201
|
Ungaro F, Massimino L, D'Alessio S, Danese S. The gut virome in inflammatory bowel disease pathogenesis: From metagenomics to novel therapeutic approaches. United European Gastroenterol J 2019; 7:999-1007. [PMID: 31662858 DOI: 10.1177/2050640619876787] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
The association of intestinal dysbiosis with the pathogenesis of inflammatory bowel disease has been well established. Besides bacteria, microbiota comprises yeasts, archaea, protists and viruses, neglected actors in inflammatory bowel disease-associated microbiota. In the past, a great limitation in studying microbiota composition was the low sensitivity of sequencing technologies and that few computational approaches were sufficient to thoroughly analyse the whole microbiome. However, new cutting-edge technologies in nucleic acid sequencing, -omics analysis and the innovative statistics and bioinformatics pipelines made possible more sensitive and accurate metagenomics, ultimately identifying novel players in intestinal inflammation, including prokaryotic and eukaryotic viruses, that together form the gut virome. The discovery of peculiar inflammatory bowel disease-associated microbial strains will not only shed new light on inflammatory bowel disease aetiogenesis, they may also support the development of novel therapeutic strategies not merely treating symptoms, but precisely counteracting the primary cause of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia D'Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
202
|
Dworzański J, Drop B, Kliszczewska E, Strycharz-Dudziak M, Polz-Dacewicz M. Prevalence of Epstein-Barr virus, human papillomavirus, cytomegalovirus and herpes simplex virus type 1 in patients with diabetes mellitus type 2 in south-eastern Poland. PLoS One 2019; 14:e0222607. [PMID: 31550259 PMCID: PMC6759159 DOI: 10.1371/journal.pone.0222607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
A microbiota is a complex ecosystem of microorganisms consisting of bacteria, viruses, protozoa, and fungi living in different niches of the human body, which plays an essential role in many metabolic functions. Modifications in the microbiota composition can lead to several diseases, including metabolic disorders. The aim of this study was to analyze the prevalence of four viruses which can cause persistent infections-Epstein-Barr virus (EBV), human papillomavirus (HPV), cytomegalovirus (CMV), and herpes simplex virus type 1 (HSV-1) in patients with diabetes mellitus type 2 (DM2). Blood, saliva and oral swabs were collected from all the study participants. The nested-PCR technique was used to detect the viral DNA. DNA of at least one virus was detected in 71.1% of diabetic patients and in 30% of individuals without diabetes. In patients with diabetes EBV DNA was detected the most frequently (25.4%), followed by HPV- 19.1%, HSV- 10.4% and CMV- 5.2%. A higher percentage of EBV+HPV co-infection was found among men (30.8%). EBV DNA was statistically more often detected in patients living in rural areas (53.7%), while HPV (91.5%) and EBV+HPV co-infection (22.2%) prevailed among patients from urban areas. In patients with a DM2 history longer than 10 years viral infection was detected more frequently. The prevalence of EBV, HPV and the EBV+HPV co-infection was significantly higher in diabetic patients than in individuals without diabetes. The frequency of these infections depended on the duration of the disease (DM2).
Collapse
Affiliation(s)
| | - Bartłomiej Drop
- Department of Information Technology and Medical Statistics, Medical University of Lublin, Lublin, Poland
| | - Ewa Kliszczewska
- Department of Virology, Medical University of Lublin, Lublin, Poland
| | | | | |
Collapse
|
203
|
Suzuki Y, Nishijima S, Furuta Y, Yoshimura J, Suda W, Oshima K, Hattori M, Morishita S. Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. MICROBIOME 2019; 7:119. [PMID: 31455406 PMCID: PMC6712665 DOI: 10.1186/s40168-019-0737-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/16/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Elucidating the ecological and biological identity of extrachromosomal mobile genetic elements (eMGEs), such as plasmids and bacteriophages, in the human gut remains challenging due to their high complexity and diversity. RESULTS Here, we show efficient identification of eMGEs as complete circular or linear contigs from PacBio long-read metagenomic data. De novo assembly of PacBio long reads from 12 faecal samples generated 82 eMGE contigs (2.5~666.7-kb), which were classified as 71 plasmids and 11 bacteriophages, including 58 novel plasmids and six bacteriophages, and complete genomes of five diverse crAssphages with terminal direct repeats. In a dataset of 413 gut metagenomes from five countries, many of the identified plasmids were highly abundant and prevalent. The ratio of gut plasmids by our plasmid data is more than twice that in the public database. Plasmids outnumbered bacterial chromosomes three to one on average in this metagenomic dataset. Host prediction suggested that Bacteroidetes-associated plasmids predominated, regardless of microbial abundance. The analysis found several plasmid-enriched functions, such as inorganic ion transport, while antibiotic resistance genes were harboured mostly in low-abundance Proteobacteria-associated plasmids. CONCLUSIONS Overall, long-read metagenomics provided an efficient approach for unravelling the complete structure of human gut eMGEs, particularly plasmids.
Collapse
Affiliation(s)
- Yoshihiko Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| | - Suguru Nishijima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, Tokyo, 169-8555 Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020 Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| | - Wataru Suda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Kenshiro Oshima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| | - Masahira Hattori
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| |
Collapse
|
204
|
Sberro H, Fremin BJ, Zlitni S, Edfors F, Greenfield N, Snyder MP, Pavlopoulos GA, Kyrpides NC, Bhatt AS. Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes. Cell 2019; 178:1245-1259.e14. [PMID: 31402174 PMCID: PMC6764417 DOI: 10.1016/j.cell.2019.07.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Small proteins are traditionally overlooked due to computational and experimental difficulties in detecting them. To systematically identify small proteins, we carried out a comparative genomics study on 1,773 human-associated metagenomes from four different body sites. We describe >4,000 conserved protein families, the majority of which are novel; ∼30% of these protein families are predicted to be secreted or transmembrane. Over 90% of the small protein families have no known domain and almost half are not represented in reference genomes. We identify putative housekeeping, mammalian-specific, defense-related, and protein families that are likely to be horizontally transferred. We provide evidence of transcription and translation for a subset of these families. Our study suggests that small proteins are highly abundant and those of the human microbiome, in particular, may perform diverse functions that have not been previously reported.
Collapse
Affiliation(s)
- Hila Sberro
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Brayon J Fremin
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
| | - Soumaya Zlitni
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
| | - Fredrik Edfors
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | - Georgios A Pavlopoulos
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ami S Bhatt
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
205
|
Analyses of virus/viroid communities in nectarine trees by next-generation sequencing and insight into viral synergisms implication in host disease symptoms. Sci Rep 2019; 9:12261. [PMID: 31439919 PMCID: PMC6706421 DOI: 10.1038/s41598-019-48714-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/09/2019] [Indexed: 01/02/2023] Open
Abstract
We analyzed virus and viroid communities in five individual trees of two nectarine cultivars with different disease phenotypes using next-generation sequencing technology. Different viral communities were found in different cultivars and individual trees. A total of eight viruses and one viroid in five families were identified in a single tree. To our knowledge, this is the first report showing that the most-frequently identified viral and viroid species co-infect a single individual peach tree, and is also the first report of peach virus D infecting Prunus in China. Combining analyses of genetic variation and sRNA data for co-infecting viruses/viroid in individual trees revealed for the first time that viral synergisms involving a few virus genera in the Betaflexiviridae, Closteroviridae, and Luteoviridae families play a role in determining disease symptoms. Evolutionary analysis of one of the most dominant peach pathogens, peach latent mosaic viroid (PLMVd), shows that the PLMVd sequences recovered from symptomatic and asymptomatic nectarine leaves did not all cluster together, and intra-isolate divergent sequence variants co-infected individual trees. Our study provides insight into the role that mixed viral/viroid communities infecting nectarine play in host symptom development, and will be important in further studies of epidemiological features of host-pathogen interactions.
