201
|
Wang R, Cui W, Yang H. The interplay between innate lymphoid cells and microbiota. mBio 2023; 14:e0039923. [PMID: 37318214 PMCID: PMC10470585 DOI: 10.1128/mbio.00399-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 06/16/2023] Open
Abstract
Innate lymphoid cells (ILCs) are mainly resident in mucosal tissues such as gastrointestinal tract and respiratory tract, so they are closely linked to the microbiota. ILCs can protect commensals to maintain homeostasis and increase resistance to pathogens. Moreover, ILCs also play an early role in defense against a variety of pathogenic microorganisms including pathogenic bacteria, viruses, fungi and parasites, before the intervention of adaptive immune system. Due to the lack of adaptive antigen receptors expressed on T cells and B cells, ILCs need to use other means to sense the signals of microbiota and play a role in corresponding regulation. In this review, we focus on and summarize three major mechanisms used in the interaction between ILCs and microbiota: the mediation of accessory cells represented by dendritic cells; the metabolic pathways of microbiota or diet; the participation of adaptive immune cells.
Collapse
Affiliation(s)
- Rui Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wenwen Cui
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
202
|
Zhang W, Jia T, Zhang H, Zhu W. Effects of high-fiber food on gut microbiology and energy metabolism in Eothenomys miletus at different altitudes. Front Microbiol 2023; 14:1264109. [PMID: 37727288 PMCID: PMC10505965 DOI: 10.3389/fmicb.2023.1264109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Intestinal microorganisms assist the host in digesting complex and difficultly decomposed foods; expand the host's dietary ecological niche. In order to investigate the effect of high-fiber food on intestinal microorganisms of Eothenomys miletus at different altitudes, exploring the regional differences of intestinal microorganisms and their roles in body mass regulation, we collected E. miletus from Dali (DL) and Xianggelila (XGLL), which were divided into control group, high-fiber group fed with high-fiber diet for 7 days, and refeeding group fed with standard diet for 14 days after high-fiber diet. Using 16S rRNA gene sequencing technology combined with physiological methods, we analyzed the gut microbial diversity, abundance, community structure and related physiological indicators of each group, and explored the effects of high-fiber foods and regions on the diversity, structure of gut microorganisms and physiological indicators. The results showed that high-fiber food affected the food intake and metabolic rate of E. miletus, which also showed regional differences. The intestinal microorganisms of E. miletus obtained energy through the enrichment of fiber degrading bacteria under the condition of high-fiber food, while producing short-chain fatty acids, which participated in processes such as energy metabolism or immune regulation. Moreover, it also affected the colonization of intestinal microorganisms. High-fiber food promoted the enrichment of probiotics in the intestinal microbiota of E. miletus, but pathogenic bacteria also appeared. Therefore, the changes in the composition and diversity of gut microbiota in E. miletus provided important guarantees for their adaptation to high fiber food environments in winter.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Hao Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
203
|
Guan X, Xue Q, Ma H, Li G, Xu X, Zhang K, Tang M, Liu R, Wang D, Shen X. Usefulness of Self-Assessment of Gastrointestinal Symptoms: Web-Based Study in Anhui, China. JMIR Form Res 2023; 7:e42101. [PMID: 37583117 PMCID: PMC10500358 DOI: 10.2196/42101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/04/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Gastrointestinal symptoms (GISs) are caused by a combination of biopsychosocial factors and are highly prevalent worldwide. Given their complex nature, coupled with ineffective communication of diagnoses by physicians, patients with intimate GISs often feel stigmatized. This, in turn, can inhibit their ability to express their thoughts and feelings adequately, leading them to over- or underreport their symptoms. Moreover, selective service-seeking for and reporting of GISs have a direct bearing on the stage of disease at presentation and, consequently, on the overall prognosis. OBJECTIVE This study aimed to investigate the usefulness of a web-based self-assessment of GISs as a supplementary means to cope with potential over- or underreporting during routine consultations. METHODS GIS data were collected using a novel web-based self-assessment tool (n=475) and from nonparticipative observation of doctor-patient consultations (n=447) and household surveys (n=10,552) in Anhui, China. Data analysis focused primarily on the description of the composition of respondents and the occurrence rates of GISs by sociodemographics, and by symptom solicitation methods and settings. Chi-square power tests were used when necessary to compare differences in the occurrence rates between relevant groups. The level of significance for the 2-sided test was set at α<.05. RESULTS The average occurrence rates of both upper and lower GISs derived from the web-based self-assessment were higher than those from the observation (upper GISs: n=661, 20.9% vs n=382, 14.2%; P<.001; lower GISs: n=342, 12.9% vs n=250, 10.8%; P=.02). The differences in 6 of the 9 upper GISs and 3 of the 11 lower GISs studied were tested with statistical significance (P<.05); moreover, a higher frequency rate was recorded for symptoms with statistical significance via self-assessment than via observation. For upper GISs, the self-assessed versus observed differences ranged from 17.1% for bloating to 100% for bad mood after a meal, while for lower GISs, the differences ranged from -50.5% for hematochezia or melena to 100% for uncontrollable stool. Stomachache, regurgitation, and dysphagia had higher occurrence rates among participants of the self-assessment group than those of the household survey group (20% vs 12.7%, 14% vs 11%, and 3% vs 2.3%, respectively), while the opposite was observed for constipation (5% vs 10.9%), hematochezia or melena (4% vs 5%), and anorexia (4% vs 5.2%). All differences noted in the self-assessed occurrence rates of specific, persistent GISs between sociodemographic groups were tested for nonsignificance (P>.05), while the occurrence rates of any of the 6 persistent GISs among respondents aged 51-60 years was statistically higher than that among other age groups (P=.03). CONCLUSIONS The web-based self-assessment tool piloted in this study is useful and acceptable for soliciting more comprehensive GISs, especially symptoms with concerns about stigmatization, privacy, and shame. Further studies are needed to integrate the web-based self-assessment with routine consultations and to evaluate its efficacy.
Collapse
Affiliation(s)
- Xiaoqin Guan
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
| | - Qun Xue
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
| | - Huan Ma
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
| | - Guocheng Li
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
| | - Xiuze Xu
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
| | - Kexin Zhang
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
| | - Mengsha Tang
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
| | - Rong Liu
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
- Center for Operational Health Service Research, Anhui Medical University, Hefei, Anhui, China
| | - Debin Wang
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
- Center for Operational Health Service Research, Anhui Medical University, Hefei, Anhui, China
| | - Xingrong Shen
- School of Health Service Management, Anhui Medical University, Hefei, Anhui, China
- Center for Operational Health Service Research, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
204
|
Maddern AS, Coller JK, Bowen JM, Gibson RJ. The Association between the Gut Microbiome and Development and Progression of Cancer Treatment Adverse Effects. Cancers (Basel) 2023; 15:4301. [PMID: 37686576 PMCID: PMC10487104 DOI: 10.3390/cancers15174301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Adverse effects are a common consequence of cytotoxic cancer treatments. Over the last two decades there have been significant advances in exploring the relationship between the gut microbiome and these adverse effects. Changes in the gut microbiome were shown in multiple clinical studies to be associated with the development of acute gastrointestinal adverse effects, including diarrhoea and mucositis. However, more recent studies showed that changes in the gut microbiome may also be associated with the long-term development of psychoneurological changes, cancer cachexia, and fatigue. Therefore, the aim of this review was to examine the literature to identify potential contributions and associations of the gut microbiome with the wide range of adverse effects from cytotoxic cancer treatments.
Collapse
Affiliation(s)
- Amanda S. Maddern
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Janet K. Coller
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Joanne M. Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Rachel J. Gibson
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
205
|
Shibata M, Ozato N, Tsuda H, Mori K, Kinoshita K, Katashima M, Katsuragi Y, Nakaji S, Maeda H. Mouse Model of Anti-Obesity Effects of Blautia hansenii on Diet-Induced Obesity. Curr Issues Mol Biol 2023; 45:7147-7160. [PMID: 37754236 PMCID: PMC10528399 DOI: 10.3390/cimb45090452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Reportedly, a relationship exists between intestinal microflora and obesity-related lifestyle diseases. Blautia spp. a major intestinal microbiota, accounts for 3-11% of human intestinal microflora. Epidemiological reports have described that people with more visceral fat have less Blautia hansenii in their intestinal tract irrespective of age or gender. However, the effect of oral administration of heat-sterilized Blautia hansenii on obesity has not been clarified. Therefore, the aim of this study was to evaluate the effects of dietary Blautia hansenii administration on obesity in high-fat-diet-induced obesity in a mouse model. Heat-sterilized cells of Blautia hansenii were used. C57BL/6J mice (normal mice, n = 7) were fed with each experimental diet for nine weeks. Diets for experimentation were: normal-fat (NF) diets, high-fat (HF) diets, and high-fat + Blautia hansenii (HF + Blautia) diets. The HF + Blautia group was administered about 1 × 109 (CFU/mouse/day) of Blautia hansenii. During the periods of experimentation, body weight, food intake, water consumption, and fecal weight were recorded, and glucose tolerance tests were performed. Subsequently, the white adipose tissue (WAT) weight and serum components were measured. Short-chain fatty acid contents in the feces and cecum were analyzed. Furthermore, changes in the intestinal microflora were analyzed using meta-genomics analysis. Results showed that the total weight of WAT in the HF + Blautia group was significantly lower (13.2%) than that of the HF group. Moreover, the HF + Blautia group exhibited better glucose tolerance than the HF group. Productivity of short-chain fatty acids in the intestinal tract was at a significantly (p < 0.05) low level in the HF group; on the other hand, it recovered in the HF + Blautia group. Furthermore, there was a higher ratio of Blautia (p < 0.05) in the intestinal tracts of the HF + Blautia group than in the HF group. These results suggest that Blautia hansenii administration suppresses obesity induced by a high-fat diet.
Collapse
Affiliation(s)
- Masaki Shibata
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan; (M.S.); (H.T.)
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18 Ueda, Morioka 020-0066, Japan
| | - Naoki Ozato
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Harutoshi Tsuda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan; (M.S.); (H.T.)
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18 Ueda, Morioka 020-0066, Japan
| | - Kenta Mori
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Keita Kinoshita
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Mitsuhiro Katashima
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Yoshihisa Katsuragi
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Shigeyuki Nakaji
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan; (M.S.); (H.T.)
