201
|
Jafari D, Shajari S, Jafari R, Mardi N, Gomari H, Ganji F, Forouzandeh Moghadam M, Samadikuchaksaraei A. Designer Exosomes: A New Platform for Biotechnology Therapeutics. BioDrugs 2021; 34:567-586. [PMID: 32754790 PMCID: PMC7402079 DOI: 10.1007/s40259-020-00434-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Desirable features of exosomes have made them a suitable manipulative platform for biomedical applications, including targeted drug delivery, gene therapy, cancer diagnosis and therapy, development of vaccines, and tissue regeneration. Although natural exosomes have various potentials, their clinical application is associated with some inherent limitations. Recently, these limitations inspired various attempts to engineer exosomes and develop designer exosomes. Mostly, designer exosomes are being developed to overcome the natural limitations of exosomes for targeted delivery of drugs and functional molecules to wounds, neurons, and the cardiovascular system for healing of damage. In this review, we summarize the possible improvements of natural exosomes by means of two main approaches: parental cell-based or pre-isolation exosome engineering and direct or post-isolation exosome engineering. Parental cell-based engineering methods use genetic engineering for loading of therapeutic molecules into the lumen or displaying them on the surface of exosomes. On the other hand, the post-isolation exosome engineering approach uses several chemical and mechanical methods including click chemistry, cloaking, bio-conjugation, sonication, extrusion, and electroporation. This review focuses on the latest research, mostly aimed at the development of designer exosomes using parental cell-based engineering and their application in cancer treatment and regenerative medicine. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Davod Jafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Shajari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Jafari
- Department of Medical Parasitology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosna Gomari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ganji
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
202
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
203
|
Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal 2021; 19:47. [PMID: 33892745 PMCID: PMC8063428 DOI: 10.1186/s12964-021-00730-1] [Citation(s) in RCA: 966] [Impact Index Per Article: 241.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diagnostic and therapeutic applications are generating remarkable interest from the scientific community and investors. Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. We delineate the major pathways and molecular players that influence each step of exosome physiology, highlighting the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma membrane. We also delineate the most common identified pitfalls affecting exosome research and development. Unravelling exosome physiology is key to their ultimate progression towards clinical applications. Video Abstract
Collapse
Affiliation(s)
- Sonam Gurung
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dany Perocheau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Loukia Touramanidou
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK. .,Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
204
|
Erfani S, Hua H, Pan Y, Zhou BP, Yang XH. The Context-Dependent Impact of Integrin-Associated CD151 and Other Tetraspanins on Cancer Development and Progression: A Class of Versatile Mediators of Cellular Function and Signaling, Tumorigenesis and Metastasis. Cancers (Basel) 2021; 13:cancers13092005. [PMID: 33919420 PMCID: PMC8122392 DOI: 10.3390/cancers13092005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tetraspanins are a family of molecules abundantly expressed on the surface of normal or tumor cells. They have been implicated in recruiting or sequestering key molecular regulators of malignancy of a variety of human cancers, including breast and lung cancers, glioblastoma and leukemia. Yet, how their actions take place remains mysterious due to a lack of traditional platform for molecular interactions. The current review digs into this mystery by examining findings from recent studies of multiple tetraspanins, particularly CD151. The molecular basis for differential impact of tetraspanins on tumor development, progression, and spreading to secondary sites is highlighted, and the complexity and plasticity of their control over tumor cell activities and interaction with their surroundings is discussed. Finally, an outlook is provided regarding tetraspanins as candidate biomarkers and targets for the diagnosis and treatment of human cancer. Abstract As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/β-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.
Collapse
Affiliation(s)
- Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Pharmacy Department, St. Elizabeth Healthcare, Edgewood, KY 41017, USA
| | - Hui Hua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-1996
| |
Collapse
|
205
|
Extracellular vesicles isolated from milk can improve gut barrier dysfunction induced by malnutrition. Sci Rep 2021; 11:7635. [PMID: 33828139 PMCID: PMC8026962 DOI: 10.1038/s41598-021-86920-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Malnutrition impacts approximately 50 million children worldwide and is linked to 45% of global mortality in children below the age of five. Severe acute malnutrition (SAM) is associated with intestinal barrier breakdown and epithelial atrophy. Extracellular vesicles including exosomes (EVs; 30-150 nm) can travel to distant target cells through biofluids including milk. Since milk-derived EVs are known to induce intestinal stem cell proliferation, this study aimed to examine their potential efficacy in improving malnutrition-induced atrophy of intestinal mucosa and barrier dysfunction. Mice were fed either a control (18%) or a low protein (1%) diet for 14 days to induce malnutrition. From day 10 to 14, they received either bovine milk EVs or control gavage and were sacrificed on day 15, 4 h after a Fluorescein Isothiocyanate (FITC) dose. Tissue and blood were collected for histological and epithelial barrier function analyses. Mice fed low protein diet developed intestinal villus atrophy and barrier dysfunction. Despite continued low protein diet feeding, milk EV treatment improved intestinal permeability, intestinal architecture and cellular proliferation. Our results suggest that EVs enriched from milk should be further explored as a valuable adjuvant therapy to standard clinical management of malnourished children with high risk of morbidity and mortality.
Collapse
|
206
|
Sahoo S, Adamiak M, Mathiyalagan P, Kenneweg F, Kafert-Kasting S, Thum T. Therapeutic and Diagnostic Translation of Extracellular Vesicles in Cardiovascular Diseases: Roadmap to the Clinic. Circulation 2021; 143:1426-1449. [PMID: 33819075 PMCID: PMC8021236 DOI: 10.1161/circulationaha.120.049254] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exosomes are small membrane-bound vesicles of endocytic origin that are actively secreted. The potential of exosomes as effective communicators of biological signaling in myocardial function has previously been investigated, and a recent explosion in exosome research not only underscores their significance in cardiac physiology and pathology, but also draws attention to methodological limitations of studying these extracellular vesicles. In this review, we discuss recent advances and challenges in exosome research with an emphasis on scientific innovations in isolation, identification, and characterization methodologies, and we provide a comprehensive summary of web-based resources available in the field. Importantly, we focus on the biology and function of exosomes, highlighting their fundamental role in cardiovascular pathophysiology to further support potential applications of exosomes as biomarkers and therapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Marta Adamiak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Prabhu Mathiyalagan
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
| | - Sabine Kafert-Kasting
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- REBIRTH Center for Translational Regenerative Medicine (T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| |
Collapse
|
207
|
Davis C, Savitz SI, Satani N. Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells 2021; 10:cells10040767. [PMID: 33807314 PMCID: PMC8065444 DOI: 10.3390/cells10040767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.
Collapse
|
208
|
Modani S, Tomar D, Tangirala S, Sriram A, Mehra NK, Kumar R, Khatri DK, Singh PK. An updated review on exosomes: biosynthesis to clinical applications. J Drug Target 2021; 29:925-940. [PMID: 33709876 DOI: 10.1080/1061186x.2021.1894436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exosomes are membrane-based extracellular vesicles naturally released by the cells. Nano size range of exosomes and unique properties such as stability, biocompatibility and low immunogenicity are key parameters, which make them suitable as nanoparticulate drug delivery system and also considered as promising delivery carriers for future clinical use. This review outlines the composition, biogenesis, isolation and characterisation methods along with biological and clinical applications of exosomes. Further, the biopharmaceutical features of exosomes include loading method, modified exosomes and potential use of exosomes for different diseases are well explained with the current case studies. We well elaborate the future directions for clinical use of exosomes as drug delivery platforms.