Collapse
|
206
|
Li H, Li H, Wang J, Guo L, Fan H, Zheng H, Yang Z, Huang X, Chu M, Yang F, He Z, Li N, Yang J, Wu Q, Shi H, Liu L. The altered gut virome community in rhesus monkeys is correlated with the gut bacterial microbiome and associated metabolites. Virol J 2019; 16:105. [PMID: 31426820 PMCID: PMC6700990 DOI: 10.1186/s12985-019-1211-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background The gut microbiome is closely associated with the health of the host; although the interaction between the bacterial microbiome and the whole virome has rarely been studied, it is likely of medical importance. Examination of the interactions between the gut bacterial microbiome and virome of rhesus monkey would significantly contribute to revealing the gut microbiome composition. Methods Here, we conducted a metagenomic analysis of the gut microbiome of rhesus monkeys in a longitudinal cohort treated with an antibiotic cocktail, and we documented the interactions between the bacterial microbiome and virome. The depletion of viral populations was confirmed at the species level by real-time PCR. We also detected changes in the gut metabolome by GC-MS and LC-MS. Results A majority of bacteria were depleted after treatment with antibiotics, and the Shannon diversity index decreased from 2.95 to 0.22. Furthermore, the abundance-based coverage estimator (ACE) decreased from 104.47 to 33.84, and the abundance of eukaryotic viruses also changed substantially. In the annotation, 6 families of DNA viruses and 1 bacteriophage family were present in the normal monkeys but absent after gut bacterial microbiome depletion. Intriguingly, we discovered that changes in the gut bacterial microbiome composition may promote changes in the gut virome composition, and tryptophan, arginine, and quinone may play roles in the interaction between the bacterial microbiome and virome. Conclusion Our results indicated that the clearly altered composition of the virome was correlated with depletion in the bacterial community and that metabolites produced by bacteria possibly play important roles in the interaction. Electronic supplementary material The online version of this article (10.1186/s12985-019-1211-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Hongzhe Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Haitao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Zening Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Xing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Manman Chu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Jinxi Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Qiongwen Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China. .,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China. .,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| |
Collapse
|
207
|
Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Front Immunol 2019; 10:1873. [PMID: 31456801 PMCID: PMC6698791 DOI: 10.3389/fimmu.2019.01873] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Gut-derived infection is among the most common complications in patients who underwent severe trauma, serious burn, major surgery, hemorrhagic shock or severe acute pancreatitis (SAP). It could cause sepsis and multiple organ dysfunction syndrome (MODS), which are regarded as a leading cause of mortality in these cases. Gut-derived infection is commonly caused by pathological translocation of intestinal bacteria or endotoxins, resulting from the dysfunction of the gut barrier. In the last decades, the studies regarding to the pathogenesis of gut-derived infection mainly focused on the breakdown of intestinal epithelial tight junction and increased permeability. Limited information is available on the roles of intestinal microbial barrier in the development of gut-derived infection. Recently, advances of next-generation DNA sequencing techniques and its utilization has revolutionized the gut microecology, leading to novel views into the composition of the intestinal microbiota and its connections with multiple diseases. Here, we reviewed the recent progress in the research field of intestinal barrier disruption and gut-derived infection, mainly through the perspectives of the dysbiosis of intestinal microbiota and its interaction with intestinal mucosal immune cells. This review presents novel insights into how the gut microbiota collaborates with mucosal immune cells to involve the development of pathological bacterial translocation. The data might have important implication to better understand the mechanism underlying pathological bacterial translocation, contributing us to develop new strategies for prevention and treatment of gut-derived sepsis.
Collapse
Affiliation(s)
| | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
208
|
Andrade-Martínez JS, Moreno-Gallego JL, Reyes A. Defining a Core Genome for the Herpesvirales and Exploring their Evolutionary Relationship with the Caudovirales. Sci Rep 2019; 9:11342. [PMID: 31383901 PMCID: PMC6683198 DOI: 10.1038/s41598-019-47742-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
The order Herpesvirales encompasses a wide variety of important and broadly distributed human pathogens. During the last decades, similarities in the viral cycle and the structure of some of their proteins with those of the order Caudovirales, the tailed bacterial viruses, have brought speculation regarding the existence of an evolutionary relationship between these clades. To evaluate such hypothesis, we used over 600 Herpesvirales and 2000 Caudovirales complete genomes to search for the presence or absence of clusters of orthologous protein domains and constructed a dendrogram based on their compositional similarities. The results obtained strongly suggest an evolutionary relationship between the two orders. Furthermore, they allowed to propose a core genome for the Herpesvirales, composed of 4 proteins, including the ATPase subunit of the DNA-packaging terminase, the only protein with previously verified conservation. Accordingly, a phylogenetic tree constructed with sequences derived from the clusters associated to these proteins grouped the Herpesvirales strains accordingly to the established families and subfamilies. Overall, this work provides results supporting the hypothesis that the two orders are evolutionarily related and contributes to the understanding of the history of the Herpesvirales.
Collapse
Affiliation(s)
- Juan S Andrade-Martínez
- Research Group on Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogota, Colombia
| | - J Leonardo Moreno-Gallego
- Research Group on Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogota, Colombia
| | - Alejandro Reyes
- Research Group on Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia.
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogota, Colombia.
- Centre for Genome Sciences and Systems Biology, Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, MO, 63108, USA.
| |
Collapse
|
209
|
Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, McCulloch JA, Anastasakis DG, Sarshad AA, Leonardi I, Collins N, Blatter JA, Han SJ, Tamoutounour S, Potapova S, Foster St Claire MB, Yuan W, Sen SK, Dreier MS, Hild B, Hafner M, Wang D, Iliev ID, Belkaid Y, Trinchieri G, Rehermann B. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 2019; 365:365/6452/eaaw4361. [PMID: 31371577 DOI: 10.1126/science.aaw4361] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/06/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022]
Abstract
Laboratory mouse studies are paramount for understanding basic biological phenomena but also have limitations. These include conflicting results caused by divergent microbiota and limited translational research value. To address both shortcomings, we transferred C57BL/6 embryos into wild mice, creating "wildlings." These mice have a natural microbiota and pathogens at all body sites and the tractable genetics of C57BL/6 mice. The bacterial microbiome, mycobiome, and virome of wildlings affect the immune landscape of multiple organs. Their gut microbiota outcompete laboratory microbiota and demonstrate resilience to environmental challenges. Wildlings, but not conventional laboratory mice, phenocopied human immune responses in two preclinical studies. A combined natural microbiota- and pathogen-based model may enhance the reproducibility of biomedical studies and increase the bench-to-bedside safety and success of immunological studies.