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18 Ueda, Morioka 020-0066, Japan
- Institute of Regional Innovation, Hirosaki University, 2-1-1 Yanagawa, Aomori 038-0012, Japan
| |
Collapse
|
206
|
Wen X, Xie R, Wang HG, Zhang MN, He L, Zhang MH, Yang XZ. Fecal microbiota transplantation alleviates experimental colitis through the Toll-like receptor 4 signaling pathway. World J Gastroenterol 2023; 29:4657-4670. [PMID: 37662857 PMCID: PMC10472902 DOI: 10.3748/wjg.v29.i30.4657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has shown promising therapeutic effects on mice with experimental colitis and patients with ulcerative colitis (UC). FMT modulates the Toll-like receptor 4 (TLR4) signaling pathway to treat some other diseases. However, it remains unknown whether this modulation is also involved in the treatment of UC. AIM To clarify the necessity of TLR4 signaling pathway in FMT on dextran sodium sulphate (DSS)-induced mice and explain the mechanism of FMT on UC, through association analysis of gut microbiota with colon transcriptome in mice. METHODS A mouse colitis model was constructed with wild-type (WT) and TLR4-knockout (KO) mice. Fecal microbiota was transplanted by gavage. Colon inflammation severity was measured by disease activity index (DAI) scoring and hematoxylin and eosin staining. Gut microbiota structure was analyzed through 16S ribosomal RNA sequencing. Gene expression in the mouse colon was obtained by transcriptome sequencing. RESULTS The KO (DSS + Water) and KO (DSS + FMT) groups displayed indistinguishable body weight loss, colon length, DAI score, and histology score, which showed that FMT could not inhibit the disease in KO mice. In mice treated with FMT, the relative abundance of Akkermansia decreased, and Lactobacillus became dominant. In particular, compared with those in WT mice, the scores of DAI and colon histology were clearly decreased in the KO-DSS group. Microbiota structure showed a significant difference between KO and WT mice. Akkermansia were the dominant genus in healthy KO mice. The ineffectiveness of FMT in KO mice was related to the decreased abundance of Akkermansia. Gene Ontology enrichment analysis showed that differentially expressed genes between each group were mainly involved in cytoplasmic translation and cellular response to DNA damage stimulus. The top nine genes correlating with Akkermansia included Aqp4, Clca4a, Dpm3, Fau, Mcrip1, Meis3, Nupr1 L, Pank3, and Rps13 (|R| > 0.9, P < 0.01). CONCLUSION FMT may ameliorate DSS-induced colitis by regulating the TLR4 signaling pathway. TLR4 modulates the composition of gut microbiota and the expression of related genes to ameliorate colitis and maintain the stability of the intestinal environment. Akkermansia bear great therapeutic potential for colitis.
Collapse
Affiliation(s)
- Xin Wen
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Rui Xie
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Hong-Gang Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Min-Na Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Le He
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Meng-Hui Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Xiao-Zhong Yang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| |
Collapse
|
207
|
Xu W, Sun T, Du J, Jin S, Zhang Y, Bai G, Li W, Yin D. Structure and ecological function of the soil microbiome associated with 'Sanghuang' mushrooms suffering from fungal diseases. BMC Microbiol 2023; 23:218. [PMID: 37573330 PMCID: PMC10422728 DOI: 10.1186/s12866-023-02965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND The most serious challenges in medicinal 'Sanghuang' mushroom production are the fungal diseases caused by various molds. Application of biological agents has been regarded as a potential crop disease management strategy. Here, the soil microbiome associated with 'Sanghuang' mushroom affected by fungal diseases grown under field cultivation (FC) and hanging cultivation (HC) was characterized using culture-dependent and culture-independent methods. RESULTS A total of 12,525 operational taxonomic units (OTUs) and 168 pure cultures were obtained using high-throughput sequencing and a culture-dependent method, respectively. From high-throughput sequencing, we found that HC samples had more OTUs, higher α-diversity, and greater microbial community complexity than FC samples. Analysis of β-diversity divided the soil microbes into two groups according to cultivation mode. Basidiomycota (48.6%) and Ascomycota (46.5%) were the two dominant fungal phyla in FC samples, with the representative genera Trichoderma (56.3%), Coprinellus (29.4%) and Discosia (4.8%), while only the phylum Ascomycota (84.5%) was predominant in HC samples, with the representative genera Discosia (34.0%), Trichoderma (30.2%), Penicillium (14.9%), and Aspergillus (7.8%). Notably, Trichoderma was predominant in both the culture-independent and culture-dependent analyses, with Trichoderma sp. FZ0005 showing high host pathogenicity. Among the 87 culturable bacteria, 15 exhibited varying extents of antifungal activity against Trichoderma sp. FZ0005, with three strains of Bacillus spp. (HX0037, HX0016, and HX0039) showing outstanding antifungal capacity. CONCLUSIONS Overall, our results suggest that Trichoderma is the major causal agent of 'Sanghuang' fungal diseases and that Bacillus strains may be used as biocontrol agents in 'Sanghuang' cultivation.
Collapse
Affiliation(s)
- Weifang Xu
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tao Sun
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiahui Du
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shuqing Jin
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ying Zhang
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guofa Bai
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wanyu Li
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
208
|
Peng P, Feng T, Yang X, Nie C, Yu L, Ding R, Zhou Q, Jiang X, Li P. Gastrointestinal Microenvironment Responsive Nanoencapsulation of Probiotics and Drugs for Synergistic Therapy of Intestinal Diseases. ACS NANO 2023; 17:14718-14730. [PMID: 37490035 DOI: 10.1021/acsnano.3c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The gut microbiota are prominent in preserving intestinal environmental homeostasis and managing human health, and their dysbiosis has been directly related to many kinds of intestinal diseases. Probiotics-based therapy appears as a promising approach for the treatment of gut microbiota dysbiosis, while it always suffers from limited bioavailability and therapeutic effect after oral administration. Herein, we presented a facile and safe strategy to treat colitis by nanoencapsulation of probiotics and an anti-inflammatory agent, 5-aminosalicylic acid (5-ASA), within the gastrointestinal microenvironment responsive alginate polysaccharide. Because of acid resistance, the alginate-based coating protected probiotics from the harsh gastric condition. The coating could be disintegrated to release probiotics and 5-ASA upon arriving in the intestinal tract, where the pH is normally higher than 5. In the dextran sulfate sodium-induced colitis mouse model, probiotics recovered their bioactivities and acted together with anti-inflammatory 5-ASA to alleviate colitis by upregulating microbiota richness and diversity, reducing expression of proinflammatory cytokines, and restoring intestinal barriers. This work demonstrated the synergistic therapy of intestinal diseases based on alginate-encapsulated probiotics and a clinical drug, which provided an extensive method to improve the therapeutic effect of oral microecologics.
Collapse
Affiliation(s)
- Pandi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Tao Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Xue Yang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Chaofan Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Rui Ding
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Qian Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Xueqing Jiang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| |
Collapse
|
209
|
Medina S, Miller M. Synthetic Colonic Mucus Enables the Development of Modular Microbiome Organoids. RESEARCH SQUARE 2023:rs.3.rs-3164407. [PMID: 37577510 PMCID: PMC10418553 DOI: 10.21203/rs.3.rs-3164407/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The human colon is home to more than a trillion microorganisms that modulate diverse gastrointestinal processes and pathophysiologies. Our understanding of how this gut ecosystem impacts human health, although evolving, is still in its nascent stages and has been slowed by the lack of accessible and scalable tools suitable to studying complex host-mucus-microbe interactions. In this work, we report a synthetic gel-like material capable of recapitulating the varied structural, mechanical, and biochemical profiles of native human colonic mucus to develop compositionally simple microbiome screening platforms with broad utility in microbiology and drug discovery. The viscous fibrillar material is realized through the templated assembly of a fluorine-rich amino acid at liquid-liquid phase separated interfaces. The fluorine-assisted mucus surrogate (FAMS) can be decorated with various mucins to serve as a habitat for microbial colonization and be integrated with human colorectal epithelial cells to generate multicellular artificial mucosae, which we refer to as a microbiome organoid. Notably, FAMS are made with inexpensive and commercially available materials, and can be generated using simple protocols and standard laboratory hardware. As a result, this platform can be broadly incorporated into various laboratory settings to advance our understanding of probiotic biology and inform in vivo approaches. If implemented into high throughput screening approaches, FAMS may represent a valuable tool in drug discovery to study compound metabolism and gut permeability, with an exemplary demonstration of this utility presented here.
Collapse
|
210
|
Devi R, Sharma E, Thakur R, Lal P, Kumar A, Altaf MA, Singh B, Tiwari RK, Lal MK, Kumar R. Non-dairy prebiotics: Conceptual relevance with nutrigenomics and mechanistic understanding of the effects on human health. Food Res Int 2023; 170:112980. [PMID: 37316060 DOI: 10.1016/j.foodres.2023.112980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
The increasing health awareness of consumers has made a shift towards vegan and non-dairy prebiotics counterparts. Non-dairy prebiotics when fortified with vegan products have interesting properties and widely found its applications in food industry. The chief vegan products that have prebiotics added include water-soluble plant-based extracts (fermented beverages, frozen desserts), cereals (bread, cookies), and fruits (juices & jelly, ready to eat fruits). The main prebiotic components utilized are inulin, oligofructose, polydextrose, fructooligosaccharides, and xylooligosaccharides. Prebiotics' formulations, type and food matrix affect food products, host health, and technological attributes. Prebiotics from non-dairy sources have a variety of physiological effects that help to prevent and treat chronic metabolic diseases. This review focuses on mechanistic insight on non-dairy prebiotics affecting human health, how nutrigenomics is related to prebiotics development, and role of gene-microbes' interactions. The review will provide industries and researchers with important information about prebiotics, mechanism of non-dairy prebiotics and microbe interaction as well as prebiotic based vegan products.
Collapse
Affiliation(s)
- Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Richa Thakur
- Division of Silviculture and Forest Management, Himalayan Forest Research Institute, Conifer Campus, Shimla, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | | | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, India.
| |
Collapse
|
211
|
Zhang H, Butoyi C, Yuan G, Jia J. Exploring the role of gut microbiota in obesity and PCOS: Current updates and future prospects. Diabetes Res Clin Pract 2023; 202:110781. [PMID: 37331521 DOI: 10.1016/j.diabres.2023.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine gynecological disorder, and the specific pathogenesis of PCOS has not been elucidated. Obesity is a current major public health problem, which is also vital to PCOS. It can exacerbate PCOS symptoms via insulin resistance and hyperandrogenemia. The treatment of PCOS patients depends on the prevailing symptoms. Lifestyle interventions and weight loss remain first-line treatments for women with PCOS. The gut microbiota, which is a current research hot spot, has a substantial influence on PCOS and is closely related to obesity. The present study aimed to elucidate the function of the gut microbiota in obesity and PCOS to provide new ideas for the treatment of PCOS.
Collapse
Affiliation(s)
- Hui Zhang
- First Clinical Medical College, Jiangsu University, Zhenjiang, Jiangsu, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Claudette Butoyi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China; School of Medicine , Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
212
|
Chen A, Zhang J, Zhang Y. Gut microbiota in heart failure and related interventions. IMETA 2023; 2:e125. [PMID: 38867928 PMCID: PMC10989798 DOI: 10.1002/imt2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2024]
Abstract
Heart failure (HF) is a sophisticated syndrome with structural or functional impairment of ventricular filling or ejection of blood, either causing symptoms and signs or being asymptomatic. HF is a major global health issue affecting about 64.3 million people worldwide. The gut microbiota refers to the complex ecosystem of microorganisms, mainly bacteria, in the gut. Studies have revealed that the gut microbiota is associated with many diseases ranging from neurodegenerative diseases to inflammatory bowel disease and cardiovascular diseases. The gut hypothesis of HF suggests that low cardiac output and systemic circulation congestion would cause insufficient intestinal perfusion, leading to ischemia and intestinal barrier dysfunction. The resulting bacterial translocation would contribute to inflammation. Recent studies have refined the hypothesis that changes of metabolites in the gut microbiota have a close relationship with HF. Thus, the gut microbiota has emerged as a potential therapeutic target for HF due to both its critical role in regulating host physiology and metabolism and its pivotal role in the development of HF. This review article aims to provide an overview of the current understanding of the gut microbiota's involvement in HF, including the introduction of the gut hypothesis of HF, its association with HF progression, the potential mechanisms involved mediated by the gut microbiota metabolites, and the impact of various interventions on the gut microbiota, including dietary interventions, probiotic therapy, fecal microbiota transplantation, antibiotics, and so on. While the gut hypothesis of HF is refined with up-to-date knowledge and the gut microbiota presents a promising target for HF therapy, further research is still needed to further understand the underlying mechanisms between gut microbiota and HF, the efficacy of these interventions, and contribute to the health of HF patients.