Collapse
Affiliation(s)
- Sheela Modani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Devendrasingh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Suma Tangirala
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
209
|
Gaurav I, Thakur A, Iyaswamy A, Wang X, Chen X, Yang Z. Factors Affecting Extracellular Vesicles Based Drug Delivery Systems. Molecules 2021; 26:molecules26061544. [PMID: 33799765 PMCID: PMC7999478 DOI: 10.3390/molecules26061544] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play major roles in intracellular communication and participate in several biological functions in both normal and pathological conditions. Surface modification of EVs via various ligands, such as proteins, peptides, or aptamers, offers great potential as a means to achieve targeted delivery of therapeutic cargo, i.e., in drug delivery systems (DDS). This review summarizes recent studies pertaining to the development of EV-based DDS and its advantages compared to conventional nano drug delivery systems (NDDS). First, we compare liposomes and exosomes in terms of their distinct benefits in DDS. Second, we analyze what to consider for achieving better isolation, yield, and characterization of EVs for DDS. Third, we summarize different methods for the modification of surface of EVs, followed by discussion about different origins of EVs and their role in developing DDS. Next, several major methods for encapsulating therapeutic cargos in EVs have been summarized. Finally, we discuss key challenges and pose important open questions which warrant further investigation to develop more effective EV-based DDS.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, Jiangsu Province, China
- Correspondence: ; Tel.: +852-3411-2961
| |
Collapse
|
210
|
Exosomes as Pleiotropic Players in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9030275. [PMID: 33803470 PMCID: PMC8002012 DOI: 10.3390/biomedicines9030275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) incidence is rising and due to late diagnosis, combined with unsatisfactory response to current therapeutic approaches, this tumor has an extremely high mortality rate. A better understanding of the mechanisms underlying pancreatic carcinogenesis is of paramount importance for rational diagnostic and therapeutic approaches. Multiple lines of evidence have showed that exosomes are actively involved in intercellular communication by transferring their cargos of bioactive molecules to recipient cells within the tumor microenvironment and systemically. Intriguingly, exosomes may exert both protumor and antitumor effects, supporting or hampering processes that play a role in the pathogenesis and progression of PC, including shifts in tumor metabolism, proliferation, invasion, metastasis, and chemoresistance. They also have a dual role in PC immunomodulation, exerting immunosuppressive or immune enhancement effects through several mechanisms. PC-derived exosomes also induce systemic metabolic alterations, leading to the onset of diabetes and weight loss. Moreover, exosomes have been described as promising diagnostic and prognostic biomarkers for PC. Their potential application in PC therapy as drug carriers and therapeutic targets is under investigation. In this review, we provide an overview of the multiple roles played by exosomes in PC biology through their specific cargo biomolecules and of their potential exploitation in early diagnosis and treatment of PC.
Collapse
|
211
|
Jan AT, Rahman S, Badierah R, Lee EJ, Mattar EH, Redwan EM, Choi I. Expedition into Exosome Biology: A Perspective of Progress from Discovery to Therapeutic Development. Cancers (Basel) 2021; 13:1157. [PMID: 33800282 PMCID: PMC7962655 DOI: 10.3390/cancers13051157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane-enclosed distinct cellular entities of endocytic origin that shuttle proteins and RNA molecules intercellularly for communication purposes. Their surface is embossed by a huge variety of proteins, some of which are used as diagnostic markers. Exosomes are being explored for potential drug delivery, although their therapeutic utilities are impeded by gaps in knowledge regarding their formation and function under physiological condition and by lack of methods capable of shedding light on intraluminal vesicle release at the target site. Nonetheless, exosomes offer a promising means of developing systems that enable the specific delivery of therapeutics in diseases like cancer. This review summarizes information on donor cell types, cargoes, cargo loading, routes of administration, and the engineering of exosomal surfaces for specific peptides that increase target specificity and as such, therapeutic delivery.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India;
| | - Raied Badierah
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Ehab H. Mattar
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
212
|
Dong X, Lei Y, Yu Z, Wang T, Liu Y, Han G, Zhang X, Li Y, Song Y, Xu H, Du M, Yin H, Wang X, Yan H. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Am J Cancer Res 2021; 11:5107-5126. [PMID: 33859737 PMCID: PMC8039955 DOI: 10.7150/thno.54755] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Pathological angiogenesis is the hallmark of many vision-threatening diseases. Anti-VEGF is a primary treatment with substantial beneficial effects. However, such agents require frequent intravitreal injections. Our previous work established a method for effectively modifying exosomes (EXOs) for loading therapeutic peptides. Here, we used this system to load the anti-angiogenic peptide KV11, aiming to establish an EXO-based therapy strategy to suppress neovascularization in the retina. Methods: Using an anchoring peptide, CP05, we linked KV11 to endothelial cell (EC) derived EXOs, yielding EXOKV11. We tested the delivery efficiency of EXOKV11 via two commonly used ocular injection methods: retro-orbital injection and intravitreal injection. Deploying an oxygen-induced retinopathy (OIR) model and a VEGF injection model, we tested the effects of EXOKV11 on neovascular formation, EC proliferation, and vascular permeability. In vitro experiments were used to test the mechanism and to analyze the effects of EXOKV11 on EC proliferation, migration, and sprouting. Results: By using the EXO loading system, KV11 was more efficiently delivered to the blood vessels of the mouse retina via retro-orbital injection. In both OIR model and VEGF injection model, EXOKV11 was more effective than KV11 alone in inhibiting neovascularization and vessel leakage. The therapeutic effect of retro-orbital injection of EXOKV11 was comparable to the intravitreal injection of VEGF-trap. Mechanistically, KV11 alone inhibited VEGF-downstream signaling, while EXOKV11 showed a stronger effect. Conclusions: We used EXOs as a carrier for intraocular delivery of KV11. We showed that KV11 itself has an anti-angiogenic effect through retro-orbital injection, but that this effect was greatly enhanced when delivered with EXOs. Thus, this system has the potential to treat proliferative retinopathy via retro-orbital injection which is a less invasive manner compared with intravitreal injection.
Collapse
|
213
|
Sims EK, Bundy BN, Stier K, Serti E, Lim N, Long SA, Geyer SM, Moran A, Greenbaum CJ, Evans-Molina C, Herold KC. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med 2021; 13:eabc8980. [PMID: 33658358 PMCID: PMC8610022 DOI: 10.1126/scitranslmed.abc8980] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
We analyzed the effects of a single 14-day course of teplizumab treatment on metabolic function and immune cells among participants in a previously reported randomized controlled trial of nondiabetic relatives at high risk for type 1 diabetes (T1D). In an extended follow-up (923-day median) of a previous report of teplizumab treatment, we found that the median times to diagnosis were 59.6 and 27.1 months for teplizumab- and placebo-treated participants, respectively (HR = 0.457, P = 0.01). Fifty percent of teplizumab-treated but only 22% of the placebo-treated remained diabetes-free. Glucose tolerance, C-peptide area under the curve (AUC), and insulin secretory rates were calculated, and relationships to T cell subsets and function were analyzed. Teplizumab treatment improved beta cell function, reflected by average on-study C-peptide AUC (1.94 versus 1.72 pmol/ml; P = 0.006). Drug treatment reversed a decline in insulin secretion before enrollment, followed by stabilization of the declining C-peptide AUC seen with placebo treatment. Proinsulin:C-peptide ratios after drug treatment were similar between the treatment groups. The changes in C-peptide with teplizumab treatment were associated with increases in partially exhausted memory KLRG1+TIGIT+CD8+ T cells (r = 0.44, P = 0.014) that showed reduced secretion of IFNγ and TNFα. A single course of teplizumab had lasting effects on delay of T1D diagnosis and improved beta cell function in high-risk individuals. Changes in CD8+ T cell subsets indicated that partially exhausted effector cells were associated with clinical response. Thus, this trial showed improvement in metabolic responses and delay of diabetes with immune therapy.
Collapse
Affiliation(s)
- Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian N Bundy
- Department of Epidemiology, and Pediatrics University of South Florida, Tampa, FL 33612, USA
| | - Kenneth Stier
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT 06520, USA
| | | | - Noha Lim
- Immune Tolerance Network, Bethesda, MD 20814, USA
| | - S Alice Long
- Benaroya Research Institute, Seattle WA 98101, USA
| | | | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
214
|
Gayosso-Gómez LV, Ortiz-Quintero B. Circulating MicroRNAs in Blood and Other Body Fluids as Biomarkers for Diagnosis, Prognosis, and Therapy Response in Lung Cancer. Diagnostics (Basel) 2021; 11:diagnostics11030421. [PMID: 33801442 PMCID: PMC7999833 DOI: 10.3390/diagnostics11030421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
The identification of circulating microRNAs (miRNAs) in peripheral blood and other body fluids has led to considerable research interest in investigating their potential clinical application as non-invasive biomarkers of cancer, including lung cancer, the deadliest malignancy worldwide. Several studies have found that alterations in the levels of miRNAs in circulation are able to discriminate lung cancer patients from healthy individuals (diagnosis) and are associated with patient outcome (prognosis) and treatment response (prediction). Increasing evidence indicates that circulating miRNAs may function as mediators of cell-to-cell communication, affecting biological processes associated with tumor initiation and progression. This review is focused on the most recent studies that provide evidence of the potential value of circulating miRNAs in blood and other body fluids as non-invasive biomarkers of lung cancer in terms of diagnosis, prognosis, and response to treatment. The status of their potential clinical application in lung cancer is also discussed, and relevant clinical trials were sought and are described. Because of the relevance of their biological characteristics and potential value as biomarkers, this review provides an overview of the canonical biogenesis, release mechanisms, and biological role of miRNAs in lung cancer.