Collapse
Affiliation(s)
- Stephan P Rosshart
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| | - Jasmin Herz
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Brian G Vassallo
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Ashli Hunter
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Morgan K Wall
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - John A McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Dimitrios G Anastasakis
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Aishe A Sarshad
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Irina Leonardi
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nicholas Collins
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua A Blatter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seong-Ji Han
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samira Tamoutounour
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Potapova
- Laboratory of Animal Sciences Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Mark B Foster St Claire
- Laboratory of Animal Sciences Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Wuxing Yuan
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.,Leidos Biomedical Research, Inc., Microbiome and Genetics Core, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shurjo K Sen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.,Leidos Biomedical Research, Inc., Microbiome and Genetics Core, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew S Dreier
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Benedikt Hild
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Iliyan D Iliev
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
210
|
Zoledziewska M. The gut microbiota perspective for interventions in MS. Autoimmun Rev 2019; 18:814-824. [DOI: 10.1016/j.autrev.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
|
211
|
Domínguez-Díaz C, García-Orozco A, Riera-Leal A, Padilla-Arellano JR, Fafutis-Morris M. Microbiota and Its Role on Viral Evasion: Is It With Us or Against Us? Front Cell Infect Microbiol 2019; 9:256. [PMID: 31380299 PMCID: PMC6657001 DOI: 10.3389/fcimb.2019.00256] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses are obligate intracellular pathogens that require the protein synthesis machinery of the host cells to replicate. These microorganisms have evolved mechanisms to avoid detection from the host immune innate and adaptive response, which are known as viral evasion mechanisms. Viruses enter the host through skin and mucosal surfaces that happen to be colonized by communities of thousands of microorganisms collectively known as the commensal microbiota, where bacteria have a role in the modulation of the immune system and maintaining homeostasis. These bacteria are necessary for the development of the immune system and to prevent the adhesion and colonization of bacterial pathogens and parasites. However, the interactions between the commensal microbiota and viruses are not clear. The microbiota could confer protection against viral infection by priming the immune response to avoid infection, with some bacterial species being required to increase the antiviral response. On the other hand, it could also help to promote viral evasion of certain viruses by direct and indirect mechanisms, with the presence of the microbiota increasing infection and viruses using LPS and surface polysaccharides from bacteria to trigger immunosuppressive pathways. In this work, we reviewed the interaction between the microbiota and viruses to prevent their entry into host cells or to help them to evade the host antiviral immunity. This review is focused on the influence of the commensal microbiota in the viruses' success or failure of the host cells infection.
Collapse
Affiliation(s)
- Carolina Domínguez-Díaz
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Alejandra García-Orozco
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Annie Riera-Leal
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Ricardo Padilla-Arellano
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mary Fafutis-Morris
- Centro de Investgación en Inmunología y Dermatología (CIINDE), Zapopan, Mexico.,Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
212
|
Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the Microbiota in the Modulation of Vaccine Immune Responses. Front Microbiol 2019; 10:1305. [PMID: 31333592 PMCID: PMC6616116 DOI: 10.3389/fmicb.2019.01305] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
The human immune system and the microbiota co-evolve, and their balanced relationship is based on crosstalk between the two systems through the course of life. This tight association and the overall composition and richness of the microbiota play an important role in the modulation of host immunity and may impact the immune response to vaccination. The availability of innovative technologies, such as next-generation sequencing (NGS) and correlated bioinformatics tools, allows a deeper investigation of the crosstalk between the microbiota and human immune responses. This review discusses the current knowledge on the influence of the microbiota on the immune response to vaccination and novel tools to deeply analyze the impact of the microbiome on vaccine responses.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Raffaela Olivieri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
213
|
Zuo T, Lu XJ, Zhang Y, Cheung CP, Lam S, Zhang F, Tang W, Ching JYL, Zhao R, Chan PKS, Sung JJY, Yu J, Chan FKL, Cao Q, Sheng JQ, Ng SC. Gut mucosal virome alterations in ulcerative colitis. Gut 2019; 68:1169-1179. [PMID: 30842211 PMCID: PMC6582748 DOI: 10.1136/gutjnl-2018-318131] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The pathogenesis of UC relates to gut microbiota dysbiosis. We postulate that alterations in the viral community populating the intestinal mucosa play an important role in UC pathogenesis. This study aims to characterise the mucosal virome and their functions in health and UC. DESIGN Deep metagenomics sequencing of virus-like particle preparations and bacterial 16S rRNA sequencing were performed on the rectal mucosa of 167 subjects from three different geographical regions in China (UC=91; healthy controls=76). Virome and bacteriome alterations in UC mucosa were assessed and correlated with patient metadata. We applied partition around medoids clustering algorithm and classified mucosa viral communities into two clusters, referred to as mucosal virome metacommunities 1 and 2. RESULTS In UC, there was an expansion of mucosa viruses, particularly Caudovirales bacteriophages, and a decrease in mucosa Caudovirales diversity, richness and evenness compared with healthy controls. Altered mucosal virome correlated with intestinal inflammation. Interindividual dissimilarity between mucosal viromes was higher in UC than controls. Escherichia phage and Enterobacteria phage were more abundant in the mucosa of UC than controls. Compared with metacommunity 1, metacommunity 2 was predominated by UC subjects and displayed a significant loss of various viral species. Patients with UC showed substantial abrogation of diverse viral functions, whereas multiple viral functions, particularly functions of bacteriophages associated with host bacteria fitness and pathogenicity, were markedly enriched in UC mucosa. Intensive transkingdom correlations between mucosa viruses and bacteria were significantly depleted in UC. CONCLUSION We demonstrated for the first time that UC is characterised by substantial alterations of the mucosa virobiota with functional distortion. Enrichment of Caudovirales bacteriophages, increased phage/bacteria virulence functions and loss of viral-bacterial correlations in the UC mucosa highlight that mucosal virome may play an important role in UC pathogenesis.
Collapse
Affiliation(s)
- Tao Zuo
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Xiao-Juan Lu
- Department of Gastroenterology, The General Hospital of the People’s Liberation Army, Beijing, China
| | - Yu Zhang
- Faculty of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Pan Cheung
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Siu Lam
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fen Zhang
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Whitney Tang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Jessica Y L Ching
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Risheng Zhao
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Joseph J Y Sung
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Jun Yu
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Francis K L Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qian Cao
- Faculty of Medicine, Zhejiang University, Hangzhou, China,Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jian-Qiu Sheng
- Department of Gastroenterology, The General Hospital of the People’s Liberation Army, Beijing, China
| | - Siew C Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
214
|
Siljander H, Honkanen J, Knip M. Microbiome and type 1 diabetes. EBioMedicine 2019; 46:512-521. [PMID: 31257149 PMCID: PMC6710855 DOI: 10.1016/j.ebiom.2019.06.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The steep increase in the incidence of type 1 diabetes (T1D), in the Western world after World War II, cannot be explained solely by genetic factors but implies that this rise must be due to crucial interactions between predisposing genes and environmental changes. Three parallel phenomena in early childhood – the dynamic development of the immune system, maturation of the gut microbiome, and the appearance of the first T1D-associated autoantibodies – raise the question whether these phenomena might reflect causative relationships. Plenty of novel data on the role of the microbiome in the development of T1D has been published over recent years and this review summarizes recent findings regarding the associations between islet autoimmunity, T1D, and the intestinal microbiota.
Collapse
Affiliation(s)
- Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Tampere Center for Child Health Research, Tampere University Hospital, 33520 Tampere, Finland; Folkhälsan Research Center, 00290 Helsinki, Finland.