Collapse
Affiliation(s)
- An‐Tian Chen
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
| | - Jian Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
- Key Laboratory of Clinical Research for Cardiovascular MedicationsNational Health CommitteeBeijingChina
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
| |
Collapse
|
213
|
Talman L, Safarpour D. An Overview of Gastrointestinal Dysfunction in Parkinsonian Syndromes. Semin Neurol 2023; 43:583-597. [PMID: 37703887 DOI: 10.1055/s-0043-1771461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Gastrointestinal (GI) dysfunction is a common nonmotor symptom in Parkinson's disease (PD) as well as other parkinsonian syndromes and may precede the onset of motor symptoms by decades. Involvement of all segments of the GI tract can lead to altered responses to medications and worsened quality of life for patients. While some GI symptoms occur in isolation, others overlap. Therefore, understanding the changes in different segments of the GI tract and how they relate to altered responses to PD treatment can guide both diagnostic and pharmacological interventions. Gut microbiota plays a critical role in immune activity and modulation of the enteric and central nervous systems. Understanding this bidirectional relationship helps to elucidate the pathogenesis of neurodegeneration. This review will describe the current understanding of how GI dysfunction develops in parkinsonian syndromes, common symptoms in PD and related disorders, and available treatments.
Collapse
Affiliation(s)
- Lauren Talman
- Department of Neurology School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Delaram Safarpour
- Department of Neurology School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
214
|
Huang Y, Zhang P, Han S, He H. Lactoferrin Alleviates Inflammation and Regulates Gut Microbiota Composition in H5N1-Infected Mice. Nutrients 2023; 15:3362. [PMID: 37571299 PMCID: PMC10421285 DOI: 10.3390/nu15153362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The impact of lactoferrin, an antimicrobial peptide (AMP) with iron-binding properties, on the intestinal barrier and microflora of mice infected with highly pathogenic avian influenza A (H5N1) virus remains unclear. To investigate the effects of lactoferrin on the histopathology and intestinal microecological environment, we conducted a study using H5N1-infected mice. H5N1 infection resulted in pulmonary and intestinal damage, as well as an imbalance in gut microbiota, significantly increasing the abundance of pathogenic bacteria such as Helicobacter pylori and Campylobacter. The consumption of lactoferrin in the diet alleviated lung injury and restored the downregulation of the INAVA gene and intestinal dysfunction caused by H5N1 infection. Lactoferrin not only reduced lung and intestinal injury, but also alleviated inflammation and reversed the changes in intestinal microflora composition while increasing the abundance of beneficial bacteria. Moreover, lactoferrin rebalanced the gut microbiota and partially restored intestinal homeostasis. This study demonstrated that lactoferrin exerts its effects on the intestinal tract, leading to improvements in gut microbiota and restoration of the integrity of both the intestinal wall and lung tissue. These findings support the notion that lactoferrin may be a promising candidate for systemic treatment of influenza by locally acting on the intestine and microbiota.
Collapse
Affiliation(s)
- Yanyi Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyang Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
215
|
Li L, Liang T, Jiang T, Li Y, Yang L, Wu L, Yang J, Ding Y, Wang J, Chen M, Zhang J, Xie X, Wu Q. Gut microbiota: Candidates for a novel strategy for ameliorating sleep disorders. Crit Rev Food Sci Nutr 2023; 64:10772-10788. [PMID: 37477274 DOI: 10.1080/10408398.2023.2228409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The aim of this review was to evaluate the feasibility of treating sleep disorders using novel gut microbiota intervention strategies. Multiple factors can cause sleep disorders, including an imbalance in the gut microbiota. Studies of the microbiome-gut-brain axis have revealed bidirectional communication between the central nervous system and gut microbes, providing a more comprehensive understanding of mood and behavioral regulatory patterns. Changes in the gut microbiota and its metabolites can stimulate the endocrine, nervous, and immune systems, which regulate the release of neurotransmitters and alter the activity of the central nervous system, ultimately leading to sleep disorders. Here, we review the main factors affecting sleep, discuss possible pathways and molecular mechanisms of the interaction between sleep and the gut microbiota, and compare common gut microbiota intervention strategies aimed at improving sleep physiology.
Collapse
Affiliation(s)
- Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
216
|
Li R, Guo Q, Zhao J, Kang W, Lu R, Long Z, Huang L, Chen Y, Zhao A, Wu J, Yin Y, Li S. Assessing causal relationships between gut microbiota and asthma: evidence from two sample Mendelian randomization analysis. Front Immunol 2023; 14:1148684. [PMID: 37539057 PMCID: PMC10394653 DOI: 10.3389/fimmu.2023.1148684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Background Accumulating evidence has suggested that gut microbiota dysbiosis is commonly observed in asthmatics. However, it remains unclear whether dysbiosis is a cause or consequence of asthma. We aimed to examine the genetic causal relationships of gut microbiota with asthma and its three phenotypes, including adult-onset asthma, childhood-onset asthma, and moderate-severe asthma. Methods To elucidate the causality of gut microbiota with asthma, we applied two sample Mendelian randomization (MR) based on the largest publicly available genome-wide association study (GWAS) summary statistics. Inverse variance weighting meta-analysis (IVW) was used to obtain the main estimates; and Weighted median, MR-Egger, Robust Adjusted Profile Score (MR-RAPS), Maximum likelihood method (ML), and MR pleiotropy residual sum and outlier (MR-PRESSO) methods were applied in sensitivity analyses. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causation. Results In the absence of heterogeneity and horizontal pleiotropy, the IVW method revealed that genetically predicted Barnesiella and RuminococcaceaeUCG014 were positively correlated with the risk of asthma, while the association between genetically predicted CandidatusSoleaferrea and asthma was negative. And for the three phenotypes of asthma, genetically predicted Akkermansia reduced the risk of adult-onset asthma, Collinsella and RuminococcaceaeUCG014 increased the risk of childhood-onset asthma, and FamilyXIIIAD3011group, Eisenbergiella, and Ruminiclostridium6 were correlated with the risk of moderate-severe asthma (all P<0.05). The reverse MR analysis didn't find evidence supporting the reverse causality from asthma and its three phenotypes to the gut microbiota genus. Conclusion This study suggested that microbial genera were causally associated with asthma as well as its three phenotypes. The findings deepened our understanding of the role of gut microbiota in the pathology of asthma, which emphasizes the potential of opening up a new vista for the prevention and diagnosis of asthma.
Collapse
Affiliation(s)
- Rong Li
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Guo
- School Health Department, Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Jian Zhao
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Kang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoyu Lu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichong Long
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Huang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Chen
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anda Zhao
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Wu
- Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Yin
- Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenghui Li
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
217
|
Nagarajan A, Scoggin K, Gupta J, Threadgill DW, Andrews-Polymenis HL. Using the collaborative cross to identify the role of host genetics in defining the murine gut microbiome. MICROBIOME 2023; 11:149. [PMID: 37420306 PMCID: PMC10329326 DOI: 10.1186/s40168-023-01552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/18/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The human gut microbiota is a complex community comprised of trillions of bacteria and is critical for the digestion and absorption of nutrients. Bacterial communities of the intestinal microbiota influence the development of several conditions and diseases. We studied the effect of host genetics on gut microbial composition using Collaborative Cross (CC) mice. CC mice are a panel of mice that are genetically diverse across strains, but genetically identical within a given strain allowing repetition and deeper analysis than is possible with other collections of genetically diverse mice. RESULTS 16S rRNA from the feces of 167 mice from 28 different CC strains was sequenced and analyzed using the Qiime2 pipeline. We observed a large variance in the bacterial composition across CC strains starting at the phylum level. Using bacterial composition data, we identified 17 significant Quantitative Trait Loci (QTL) linked to 14 genera on 9 different mouse chromosomes. Genes within these intervals were analyzed for significant association with pathways and the previously known human GWAS database using Enrichr analysis and Genecards database. Multiple host genes involved in obesity, glucose homeostasis, immunity, neurological diseases, and many other protein-coding genes located in these regions may play roles in determining the composition of the gut microbiota. A subset of these CC mice was infected with Salmonella Typhimurium. Using infection outcome data, an increase in abundance of genus Lachnospiraceae and decrease in genus Parasutterella correlated with positive health outcomes after infection. Machine learning classifiers accurately predicted the CC strain and the infection outcome using pre-infection bacterial composition data from the feces. CONCLUSION Our study supports the hypothesis that multiple host genes influence the gut microbiome composition and homeostasis, and that certain organisms may influence health outcomes after S. Typhimurium infection. Video Abstract.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX USA
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX USA
| | - Jyotsana Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX USA
| | - David W. Threadgill
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX USA
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX USA
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, TX USA
| | - Helene L. Andrews-Polymenis
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX USA
| |
Collapse
|
218
|
Guan X, Zhu J, Yi L, Sun H, Yang M, Huang Y, Pan H, Wei H, Zhao H, Zhao Y, Zhao S. Comparison of the gut microbiota and metabolites between Diannan small ear pigs and Diqing Tibetan pigs. Front Microbiol 2023; 14:1197981. [PMID: 37485506 PMCID: PMC10359432 DOI: 10.3389/fmicb.2023.1197981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Objective Host genetics and environment participate in the shaping of gut microbiota. Diannan small ear pigs and Diqing Tibetan pigs are excellent native pig breeds in China and live in different environments. However, the gut microbiota of Diannan small ear pigs and Diqing Tibetan pigs were still rarely understood. Therefore, this study aimed to analyze the composition characteristics of gut microbiota and metabolites in Diannan small ear pigs and Diqing Tibetan pigs. Methods Fresh feces of 6 pigs were randomly collected from 20 4-month-old Diannan small ear pigs (DA group) and 20 4-month-old Diqing Tibetan pigs (TA group) for high-throughput 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolome analysis. Results The results revealed that Firmicutes and Bacteroidetes were the dominant phyla in the two groups. Chao1 and ACE indices differed substantially between DA and TA groups. Compared with the DA group, the relative abundance of Prevotellaceae, and Ruminococcus was significantly enriched in the TA group, while the relative abundance of Lachnospiraceae, Actinomyces, and Butyricicoccus was significantly reduced. Cholecalciferol, 5-dehydroepisterol, stigmasterol, adrenic acid, and docosahexaenoic acid were significantly enriched in DA group, which was involved in the steroid biosynthesis and biosynthesis of unsaturated fatty acids. 3-phenylpropanoic acid, L-tyrosine, phedrine, rhizoctin B, and rhizoctin D were significantly enriched in TA group, which was involved in the phenylalanine metabolism and phosphonate and phosphinate metabolism. Conclusion We found that significant differences in gut microbiota composition and metabolite between Diannan small ear pigs and Diqing Tibetan pigs, which provide a theoretical basis for exploring the relationship between gut microbiota and pig breeds.