Collapse
|
215
|
Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential. J Cancer Res Clin Oncol 2021; 147:637-648. [PMID: 33511427 DOI: 10.1007/s00432-021-03534-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exosomes are extracellular nanometric vesicles used by cells to communicate with each other. They are responsible for many pathological conditions, including tumors by transferring regulatory biomolecules that impact target cell activity. Because of their high concentration in exosomes compared with parental cells and the rest of exosomal content, specificity to the cell of origin, and their well-organized sorting mechanism, microRNAs (miRNAs) are thought to be the most potent exosomes cargo and used by scientists to track exosomes and to detect cell activity changes and prognosis in cancer early. PURPOSE In this review, the results of studies examining the role of exosomes in cancer pathophysiology and their clinical potential are discussed in detail. Tumor-derived exosomes (TDEs) mediate the dynamic changes of cancer growth and invasion, including local microenvironment remodeling, distance metastasis, angiogenesis, and tumor-associated immunosuppression. They also contribute to hypoxia-induced tumor progression and cancer cell drug resistance. As a result of exosomes being present in all body fluids, it is possible to have early accessible and less-invasive diagnostic and prognostic measures by forming a table for each cancer type and its matched specific miRNAs. Under testing, available therapeutic uses of exosomes include interference of exosomes biogenesis, secretion, or uptake, and recruitment of exosomes as target-specific drug delivery vehicles, and immunostimulatory agents for both cancer patients and healthy population to avoid cancer development from the start. CONCLUSION These data suggest that exosomes and exosomal microRNA are directly related to cancer progression mechanisms, and could be used in cancer early diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
| | - Alyaa R Elsergany
- Internal Medicine Department, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
216
|
Lázaro-Ibáñez E, Faruqu FN, Saleh AF, Silva AM, Tzu-Wen Wang J, Rak J, Al-Jamal KT, Dekker N. Selection of Fluorescent, Bioluminescent, and Radioactive Tracers to Accurately Reflect Extracellular Vesicle Biodistribution in Vivo. ACS NANO 2021; 15:3212-3227. [PMID: 33470092 PMCID: PMC7905875 DOI: 10.1021/acsnano.0c09873] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ability to track extracellular vesicles (EVs) in vivo without influencing their biodistribution is a key requirement for their successful development as drug delivery vehicles and therapeutic agents. Here, we evaluated the effect of five different optical and nuclear tracers on the in vivo biodistribution of EVs. Expi293F EVs were labeled using either a noncovalent fluorescent dye DiR, or covalent modification with 111indium-DTPA, or bioengineered with fluorescent (mCherry) or bioluminescent (Firefly and NanoLuc luciferase) proteins fused to the EV marker, CD63. To focus specifically on the effect of the tracer, we compared EVs derived from the same cell source and administered systemically by the same route and at equal dose into tumor-bearing BALB/c mice. 111Indium and DiR were the most sensitive tracers for in vivo imaging of EVs, providing the most accurate quantification of vesicle biodistribution by ex vivo imaging of organs and analysis of tissue lysates. Specifically, NanoLuc fused to CD63 altered EV distribution, resulting in high accumulation in the lungs, demonstrating that genetic modification of EVs for tracking purposes may compromise their physiological biodistribution. Blood kinetic analysis revealed that EVs are rapidly cleared from the circulation with a half-life below 10 min. Our study demonstrates that radioactivity is the most accurate EV tracking approach for a complete quantitative biodistribution study including pharmacokinetic profiling. In conclusion, we provide a comprehensive comparison of fluorescent, bioluminescent, and radioactivity approaches, including dual labeling of EVs, to enable accurate spatiotemporal resolution of EV trafficking in mice, an essential step in developing EV therapeutics.
Collapse
Affiliation(s)
- Elisa Lázaro-Ibáñez
- Discovery
Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
- Advanced
Drug Delivery, Pharmaceutical Sciences, BioPharmaceutical R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Farid N. Faruqu
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Amer F. Saleh
- Functional
and Mechanistic Safety, Clinical Pharmacology & Safety Sciences,
BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, United Kingdom
| | - Andreia M. Silva
- Discovery
Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Julie Tzu-Wen Wang
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Janusz Rak
- Research
Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, Quebec H4A 3J,1 Canada
| | - Khuloud T. Al-Jamal
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Niek Dekker
- Discovery
Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
| |
Collapse
|
217
|
Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201:102022. [PMID: 33617919 DOI: 10.1016/j.pneurobio.2021.102022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous cell-derived membranous structures that arise from the endosome system or directly detach from the plasma membrane. In recent years, many advances have been made in the understanding of the clinical definition and pathogenesis of neurodegenerative diseases, but translation into effective treatments is hampered by several factors. Current research indicates that EVs are involved in the pathology of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Besides, EVs are also involved in the process of myelin formation, and can also cross the blood-brain barrier to reach the sites of CNS injury. It is suggested that EVs have great potential as a novel therapy for the treatment of neurodegenerative diseases. Here, we reviewed the advances in understanding the role of EVs in neurodegenerative diseases and addressed the critical function of EVs in the CNS. We have also outlined the physiological mechanisms of EVs in myelin regeneration and highlighted the therapeutic potential of EVs in neurodegenerative diseases.
Collapse
|
218
|
Jayasinghe MK, Tan M, Peng B, Yang Y, Sethi G, Pirisinu M, Le MTN. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. Semin Cancer Biol 2021; 74:62-78. [PMID: 33609665 DOI: 10.1016/j.semcancer.2021.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a disease that evolves continuously with unpredictable outcomes. Although conventional chemotherapy can display significant antitumor effects, the lack of specificity and poor bioavailability remain major concerns in cancer therapy. Moreover, with the advent of novel anti-cancer gene therapies, there is an urgent need for drug delivery vectors capable of bypassing cellular barriers and efficiently transferring therapeutic cargo to recipient cells. A number of drug delivery systems have been proposed to overcome these limitations, but their successful clinical translation has been hampered by the onset of unexpected side effects and associated toxicities. The application of extracellular vesicles (EVs), a class of naturally released, cell-derived particles, as drug delivery vectors presents a breakthrough in nanomedicine, taking into account their biocompatibility and natural role in intercellular communication. Combining the advantageous intrinsic properties of EVs with surface functionalization and the encapsulation of drugs allows for a new class of engineered EVs that serve as effective therapeutic carriers. Here, we describe the various successful approaches involving the application of engineered EVs as bio-derived drug delivery vectors in cancer therapy. The latest and most effective strategies of engineering EVs to improve drug loading, stealth properties and tumour targeting capabilities of EVs are debated. Finally, current obstacles and future perspectives of smart engineered EVs are discussed.
Collapse
Affiliation(s)
- Migara Kavishka Jayasinghe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Melissa Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Yuqi Yang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marco Pirisinu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong.
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
219
|
Ou YH, Liang J, Czarny B, Wacker MG, Yu V, Wang JW, Pastorin G. Extracellular Vesicle (EV) biohybrid systems for cancer therapy: Recent advances and future perspectives. Semin Cancer Biol 2021; 74:45-61. [PMID: 33609664 DOI: 10.1016/j.semcancer.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are a class of cell-derived lipid-bilayer membrane vesicles secreted by almost all mammalian cells and involved in intercellular communication by shuttling various biological cargoes. Over the last decade, EVs - namely exosomes and microvesicles - have been extensively explored as next-generation nanoscale drug delivery systems (DDSs). This is in large due to their endogenous origin, which enables EVs to circumvent some of the limitations associated with existing cancer therapy approaches (i.e. by preventing recognition by the immune system and improving selectivity towards tumor tissue). However, successful translation of these cell-derived vesicles into clinical applications has been hindered by several factors, among which the loading of exogenous therapeutic molecules still represents a great challenge. In order to address this issue and to further advance these biologically-derived systems as drug carriers, EV-biohybrid nano-DDSs, obtained through the fusion of EVs with conventional synthetic nano-DDSs, have recently been proposed as a valuable alternative as DDSs. Building on the idea of "combining the best of both worlds", a combination of these two unique entities aims to harness the beneficial properties associated with both EVs and conventional nano-DDSs, while overcoming the flaws of the individual components. These biohybrid systems also provide a unique opportunity for exploitation of new synergisms, often leading to improved therapeutic outcomes, thus paving the way for advancements in cancer therapy. This review aims to describe the recent developments of EV-biohybrid nano-DDSs in cancer therapy, to highlight the most promising results and breakthroughs, as well as to provide a glimpse on the possible intrinsic targeting mechanisms of EVs that can be bequeathed to their hybrid systems. Finally, we also provide some insights in the future perspectives of EV-hybrid DDSs.