| |
Collapse
|
215
|
Freer G, Maggi F, Pistello M. Virome and Inflammasomes, a Finely Tuned Balance with Important Consequences for the Host Health. Curr Med Chem 2019; 26:1027-1044. [PMID: 28982318 DOI: 10.2174/0929867324666171005112921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens. OBJECTIVE This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence. METHOD We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome. RESULTS A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism. CONCLUSION The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
216
|
Robledo‐Sierra J, Ben‐Amy DP, Varoni E, Bavarian R, Simonsen JL, Paster BJ, Wade WG, Kerr AR, Peterson DE, Frandsen Lau E. World Workshop on Oral Medicine VII: Targeting the oral microbiome Part 2: Current knowledge on malignant and potentially malignant oral disorders. Oral Dis 2019; 25 Suppl 1:28-48. [DOI: 10.1111/odi.13107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/19/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Dalit Porat Ben‐Amy
- Oral Medicine Unit Department of Oral & Maxillofacial Surgery The Baruch Padeh Medical Center Poriya Israel
| | - Elena Varoni
- Department of Biomedical, Surgical and Dental Sciences University of Milan Milan Italy
| | - Roxanne Bavarian
- Division of Oral Medicine and Dentistry Brigham and Women's Hospital Boston Massachusetts
- Department of Oral Medicine, Infection, and Immunity Harvard School of Dental Medicine, Harvard University Cambridge Massachusetts
| | - Janne L. Simonsen
- Aarhus University Library – Health Sciences Aarhus University Aarhus Denmark
| | | | - William G. Wade
- Centre for Host‐Microbiome Interactions Faculty of Dentistry, Oral & Craniofacial Sciences King's College London London UK
| | - Alexander R. Kerr
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine New York University College of Medicine New York City New York
| | - Douglas E. Peterson
- Oral Medicine Section School of Dental Medicine UConn Health University of Connecticut Mansfield Connecticut
| | - Ellen Frandsen Lau
- Section for Periodontology Department of Dentistry and Oral Health Faculty of Health Aarhus University Aarhus Denmark
| |
Collapse
|
217
|
Li Y, Fu X, Ma J, Zhang J, Hu Y, Dong W, Wan Z, Li Q, Kuang YQ, Lan K, Jin X, Wang JH, Zhang C. Altered respiratory virome and serum cytokine profile associated with recurrent respiratory tract infections in children. Nat Commun 2019; 10:2288. [PMID: 31123265 PMCID: PMC6533328 DOI: 10.1038/s41467-019-10294-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
Recurrent acute respiratory tract infections (ARTIs) affect a large population, yet the specific decisive factors are largely unknown. Here we study a population of 4407 children diagnosed with ARTI, comparing respiratory virome and serum cytokine profiles associated with multiple ARTIs and single ARTI during a six-year period. The relative abundance of Propionibacterium phages is significantly elevated in multiple ARTIs compared to single ARTI group. Serum levels of TIMP-1 and PDGF-BB are markedly increased in multiple ARTIs compared to single-ARTI and non-ARTI controls, making these two cytokines potential predictors for multiple ARTIs. The presence of Propionibacterium phages is associated with higher levels of TIMP-1 and PDGF-BB. Receiver operating characteristic (ROC) curve analyses show that the combination of TIMP-1, PDGF-BB and Propionibacterium phages could be a strong predictor for multiple ARTIs. These findings indicate that respiratory microbe homeostasis and specific cytokines are associated with the onset of multiple ARTIs over time.
Collapse
Affiliation(s)
- Yanpeng Li
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center (Guangzhou, 510623, China) and Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuemin Fu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinmin Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jianhui Zhang
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center (Guangzhou, 510623, China) and Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Yihong Hu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wei Dong
- Pediatric Department, Shanghai Nanxiang Hospital, Jiading District, Shanghai, 201800, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, Jiangsu, 225300, China
| | | | - Yi-Qun Kuang
- Institute of Infection and Immunity, Henan University, Kaifeng, 475000, China
| | - Ke Lan
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xia Jin
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Chiyu Zhang
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center (Guangzhou, 510623, China) and Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, 200031, China.
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
218
|
Bruggeman LA. Common Mechanisms of Viral Injury to the Kidney. Adv Chronic Kidney Dis 2019; 26:164-170. [PMID: 31202388 PMCID: PMC6578596 DOI: 10.1053/j.ackd.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 11/11/2022]
Abstract
Viral infections in an immunocompetent host can cause both acute and chronic kidney diseases, either by direct damage to the infected kidney cells or as a consequence of systemic immune responses that impact the kidneys' function. Viruses have evolved mechanisms to hijack signaling pathways of the infected cell, including the mammalian target of rapamycin pathway to support viral replication, and to evade antiviral immune responses such as those mediated by miR-155 via microRNA mimetics expressed by the virus. At both the cellular and systemic levels, the host has also evolved mechanisms to counter the viral subversion strategies in the evolutionary battle for mutual survival. In the era of genomic medicine, understanding individual genetic variations that lead to differences in susceptibilities to infection and variabilities in immune responses may open new avenues for treatment, such as the recently described functions of apolipoprotein L1 risk alleles in HIV-associated nephropathy. In addition, state-of-the-art high-throughput sequencing methods have discovered new viruses as the cause for chronic diseases not previously attributed to an infection. The potential application of these methods to idiopathic kidney diseases may reveal similar occult infections by unknown viruses. Precision medicine objectives to optimize host-directed and pathogen-directed therapies for kidney diseases associated with infectious causes will only be achieved through detailed understanding of genetic susceptibility associated with immune responses and viral tropism.
Collapse
Affiliation(s)
- Leslie A Bruggeman
- Departments of Inflammation & Immunity and Nephrology, Cleveland Clinic, and Case Western Reserve University School of Medicine, Cleveland, OH.
| |
Collapse
|
219
|
|
220
|
Noll KE, Ferris MT, Heise MT. The Collaborative Cross: A Systems Genetics Resource for Studying Host-Pathogen Interactions. Cell Host Microbe 2019; 25:484-498. [PMID: 30974083 PMCID: PMC6494101 DOI: 10.1016/j.chom.2019.03.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Host genetic variation has a major impact on infectious disease susceptibility. The study of pathogen resistance genes, largely aided by mouse models, has significantly advanced our understanding of infectious disease pathogenesis. The Collaborative Cross (CC), a newly developed multi-parental mouse genetic reference population, serves as a tractable model system to study how pathogens interact with genetically diverse populations. In this review, we summarize progress utilizing the CC as a platform to develop improved models of pathogen-induced disease and to map polymorphic host response loci associated with variation in susceptibility to pathogens.
Collapse
Affiliation(s)
- Kelsey E Noll
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martin T Ferris
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Mark T Heise
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
221
|
Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ. Nat Microbiol 2019; 4:1120-1128. [PMID: 30936486 PMCID: PMC6588490 DOI: 10.1038/s41564-019-0416-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Commensal microbes profoundly impact host immunity to enteric viral infections1. We have shown that the bacterial microbiota and host antiviral cytokine interferon-λ (IFN-λ) determine the persistence of murine norovirus in the gut2,3. However, the effects of the virome in modulating enteric infections remain unexplored. Here, we report that murine astrovirus can complement primary immunodeficiency to protect against murine norovirus and rotavirus infections. Protection against infection was horizontally transferable between immunocompromised mouse strains by co-housing and fecal transplantation. Furthermore, protection against enteric pathogens corresponded with the presence of a specific strain of murine astrovirus in the gut, and this complementation of immunodeficiency required IFN-λ signalling in gut epithelial cells. Our study demonstrates that elements of the virome can protect against enteric pathogens in an immunodeficient host.
Collapse
|
222
|
Mukhopadhya I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the 'missing link' between gut bacteria and host immunity? Therap Adv Gastroenterol 2019; 12:1756284819836620. [PMID: 30936943 PMCID: PMC6435874 DOI: 10.1177/1756284819836620] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/14/2019] [Indexed: 02/04/2023] Open
Abstract
The human gut virome includes a diverse collection of viruses that infect our own cells as well as other commensal organisms, directly impacting on our well-being. Despite its predominance, the virome remains one of the least understood components of the gut microbiota, with appropriate analysis toolkits still in development. Based on its interconnectivity with all living cells, it is clear that the virome cannot be studied in isolation. Here we review the current understanding of the human gut virome, specifically in relation to other constituents of the microbiome, its evolution and life-long association with its host, and our current understanding in the context of inflammatory bowel disease and associated therapies. We propose that the gut virome and the gut bacterial microbiome share similar trajectories and interact in both health and disease and that future microbiota studies should in parallel characterize the gut virome to uncover its role in health and disease.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK Gut Health Group, The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Jonathan P. Segal
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, Norfolk, UK Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Ailsa L. Hart
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | | |
Collapse
|
223
|
Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG, Hanke-Gogokhia C, Ajami NJ, Wong MC, Ghazaryan A, Valentine JF, Porter N, Martens E, O'Connell R, Jacob V, Scherl E, Crawford C, Stephens WZ, Casjens SR, Longman RS, Round JL. Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host Microbe 2019; 25:285-299.e8. [PMID: 30763538 PMCID: PMC6885004 DOI: 10.1016/j.chom.2019.01.008] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/23/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Bacteriophages are the most abundant members of the microbiota and have the potential to shape gut bacterial communities. Changes to bacteriophage composition are associated with disease, but how phages impact mammalian health remains unclear. We noted an induction of host immunity when experimentally treating bacterially driven cancer, leading us to test whether bacteriophages alter immune responses. Treating germ-free mice with bacteriophages leads to immune cell expansion in the gut. Lactobacillus, Escherichia, and Bacteroides bacteriophages and phage DNA stimulated IFN-γ via the nucleotide-sensing receptor TLR9. The resultant immune responses were both phage and bacteria specific. Additionally, increasing bacteriophage levels exacerbated colitis via TLR9 and IFN-γ. Similarly, ulcerative colitis (UC) patients responsive to fecal microbiota transplantation (FMT) have reduced phages compared to non-responders, and mucosal IFN-γ positively correlates with bacteriophage levels. Bacteriophages from active UC patients induced more IFN-γ compared to healthy individuals. Collectively, these results indicate that bacteriophages can alter mucosal immunity to impact mammalian health.