Collapse
Affiliation(s)
- Xuancheng Guan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Junhong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Haichao Sun
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Hongjiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming, China
| | - Hongye Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming, China
| | - Yanguang Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Sumei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
219
|
Galloway-Peña JR, Jobin C. Microbiota Influences on Hematopoiesis and Blood Cancers: New Horizons? Blood Cancer Discov 2023; 4:267-275. [PMID: 37052501 PMCID: PMC10320642 DOI: 10.1158/2643-3230.bcd-22-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Hematopoiesis governs the generation of immune cells through the differentiation of hematopoietic stem cells (HSC) into various progenitor cells, a process controlled by intrinsic and extrinsic factors. Among extrinsic factors influencing hematopoiesis is the microbiota, or the collection of microorganisms present in various body sites. The microbiota has a profound impact on host homeostasis by virtue of its ability to release various molecules and structural components, which promote normal organ function. In this review, we will discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies, as well as highlight important knowledge gaps to move this field of research forward. SIGNIFICANCE Microbiota dysfunction is associated with many pathologic conditions, including hematologic malignancies. In this review, we discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies. Understanding how the microbiota influences hematologic malignancies could have an important therapeutic impact for patients.
Collapse
Affiliation(s)
- Jessica R. Galloway-Peña
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida
| |
Collapse
|
220
|
Zhang H, Mo Y. The gut-retina axis: a new perspective in the prevention and treatment of diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1205846. [PMID: 37469982 PMCID: PMC10352852 DOI: 10.3389/fendo.2023.1205846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic retinopathy (DR) is a microvascular lesion that occurs as a complication of diabetes mellitus. Many studies reveal that retinal neurodegeneration occurs early in its pathogenesis, and abnormal retinal function can occur in patients without any signs of microvascular abnormalities. The gut microbiota is a large, diverse colony of microorganisms that colonize the human intestine. Studies indicated that the gut microbiota is involved in the pathophysiological processes of DR and plays an important role in its development. On the one hand, numerous studies demonstrated the involvement of gut microbiota in retinal neurodegeneration. On the other hand, alterations in gut bacteria in RD patients can cause or exacerbate DR. The present review aims to underline the critical relationship between gut microbiota and DR. After a brief overview of the composition, function, and essential role of the gut microbiota in ocular health, and the review explores the concept of the gut-retina axis and the conditions of the gut-retina axis crosstalk. Because gut dysbiosis has been associated with DR, the review intends to determine changes in the gut microbiome in DR, the hypothesized mechanisms linking to the gut-retina axis, and its predictive potential.
Collapse
Affiliation(s)
- Haiyan Zhang
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Ya Mo
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| |
Collapse
|
221
|
Yazici C, Thaker S, Castellanos KK, Al Rashdan H, Huang Y, Sarraf P, Boulay B, Grippo P, Gaskins HR, Danielson KK, Papachristou GI, Tussing-Humphreys L, Dai Y, Mutlu ER, Layden BT. Diet, Gut Microbiome, and Their End Metabolites Associate With Acute Pancreatitis Risk. Clin Transl Gastroenterol 2023; 14:e00597. [PMID: 37162146 PMCID: PMC10371326 DOI: 10.14309/ctg.0000000000000597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Diet and decreased gut microbiome diversity has been associated with acute pancreatitis (AP) risk. However, differences in dietary intake, gut microbiome, and their impact on microbial end metabolites have not been studied in AP. We aimed to determine differences in (i) dietary intake (ii) gut microbiome diversity and sulfidogenic bacterial abundance, and (iii) serum short-chain fatty acid (SCFA) and hydrogen sulfide (H 2 S) concentrations in AP and control subjects. METHODS This case-control study recruited 54 AP and 46 control subjects during hospitalization. Clinical and diet data and stool and blood samples were collected. 16S rDNA sequencing was used to determine gut microbiome alpha diversity and composition. Serum SCFA and H 2 S levels were measured. Machine learning (ML) model was used to identify microbial targets associated with AP. RESULTS AP patients had a decreased intake of vitamin D 3 , whole grains, fish, and beneficial eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids. AP patients also had lower gut microbiome diversity ( P = 0.021) and a higher abundance of sulfidogenic bacteria including Veillonella sp. and Haemophilus sp., which were associated with AP risk. Serum acetate and H 2 S concentrations were significantly higher in the AP group ( P < 0.001 and P = 0.043, respectively). ML model had 96% predictive ability to distinguish AP patients from controls. DISCUSSION AP patients have decreased beneficial nutrient intake and gut microbiome diversity. An increased abundance of H 2 S-producing genera in the AP and SCFA-producing genera in the control group and predictive ability of ML model to distinguish AP patients indicates that diet, gut microbiota, and their end metabolites play a key role in AP.
Collapse
Affiliation(s)
- Cemal Yazici
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sarang Thaker
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karla K. Castellanos
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Haya Al Rashdan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yongchao Huang
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paya Sarraf
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian Boulay
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paul Grippo
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - H. Rex Gaskins
- Department of Animal Sciences, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Kirstie K. Danielson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Georgios I. Papachristou
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ece R. Mutlu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
222
|
Hu R, Liu Z, Geng Y, Huang Y, Li F, Dong H, Ma W, Song K, Zhang M, Song Y. Gut Microbiota and Critical Metabolites: Potential Target in Preventing Gestational Diabetes Mellitus? Microorganisms 2023; 11:1725. [PMID: 37512897 PMCID: PMC10385493 DOI: 10.3390/microorganisms11071725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is an intractable issue that negatively impacts the quality of pregnancy. The incidence of GDM is on the rise, becoming a major health burden for both mothers and children. However, the specific etiology and pathophysiology of GDM remain unknown. Recently, the importance of gut microbiota and related metabolic molecules has gained prominence. Studies have indicated that women with GDM have significantly distinct gut microbiota and gut metabolites than healthy pregnant women. Given that the metabolic pathways of gut flora and related metabolites have a substantial impact on inflammation, insulin signaling, glucose, and lipid metabolism, and so on, gut microbiota or its metabolites, such as short-chain fatty acids, may play a significant role in both pathogenesis and progression of GDM. Whereas the role of intestinal flora during pregnancy is still in its infancy, this review aims to summarize the effects and mechanisms of gut microbiota and related metabolic molecules involved in GDM, thus providing potential intervention targets.
Collapse
Affiliation(s)
- Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
223
|
Sionek B, Szydłowska A, Zielińska D, Neffe-Skocińska K, Kołożyn-Krajewska D. Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics. Microorganisms 2023; 11:1714. [PMID: 37512887 PMCID: PMC10385805 DOI: 10.3390/microorganisms11071714] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, probiotics are increasingly being used for human health. So far, only lactic acid bacteria isolated from the human gastrointestinal tract were recommended for human use as probiotics. However, more authors suggest that probiotics can be also isolated from unconventional sources, such as fermented food products of animal and plant origin. Traditional fermented products are a rich source of microorganisms, some of which may have probiotic properties. A novel category of recently isolated microorganisms with great potential of health benefits are next-generation probiotics (NGPs). In this review, general information of some "beneficial microbes", including NGPs and acetic acid bacteria, were presented as well as essential mechanisms and microbe host interactions. Many reports showed that NGP selected strains and probiotics from unconventional sources exhibit positive properties when it comes to human health (i.e., they have a positive effect on metabolic, human gastrointestinal, neurological, cardiovascular, and immune system diseases). Here we also briefly present the current regulatory framework and requirements that should be followed to introduce new microorganisms for human use. The term "probiotic" as used herein is not limited to conventional probiotics. Innovation will undoubtedly result in the isolation of potential probiotics from new sources with fascinating new health advantages and hitherto unforeseen functionalities.
Collapse
Affiliation(s)
- Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Aleksandra Szydłowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
224
|
Lee SH, Lee H, You HS, Sung HJ, Hyun SH. Metabolic pathway prediction of core microbiome based on enterotype and orotype. Front Cell Infect Microbiol 2023; 13:1173085. [PMID: 37424791 PMCID: PMC10325833 DOI: 10.3389/fcimb.2023.1173085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Identification of key microbiome components has been suggested to help address the maintenance of oral and intestinal health in humans. The core microbiome is similar in all individuals, whereas the diverse microbiome varies across individuals, based on their unique lifestyles and phenotypic and genotypic determinants. In this study, we aimed to predict the metabolism of core microorganisms in the gut and oral environment based on enterotyping and orotyping. Materials and methods Gut and oral samples were collected from 83 Korean women aged 50 years or older. The extracted DNA was subjected to next-generation sequencing analysis of 16S rRNA hypervariable regions V3-V4. Results Gut bacteria were clustered into three enterotypes, while oral bacteria were clustered into three orotypes. Sixty-three of the core microbiome between the gut and oral population were correlated, and different metabolic pathways were predicted for each type. Eubacterium_g11, Actinomyces, Atopobium, and Enterococcus were significantly positively correlated between the gut and oral abundance. The four bacteria were classified as type 3 in orotype and type 2 in enterotype. Conclusion Overall, the study suggested that collapsing the human body's multidimensional microbiome into a few categories may help characterize the microbiomes better and address health issues more deeply.
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Han Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Hee Sang You
- Laboratory of Gastrointestinal Mucosal Immunology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ho-joong Sung
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, Republic of Korea
| | - Sung Hee Hyun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| |
Collapse
|
225
|
Münch PC, Eberl C, Woelfel S, Ring D, Fritz A, Herp S, Lade I, Geffers R, Franzosa EA, Huttenhower C, McHardy AC, Stecher B. Pulsed antibiotic treatments of gnotobiotic mice manifest in complex bacterial community dynamics and resistance effects. Cell Host Microbe 2023; 31:1007-1020.e4. [PMID: 37279755 DOI: 10.1016/j.chom.2023.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/11/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
Bacteria can evolve to withstand a wide range of antibiotics (ABs) by using various resistance mechanisms. How ABs affect the ecology of the gut microbiome is still poorly understood. We investigated strain-specific responses and evolution during repeated AB perturbations by three clinically relevant ABs, using gnotobiotic mice colonized with a synthetic bacterial community (oligo-mouse-microbiota). Over 80 days, we observed resilience effects at the strain and community levels, and we found that they were correlated with modulations of the estimated growth rate and levels of prophage induction as determined from metagenomics data. Moreover, we tracked mutational changes in the bacterial populations, and this uncovered clonal expansion and contraction of haplotypes and selection of putative AB resistance-conferring SNPs. We functionally verified these mutations via reisolation of clones with increased minimum inhibitory concentration (MIC) of ciprofloxacin and tetracycline from evolved communities. This demonstrates that host-associated microbial communities employ various mechanisms to respond to selective pressures that maintain community stability.