Collapse
Affiliation(s)
- Yi-Hsuan Ou
- Department of Pharmacy, National University of Singapore, Singapore
| | - Jeremy Liang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Bertrand Czarny
- School of Materials Science & Engineering and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Victor Yu
- Department of Pharmacy, National University of Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore.
| |
Collapse
|
220
|
Gurunathan S, Kang MH, Kim JH. A Comprehensive Review on Factors Influences Biogenesis, Functions, Therapeutic and Clinical Implications of Exosomes. Int J Nanomedicine 2021; 16:1281-1312. [PMID: 33628021 PMCID: PMC7898217 DOI: 10.2147/ijn.s291956] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles secreted by almost all cell types into the extracellular environment upon fusion of multivesicular bodies and plasma membrane. Biogenesis of exosomes is a protein quality control mechanism, and once released, exosomes transmit signals to other cells. The applications of exosomes have increased immensely in biomedical fields owing to their cell-specific cargos that facilitate intercellular communications with neighboring cells through the transfer of biologically active compounds. The diverse constituents of exosomes reflect their cell of origin and their detection in biological fluids represents a diagnostic marker for various diseases. Exosome research is expanding rapidly due to the potential for clinical application to therapeutics and diagnosis. However, several aspects of exosome biology remain elusive. To discover the use of exosomes in the biomedical applications, we must better understand the basic molecular mechanisms underlying their biogenesis and function. In this comprehensive review, we describe factors involved in exosomes biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we addressed the challenges and outstanding developments in exosome research, and discuss future perspectives.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
221
|
Khan AA, T. M. de Rosales R. Radiolabelling of Extracellular Vesicles for PET and SPECT imaging. Nanotheranostics 2021; 5:256-274. [PMID: 33654653 PMCID: PMC7914338 DOI: 10.7150/ntno.51676] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) such as exosomes and microvesicles have gained recent attention as potential biomarkers of disease as well as nanomedicinal tools, but their behaviour in vivo remains mostly unexplored. In order to gain knowledge of their in vivo biodistribution it is important to develop imaging tools that allow us to track EVs over time and at the whole-body level. Radionuclide-based imaging (PET and SPECT) have properties that allow us to do so efficiently, mostly due to their high sensitivity, imaging signal tissue penetration, and accurate quantification. Furthermore, they can be easily translated from animals to humans. In this review, we summarise and discuss the different studies that have used PET or SPECT to study the behaviour of EVs in vivo. With a focus on the different radiolabelling methods used, we also discuss the advantages and disadvantages of each one, and the challenges of imaging EVs due to their variable stability and heterogeneity.
Collapse
Affiliation(s)
| | - Rafael T. M. de Rosales
- Dept. of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
222
|
Wang AYL. Human Induced Pluripotent Stem Cell-Derived Exosomes as a New Therapeutic Strategy for Various Diseases. Int J Mol Sci 2021; 22:1769. [PMID: 33578948 PMCID: PMC7916646 DOI: 10.3390/ijms22041769] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, an increasing number of studies have demonstrated that induced pluripotent stem cells (iPSCs) and iPSC-derived cells display therapeutic effects, mainly via the paracrine mechanism in addition to their transdifferentiation ability. Exosomes have emerged as an important paracrine factor for iPSCs to repair injured cells through the delivery of bioactive components. Animal reports of iPSC-derived exosomes on various disease models are increasing, such as in heart, limb, liver, skin, bone, eye and neurological disease and so forth. This review aims to summarize the therapeutic effects of iPSC-derived exosomes on various disease models and their properties, such as angiogenesis, cell proliferation and anti-apoptosis, with the hopes of improving their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, 5 Fu-hsing Street, Gueishan, Taoyuan 333, Taiwan
| |
Collapse
|
223
|
Hsieh CC, Hsu SC, Yao M, Huang DM. CD9 Upregulation-Decreased CCL21 Secretion in Mesenchymal Stem Cells Reduces Cancer Cell Migration. Int J Mol Sci 2021; 22:ijms22041738. [PMID: 33572290 PMCID: PMC7915477 DOI: 10.3390/ijms22041738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tetraspanin CD9 is widely expressed on various cell types, such as cancer cells and mesenchymal stem cells (MSCs), and/or cell-released exosomes. It has been reported that exosomal CD9 plays an important role in intercellular communications involved in cancer cell migration and metastasis. However, reports on the effect of the CD9 of MSCs or MSC-derived exosomes on cancer cell migration are still lacking. In this study, using a transwell migration assay, we found that both dextran-coated iron oxide nanoparticles (dex-IO NPs) and ionomycin stimulated exosomal CD9 expression in human MSCs (hMSCs); however, hMSCs could not deliver them to melanoma cells to affect cell migration. Interestingly, a reduced migration of melanoma cell line was observed when the ionomycin-incubated hMSC-conditioned media but not dex-IO NP-labeled hMSC-conditioned media were in the bottom chamber. In addition, we found that dex-IO NPs decreased cellular CD9 expression in hMSCs but ionomycin increased this. Simultaneously, we found that ionomycin suppressed the expression and secretion of the chemokine CCL21 in hMSCs. The silencing of CD9 demonstrated an inhibitory role of cellular CD9 in CCL21 expression in hMSCs, suggesting that ionomycin could upregulate cellular CD9 to decrease CCL21 expression and secretion of hMSCs, which would reduce the migration of B16F10, A549 and U87MG cancer cell lines due to chemoattraction reduction of CCL21. The present study not only highlights the important role of bone marrow-derived hMSCs' CD9-mediated CCL21 regulation in cancer bone metastasis but also suggests a new distinct pharmaceutical strategy for prevention or/and therapy of cancer metastasis.
Collapse
Affiliation(s)
- Chia-Chu Hsieh
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Ming Yao
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Dong-Ming Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan;
- Correspondence: ; Tel.: +886-37-246-166 (ext. 38105)
| |
Collapse
|
224
|
Kwok ZH, Wang C, Jin Y. Extracellular Vesicle Transportation and Uptake by Recipient Cells: A Critical Process to Regulate Human Diseases. Processes (Basel) 2021; 9. [PMID: 34336602 PMCID: PMC8323758 DOI: 10.3390/pr9020273] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence highlights the relevance of extracellular vesicles
(EVs) in modulating human diseases including but not limited to cancer,
inflammation, and neurological disorders. EVs can be found in almost all types
of human body fluids, suggesting that their trafficking may allow for their
targeting to remote recipient cells. While molecular processes underlying EV
biogenesis and secretion are increasingly elucidated, mechanisms governing EV
transportation, target finding and binding, as well as uptake into recipient
cells remain to be characterized. Understanding the specificity of EV transport
and uptake is critical to facilitating the development of EVs as valuable
diagnostics and therapeutics. In this mini review, we focus on EV uptake
mechanisms and specificities, as well as their implications in human
diseases.
Collapse
|
225
|
Li MY, Liu LZ, Dong M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer 2021; 20:22. [PMID: 33504342 PMCID: PMC7839206 DOI: 10.1186/s12943-021-01312-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is often diagnosed at an advanced stage and has a poor prognosis. Conventional treatments are not effective for metastatic lung cancer therapy. Although some of molecular targets have been identified with favorable response, those targets cannot be exploited due to the lack of suitable drug carriers. Lung cancer cell-derived exosomes (LCCDEs) receive recent interest in its role in carcinogenesis, diagnosis, therapy, and prognosis of lung cancer due to its biological functions and natural ability to carry donor cell biomolecules. LCCDEs can promote cell proliferation and metastasis, affect angiogenesis, modulate antitumor immune responses during lung cancer carcinogenesis, regulate drug resistance in lung cancer therapy, and be now considered an important component in liquid biopsy assessments for detecting lung cancer. Therapeutic deliverable exosomes are emerging as promising drug delivery agents specifically to tumor high precision medicine because of their natural intercellular communication role, excellent biocompatibility, low immunogenicity, low toxicity, long blood circulation ability, biodegradable characteristics, and their ability to cross various biological barriers. Several studies are currently underway to develop novel diagnostic and prognostic modalities using LCCDEs, and to develop methods of exploiting exosomes for use as efficient drug delivery vehicles. Current status of lung cancer and extensive applicability of LCCDEs are illustrated in this review. The promising data and technologies indicate that the approach on LCCDEs implies the potential application of LCCDEs to clinical management of lung cancer patients.