Collapse
Affiliation(s)
- Lasha Gogokhia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Joan and Sanford I. Weill Department of Medicine, Jill Roberts Center and Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kate Buhrke
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Brenden Hoffman
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - D Garrett Brown
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Christin Hanke-Gogokhia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Wong
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arevik Ghazaryan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John F Valentine
- Department of Internal Medicine, Division of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nathan Porter
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eric Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ryan O'Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vinita Jacob
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Center and Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ellen Scherl
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Center and Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carl Crawford
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Center and Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - W Zac Stephens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sherwood R Casjens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Randy S Longman
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Center and Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
224
|
Zhao G, Droit L, Gilbert MH, Schiro FR, Didier PJ, Si X, Paredes A, Handley SA, Virgin HW, Bohm RP, Wang D. Virome biogeography in the lower gastrointestinal tract of rhesus macaques with chronic diarrhea. Virology 2019; 527:77-88. [PMID: 30468938 PMCID: PMC6333316 DOI: 10.1016/j.virol.2018.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
The composition of gastrointestinal tract viromes has been associated with multiple diseases. Our understanding of virus communities in the GI tract is still very limited due to challenges in sampling from different GI sites. Here we defined the GI viromes of 15 rhesus macaques with chronic diarrhea. Luminal content samples from terminal ileum, proximal and distal colon were collected at necropsy while samples from the rectum were collected antemortem using a fecal loop. The composition of and ecological parameters associated with the terminal ileum virome were distinct from the colon and rectum samples; these differences were driven by bacteriophages rather than eukaryotic viruses. The six contigs that were most discriminative of the viromes were distantly related to bacteriophages from three different families. Our analysis provides support for using fecal loop sampling of the rectum as a proxy of the colonic virome in humans.
Collapse
Affiliation(s)
- Guoyan Zhao
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Lindsay Droit
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Margaret H Gilbert
- Divisions of Veterinary Medicine and Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Faith R Schiro
- Divisions of Veterinary Medicine and Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Peter J Didier
- Divisions of Veterinary Medicine and Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | | | - Anne Paredes
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott A Handley
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert W Virgin
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rudolf P Bohm
- Divisions of Veterinary Medicine and Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - David Wang
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
225
|
Antimicrobial proteins: intestinal guards to protect against liver disease. J Gastroenterol 2019; 54:209-217. [PMID: 30392013 PMCID: PMC6391196 DOI: 10.1007/s00535-018-1521-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Alterations of gut microbes play a role in the pathogenesis and progression of many disorders including liver and gastrointestinal diseases. Both qualitative and quantitative changes in gut microbiota have been associated with liver disease. Intestinal dysbiosis can disrupt the integrity of the intestinal barrier leading to pathological bacterial translocation and the initiation of an inflammatory response in the liver. In order to sustain symbiosis and protect from pathological bacterial translocation, antimicrobial proteins (AMPs) such as a-defensins and C-type lectins are expressed in the gastrointestinal tract. In this review, we provide an overview of the role of AMPs in different chronic liver disease such as alcoholic steatohepatitis, non-alcoholic fatty liver disease, and cirrhosis. In addition, potential approaches to modulate the function of AMPs and prevent bacterial translocation are discussed.
Collapse
|
226
|
Stefanaki C. The Gut Microbiome Beyond the Bacteriome—The Neglected Role of Virome and Mycobiome in Health and Disease. MICROBIOME AND METABOLOME IN DIAGNOSIS, THERAPY, AND OTHER STRATEGIC APPLICATIONS 2019:27-32. [DOI: 10.1016/b978-0-12-815249-2.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
227
|
Nucleic Acid Induced Interferon and Inflammasome Responses in Regulating Host Defense to Gastrointestinal Viruses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:137-171. [PMID: 30904192 PMCID: PMC7104954 DOI: 10.1016/bs.ircmb.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut bacterial and fungal communities residing in the gastrointestinal tract have undisputed far-reaching effects in regulating host health. In the meantime, however, metagenomic sequencing efforts are revealing enteric viruses as the most abundant dimension of the intestinal gut ecosystem, and the first gut virome-wide association studies showed that inflammatory bowel disease as well as type 1 diabetes could be linked to the presence or absence of particular viral inhabitants in the intestine. In line with the genetic component of these human diseases, mouse model studies demonstrated how beneficial functions of a resident virus can switch to detrimental inflammatory effects in a genetically predisposed host. Such viral-induced intestinal immune disturbances are also recapitulated by several gastrointestinal infectious viruses such as rotavirus and human norovirus. This wide range of viral effects on intestinal immunity emphasizes the need for understanding the innate immune responses to gastrointestinal viruses. Numerous nucleic acid sensors such as DexD/H helicases and AIM2 serve as cytosolic viral guardians to induce antiviral interferon and/or pro-inflammatory inflammasome responses. In both cases, pioneering examples are emerging in which RNA helicases cooperate with particular Nod-like receptors to trigger these cellular responses to enteric viruses. Here we summarize the reported beneficial versus detrimental effects of enteric viruses in the intestinal immune system, and we zoom in on the mechanisms through which sensing of nucleic acids from these enteric viruses trigger interferon and inflammasome responses.
Collapse
|
228
|
Han M, Yang P, Zhong C, Ning K. The Human Gut Virome in Hypertension. Front Microbiol 2018; 9:3150. [PMID: 30619215 PMCID: PMC6305721 DOI: 10.3389/fmicb.2018.03150] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives: Previous studies have reported that the gut microbiome has an important link with the development of hypertension. Though previous researches have focused on the links of gut bacteria with hypertension, little has been known about the linkage of gut viruses to hypertension and the development of hypertension, largely due to the lack of data mining tools for such investigation. In this work, we have analyzed 196 fecal metagenomic data related to hypertension aiming to profile the gut virome and link the gut virome to pre-hypertension and hypertension. Design: Here, we have applied a statistically sound method for mining of gut virome data and linking gut virome to hypertension. We characterized the viral composition and bacterial composition of 196 samples, identified the viral-type of each sample and linked gut virome to hypertension. Results: We stratified these 196 fecal samples into two viral-types and selected 32 viruses as the biomarkers for these groups. We found that viruses could have a superior resolution and discrimination power than bacteria for differentiation of healthy samples and pre-hypertension samples, as well as hypertension samples. Moreover, as to the co-occurrence networks linking viruses and bacteria, we found increasingly pervasive virus-bacteria linkages from healthy people to pre-hypertension people to hypertension patients. Conclusion: Overall, our results have shown ample indications of the link between human gut virome and hypertension, and could help provide microbial solutions toward early diagnoses of hypertension.