Collapse
Affiliation(s)
- Philipp C Münch
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig 38124, Germany; Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany; Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Claudia Eberl
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany
| | - Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany
| | - Diana Ring
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany
| | - Adrian Fritz
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig 38124, Germany
| | - Simone Herp
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany
| | - Iris Lade
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Eric A Franzosa
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig 38124, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research, Partner site LMU Munich, Munich, Germany.
| |
Collapse
|
226
|
Niu H, Liu S, Jiang Y, Hu Y, Li Y, He L, Xing M, Li X, Wu L, Chen Z, Wang X, Lou X. Are Microplastics Toxic? A Review from Eco-Toxicity to Effects on the Gut Microbiota. Metabolites 2023; 13:739. [PMID: 37367897 DOI: 10.3390/metabo13060739] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Emerging studies have presented an initial picture of the toxic effects of exposure to environmental micro- and nanoplastics. They have indicated that micro- and nanoplastics may induce toxicity by leading to oxidative stress, energy metabolism disorders, gene damage, and so forth in environmental organisms, marine invertebrates and vertebrates, and laboratory mouse models. In recent years, micro- and nanoplastics have been discovered in human fecal samples, placentas, lung tissue, and even blood; thus, micro- and nanoplastics pose an alarming and ever-increasing threat to global public health. However, current research on the health effects of micro- and nanoplastics and the possible adverse outcomes in humans has only presented the tip of the iceberg. More robust clinical data and basic experiments are still warranted to elucidate the specific relationships and mechanisms. In this paper, we review studies on micro- and nanoplastic toxicity from the perspectives of eco-toxicity, the adverse effects on invertebrates and vertebrates, and the impact of micro- and nanoplastics on the gut microbiota and its metabolites. In addition, we evaluate the toxicological role of micro- and nanoplastic exposure and its potential implications in respect to human health. We also summarize studies regarding preventive strategies. Overall, this review provides insights on micro- and nanoplastic toxicity and its underlying mechanisms, opening up scientific avenues for future in-depth studies.
Collapse
Affiliation(s)
- Huixia Niu
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yujie Jiang
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yang Hu
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yahui Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Luyang He
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| |
Collapse
|
227
|
Akman PK, Kutlu G, Tornuk F. Development and characterization of a novel sodium alginate based active film supplemented with Lactiplantibacillus plantarum postbiotic. Int J Biol Macromol 2023:125240. [PMID: 37301346 DOI: 10.1016/j.ijbiomac.2023.125240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In this study, sodium alginate based biodegradable films were prepared by the supplementation with postbiotics of Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) W2 strain and the effect of probiotics (probiotic-SA film) and postbiotics (postbiotic-SA film) incorporation on physical, mechanical (tensile strength and elongation at break), barrier (oxygen and water vapor permeability), thermal and antimicrobial properties of the films were investigated. The pH, titratable acidity and brix of the postbiotic was 4.02, 1.24 % and 8.37, respectively while gallic acid, protocatechuic acid, myricetin and catechin were the major phenolic compounds. Mechanical and barrier properties of the alginate-based films were improved by probiotic or postbiotic supplementation while postbiotic showed a more pronounced (P < 0.05) effect. Thermal analysis showed that postbiotics supplementation increased thermal stability of the films. In FTIR spectra, the absorption peaks at 2341 and 2317 cm-1 for probiotic-SA and postbiotic-SA edible films confirmed the incorporation of probiotics/postbiotics of L. plantarum W2 strain. Postbiotic supplemented films showed strong antibacterial activity against gram-positive (L. monocytogenes, S. aureus and B. cereus) and one gram-negative bacterial strain (E. coli O157:H7) while probiotic incorporation did not add an antibacterial effect to the films. SEM images revealed that the supplementation of postbiotics provided a rougher and rigid film surface. Overall, this paper brought a new perspective for development of novel active biodegradable films by incorporation of postbiotics with improved performance.
Collapse
Affiliation(s)
- Perihan Kubra Akman
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey
| | - Gozde Kutlu
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey
| | - Fatih Tornuk
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey.
| |
Collapse
|
228
|
Elechi JOG, Sirianni R, Conforti FL, Cione E, Pellegrino M. Food System Transformation and Gut Microbiota Transition: Evidence on Advancing Obesity, Cardiovascular Diseases, and Cancers-A Narrative Review. Foods 2023; 12:2286. [PMID: 37372497 PMCID: PMC10297670 DOI: 10.3390/foods12122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Food, a vital component of our daily life, is fundamental to our health and well-being, and the knowledge and practices relating to food have been passed down from countless generations of ancestors. Systems may be used to describe this extremely extensive and varied body of agricultural and gastronomic knowledge that has been gathered via evolutionary processes. The gut microbiota also underwent changes as the food system did, and these alterations had a variety of effects on human health. In recent decades, the gut microbiome has gained attention due to its health benefits as well as its pathological effects on human health. Many studies have shown that a person's gut microbiota partially determines the nutritional value of food and that diet, in turn, shapes both the microbiota and the microbiome. The current narrative review aims to explain how changes in the food system over time affect the makeup and evolution of the gut microbiota, advancing obesity, cardiovascular disease (CVD), and cancer. After a brief discussion of the food system's variety and the gut microbiota's functions, we concentrate on the relationship between the evolution of food system transformation and gut microbiota system transition linked to the increase of non-communicable diseases (NCDs). Finally, we also describe sustainable food system transformation strategies to ensure healthy microbiota composition recovery and maintain the host gut barrier and immune functions to reverse advancing NCDs.
Collapse
Affiliation(s)
- Jasper Okoro Godwin Elechi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (R.S.); (F.L.C.); (E.C.); (M.P.)
| | | | | | | | | |
Collapse
|
229
|
Ormaasen I, Rudi K, Diep DB, Snipen L. Metagenome-mining indicates an association between bacteriocin presence and strain diversity in the infant gut. BMC Genomics 2023; 24:295. [PMID: 37259063 PMCID: PMC10230729 DOI: 10.1186/s12864-023-09388-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Our knowledge about the ecological role of bacterial antimicrobial peptides (bacteriocins) in the human gut is limited, particularly in relation to their role in the diversification of the gut microbiota during early life. The aim of this paper was therefore to address associations between bacteriocins and bacterial diversity in the human gut microbiota. To investigate this, we did an extensive screening of 2564 healthy human gut metagenomes for the presence of predicted bacteriocin-encoding genes, comparing bacteriocin gene presence to strain diversity and age. RESULTS We found that the abundance of bacteriocin genes was significantly higher in infant-like metagenomes (< 2 years) compared to adult-like metagenomes (2-107 years). By comparing infant-like metagenomes with and without a given bacteriocin, we found that bacteriocin presence was associated with increased strain diversities. CONCLUSIONS Our findings indicate that bacteriocins may play a role in the strain diversification during the infant gut microbiota establishment.
Collapse
Affiliation(s)
- Ida Ormaasen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lars Snipen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
230
|
Zhu N, Duan H, Feng Y, Xu W, Shen J, Wang K, Liu J. Magnesium lithospermate B ameliorates diabetic nephropathy by suppressing the uremic toxin formation mediated by gut microbiota. Eur J Pharmacol 2023:175812. [PMID: 37245856 DOI: 10.1016/j.ejphar.2023.175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Diabetic nephropathy (DN) is a major cause of renal failure and urgently necessitates new therapeutic strategies. Magnesium lithospermate B (MLB) showed a good protective effect on kidney injure by oral administration, despite its extremely low bioavailability. The current study aimed to investigate its gut microbiota-targeted mechanism to explain the paradoxical properties of pharmacodynamics and pharmacokinetics. Here we show that MLB alleviated DN by recovering the dysfunction of gut microbiota and their associated metabolites in colon content, such as short-chain fatty acids and amino acids. Moreover, MLB significantly decreased uremic toxin levels in plasma, especially the p-cresyl sulfate. We further discovered that MLB could affect the metabolism of p-cresyl sulfate by suppressing the formation of its intestinal precursors, i.e. the microbiota-mediated conversion from 4-hydroxyphenylacetate to p-cresol. In addition, the inhibition effects of MLB were confirmed. MLB and its metabolite danshensu exhibited inhibitory effects on p-cresol formation mediated by three strains belonging to the genus Clostridium, Bifidobacterium, and Fusobacterium, respectively. Meanwhile, MLB decreased the levels of p-cresyl sulfate in plasma and p-cresol in feces caused by rectal administration of tyrosine in mice. To summarize, the results indicated that MLB ameliorated DN through modulating gut microbiota-associated p-cresyl sulfate metabolism. Together, this study provides new insights on the microbiota-targeted mechanism of MLB in intervening DN and a new strategy in lowering plasma uremic toxins by blocking the formation of their precursors in intestine.
Collapse
Affiliation(s)
- Nanlin Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Haonan Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yingying Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wenwei Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310058, PR China.
| |
Collapse
|
231
|
Shi Q, Yuan X, Zeng Y, Wang J, Zhang Y, Xue C, Li L. Crosstalk between Gut Microbiota and Bile Acids in Cholestatic Liver Disease. Nutrients 2023; 15:nu15102411. [PMID: 37242293 DOI: 10.3390/nu15102411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging evidence suggests the complex interactions between gut microbiota and bile acids, which are crucial end products of cholesterol metabolism. Cholestatic liver disease is characterized by dysfunction of bile production, secretion, and excretion, as well as excessive accumulation of potentially toxic bile acids. Given the importance of bile acid homeostasis, the complex mechanism of the bile acid-microbial network in cholestatic liver disease requires a thorough understanding. It is urgent to summarize the recent research progress in this field. In this review, we highlight how gut microbiota regulates bile acid metabolism, how bile acid pool shapes the bacterial community, and how their interactions contribute to the pathogenesis of cholestatic liver disease. These advances might provide a novel perspective for the development of potential therapeutic strategies that target the bile acid pathway.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
232
|
Saqib HSA, Sun L, Pozsgai G, Liang P, Goraya MU, Akutse KS, You M, Gurr GM, You S. Gut microbiota assemblages of generalist predators are driven by local- and landscape-scale factors. Front Microbiol 2023; 14:1172184. [PMID: 37256058 PMCID: PMC10225636 DOI: 10.3389/fmicb.2023.1172184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
The gut microbiomes of arthropods have significant impact on key physiological functions such as nutrition, reproduction, behavior, and health. Spiders are diverse and numerically dominant predators in crop fields where they are potentially important regulators of pests. Harnessing spiders to control agricultural pests is likely to be supported by an understanding of their gut microbiomes, and the environmental drivers shaping microbiome assemblages. This study aimed to deciphering the gut microbiome assembly of these invertebrate predators and elucidating potential implications of key environmental constraints in this process. Here, we used high-throughput sequencing to examine for the first time how the assemblages of bacteria in the gut of spiders are shaped by environmental variables. Local drivers of microbiome composition were globally-relevant input use system (organic production vs. conventional practice), and crop identity (Chinese cabbage vs. cauliflower). Landscape-scale factors, proportion of forest and grassland, compositional diversity, and habitat edge density, also strongly affected gut microbiota. Specific bacterial taxa were enriched in gut of spiders sampled from different settings and seasons. These findings provide a comprehensive insight into composition and plasticity of spider gut microbiota. Understanding the temporal responses of specific microbiota could lead to innovative strategies development for boosting biological control services of predators.