Collapse
Affiliation(s)
- Ming-Yue Li
- Biomedical Equipment Department, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Building 3, No.188, KaiYuan Road, Huangpu District, Guangzhou, Guangdong, China
| | - Li-Zhong Liu
- Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, A7-304, Shenzhen University Xili Campus, Nanshan District, Shenzhen, 518055, China.
| | - Ming Dong
- Biomedical Equipment Department, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Building 3, No.188, KaiYuan Road, Huangpu District, Guangzhou, Guangdong, China.
| |
Collapse
|
226
|
Rezaie J, Aslan C, Ahmadi M, Zolbanin NM, Kashanchi F, Jafari R. The versatile role of exosomes in human retroviral infections: from immunopathogenesis to clinical application. Cell Biosci 2021; 11:19. [PMID: 33451365 PMCID: PMC7810184 DOI: 10.1186/s13578-021-00537-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells produce extracellular vesicles (EVs) mediating intercellular communication. These vesicles encompass many bio-molecules such as proteins, nucleic acids, and lipids that are transported between cells and regulate pathophysiological actions in the recipient cell. Exosomes originate from multivesicular bodies inside cells and microvesicles shed from the plasma membrane and participate in various pathological conditions. Retroviruses such as Human Immunodeficiency Virus -type 1 (HIV-1) and Human T-cell leukemia virus (HTLV)-1 engage exosomes for spreading and infection. Exosomes from virus-infected cells transfer viral components such as miRNAs and proteins that promote infection and inflammation. Additionally, these exosomes deliver virus receptors to target cells that make them susceptible to virus entry. HIV-1 infected cells release exosomes that contribute to the pathogenesis including neurological disorders and malignancy. Exosomes can also potentially carry out as a modern approach for the development of HIV-1 and HTLV-1 vaccines. Furthermore, as exosomes are present in most biological fluids, they hold the supreme capacity for clinical usage in the early diagnosis and prognosis of viral infection and associated diseases. Our current knowledge of exosomes' role from virus-infected cells may provide an avenue for efficient retroviruses associated with disease prevention. However, the exact mechanism involved in retroviruses infection/ inflammation remains elusive and related exosomes research will shed light on the mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran
| | - Cynthia Aslan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA, 20110, USA.
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran.
| |
Collapse
|
227
|
Roles of Bile-Derived Exosomes in Hepatobiliary Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8743409. [PMID: 33511212 PMCID: PMC7822672 DOI: 10.1155/2021/8743409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Exosomes are vesicles with a diameter of 30-150 nm produced by living cells and secreted into the extracellular matrix. Exosomes mediate cellular communication by carrying active molecules, such as nucleic acids, proteins, and liposomes. Although exosomes are found in various body fluids, little is known about bile-derived exosomes. This review is the first to summarize the methods of bile storage and isolation of biliary exosomes, highlighting the roles of bile-derived exosomes, especially exosomal noncoding RNAs, in physiological and disease states and discussing their potential clinical applications.
Collapse
|
228
|
Liu Q, Piao H, Wang Y, Zheng D, Wang W. Circulating exosomes in cardiovascular disease: Novel carriers of biological information. Biomed Pharmacother 2021; 135:111148. [PMID: 33412387 DOI: 10.1016/j.biopha.2020.111148] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a group of nanosized extracellular vesicles that include various bioactive nucleic acids, lipids, and proteins. They originate from membrane invagination and are released by exocytosis, which can transmit signals to target cells to achieve cell-to-cell communication and maintain homeostasis. The heart is a complex multicellular organ that contains resident cell types such as fibroblasts, endothelial cells, and smooth muscle cells. Communication between different cell types and immune systems is essential for the dynamic equilibrium of the cardiac internal environment. Intercellular communication is a universal phenomenon mediated by exosomes and their contents during several pathological processes in cardiovascular diseases, such as cardiomyocyte hypertrophy, apoptosis, and angiogenesis. Therefore, exosomes can be used as novel invasive diagnostic biomarkers in multiple diseases, including atherosclerosis, myocardial ischemia, cardiac fibrosis, and ischemia-reperfusion injury. In addition, the biocompatible nature and low immunogenicity of exosomes make them high-quality nanoparticle drug carriers with potential applications in translational medicine and therapeutic strategies. Here, we focus on the biogenesis, isolation, biological functions, and future application prospects of exosomes in cardiovascular disease.
Collapse
Affiliation(s)
- Qing Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku Tokyo, Tokyo 113-8655, Japan.
| | - Hulin Piao
- Department of Cardiovascular Surgery, the Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yong Wang
- Department of Cardiovascular Surgery, the Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Dongdong Zheng
- Department of Cardiovascular Surgery, the Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Weitie Wang
- Department of Cardiovascular Surgery, the Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
229
|
Abstract
Chemotherapy represents the current mainstay therapeutic approach for most types of cancer. Despite the development of targeted chemotherapeutic strategies, the efficacy of anti-cancer drugs is severely limited by the development of drug resistance. Multidrug resistance (MDR) consists of the simultaneous resistance to various unrelated cytotoxic drugs and is one of the main causes of anticancer treatment failure. One of the principal mechanisms by which cancer cells become MDR involves the overexpression of ATP Binding Cassette (ABC) transporters, such as P-glycoprotein (P-gp), mediating the active efflux of cytotoxic molecules from the cytoplasm. Extracellular vesicles (EVs) are submicron lipid-enclosed vesicles that are released by all cells and which play a fundamental role in intercellular communication in physiological and pathological contexts. EVs have fundamental function at each step of cancer development and progression. They mediate the transmission of MDR through the transfer of vesicle cargo including functional ABC transporters as well as nucleic acids, proteins and lipids. Furthermore, EVs mediate MDR by sequestering anticancer drugs and stimulate cancer cell migration and invasion. EVs also mediate the communication with the tumour microenvironment and the immune system, resulting in increased angiogenesis, metastasis and immune evasion. All these actions contribute directly and indirectly to the development of chemoresistance and treatment failure. In this chapter, we describe the many roles EVs play in the acquisition and spread of chemoresistance in cancer. We also discuss possible uses of EVs as pharmacological targets to overcome EV-mediated drug resistance and the potential that the analysis of tumour-derived EVs offers as chemoresistance biomarkers.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
230
|
Abstract
Extracellular vesicles (EVs) are lipid bilayer containing nanovesicles that have a predominant role in intercellular communication and cargo delivery. EVs have recently been used as a means for drug delivery and have been depicted to elicit no or minimal immune response in vivo. The stability, biocompatibility and manipulatable tumour homing capabilities of these biological vessels make them an attractive target for the packaging and delivery of drugs and molecules to treat various diseases including cancer. The following chapter will summarise current EV engineering techniques for the purpose of delivering putative drugs and therapeutic molecules for the treatment of cancer. The relevance of EV source will be discussed, as well as the specific modifications required to manufacture them into suitable vehicles for molecular drug delivery. Furthermore, methods of EV cargo encapsulation will be evaluated with emphasis on intercellular coordination to allow for the effective emptying of therapeutic contents into target cells. While EVs possess properties making them naturally suitable nanocarriers for drugs and molecules, many challenges with clinical translation of EV-based platforms remain. These issues need to be addressed in order to harness the true potential of the EV-based therapeutic avenue.
Collapse
Affiliation(s)
- Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
231
|
Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Am J Cancer Res 2021; 11:3183-3195. [PMID: 33537081 PMCID: PMC7847680 DOI: 10.7150/thno.52570] [Citation(s) in RCA: 848] [Impact Index Per Article: 212.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are cell-derived nanovesicles that are involved in the intercellular transportation of materials. Therapeutics, such as small molecules or nucleic acid drugs, can be incorporated into exosomes and then delivered to specific types of cells or tissues to realize targeted drug delivery. Targeted delivery increases the local concentration of therapeutics and minimizes side effects. Here, we present a detailed review of exosomes engineering through genetic and chemical methods for targeted drug delivery. Although still in its infancy, exosome-mediated drug delivery boasts low toxicity, low immunogenicity, and high engineerability, and holds promise for cell-free therapies for a wide range of diseases.