Collapse
Affiliation(s)
- Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
229
|
Esser D, Lange J, Marinos G, Sieber M, Best L, Prasse D, Bathia J, Rühlemann MC, Boersch K, Jaspers C, Sommer F. Functions of the Microbiota for the Physiology of Animal Metaorganisms. J Innate Immun 2018; 11:393-404. [PMID: 30566939 PMCID: PMC6738199 DOI: 10.1159/000495115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
Animals are usually regarded as independent entities within their respective environments. However, within an organism, eukaryotes and prokaryotes interact dynamically to form the so-called metaorganism or holobiont, where each partner fulfils its versatile and crucial role. This review focuses on the interplay between microorganisms and multicellular eukaryotes in the context of host physiology, in particular aging and mucus-associated crosstalk. In addition to the interactions between bacteria and the host, we highlight the importance of viruses and nonmodel organisms. Moreover, we discuss current culturing and computational methodologies that allow a deeper understanding of underlying mechanisms controlling the physiology of metaorganisms.
Collapse
Affiliation(s)
- Daniela Esser
- Institute of Experimental Medicine, Christian Albrecht University Kiel, Kiel, Germany
| | - Janina Lange
- Zoological Institute, Christian Albrecht University Kiel, Kiel, Germany
| | - Georgios Marinos
- Institute of Experimental Medicine, Christian Albrecht University Kiel, Kiel, Germany
| | - Michael Sieber
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lena Best
- Institute of Experimental Medicine, Christian Albrecht University Kiel, Kiel, Germany
| | - Daniela Prasse
- Institute of General Microbiology, Christian Albrecht University Kiel, Kiel, Germany
| | - Jay Bathia
- Zoological Institute, Christian Albrecht University Kiel, Kiel, Germany
| | - Malte C Rühlemann
- Institute of Clinical Molecular Biology, Christian Albrecht University Kiel, Kiel, Germany
| | - Kathrin Boersch
- Institute of Clinical Molecular Biology, Christian Albrecht University Kiel, Kiel, Germany
| | - Cornelia Jaspers
- Evolutionary Ecology of Marine Fishes, GEOMAR - Helmholtz Center for Ocean Research, Kiel, Germany
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian Albrecht University Kiel, Kiel, Germany,
| |
Collapse
|
230
|
Burbelo PD, Iadarola MJ, Chaturvedi A. Emerging technologies for the detection of viral infections. Future Virol 2018; 14:39-49. [PMID: 31933674 DOI: 10.2217/fvl-2018-0145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viruses represent one of the major environmental agents that cause human illness and disease. However, the ability to diagnose viral infections is limited by detection capability and scope. Here we describe several emerging technologies that provide rapid and/or high-quality viral diagnostic information. Two technologies, novel CRISPR-based diagnostics and a portable DNA sequencing instrument, are uniquely suited to increase the number of viral agents analyzed, even in point of care settings. We also discuss a phage-based method for generating comprehensive viral profiles of previous exposure/infection and a fluid-phase immunoassay that yields highly quantitative viral antibody analyses. Future applications of these approaches will accelerate on-site clinical diagnosis of viral infections and provide insights into the role viruses play in complex diseases.
Collapse
Affiliation(s)
- Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Adrija Chaturvedi
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
231
|
Draper LA, Ryan FJ, Smith MK, Jalanka J, Mattila E, Arkkila PA, Ross RP, Satokari R, Hill C. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. MICROBIOME 2018; 6:220. [PMID: 30526683 PMCID: PMC6288847 DOI: 10.1186/s40168-018-0598-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/18/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is used in the treatment of recurrent Clostridium difficile infection. Its success is typically attributed to the restoration of a diverse microbiota. Viruses (including bacteriophages) are the most numerically dominant and potentially the most diverse members of the microbiota, but their fate following FMT has not been well studied. RESULTS We studied viral transfer following FMT from 3 donors to 14 patients. Recipient viromes resembled those of their donors for up to 12 months. Tracking individual bacteriophage colonisation revealed that engraftment of individual bacteriophages was dependent on specific donor-recipient pairings. Specifically, multiple recipients from a single donor displayed highly individualised virus colonisation patterns. CONCLUSIONS The impact of viruses on long-term microbial dynamics is a factor that should be reviewed when considering FMT as a therapeutic option.
Collapse
Affiliation(s)
- L A Draper
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - F J Ryan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Present Address: South Australian Health and Medical Research Institute, North Terrace, Adelaide, 5000, Australia
| | - M K Smith
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - J Jalanka
- Immunobiology Research Program and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - E Mattila
- Departments of Gastroenterology and Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - P A Arkkila
- Departments of Gastroenterology and Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - R P Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R Satokari
- Immunobiology Research Program and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - C Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
232
|
Changes in the biochemical taste of cytoplasmic and cell-free DNA are major fuels for inflamm-aging. Semin Immunol 2018; 40:6-16. [DOI: 10.1016/j.smim.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
|
233
|
Ramírez-Martínez LA, Loza-Rubio E, Mosqueda J, González-Garay ML, García-Espinosa G. Fecal virome composition of migratory wild duck species. PLoS One 2018; 13:e0206970. [PMID: 30462678 PMCID: PMC6248937 DOI: 10.1371/journal.pone.0206970] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
The fecal virome comprises a complex diversity of eukaryotic viruses, phages and viruses that infect the host. However, little is known about the intestinal community of viruses that is present in wild waterfowl, and the structure of this community in wild ducks has not yet been studied. The fecal virome compositions of six species of wild dabbling ducks and one species of wild diving duck were thus analyzed. Fecal samples were collected directly from the rectums of 60 ducks donated by hunters. DNA and RNA virus particles were purified and sequenced using the MiSeq Illumina platform. The reads obtained from the sequencing were analyzed and compared with sequences in the GenBank database. Viral-related sequences from the Herpesviridae, Alloherpesviridae, Adenoviridae, Retroviridae and Myoviridae viral families showed the highest overall abundances in the samples. The virome analysis identified viruses that had not been found in wild duck feces and revealed distinct virome profiles between different species and between samples of the same species. This study increases our understanding of viruses in wild ducks as possible viral reservoirs and provides a basis for further studying and monitoring the transmission of viruses from wild animals to humans and disease outbreaks in domestic animals.
Collapse
Affiliation(s)
- Luis Alfonso Ramírez-Martínez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elizabeth Loza-Rubio
- Departamento de Biotecnología en Salud Animal, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, (CENID-Microbiología-INIFAP), Ciudad de México, México
| | - Juan Mosqueda
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Querétaro, México
| | - Manuel Leonardo González-Garay
- Department of Medicine, Center for Biomedical Informatics & Biostatistics, The University of Arizona, Tucson, Arizona, United States of America
| | - Gary García-Espinosa
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
234
|
Irwin DM. Viral Insulin/IGF-1-Like Peptides: Novel Regulators of Physiology and Pathophysiology? Endocrinology 2018; 159:3659-3660. [PMID: 30304404 DOI: 10.1210/en.2018-00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/19/2022]
Affiliation(s)
- David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Center, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
235
|
Nerva L, Chitarra W, Siciliano I, Gaiotti F, Ciuffo M, Forgia M, Varese GC, Turina M. Mycoviruses mediate mycotoxin regulation in Aspergillus ochraceus. Environ Microbiol 2018; 21:1957-1968. [PMID: 30289193 DOI: 10.1111/1462-2920.14436] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/30/2022]
Abstract
To date, no demonstration of a direct correlation between the presence of mycoviruses and the quantitative or qualitative modulation of mycotoxins has been shown. In our study, we transfected a virus-free ochratoxin A (OTA)-producing isolate of Aspergillus ochraceus with purified mycoviruses from a different A. ochraceus isolate and from Penicillium aurantiogriseum. Among the mycoviruses tested, only Aspergillus ochraceus virus (AoV), a partitivirus widespread in A. ochraceus, caused a specific interaction that led to an overproduction of OTA, which is regulated by the European Commission and is the second most important contaminant of food and feed commodities. Gene expression analysis failed to reveal a specific viral upregulation of the mRNA of genes considered to play a role in the OTA biosynthetic pathway. Furthermore, AoOTApks1, a polyketide synthase gene considered essential for OTA production, is surprisingly absent in the genome of our OTA-producing isolate. The possible biological and evolutionary implications of the mycoviral regulation of mycotoxin production are discussed.