Collapse
Affiliation(s)
- Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linyang Sun
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gabor Pozsgai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Ce3C - Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE – Global Change and Sustainability Institute, University of the Azores, Faculty of Agricultural Sciences and Environment, Angra do Heroísmo, Açores, Portugal
| | - Pingping Liang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Mohsan Ullah Goraya
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Komivi Senyo Akutse
- Plant Health Theme, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Gulbali Institute, Charles Sturt University, Orange, NSW, Australia
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
233
|
Song M, Fan X. Systemic Metabolism and Mitochondria in the Mechanism of Alzheimer's Disease: Finding Potential Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098398. [PMID: 37176104 PMCID: PMC10179273 DOI: 10.3390/ijms24098398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Elderly people over the age of 65 are those most likely to experience Alzheimer's disease (AD), and aging and AD are associated with apparent metabolic alterations. Currently, there is no curative medication against AD and only several drugs have been approved by the FDA, but these drugs can only improve the symptoms of AD. Many preclinical and clinical trials have explored the impact of adjusting the whole-body and intracellular metabolism on the pathogenesis of AD. The most recent evidence suggests that mitochondria initiate an integrated stress response to environmental stress, which is beneficial for healthy aging and neuroprotection. There is also an increasing awareness of the differential risk and potential targeting strategies related to the metabolic level and microbiome. As the main participants in intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been regarded as potential therapeutic targets for AD. This review summarizes and highlights these advances.
Collapse
Affiliation(s)
- Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
234
|
Zhuo X, Luo H, Lei R, Lou X, Bian J, Guo J, Luo H, Zhang X, Jiao Q, Gong W. Association between Intestinal Microecological Changes and Atherothrombosis. Microorganisms 2023; 11:1223. [PMID: 37317197 PMCID: PMC10222604 DOI: 10.3390/microorganisms11051223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large- and medium-sized arteries that causes ischemic heart disease, strokes, and peripheral vascular disease, collectively called cardiovascular disease (CVD), and is the leading cause of CVD resulting in a high rate of mortality in the population. AS is pathological by plaque development, which is caused by lipid infiltration in the vessel wall, endothelial dysfunction, and chronic low-grade inflammation. Recently, more and more scholars have paid attention to the importance of intestinal microecological disorders in the occurrence and development of AS. Intestinal G-bacterial cell wall lipopolysaccharide (LPS) and bacterial metabolites, such as oxidized trimethylamine (TMAO) and short-chain fatty acids (SCFAs), are involved in the development of AS by affecting the inflammatory response, lipid metabolism, and blood pressure regulation of the body. Additionally, intestinal microecology promotes the progression of AS by interfering with the normal bile acid metabolism of the body. In this review, we summarize the research on the correlation between maintaining a dynamic balance of intestinal microecology and AS, which may be potentially helpful for the treatment of AS.
Collapse
Affiliation(s)
- Xinyu Zhuo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Hui Luo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Rumei Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Hao Luo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| |
Collapse
|
235
|
Zhang L, Wang F, Jia L, Yan H, Gao L, Tian Y, Su X, Zhang X, Lv C, Ma Z, Xue Y, Lin Q, Wang K. Edwardsiella piscicida infection reshapes the intestinal microbiome and metabolome of big-belly seahorses: mechanistic insights of synergistic actions of virulence factors. Front Immunol 2023; 14:1135588. [PMID: 37215132 PMCID: PMC10193291 DOI: 10.3389/fimmu.2023.1135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Uncovering the mechanism underlying the pathogenesis of Edwardsiella piscicida-induced enteritis is essential for global aquaculture. In the present study, we identified E. piscicida as a lethal pathogen of the big-belly seahorse (Hippocampus abdominalis) and revealed its pathogenic pattern and characteristics by updating our established bacterial enteritis model and evaluation system. Conjoint analysis of metagenomic and metabolomic data showed that 15 core virulence factors could mutually coordinate the remodeling of intestinal microorganisms and host metabolism and induce enteritis in the big-belly seahorse. Specifically, the Flagella, Type IV pili, and Lap could significantly increase the activities of the representative functional pathways of both flagella assembly and bacterial chemotaxis in the intestinal microbiota (P < 0.01) to promote pathogen motility, adherence, and invasion. Legiobactin, IraAB, and Hpt could increase ABC transporter activity (P < 0.01) to compete for host nutrition and promote self-replication. Capsule1, HP-NAP, and FarAB could help the pathogen to avoid phagocytosis. Upon entering epithelial cells and phagocytes, Bsa T3SS and Dot/Icm could significantly increase bacterial secretion system activity (P < 0.01) to promote the intracellular survival and replication of the pathogen and the subsequent invasion of the neighboring tissues. Finally, LPS3 could significantly increase lipopolysaccharide biosynthesis (P < 0.01) to release toxins and kill the host. Throughout the pathogenic process, BopD, PhoP, and BfmRS significantly activated the two-component system (P < 0.01) to coordinate with other VFs to promote deep invasion. In addition, the levels of seven key metabolic biomarkers, Taurine, L-Proline, Uridine, L-Glutamate, Glutathione, Xanthosine, and L-Malic acid, significantly decreased (P < 0.01), and they can be used for characterizing E. piscicida infection. Overall, the present study systematically revealed how a combination of virulence factors mediate E. piscicida-induced enteritis in fish for the first time, providing a theoretical reference for preventing and controlling this disease in the aquaculture of seahorses and other fishes.
Collapse
Affiliation(s)
- Lele Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Fang Wang
- Department of Pathology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Longwu Jia
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Hansheng Yan
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Longkun Gao
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yanan Tian
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xiaolei Su
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xu Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Chunhui Lv
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Zhenhao Ma
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yuanyuan Xue
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Qiang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kai Wang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| |
Collapse
|
236
|
Luo K, Liu Y, Qin G, Wang S, Wei C, Pan M, Guo Z, Liu Q, Tian X. A comparative study on effects of dietary three strains of lactic acid bacteria on the growth performance, immune responses, disease resistance and intestinal microbiota of Pacific white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108707. [PMID: 36966896 DOI: 10.1016/j.fsi.2023.108707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
The present study evaluated the growth performance, immune responses, disease resistance and intestinal microbiota in Penaeus vannamei fed diets supplemented with three strains of lactic acid bacteria (LAB). The basal diet (control, CO) supplemented with Lactobacillus plantarum W2 (LA), Pediococcus acidilactici Nj (PE), Enterococcus faecium LYB (EN) and florfenicol (FL), respectively, formed three LAB diets (1 × 1010 cfu kg-1) and a florfenicol diet (15 mg kg-1, positive control), were fed to shrimp for 42 days. Results indicated that specific growth rate, feed efficiency rate, and disease resistance of shrimp against Vibrio parahaemolyticus in the treatment groups were significantly improved versus the control (P < 0.05). Compared with the control, acid phosphatase, alkaline phosphatase, phenonoloxidase, total nitric oxide synthase, peroxidase, superoxide dismutase activities, total antioxidant capacity, and lysozyme content in the serum and the relative expression levels of SOD, LZM, proPO, LGBP, HSP70, Imd, Toll, Relish, TOR, 4E-BP, eIF4E1α and eIF4E2 genes in the hepatopancreas of LAB groups were enhanced to various extents. Intestinal microbiota analysis showed that the LA and EN groups significantly improved microbial diversity and richness, and LAB groups significantly altered intestinal microbial structure of shrimp. At the phylum level, the Verrucomicrobiota in the LA and PE groups, the Firmicutes in the EN group, and the Actinobacteriota in the PE and EN groups were enriched. Moreover, the CO group increased the proportion of potential pathogens (Vibrionaceae and Flavobacteriaceae). The potential pathogen (Vibrio) was reduced, and potential beneficial bacteria (Tenacibaculum, Ruegeria and Bdellovibrio) were enriched in response to dietary three strains of LAB. When the intestinal microbiota homeostasis of shrimp is considered, L. plantarum and E. faecium showed better effects than P. acidilactici. However, due to the concerns on the possible potential risks of E. faecium strains to human health, L. plantarum W2 is more suitable for application in aquaculture than E. faecium LYB. Considering collectively the above, Lactobacillus plantarum W2 could be applied as better probiotic to improve the growth performance, non-specific immunity, disease resistance and promote intestinal health of P. vannamei.
Collapse
Affiliation(s)
- Kai Luo
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Yang Liu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Guangcai Qin
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Shishuang Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Cong Wei
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Miaojun Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zeyang Guo
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
237
|
Kamada M, Miyazaki M, Nakashima A, Yamada Y, Nakano T, Hagiwara D, Komiya Y, Matsuo K, Imakyure O. Characteristics of Patients With Inflammatory Bowel Disease Who Develop Bloodstream Infection. J Clin Med Res 2023; 15:262-267. [PMID: 37303468 PMCID: PMC10251698 DOI: 10.14740/jocmr4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
Background The causative microorganisms of bloodstream infections (BSIs) in patients with inflammatory bowel disease (IBD) and the clinical characteristics of these patients have not yet been fully identified. Therefore, this study investigated IBD patients who developed BSI to determine their clinical characteristics and identify the BSI-causing bacteria. Methods The subjects were IBD patients who developed bacteremia between 2015 and 2019 at Fukuoka University Chikushi Hospital. The patients were divided into two groups according to IBD type (Crohn's disease (CD) or ulcerative colitis (UC)). The medical records of the patients were reviewed to determine their clinical backgrounds and identify the BSI-causing bacteria. Results In total 95 patients, 68 CD and 27 UC patients were included in this study. The detection rates of Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) were higher in the UC group than in the CD group (18.5% vs. 2.9%, P = 0.021; 11.1% vs. 0%, P = 0.019, respectively). Immunosuppressive drugs use was higher in the CD group than in the UC group (57.4% vs. 11.1%, P = 0.00003). Hospital stay length was longer in the UC group than in the CD group (15 vs. 9 days; P = 0.045). Conclusions The causative bacteria of BSI and clinical backgrounds differed between patients with CD and UC. This study showed that P. aeruginosa and K. pneumoniae had higher abundance in UC patients at the onset of BSI. Furthermore, long-term hospitalized patients with UC required antimicrobial therapy against P. aeruginosa and K. pneumoniae.