Collapse
|
232
|
Raby KL, Horsely H, McCarthy-Boxer A, Norman JT, Wilson PD. Urinary exosome proteomic profiling defines stage-specific rapid progression of autosomal dominant polycystic kidney disease and tolvaptan efficacy. BBA ADVANCES 2021; 1:100013. [PMID: 37082007 PMCID: PMC10074914 DOI: 10.1016/j.bbadva.2021.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
ADPKD is the most common genetic disease of the kidney leading to end-stage renal disease necessitating renal replacement therapy at any time between the 1st and 8th decades of life due to widely variable rates of disease progression. This presents significant patient anxiety and a significant prognostic and therapeutic challenge. Tolvaptan is the only approved drug licensed to slow ADPKD progression by reducing renal cystic expansion but side-effects can limit its efficacy. To address the need to identify new biomarkers to monitor progression of ADPKD and to evaluate the therapeutic effects of Tolvaptan, proteomic analysis was conducted on defined (40-100nm) urinary exosomes isolated from ADPKD patients phenotyped and clinically monitored over a 10-year period. Comparative Gene Ontology analysis of Tandem Mass Tag labelled mass spectrometry-derived protein profiles from urinary exosomes from ADPKD patients with rapid (>10ml/min/5 years decline in estimated glomerular filtration rate) versus slow progression showed distinctive patterns of pathway up-regulation. Clear discrimination between rapid and slowly-progressive profiles were seen in all stages functional decline in ADPKD patients whether with mild (>70ml/min), moderate (50-69ml/min) or severe (<49ml/min) disease at onset. Discriminatory pathways and proteins included Notch-, integrin- and growth factor-signalling; microtubular kinase, vesicular proteins and epidermal growth factor substrates. Confocal microscopy of fluorescently-labelled normal versus ADPKD epithelial cell-derived exosomes in vitro also identified ADPKD-dependent abnormalities in intracellular vesicular trafficking and implicated changes in ADPKD-dependent exosome secretion and target cell uptake as factors underlying urinary exosome excretion biomarker properties. Comparative proteomic analysis of urinary exosomal proteins in individual patients before and after treatment with Tolvaptan for 4 years also identified distinct patterns of pathway modification dependent on the degree of effectiveness of the therapeutic response. Up-regulation of Wnt-pathway and vesicular proteins were characteristic of urinary exosomes from ADPKD patients with good responses to Tolvaptan while upregulation of angiogenesis pathways and additional molecular forms of vasopressin receptor AVPR2 were characteristic in urinary exosomes of ADPKD patients with poor responses. Taken together, these studies conclude that proteomic profiling of urinary exosome biomarkers provides a specific, sensitive and practical non-invasive method to identify and monitor the rate of disease progression and the effects of Tolvaptan therapy in individual ADPKD patients. This provides a means to identify those patients most likely to benefit maximally from therapy and to progress towards a personalization of ADPKD prognosis and management.
Collapse
Affiliation(s)
| | | | | | | | - Patricia D. Wilson
- Corresponding author at: University College London, Department of Renal Medicine, 2 Floor, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
233
|
Pu X, Ma S, Gao Y, Xu T, Chang P, Dong L. Mesenchymal Stem Cell-Derived Exosomes: Biological Function and Their Therapeutic Potential in Radiation Damage. Cells 2020; 10:cells10010042. [PMID: 33396665 PMCID: PMC7823972 DOI: 10.3390/cells10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.
Collapse
Affiliation(s)
- Xiaoyu Pu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Siyang Ma
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Yan Gao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Tiankai Xu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Pengyu Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- National Health Commission Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| |
Collapse
|
234
|
Chakravarti AR, Pacelli S, Paul A. Investigation of human adipose stem cell-derived nanoparticles as a biomimetic carrier for intracellular drug delivery. NANOSCALE 2020; 12:24273-24284. [PMID: 33295935 DOI: 10.1039/d0nr06571d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prevailing drug delivery strategies rely on the use of synthetic nanocarriers like metal nanoparticles and polymeric liposomes to control the release of therapeutics in a safe and efficacious manner. Despite their high efficiency in encapsulating drugs, these systems exhibit low to moderate biocompatibility, low cellular uptake, and sub-optimal targeting capabilities. Conversely, cell-derived nanoparticles (CDNs) have emerged as a promising alternative to these artificial drug delivery carriers for achieving safer clinical outcomes. In this study, we have generated CDNs from human adipose-derived stem cells (hASCs) using a high-yield fabrication strategy. Briefly, hASCs were subjected to a cell-shearing approach that entails passing the cells through an array of filters, along with serial centrifugations to eliminate intracellular contents. Ultimately, the fragmented parent cell membrane self-assembles to form the CDNs. This strategy successfully converted 80% of the plasma membrane into the novel nanocarriers with an average hydrodynamic diameter of 100 nm. Stability analysis confirmed that the formulated nanocarriers are stable for over 3 weeks, making them a potent candidate for long-term therapies. To demonstrate their potential in drug delivery, we encapsulated trehalose, a cell-impermeable sugar molecule, into the CDNs via an extrusion loading technique. Drug-loaded CDNs were effectively internalized into human umbilical vein endothelial cells (HUVECs) and hASCs, without inducing any significant cytotoxicity. Overall, the findings of this study establish the potential of hASC-derived CDNs as customizable biomimetic nanocarriers for drug delivery and other translational medicine applications.
Collapse
Affiliation(s)
- Aparna R Chakravarti
- Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
235
|
Bobrowicz M, Kubacz M, Slusarczyk A, Winiarska M. CD37 in B Cell Derived Tumors-More than Just a Docking Point for Monoclonal Antibodies. Int J Mol Sci 2020; 21:ijms21249531. [PMID: 33333768 PMCID: PMC7765243 DOI: 10.3390/ijms21249531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
CD37 is a tetraspanin expressed prominently on the surface of B cells. It is an attractive molecular target exploited in the immunotherapy of B cell-derived lymphomas and leukemia. Currently, several monoclonal antibodies targeting CD37 as well as chimeric antigen receptor-based immunotherapies are being developed and investigated in clinical trials. Given the unique role of CD37 in the biology of B cells, it seems that CD37 constitutes more than a docking point for monoclonal antibodies, and targeting this molecule may provide additional benefit to relapsed or refractory patients. In this review, we aimed to provide an extensive overview of the function of CD37 in B cell malignancies, providing a comprehensive view of recent therapeutic advances targeting CD37 and delineating future perspectives.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Tetraspanins/immunology
- Tetraspanins/metabolism
Collapse
|
236
|
Gao Y, Raj JU. Extracellular Vesicles as Unique Signaling Messengers: Role in Lung Diseases. Compr Physiol 2020; 11:1351-1369. [PMID: 33294981 DOI: 10.1002/cphy.c200006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed extracellular particles carrying rich cargo such as proteins, lipids, and microRNAs with distinct characteristics of their parental cells. EVs are emerging as an important form of cellular communication with the ability to selectively deliver a kit of directional instructions to nearby or distant cells to modulate their functions and phenotypes. According to their biogenesis, EVs can be divided into two groups: those of endocytic origin are called exosomes and those derived from outward budding of the plasma membrane are called microvesicles (also known as ectosomes or microparticles). Under physiological conditions, EVs are actively involved in maintenance of pulmonary hemostasis. However, EVs can contribute to the pathogenesis of diseases such as chronic obstructive pulmonary disease, asthma, acute lung injury/acute respiratory distress syndrome, interstitial lung disease, and pulmonary arterial hypertension. EVs, especially those derived from mesenchymal/stromal stem cells, can also be beneficial and can curb the development of lung diseases. Novel technologies are continuously being developed to minimize the undesirable effects of EVs and also to engineer EVs so that they may have beneficial effects and can be used as therapeutic agents in lung diseases. © 2021 American Physiological Society. Compr Physiol 11:1351-1369, 2021.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - J Usha Raj
- Department of Pediatrics, College of Medicine at Chicago, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
237
|
Pashova A, Work LM, Nicklin SA. The role of extracellular vesicles in neointima formation post vascular injury. Cell Signal 2020; 76:109783. [PMID: 32956789 DOI: 10.1016/j.cellsig.2020.109783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Pathological neointimal growth can develop in patients as a result of vascular injury following percutaneous coronary intervention and coronary artery bypass grafting using autologous saphenous vein, leading to arterial or vein graft occlusion. Neointima formation driven by intimal hyperplasia occurs as a result of a complex interplay between molecular and cellular processes involving different cell types including endothelial cells, vascular smooth muscle cells and various inflammatory cells. Therefore, understanding the intercellular communication mechanisms underlying this process remains of fundamental importance in order to develop therapeutic strategies to preserve endothelial integrity and vascular health post coronary interventions. Extracellular vesicles (EVs), including microvesicles and exosomes, are membrane-bound particles secreted by cells which mediate intercellular signalling in physiological and pathophysiological states, however their role in neointima formation is not fully understood. The purification and characterization techniques currently used in the field are associated with many limitations which significantly hinder the ability to comprehensively study the role of specific EV types and make direct functional comparisons between EV subpopulations. In this review, the current knowledge focusing on EV signalling in neointima formation post vascular injury is discussed.