Collapse
Affiliation(s)
- L Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015, Conegliano (TV), Italy.,Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - W Chitarra
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015, Conegliano (TV), Italy.,Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - I Siciliano
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015, Conegliano (TV), Italy
| | - F Gaiotti
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015, Conegliano (TV), Italy
| | - M Ciuffo
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - M Forgia
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy.,Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - G C Varese
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - M Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
236
|
Bergner LM, Orton RJ, da Silva Filipe A, Shaw AE, Becker DJ, Tello C, Biek R, Streicker DG. Using noninvasive metagenomics to characterize viral communities from wildlife. Mol Ecol Resour 2018; 19:128-143. [PMID: 30240114 PMCID: PMC6378809 DOI: 10.1111/1755-0998.12946] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
Microbial communities play an important role in organismal and ecosystem health. While high-throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low-input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time.
Collapse
Affiliation(s)
- Laura M Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Andrew E Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, Georgia.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Carlos Tello
- Association for the Conservation, Development of Natural Resources, Lima, Peru.,Yunkawasi, Lima, Peru
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
237
|
Jankauskaitė L, Misevičienė V, Vaidelienė L, Kėvalas R. Lower Airway Virology in Health and Disease-From Invaders to Symbionts. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E72. [PMID: 30344303 PMCID: PMC6262431 DOI: 10.3390/medicina54050072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Studies of human airway virome are relatively recent and still very limited. Culture-independent microbial techniques showed growing evidence of numerous viral communities in the respiratory microbial ecosystem. The significance of different acute respiratory viruses is already known in the pathogenesis of chronic conditions, such as asthma, cystic fibrosis (CF), or chronic obstructive lung disease (COPD), and their exacerbations. Viral pathogens, such as influenza, metapneumovirus, parainfluenza, respiratory syncytial virus, or rhinovirus, have been associated with impaired immune response, acute exacerbations, and decrease in lung function in chronic lung diseases. However, more data have attributed a role to Herpes family viruses or the newly identified Anelloviridae family of viruses in chronic diseases, such as asthma, idiopathic pulmonary fibrosis (IPF), or CF. Impaired antiviral immunity, bacterial colonization, or used medication, such as glucocorticoids or antibiotics, contribute to the imbalance of airway microbiome and may shape the local viral ecosystem. A specific part of virome, bacteriophages, frames lung microbial communities through direct contact with its host, the specific bacteria known as Pseudomonas aeruginosa or their biofilm formation. Moreover, antibiotic resistance is induced through phages via horizontal transfer and leads to more severe exacerbations of chronic airway conditions. Morbidity and mortality of asthma, COPD, CF, and IPF remains high, despite an increased understanding and knowledge about the impact of respiratory virome in the pathogenesis of these conditions. Thus, more studies focus on new prophylactic methods or therapeutic agents directed toward viral⁻host interaction, microbial metabolic function, or lung microbial composition rearrangement.
Collapse
Affiliation(s)
- Lina Jankauskaitė
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Valdonė Misevičienė
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Laimutė Vaidelienė
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Rimantas Kėvalas
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| |
Collapse
|
238
|
Characterization of dog serum virome from Northeastern Brazil. Virology 2018; 525:192-199. [PMID: 30292963 DOI: 10.1016/j.virol.2018.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 11/24/2022]
Abstract
Domestic dogs share habitats with human, a fact that makes them a potential source of zoonotic viruses. Moreover, knowledge regarding possible bloodborne pathogens is important due to the increasing application of blood transfusion in dogs. In the present study, we evaluated the serum virome of 520 dogs using throughput sequencing (HTS). The serum samples were pooled and sequenced using an Illumina MiSeq platform. Our unbiased method identified prevalent canine pathogens as canine protoparvovirus 1 (canine parvovirus 2), undersearched agents as canine bocaparvovirus 1 (minute virus of canines) and canine circovirus, circular viruses closely related to viruses recently found in human samples, and new parvovirus and anelloviruses. The dog virome described in the present work furthers the knowledge concerning the viral population in domestic animals. The present data includes information regarding viral agents that are potentially transmitted through blood transfusion among dogs.
Collapse
|
239
|
Ungaro F, Massimino L, Furfaro F, Rimoldi V, Peyrin-Biroulet L, D’Alessio S, Danese S. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 2018; 10:149-158. [PMID: 30252582 PMCID: PMC6546319 DOI: 10.1080/19490976.2018.1511664] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Intestinal dysbiosis is one of the causes underlying the pathogenesis of inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD). Besides bacteria, microbiota comprises both prokaryotic and eukaryotic viruses, that together compose the gut virome. Few works have defined the viral composition of stools, while the virome populating intestinal mucosae from early-diagnosed IBD patients has never been studied. Here we show that, by in-depth metagenomic analysis of RNA-Seq data obtained from gut mucosae of young treatment-naïve patients, early-diagnosed for CD and UC, and from healthy subjects (Ctrl), UC patients display significantly higher levels of eukaryotic Hepadnaviridae transcripts by comparison with both Ctrl and CD patients, whereas CD patients show increased abundance of Hepeviridae versus Ctrl. Moreover, we found that UC gut mucosa is characterized by lower levels of Polydnaviridae and Tymoviridae, whereas the mucosa of patients with CD showed a reduced abundance of Virgaviridae. Our findings support the idea that certain eukaryotic viruses might trigger intestinal inflammation and contribute to IBD pathogenesis and pave the way not only for the discovery of novel diagnostic biomarkers but also for the development of anti-viral drugs for the treatment of IBD.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Furfaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
240
|
Zuo T, Ng SC. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front Microbiol 2018; 9:2247. [PMID: 30319571 PMCID: PMC6167487 DOI: 10.3389/fmicb.2018.02247] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the twenty first century, the changing epidemiology of inflammatory bowel disease (IBD) globally with increasing disease incidence across many countries relates to the altered gut microbiota, due to a combinatorial effect of environmental factors, human immune responses and genetics. IBD is a gastrointestinal disease associated with a gut microbial dysbiosis, including an expansion of facultative anaerobic bacteria of the family Enterobacteriaceae. Advances in high-throughput sequencing enable us to entangle the gut microbiota in human health and IBD beyond the gut bacterial microbiota, expanding insights into the mycobiota, virobiota and helminthes. Caudovirales (viruses) and Basidiomycota, Ascomycota, and Candida albicans (fungi) are revealed to be increased in IBD. The deconvolution of the gut microbiota in IBD lays the basis for unveiling the roles of these various gut microbiota components in IBD pathogenesis and being conductive to instructing on future IBD diagnosis and therapeutics. Here we comprehensively elucidate the alterations in the gut microbiota in IBD, discuss the effect of diets in the gut microbiota in relation to IBD, and illustrate the potential of manipulation of gut microbiota for IBD therapeutics. The therapeutic strategy of antibiotics, prebiotics, probiotics and fecal microbiota transplantation will benefit the effective application of precision microbiome manipulation in IBD.