Collapse
Affiliation(s)
- Mitsuhiro Kamada
- Department of Pharmacy, Fukuoka University Chikushi Hospital, Fukuoka 818-8502, Japan
- These authors contributed equally to this work
| | - Motoyasu Miyazaki
- Department of Pharmacy, Fukuoka University Chikushi Hospital, Fukuoka 818-8502, Japan
- These authors contributed equally to this work
| | - Akio Nakashima
- Department of Pharmacy, Fukuoka University Chikushi Hospital, Fukuoka 818-8502, Japan
| | - Yota Yamada
- Department of Pharmacy, Fukuoka University Chikushi Hospital, Fukuoka 818-8502, Japan
| | - Takafumi Nakano
- Department of Pharmacy, Fukuoka University Hospital, Fukuoka 814-0180, Japan
| | - Daiki Hagiwara
- Department of Pharmacy, Fukuoka University Hospital, Fukuoka 814-0180, Japan
| | - Yukie Komiya
- Department of Clinical Laboratory, Fukuoka University Chikushi Hospital, Fukuoka 818-8502, Japan
| | - Koichi Matsuo
- Department of Pharmacy, Fukuoka University Chikushi Hospital, Fukuoka 818-8502, Japan
| | - Osamu Imakyure
- Department of Pharmacy, Fukuoka University Chikushi Hospital, Fukuoka 818-8502, Japan
| |
Collapse
|
238
|
Jiang M, Jang SE, Zeng L. The Effects of Extrinsic and Intrinsic Factors on Neurogenesis. Cells 2023; 12:cells12091285. [PMID: 37174685 PMCID: PMC10177620 DOI: 10.3390/cells12091285] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the mammalian brain, neurogenesis is maintained throughout adulthood primarily in two typical niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles and in other nonclassic neurogenic areas (e.g., the amygdala and striatum). During prenatal and early postnatal development, neural stem cells (NSCs) differentiate into neurons and migrate to appropriate areas such as the olfactory bulb where they integrate into existing neural networks; these phenomena constitute the multistep process of neurogenesis. Alterations in any of these processes impair neurogenesis and may even lead to brain dysfunction, including cognitive impairment and neurodegeneration. Here, we first summarize the main properties of mammalian neurogenic niches to describe the cellular and molecular mechanisms of neurogenesis. Accumulating evidence indicates that neurogenesis plays an integral role in neuronal plasticity in the brain and cognition in the postnatal period. Given that neurogenesis can be highly modulated by a number of extrinsic and intrinsic factors, we discuss the impact of extrinsic (e.g., alcohol) and intrinsic (e.g., hormones) modulators on neurogenesis. Additionally, we provide an overview of the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to persistent neurological sequelae such as neurodegeneration, neurogenic defects and accelerated neuronal cell death. Together, our review provides a link between extrinsic/intrinsic factors and neurogenesis and explains the possible mechanisms of abnormal neurogenesis underlying neurological disorders.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Human Anatomy, Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Dongguan Campus, Guangdong Medical University, Dongguan 523808, China
| | - Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
239
|
Aparicio A, Gold DR, Weiss ST, Litonjua AA, Lee-Sarwar K, Liu YY. Association of Vitamin D Level and Maternal Gut Microbiome during Pregnancy: Findings from a Randomized Controlled Trial of Antenatal Vitamin D Supplementation. Nutrients 2023; 15:2059. [PMID: 37432235 PMCID: PMC10181263 DOI: 10.3390/nu15092059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 07/12/2023] Open
Abstract
Shifts in the maternal gut microbiome and vitamin D deficiency during pregnancy have been associated, separately, with health problems for both the mother and the child. Yet, they have rarely been studied simultaneously. Here, we analyzed the gut microbiome (from stool samples obtained in late pregnancy) and vitamin D level (from blood samples obtained both in early and late pregnancy) data of pregnant women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), a randomized controlled trial of vitamin D supplementation during pregnancy, to investigate the association of vitamin D status on the pregnant women's microbiome. To find associations, we ran linear regressions on alpha diversity measures, PERMANOVA tests on beta diversity distances, and used the ANCOM-BC and Maaslin2 algorithms to find differentially abundant taxa. Analyses were deemed significant using a cut-off p-value of 0.05. We found that gut microbiome composition is associated with the vitamin D level in early pregnancy (baseline), the maternal gut microbiome does not show a shift in response to vitamin D supplementation during pregnancy, and that the genus Desulfovibrio is enriched in women without a substantial increase in vitamin D level between the first and the third trimesters of pregnancy. We conclude that increasing the vitamin D level during pregnancy could be protective against the growth of sulfate-reducing bacteria such as Desulfovibrio, which has been associated with chronic intestinal inflammatory disorders. More in-depth investigations are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Andrea Aparicio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.A.); (D.R.G.); (S.T.W.)
| | - Diane R. Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.A.); (D.R.G.); (S.T.W.)
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.A.); (D.R.G.); (S.T.W.)
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.A.); (D.R.G.); (S.T.W.)
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.A.); (D.R.G.); (S.T.W.)
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| |
Collapse
|
240
|
Liu Y, Pei Z, Pan T, Wang H, Chen W, Lu W. Indole metabolites and colorectal cancer: Gut microbial tryptophan metabolism, host gut microbiome biomarkers, and potential intervention mechanisms. Microbiol Res 2023; 272:127392. [PMID: 37119643 DOI: 10.1016/j.micres.2023.127392] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Tryptophan (Trp) functions in host-disease interactions. Its metabolism is a multi-pathway process. Indole and its derivatives are Trp metabolites unique to the human gut microbiota. Changes in Trp metabolism have also been detected in colorectal cancer (CRC). Here, combined with the existing CRC biomarkers, we ascribed it to the altered bacteria having the indole-producing ability by making a genomic prediction. We also reviewed the anti-inflammatory and possible anti-cancer mechanisms of indoles, including their effects on tumor cells, the ability to repair the gut barrier, regulation of the host immune system, and provide resistance against oxidative stress. Indole and its derivatives, along with related bacteria, could be targeted as auxiliary strategies to restrain cancer development in the future.
Collapse
Affiliation(s)
- Yufei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Tong Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
241
|
Zhou X, Zhang X, Niu D, Zhang S, Wang H, Zhang X, Nan F, Jiang S, Wang B. Gut microbiota induces hepatic steatosis by modulating the T cells balance in high fructose diet mice. Sci Rep 2023; 13:6701. [PMID: 37095192 PMCID: PMC10126116 DOI: 10.1038/s41598-023-33806-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Metabolic diseases are often associated with high fructose (HF) consumption. HF has also been found to alter the gut microbiota, which then favors the development of nonalcoholic fatty liver disease. However, the mechanisms underlying of the gut microbiota on this metabolic disturbance are yet to be determined. Thus, in this study, we further explored the effect the gut microbiota concerning the T cells balance in an HF diet mouse model. We fed mice 60% fructose-enriched diet for 12 weeks. At 4 weeks, HF diet did not affect the liver, but it caused injury to the intestine and adipose tissues. After 12 weeks, the lipid droplet aggregation was markedly increased in the liver of HF-fed mice. Further analysis of the gut microbial composition showed that HF decreased the Bacteroidetes/Firmicutes ratio and increased the levels of Blautia, Lachnoclostridium, and Oscillibacter. In addition, HF can increase the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the serum. T helper type 1 cells were significantly increased, and regulatory T(Treg) cells were markedly decreased in the mesenteric lymph nodes of the HF-fed mice. Furthermore, fecal microbiota transplantation alleviates systemic metabolic disorder by maintaining liver and intestinal immune homeostasis. Overall, our data indicated that intestinal structure injury and intestinal inflammation might be early, and liver inflammation and hepatic steatosis may be a subsequent effect following HF diets. Gut microbiota disorders impairing the intestinal barrier function and triggering immune homeostasis imbalance may be an importantly responsible for long-term HF diets induced hepatic steatosis.
Collapse
Affiliation(s)
- Xiaoqiong Zhou
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Delei Niu
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuyun Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Wang
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xueming Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
242
|
Zhao J, Yao Y, Li D, Zhu W, Xiao H, Xie M, Xiong Y, Wu J, Ni Q, Zhang M, Xu H. Metagenome and metabolome insights into the energy compensation and exogenous toxin degradation of gut microbiota in high-altitude rhesus macaques (Macaca mulatta). NPJ Biofilms Microbiomes 2023; 9:20. [PMID: 37081021 PMCID: PMC10119431 DOI: 10.1038/s41522-023-00387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
There have been many reports on the genetic mechanism in rhesus macaques (RMs) for environmental adaptation to high altitudes, but the synergistic involvement of gut microbiota in this adaptation remains unclear. Here we performed fecal metagenomic and metabolomic studies on samples from high- and low-altitude populations to assess the synergistic role of gut microbiota in the adaptation of RMs to high-altitude environments. Microbiota taxonomic annotation yielded 7471 microbiota species. There were 37 bacterial species whose abundance was significantly enriched in the high-altitude populations, 16 of which were previously reported to be related to the host's dietary digestion and energy metabolism. Further functional gene enrichment found a stronger potential for gut microbiota to synthesize energy substrate acetyl-CoA using CO2 and energy substrate pyruvate using oxaloacetate, as well as a stronger potential to transform acetyl-CoA to energy substrate acetate in high-altitude populations. Interestingly, there were no apparent differences between low-altitude and high-altitude populations in terms of genes enriched in the main pathways by which the microbiota consumed the three energy substrates, and none of the three energy substrates were detected in the fecal metabolites. These results strongly suggest that gut microbiota plays an important energy compensatory role that helps RMs to adapt to high-altitude environments. Further functional enrichment after metabolite source analysis indicated the abundance of metabolites related to the degradation of exogenous toxins was also significantly higher in high-altitude populations, which suggested a contributory role of gut microbiota to the degradation of exogenous toxins in wild RMs adapted to high-altitude environments.
Collapse
Affiliation(s)
- Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wei Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
243
|
Zeng F, Wang L, Zhen H, Guo C, Liu A, Xia X, Pei H, Dong C, Ding J. Nanoplastics affect the growth of sea urchins (Strongylocentrotus intermedius) and damage gut health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161576. [PMID: 36640870 DOI: 10.1016/j.scitotenv.2023.161576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) are abundant and widespread throughout the ocean, not only causing severe environmental pollution, but also worsening the aquatic organisms. To elucidate the mechanism of biological toxic effects underlying the responses of marine invertebrates to NPs, Strongylocentrotus intermedius was stressed with three different NPs concentrations (0 particles/L, 102 particles/L and 104 particles/L). Specific growth rates, enzyme activity, gut tissue section observation and structural characteristics of the gut bacterial community were analyzed. After 28 days of exposure, the specific growth rate of S. intermedius decreased significantly with NPs groups. Further, both lysozyme, pepsin, lipase and amylase activities decreased, while the superoxide dismutase activity increased, indicating that NPs negatively affected digestive enzyme and immune enzyme activity. The analysis of gut tissue sections revealed that NPs caused atrophy and cytoplasmic reduction in the epithelial cells of the S. intermedius intestine. Moreover, the structural characterization of the gut bacterial community indicated significant changes in the abundances of members from Campylobacterota, Chlamydiae, and Firmicutes. Members from Arcobacteraceae, Christensenellaceae and Clostridia were endemic to the NPs treatment. The KEGG database analysis demonstrated that the metabolic pathways specific to the NPs treatment group were significantly associated with growth, energy metabolism, and immunity. In summary, NPs have negatively affected on physiological response and altered gut microecological environment.