Collapse
Affiliation(s)
- A Pashova
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - L M Work
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - S A Nicklin
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
238
|
Jena BC, Mandal M. The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: An insight towards tumor-microenvironment interaction. Biochim Biophys Acta Rev Cancer 2020; 1875:188488. [PMID: 33271308 DOI: 10.1016/j.bbcan.2020.188488] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment (TME) is a complex network of cellular organization consisting of fibroblasts, adipocytes, pericytes, immune cells endothelial cells, and extracellular matrix proteins. Besides communicating with each other, tumor cells are also involved in the tumor stroma interaction. Presently, most of the studies have focused on the contribution of TME in supporting tumor growth through intercellular communication by physical contact between the cells or through paracrine signaling cascades of growth factors and cytokines. The crosstalk between the tumor and TME has a pivotal role in the development of anti-cancer drug resistance. Drug resistance, be it against targeted or non-targeted drugs, has emerged as a major hurdle in the successful therapeutic intervention of cancer. Among the several mechanisms involved in the development of the resistance to anti-cancer therapies, exosomes have recently come into the limelight. Exosomes are the nano-sized vesicles, originated from the endolysosomal compartments and have the inherent potential to shuttle diverse biomolecules like proteins, lipids, and nucleic acids to the recipient cells. There are also instances where the pharmacological compounds are transferred between the cells via exosomes. For instance, the transfer of the cargoes from the drug-resistant tumor cells immensely affects the recipient drug-sensitive cells in terms of their proliferation, survival, migration, and drug resistance. In this review, we have discussed multiple aspects of the exosome-mediated bidirectional interplay between tumor and TME. Furthermore, we have also emphasized the contribution of exosomes promoting drug resistance and therapeutic strategies to mitigate the exosome induced drug resistance as well.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
239
|
Haas-Neill S, Forsythe P. A Budding Relationship: Bacterial Extracellular Vesicles in the Microbiota-Gut-Brain Axis. Int J Mol Sci 2020; 21:ijms21238899. [PMID: 33255332 PMCID: PMC7727686 DOI: 10.3390/ijms21238899] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of the microbiota-gut-brain axis has revolutionized our understanding of systemic influences on brain function and may lead to novel therapeutic approaches to neurodevelopmental and mood disorders. A parallel revolution has occurred in the field of intercellular communication, with the realization that endosomes, and other extracellular vesicles, rival the endocrine system as regulators of distant tissues. These two paradigms shifting developments come together in recent observations that bacterial membrane vesicles contribute to inter-kingdom signaling and may be an integral component of gut microbe communication with the brain. In this short review we address the current understanding of the biogenesis of bacterial membrane vesicles and the roles they play in the survival of microbes and in intra and inter-kingdom communication. We identify recent observations indicating that bacterial membrane vesicles, particularly those derived from probiotic organisms, regulate brain function. We discuss mechanisms by which bacterial membrane vesicles may influence the brain including interaction with the peripheral nervous system, and modulation of immune activity. We also review evidence suggesting that, unlike the parent organism, gut bacteria derived membrane vesicles are able to deliver cargo, including neurotransmitters, directly to the central nervous system and may thus constitute key components of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Sandor Haas-Neill
- McMaster Brain-Body Institute, The Research Institute of St. Joseph’s Hamilton, Hamilton, ON L8N 4A6, Canada;
| | - Paul Forsythe
- McMaster Brain-Body Institute, The Research Institute of St. Joseph’s Hamilton, Hamilton, ON L8N 4A6, Canada;
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare and Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada
- Correspondence: ; Tel.: +01-905-522-1155 (ext. 35890)
| |
Collapse
|
240
|
Extracellular MicroRNAs as Intercellular Mediators and Noninvasive Biomarkers of Cancer. Cancers (Basel) 2020; 12:cancers12113455. [PMID: 33233600 PMCID: PMC7699762 DOI: 10.3390/cancers12113455] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary There are an extensive number of publications regarding the role of endogenous miRNAs as regulators of gene expression in cancer. However, extracellular miRNAs have emerged as a novel mechanism of cell-to-cell communication in normal conditions and disease and have drawn a large amount of interest as regulators of gene expression and as potential non-invasive biomarkers in cancer. Despite this high interest and the abundance of research on the biology and role of extracellular miRNAs in cancer, they are not yet completely understood. The aim of this review is to highlight the relevant biological characteristics of extracellular miRNAs that enable them to function as intercellular mediators of gene expression regulation and provide the recently published evidence of the specific role of extracellular miRNAs in tumor development and progression. Abstract MicroRNAs (miRNAs) are released by different types of cells through highly regulated mechanisms under normal and pathological conditions. These extracellular miRNAs can be delivered into recipient cells for functional purposes, acting as cell-to-cell signaling mediators. It has been discovered that cancer cells release miRNAs into their surroundings, targeting normal cells or other cancer cells, presumably to promote tumor development and progression. These extracellular miRNAs are associated with oncogenic mechanisms and, because they can be quantified in blood and other bodily fluids, may be suitable noninvasive biomarkers for cancer detection. This review summarizes recent evidence of the role of extracellular miRNAs as intercellular mediators, with an emphasis on their role in the mechanisms of tumor development and progression and their potential value as biomarkers in solid tumors. It also highlights the biological characteristics of extracellular miRNAs that enable them to function as regulators of gene expression, such as biogenesis, gene silencing mechanisms, subcellular compartmentalization, and the functions and mechanisms of release.
Collapse
|
241
|
Karimzadeh MR, Seyedtaghia MR, Soudyab M, Nezamnia M, Kidde J, Sahebkar A. Exosomal Long Noncoding RNAs: Insights into Emerging Diagnostic and Therapeutic Applications in Lung Cancer. JOURNAL OF ONCOLOGY 2020; 2020:7630197. [PMID: 33224198 PMCID: PMC7671817 DOI: 10.1155/2020/7630197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. Annually, millions of people die from lung cancer because of late detection and ineffective therapies. Recently, exosomes have been introduced as new therapeutic players with the potential to improve upon current diagnostic and treatment options. Exosomes are small membranous vesicles produced during endosomal merging. This allows for cell packaging of nucleic acids, proteins, and lipids and transfer to adjacent or distant cells. While exosomes are a part of normal intercellular signaling, they also allow malignant cells to transfer oncogenic material leading to tumor spread and metastasis. Exosomes are an interesting field of discovery for biomarkers and therapeutic targets. Among exosomal materials, lncRNAs have priority; lncRNAs are a class of noncoding RNAs longer than 200 base pairs. In the case of cancer, primary interest regards their oncogene and tumor suppressor functions. In this review, the advantages of exosomal lncRNAs as biomarkers and therapeutic targets will be discussed in addition to reviewing studies of their application in lung cancer.
Collapse
Affiliation(s)
- Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Reza Seyedtaghia
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soudyab
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Jason Kidde
- Department of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
242
|
de Abreu RC, Fernandes H, da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol 2020; 17:685-697. [PMID: 32483304 PMCID: PMC7874903 DOI: 10.1038/s41569-020-0389-5] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of natural particles that are relevant to the treatment of cardiovascular diseases. These endogenous vesicles have certain properties that allow them to survive in the extracellular space, bypass biological barriers and deliver their biologically active molecular cargo to recipient cells. Moreover, EVs can be bioengineered to increase their stability, bioactivity, presentation to acceptor cells and capacity for on-target binding at both cell-type-specific and tissue-specific levels. Bioengineering of EVs involves the modification of the donor cell before EV isolation or direct modification of the EV properties after isolation. The therapeutic potential of native EVs and bioengineered EVs has been only minimally explored in the context of cardiovascular diseases. Efforts to harness the therapeutic potential of EVs will require innovative approaches and a comprehensive integration of knowledge gathered from decades of research into molecular-compound delivery. In this Review, we outline the endogenous properties of EVs that make them natural delivery agents as well as the features that can be improved by bioengineering. We also discuss the therapeutic applications of native and bioengineered EVs to cardiovascular diseases and examine the opportunities and challenges that need to be addressed to advance this research area, with an emphasis on clinical translation.
Collapse
Affiliation(s)
- Ricardo Cerqueira de Abreu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, Netherlands.,CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hugo Fernandes
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, Netherlands
| | - Susmita Sahoo
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Lino Ferreira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
243
|
Vu LT, Gong J, Pham TT, Kim Y, Le MTN. microRNA exchange via extracellular vesicles in cancer. Cell Prolif 2020; 53:e12877. [PMID: 33169503 PMCID: PMC7653238 DOI: 10.1111/cpr.12877] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Cells utilize different means of inter-cellular communication to function properly. Here, we review the crosstalk between cancer cells and their surrounding environment through microRNA (miRNA)-containing extracellular vesicles (EVs). The current findings suggest that the export of miRNAs and uptake of miRNA-containing EVs might be an active process. As post-transcriptional regulators of gene expression, cancer-derived miRNAs that are taken up by normal cells can change the translational profile of the recipient cell towards a transformed proteome. Stromal cells can also deliver miRNAs via EVs to cancer cells to support tumour growth and cancer progression. Therefore, gaining a better understanding of EV-mediated inter-cellular communication in the tumour microenvironment might lead to the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Luyen Tien Vu
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Jinhua Gong
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Thach Tuan Pham
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Yeokyeong Kim
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Minh T. N. Le
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
244
|
Zinger A, Brozovich A, Pasto A, Sushnitha M, Martinez JO, Evangelopoulos M, Boada C, Tasciotti E, Taraballi F. Bioinspired Extracellular Vesicles: Lessons Learned From Nature for Biomedicine and Bioengineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2172. [PMID: 33143238 PMCID: PMC7693812 DOI: 10.3390/nano10112172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Efficient communication is essential in all layers of the biological chain. Cells exchange information using a variety of signaling moieties, such as small molecules, proteins, and nucleic acids. Cells carefully package these messages into lipid complexes, collectively named extracellular vesicles (EVs). In this work, we discuss the nature of these cell carriers, categorize them by their origin, explore their role in the homeostasis of healthy tissues, and examine how they regulate the pathophysiology of several diseases. This review will also address the limitations of using EVs for clinical applications and discuss novel methods to engineer nanoparticles to mimic the structure, function, and features of EVs. Using lessons learned from nature and understanding how cells use EVs to communicate across distant sites, we can develop a better understanding of how to tailor the fundamental features of drug delivery carriers to encapsulate various cargos and target specific sites for biomedicine and bioengineering.
