life and Medical Sciences, Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, UK
| | - L S K Walker
- Division of Infection and Immunity, School of Life and Medical Sciences, Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, UK
| | - D M Sansom
- Division of Infection and Immunity, School of Life and Medical Sciences, Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, UK
| |
Collapse
|
250
|
Notarangelo LD, Fleisher TA. Targeted strategies directed at the molecular defect: Toward precision medicine for select primary immunodeficiency disorders. J Allergy Clin Immunol 2017; 139:715-723. [PMID: 28270363 DOI: 10.1016/j.jaci.2017.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Primary immunodeficiency disorders (PIDs) represent a range of genetically determined diseases that typically have increased susceptibility to infections and in many cases also have evidence of immune dysregulation that often presents as autoimmunity. Most recently, the concept of gain-of-function mutations associated with PIDs has become well recognized and adds a new dimension to the understanding of this group of disorders, moving beyond the more commonly seen loss-of-function mutations. The rapidly expanding genetic defects that have been identified in patients with previously uncharacterized PIDs has opened up the potential for targeted therapy directed at the specific disease-causing abnormality. This has been driven by linking PID-specific genetic defects to the associated unique abnormalities in cellular signaling pathways amenable to directed therapies. These include agents that either block overactive or enhance underresponsive cellular pathways. Selected primary immunodeficiencies were chosen, the genetic defects of which have been recently characterized and are amenable to targeted therapy, as a reflection of the power of precision medicine.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md.
| |
Collapse
|