Collapse
Affiliation(s)
- Fanshuang Zeng
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Hao Zhen
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Chao Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Anzheng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xinglong Xia
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Honglin Pei
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Changkun Dong
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
244
|
Aparicio A, Gold DR, Weiss ST, Litonjua AA, Lee-Sarwar K, Liu YY. Association of vitamin D level and maternal gut microbiome during pregnancy: Findings from a randomized controlled trial of antenatal vitamin D supplementation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.04.23288136. [PMID: 37066333 PMCID: PMC10104212 DOI: 10.1101/2023.04.04.23288136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Shifts in the maternal gut microbiome and vitamin D deficiency during pregnancy have been associated, separately, with health problems for both the mother and the child. Yet, they have rarely been studied simultaneously. Here, we analyzed gut microbiome (from stool samples obtained in late pregnancy) and vitamin D level (from blood samples obtained both in early and late pregnancy) data of pregnant women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), a randomized controlled trial of vitamin D supplementation during pregnancy, to investigate the association of vitamin D status on the pregnant women’s microbiome. To find associations we ran linear regressions on alpha diversity measures, PERMANOVA tests on beta diversity distances, and used the ANCOM-BS and Maaslin2 algorithms to find differentially abundant taxa. Analyses were deemed significant using a cut-off p-value of 0.05. We found that gut microbiome composition is associated with the vitamin D level in early pregnancy (baseline), the maternal gut microbiome does not show a shift in response to vitamin D supplementation during pregnancy, and that the genus Desulfovibrio is enriched in women without a substantial increase in vitamin D level between the first and the third trimesters of pregnancy. We conclude that increasing the vitamin D level during pregnancy could be protective against the growth of sulfate-reducing bacteria such as Desulfovibrio , which has been associated with chronic intestinal inflammatory disorders. More in-depth investigations are needed to confirm this hypothesis.
Collapse
|
245
|
Nemoto S, Kubota T, Ohno H. Exploring body weight-influencing gut microbiota by elucidating the association with diet and host gene expression. Sci Rep 2023; 13:5593. [PMID: 37019989 PMCID: PMC10076326 DOI: 10.1038/s41598-023-32411-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
We aimed to identify gut microbiota that influences body weight by elucidating the association with diets and host genes. Germ-free (GF) mice with and without fecal microbiota transplant (FMT) were fed a normal, high-carbohydrate, or high-fat diet. FMT mice exhibited greater total body weight; adipose tissue and liver weights; blood glucose, insulin, and total cholesterol levels; and oil droplet size than the GF mice, regardless of diet. However, the extent of weight gain and metabolic parameter levels associated with gut microbiota depended on the nutrients ingested. For example, a disaccharide- or polysaccharide-rich diet caused more weight gain than a monosaccharide-rich diet. An unsaturated fatty acid-rich diet had a greater microbial insulin-increasing effect than a saturated fatty acid-rich diet. Perhaps the difference in microbial metabolites produced from substances taken up by the host created metabolic differences. Therefore, we analyzed such dietary influences on gut microbiota, differentially expressed genes between GF and FMT mice, and metabolic factors, including body weight. The results revealed a correlation between increased weight gain, a fat-rich diet, increased Ruminococcaceae abundance, and decreased claudin 22 gene expression. These findings suggest that weight regulation might be possible through the manipulation of the gut microbiota metabolism using the host's diet.
Collapse
Affiliation(s)
- Shino Nemoto
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Tetsuya Kubota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
- Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
246
|
Jones J, Shi Q, Nath RR, Brito IL. Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535410. [PMID: 37066368 PMCID: PMC10103987 DOI: 10.1101/2023.04.03.535410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
Collapse
Affiliation(s)
- Josh Jones
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Qiaojuan Shi
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Rahul R. Nath
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Ilana L. Brito
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
247
|
Essock-Burns T, Lawhorn S, Wu L, McClosky S, Moriano-Gutierrez S, Ruby EG, McFall-Ngai MJ. Maturation state of colonization sites promotes symbiotic resiliency in the Euprymna scolopes-Vibrio fischeri partnership. MICROBIOME 2023; 11:68. [PMID: 37004104 PMCID: PMC10064550 DOI: 10.1186/s40168-023-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Many animals and plants acquire their coevolved symbiotic partners shortly post-embryonic development. Thus, during embryogenesis, cellular features must be developed that will promote both symbiont colonization of the appropriate tissues, as well as persistence at those sites. While variation in the degree of maturation occurs in newborn tissues, little is unknown about how this variation influences the establishment and persistence of host-microbe associations. RESULTS The binary symbiosis model, the squid-vibrio (Euprymna scolopes-Vibrio fischeri) system, offers a way to study how an environmental gram-negative bacterium establishes a beneficial, persistent, extracellular colonization of an animal host. Here, we show that bacterial symbionts occupy six different colonization sites in the light-emitting organ of the host that have both distinct morphologies and responses to antibiotic treatment. Vibrio fischeri was most resilient to antibiotic disturbance when contained within the smallest and least mature colonization sites. We show that this variability in crypt development at the time of hatching allows the immature sites to act as a symbiont reservoir that has the potential to reseed the more mature sites in the host organ when they have been cleared by antibiotic treatment. This strategy may produce an ecologically significant resiliency to the association. CONCLUSIONS The data presented here provide evidence that the evolution of the squid-vibrio association has been selected for a nascent organ with a range of host tissue maturity at the onset of symbiosis. The resulting variation in physical and chemical environments results in a spectrum of host-symbiont interactions, notably, variation in susceptibility to environmental disturbance. This "insurance policy" provides resiliency to the symbiosis during the critical period of its early development. While differences in tissue maturity at birth have been documented in other animals, such as along the infant gut tract of mammals, the impact of this variation on host-microbiome interactions has not been studied. Because a wide variety of symbiosis characters are highly conserved over animal evolution, studies of the squid-vibrio association have the promise of providing insights into basic strategies that ensure successful bacterial passage between hosts in horizontally transmitted symbioses. Video Abstract.
Collapse
Affiliation(s)
- Tara Essock-Burns
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA
| | - Susannah Lawhorn
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Leo Wu
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Sawyer McClosky
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Silvia Moriano-Gutierrez
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Department of Fundamental Biology, University of Lausanne, Lausanne, Switzerland
| | - Edward G Ruby
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA
| | - Margaret J McFall-Ngai
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA.
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA.
| |
Collapse
|
248
|
Boccuto L, Tack J, Ianiro G, Abenavoli L, Scarpellini E. Human Genes Involved in the Interaction between Host and Gut Microbiome: Regulation and Pathogenic Mechanisms. Genes (Basel) 2023; 14:genes14040857. [PMID: 37107615 PMCID: PMC10137629 DOI: 10.3390/genes14040857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: The umbrella term “human gut microbiota” describes the complex ecosystem harboring our gut. It includes bacteria, viruses, protozoa, archaea, fungi, and yeasts. This taxonomic classification does not describe its functions, which encompass nutrients digestion and absorption, immune system regulation, and host metabolism. “Gut microbiome” indicates instead the genome belonging to these “microbes” actively involved in these functions. However, the interaction between the host genome and the microbial ones determines the fine functioning of our organism. Methods: We reviewed the data available in the scientific literature on the definition of gut microbiota, gut microbiome, and the data on human genes involved in the interaction with the latter. We consulted the main medical databases using the following keywords, acronyms, and their associations: gut microbiota, gut microbiome, human genes, immune function, and metabolism. Results: Candidate human genes encoding enzymes, inflammatory cytokines, and proteins show similarity with those included in the gut microbiome. These findings have become available through newer artificial intelligence (AI) algorithms allowing big data analysis. From an evolutionary point of view, these pieces of evidence explain the strict and sophisticated interaction at the basis of human metabolism and immunity regulation in humans. They unravel more and more physiopathologic pathways included in human health and disease. Discussion: Several lines of evidence also obtained through big data analysis support the bi-directional role of gut microbiome and human genome in host metabolism and immune system regulation.
Collapse
Affiliation(s)
- Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson University School of Health Research, Clemson, SC 29631, USA
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Emidio Scarpellini
- Translational Research Center for Gastrointestinal Disorders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium
- Clinical Nutrition and Hepatology Unit, San Benedetto del Tronto General Hospital, 63074 San Benedetto del Tronto, Italy
| |
Collapse
|
249
|
Li L, Zhao X, He JJ. HIV Tat Expression and Cocaine Exposure Lead to Sex- and Age-Specific Changes of the Microbiota Composition in the Gut. Microorganisms 2023; 11:799. [PMID: 36985373 PMCID: PMC10054272 DOI: 10.3390/microorganisms11030799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The balance of microbial communities in the gut is extremely important for normal physiological function. Disruption of the balance is often associated with various disorders and diseases. Both HIV infection and cocaine use are known to change the gut microbiota and the epithelial barrier integrity, which contribute to inflammation and immune activation. Our recent study shows that Tat expression and cocaine exposure result in changes of genome-wide DNA methylation and gene expression and lead to worsen the learning and memory impairments. In the current study, we extended the study to determine effects of Tat and cocaine on the gut microbiota composition. We found that both Tat expression and cocaine exposure increased Alteromonadaceae in 6-month-old female/male mice. In addition, we found that Tat, cocaine, or both increased Alteromonadaceae, Bacteroidaceae, Cyanobiaceae, Erysipelotrichaceae, and Muribaculaceae but decreased Clostridiales_vadinBB60_group, Desulfovibrionaceae, Helicobacteraceae, Lachnospiraceae, and Ruminococcaceae in 12-month-old female mice. Lastly, we analyzed changes of metabolic pathways and found that Tat decreased energy metabolism and nucleotide metabolism, and increased lipid metabolism and metabolism of other amino acids while cocaine increased lipid metabolism in 12-month-old female mice. These results demonstrated that Tat expression and cocaine exposure resulted in significant changes of the gut microbiota in an age- and sex-dependent manner and provide additional evidence to support the bidirectional gut-brain axis hypothesis.
Collapse
Affiliation(s)
- Lu Li
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Xiaojie Zhao
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Johnny J. He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| |
Collapse
|
250
|
Rashid F, Dubinkina V, Ahmad S, Maslov S, Irudayaraj JMK. Gut Microbiome-Host Metabolome Homeostasis upon Exposure to PFOS and GenX in Male Mice. TOXICS 2023; 11:281. [PMID: 36977046 PMCID: PMC10051855 DOI: 10.3390/toxics11030281] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Alterations of the normal gut microbiota can cause various human health concerns. Environmental chemicals are one of the drivers of such disturbances. The aim of our study was to examine the effects of exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS)-specifically, perfluorooctane sulfonate (PFOS) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX)-on the microbiome of the small intestine and colon, as well as on liver metabolism. Male CD-1 mice were exposed to PFOS and GenX in different concentrations and compared to controls. GenX and PFOS were found to have different effects on the bacterial community in both the small intestine and colon based on 16S rRNA profiles. High GenX doses predominantly led to increases in the abundance of Clostridium sensu stricto, Alistipes, and Ruminococcus, while PFOS generally altered Lactobacillus, Limosilactobacillus, Parabacteroides, Staphylococcus, and Ligilactobacillus. These treatments were associated with alterations in several important microbial metabolic pathways in both the small intestine and colon. Untargeted LC-MS/MS metabolomic analysis of the liver, small intestine, and colon yielded a set of compounds significantly altered by PFOS and GenX. In the liver, these metabolites were associated with the important host metabolic pathways implicated in the synthesis of lipids, steroidogenesis, and in the metabolism of amino acids, nitrogen, and bile acids. Collectively, our results suggest that PFOS and GenX exposure can cause major perturbations in the gastrointestinal tract, aggravating microbiome toxicity, hepatotoxicity, and metabolic disorders.
Collapse
Affiliation(s)
- Faizan Rashid
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Veronika Dubinkina
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Saeed Ahmad
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Maria Kumar Irudayaraj
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|