Collapse
Affiliation(s)
- Assaf Zinger
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Texas A&M College of Medicine, Bryan, TX 77807, USA
| | - Anna Pasto
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Italy
| | - Manuela Sushnitha
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jonathan O. Martinez
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Michael Evangelopoulos
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Christian Boada
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Biotechnology Program, San Raffaele University, Via di Val Cannuta, 247, 00166 Roma RM, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
245
|
Exploiting the Natural Properties of Extracellular Vesicles in Targeted Delivery towards Specific Cells and Tissues. Pharmaceutics 2020; 12:pharmaceutics12111022. [PMID: 33114492 PMCID: PMC7692617 DOI: 10.3390/pharmaceutics12111022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication that participate in many physiological/pathological processes. As such, EVs have unique properties related to their origin, which can be exploited for drug delivery applications in cell regeneration, immunosuppression, inflammation, cancer treatment or cardioprotection. Moreover, their cell-like membrane organization facilitates uptake and accumulation in specific tissues and organs, which can be exploited to improve selectivity of cargo delivery. The combination of these properties with the inclusion of drugs or imaging agents can significantly improve therapeutic efficacy and selectivity, reduce the undesirable side effects of drugs or permit earlier diagnosis of diseases. In this review, we will describe the natural properties of EVs isolated from different cell sources and discuss strategies that can be applied to increase the efficacy of targeting drugs or other contents to specific locations. The potential risks associated with the use of EVs will also be addressed.
Collapse
|
246
|
Sancho-Albero M, Sebastián V, Sesé J, Pazo-Cid R, Mendoza G, Arruebo M, Martín-Duque P, Santamaría J. Isolation of exosomes from whole blood by a new microfluidic device: proof of concept application in the diagnosis and monitoring of pancreatic cancer. J Nanobiotechnology 2020; 18:150. [PMID: 33092584 PMCID: PMC7579907 DOI: 10.1186/s12951-020-00701-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exosomes are endocytic-extracellular vesicles with a diameter around 100 nm that play an essential role on the communication between cells. In fact, they have been proposed as candidates for the diagnosis and the monitoring of different pathologies (such as Parkinson, Alzheimer, diabetes, cardiac damage, infection diseases or cancer). RESULTS In this study, magnetic nanoparticles (Fe3O4NPs) were successfully functionalized with an exosome-binding antibody (anti-CD9) to mediate the magnetic capture in a microdevice. This was carried out under flow in a 1.6 mm (outer diameter) microchannel whose wall was in contact with a set of NdFeB permanent magnets, giving a high magnetic field across the channel diameter that allowed exosome separation with a high yield. To show the usefulness of the method, the direct capture of exosomes from whole blood of patients with pancreatic cancer (PC) was performed, as a proof of concept. The captured exosomes were then subjected to analysis of CA19-9, a protein often used to monitor PC patients. CONCLUSIONS Here, we describe a new microfluidic device and the procedure for the isolation of exosomes from whole blood, without any need of previous isolation steps, thereby facilitating translation to the clinic. The results show that, for the cases analyzed, the evaluation of CA19-9 in exosomes was highly sensitive, compared to serum samples.
Collapse
Affiliation(s)
- María Sancho-Albero
- Department of Chemical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Víctor Sebastián
- Department of Chemical Engineering, University of Zaragoza, 50018, Zaragoza, Spain.
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain.
| | - Javier Sesé
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Department of Condensed Matter Physics, University of Zaragoza, 50009, Zaragoza, Spain
| | - Roberto Pazo-Cid
- Medical Oncology Service, Miguel Servet Hospital, 50009, Zaragoza, Spain
| | - Gracia Mendoza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009, Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Pilar Martín-Duque
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain.
- Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009, Zaragoza, Spain.
- Health Sciences Institute of Aragón (IACS), 50009, Zaragoza, Spain.
- Fundación Araid, 50018, Zaragoza, Spain.
- Universidad San Jorge, 50830, Zaragoza, Spain.
| | - Jesús Santamaría
- Department of Chemical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| |
Collapse
|
247
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
248
|
Arasi MB, Pedini F, Valentini S, Felli N, Felicetti F. Advances in Natural or Synthetic Nanoparticles for Metastatic Melanoma Therapy and Diagnosis. Cancers (Basel) 2020; 12:cancers12102893. [PMID: 33050185 PMCID: PMC7601614 DOI: 10.3390/cancers12102893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Advanced melanoma is still a major challenge in oncology. In the early stages, melanoma can be treated successfully with surgery and the survival rate is high, nevertheless the survival rate drops drastically after metastasis dissemination. The identification of parameters predictive of the prognosis to support clinical decisions and of new efficacious therapies are important to ensure patients the best possible prognosis. Recent progress in nanotechnology allowed the development of nanoparticles able to protect drugs from degradation and to deliver the drug to the tumor. Modification of the nanoparticle surface by specific molecules improves retention and accumulation in the target tissue. In this review, we describe the potential role of nanoparticles in advanced melanoma treatment and discuss the current efforts of designing polymeric nanoparticles for controlled drug release at the site upon injection. In addition, we highlight the advances as well as the challenges of exosome-based nanocarriers as drug vehicles. We place special focus on the advantages of these natural nanocarriers in delivering various cargoes in advanced melanoma treatment. We also describe the current advances in knowledge of melanoma-related exosomes, including their biogenesis, molecular contents and biological functions, focusing our attention on their utilization for early diagnosis and prognosis in melanoma disease.
Collapse
|
249
|
Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020; 21:E7362. [PMID: 33028045 PMCID: PMC7582630 DOI: 10.3390/ijms21197362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas technologies have advanced dramatically in recent years. Many different systems with new properties have been characterized and a plethora of hybrid CRISPR/Cas systems able to modify the epigenome, regulate transcription, and correct mutations in DNA and RNA have been devised. However, practical application of CRISPR/Cas systems is severely limited by the lack of effective delivery tools. In this review, recent advances in developing vehicles for the delivery of CRISPR/Cas in the form of ribonucleoprotein complexes are outlined. Most importantly, we emphasize the use of extracellular vesicles (EVs) for CRISPR/Cas delivery and describe their unique properties: biocompatibility, safety, capacity for rational design, and ability to cross biological barriers. Available molecular tools that enable loading of desired protein and/or RNA cargo into the vesicles in a controllable manner and shape the surface of EVs for targeted delivery into specific tissues (e.g., using targeting ligands, peptides, or nanobodies) are discussed. Opportunities for both endogenous (intracellular production of CRISPR/Cas) and exogenous (post-production) loading of EVs are presented.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Valery Smirnov
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Alexander Lukashev
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| |
Collapse
|
250
|
Umbaugh DS, Jaeschke H. Extracellular vesicles: Roles and applications in drug-induced liver injury. Adv Clin Chem 2020; 102:63-125. [PMID: 34044913 DOI: 10.1016/bs.acc.2020.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EV) are defined as nanosized particles, with a lipid bilayer, that are unable to replicate. There has been an exponential increase of research investigating these particles in a wide array of diseases and deleterious states (inflammation, oxidative stress, drug-induced liver injury) in large part due to increasing recognition of the functional capacity of EVs. Cells can package lipids, proteins, miRNAs, DNA, and RNA into EVs and send these discrete packages of molecular information to distant, recipient cells to alter the physiological state of that cell. EVs are innately heterogeneous as a result of the diverse molecular pathways that are used to generate them. However, this innate heterogeneity of EVs is amplified due to the diversity in isolation techniques and lack of standardized nomenclature in the literature making it unclear if one scientist's "exosome" is another scientist's "microvesicle." One goal of this chapter is to provide the contextual understanding of EV origin so one can discern between divergent nomenclature. Further, the chapter will explore the potential protective and harmful roles that EVs play in DILI, and the potential of EVs and their cargo as a biomarker. The use of EVs as a therapeutic as well as a vector for therapeutic delivery will be discussed.
Collapse
Affiliation(s)
- David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|