Collapse
Affiliation(s)
- Tao Zuo
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
241
|
Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1438. [PMID: 30255552 PMCID: PMC6586165 DOI: 10.1002/wsbm.1438] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Mammalian barrier surfaces are densely populated by symbiont fungi in much the same way the former are colonized by symbiont bacteria. The fungal microbiota, otherwise known as the mycobiota, is increasingly recognized as a critical player in the maintenance of health and homeostasis of the host. Here we discuss the impact of the mycobiota on host physiology and disease, the factors influencing mycobiota composition, and the current technologies used for identifying symbiont fungal species. Understanding the tripartite interactions among the host, mycobiota, and other members of the microbiota, will help to guide the development of novel prevention and therapeutic strategies for a variety of human diseases. This article is categorized under:
Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Organismal Models
Collapse
|
242
|
Evaluation of the serum virome in calves persistently infected with Pestivirus A, presenting or not presenting mucosal disease. Virus Genes 2018; 54:768-778. [PMID: 30218293 DOI: 10.1007/s11262-018-1599-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/04/2018] [Indexed: 01/20/2023]
Abstract
Bovine viral diarrhea virus 1, reclassified as Pestivirus A, causes an economically important cattle disease that is distributed worldwide. Pestivirus A may cause persistent infection in that calves excrete the virus throughout their lives, spreading the infection in the herd. Many persistently infected (PI) calves die in the first 2 years of life from mucosal disease (MD) or secondary infections, probably as a consequence of virus-induced immune depression. Here, high-throughput sequencing (HTS) was applied for evaluation of the total virome in sera of (i) PI calves displaying clinically apparent MD (n = 8); (ii) PI calves with no signs of MD (n = 8); and (iii) control, Pestivirus A-free calves (n = 8). All the groups were collected at the same time and from the same herd. Serum samples from calves in each of the groups were pooled, submitted to viral RNA/DNA enrichment, and sequenced by HTS. Viral genomes of Pestivirus A, Ungulate erythroparvovirus 1, bosavirus (BosV), and hypothetical circular Rep-encoding single-stranded DNA (CRESS-DNA) viruses were identified. Specific real-time PCR assays were developed to determine the frequency of occurrence of such viruses in each of the groups. The absolute number of distinct viral genomes detected in both PI calf groups was higher than in the control group, as revealed by higher number of reads, contigs, and genomes, representing a wider range of taxons. Genomes representing members of the family Parvoviridae, such as U. erythroparvovirus 1 and BosV, were most frequently detected in all the three groups of calves. Only in MD-affected PI calves, we found two previously unreported Hypothetical single-stranded DNA genomes clustered along with CRESS-DNA viruses. These findings reveal that parvoviruses were the most frequently detected viral genomes in cattle serum; its frequency of detection bears no statistical correlation with the status of calves in relation to Pestivirus A infection, since clinically normal or MD-affected/non-affected PI calves were infected with similar U. erythroparvovirus 1 genome loads. Moreover, MD-affected PI calves were shown to support viremia of CRESS-DNA viral genomes; however, the meaning of such correlation remains to be established.
Collapse
|
243
|
Azizul Islam SKM, Chung JW, Lee YS, Cho H, Moon SS. Negative Association of Hepatitis B Virus With Hearing Impairment. Am J Audiol 2018; 27:324-332. [PMID: 30167657 DOI: 10.1044/2018_aja-17-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/07/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Hearing impairment is one of the most common chronic diseases causing deterioration of the quality of life in elderly individuals. Several viral infections have been suggested to cause hearing impairment. We investigated association of hepatitis B virus (HBV) infection with hearing impairment using a representative sample of the Korean population. METHOD Participants included 6,583 men and 8,702 women, who were ≥ 20 years of age from the Korea National Health and Nutritional Examination Surveys of the Korean population (2010-2012). Air-conduction pure-tone thresholds were measured in a soundproof booth using an automatic audiometer for each ear at 6 frequencies (500, 1000, 2000, 3000, 4000, and 6000 Hz). An audiometric test and a laboratory examination, including an HBV surface antigen (HBsAg) test, were performed. RESULTS Subjects who are HBsAg positive had lower average of pure-tone thresholds and lower prevalence of hearing impairment at both low/mid and high frequency compared with those without. Adjusted means of hearing thresholds were also lower among subjects who are HBsAg positive compared with subjects who are HBsAg negative. After the adjustment for age and gender, the odds of high-frequency mild hearing impairment were lower for subjects with HBV infection. In the multiple logistic regression analyses adjusting for confounding variables, the significant negative association between HBV infection and high-frequency mild hearing impairment still remained. CONCLUSIONS Contrary to previous reports, subjects who are HBsAg positive had a lower prevalence of hearing impairment compared with subjects who are HBsAg negative. Further studies are warranted to investigate the underlying mechanism regarding their negative relationship.
Collapse
Affiliation(s)
- SKM Azizul Islam
- Medical Institute of Dongguk University, Gyeongju, South Korea
- Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - Jin Wook Chung
- Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - Young-Sil Lee
- Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - HoChan Cho
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Seong-Su Moon
- Medical Institute of Dongguk University, Gyeongju, South Korea
- Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| |
Collapse
|
244
|
Holers VM, Demoruelle MK, Kuhn KA, Buckner JH, Robinson WH, Okamoto Y, Norris JM, Deane KD. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat Rev Rheumatol 2018; 14:542-557. [PMID: 30111803 PMCID: PMC6704378 DOI: 10.1038/s41584-018-0070-0] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Individuals at high risk of developing seropositive rheumatoid arthritis (RA) can be identified for translational research and disease prevention studies through the presence of highly informative and predictive patterns of RA-related autoantibodies, especially anti-citrullinated protein antibodies (ACPAs), in the serum. In serologically positive individuals without arthritis, designated ACPA positive at risk, the presence of mucosal inflammatory processes associated with the presence of local ACPA production has been demonstrated. In other at-risk populations, local RA-related autoantibody production is present even in the absence of serum autoantibodies. Additionally, a proportion of at-risk individuals exhibit local mucosal ACPA production in the lung, as well as radiographic small-airway disease, sputum hypercellularity and increased neutrophil extracellular trap formation. Other mucosal sites in at-risk individuals also exhibit autoantibody production, inflammation and/or evidence of dysbiosis. As the proportion of individuals who exhibit such localized inflammation-associated ACPA production is substantially higher than the likelihood of an individual developing future RA, this finding raises the hypothesis that mucosal ACPAs have biologically relevant protective roles. Identifying the mechanisms that drive both the generation and loss of externally focused mucosal ACPA production and promote systemic autoantibody expression and ultimately arthritis development should provide insights into new therapeutic approaches to prevent RA.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA.
| | | | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | | | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Yuko Okamoto
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| |
Collapse
|
245
|
Cirstea M, Radisavljevic N, Finlay BB. Good Bug, Bad Bug: Breaking through Microbial Stereotypes. Cell Host Microbe 2018; 23:10-13. [PMID: 29324224 DOI: 10.1016/j.chom.2017.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our expanding knowledge of microbial mechanisms is challenging the notion of "good" versus "bad" microbes and encouraging a better understanding of their roles in various contexts before their widespread therapeutic and clinical application. The intestinal microbe Akkermansia muciniphila, a promising probiotic with an emerging cautionary tale, best highlights this challenge.
Collapse
Affiliation(s)
- Mihai Cirstea
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada; Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Nina Radisavljevic
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada; Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
246
|
Mooser C, Gomez de Agüero M, Ganal-Vonarburg SC. Standardization in host-microbiota interaction studies: challenges, gnotobiology as a tool, and perspective. Curr Opin Microbiol 2018; 44:50-60. [PMID: 30056329 DOI: 10.1016/j.mib.2018.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Considering the increasing list of diseases linked to the commensal microbiota, experimental studies of host-microbe interactions are of growing interest. Axenic and differently colonized animal models are inalienable tools to study these interactions. Factors, such as host genetics, diet, antibiotics and litter affect microbiota composition and can be confounding factors in many experimental settings. The use of gnotobiotic mice harboring defined microbiotas of different complexity plus additional housing standardization have thus become a gold standard to study the influence of the microbiome on the host. We highlight here the recent advances, challenges and outstanding goals in gnotobiology with the ambition to contribute to the generation of reliable, reproducible and transferrable results, which form the basis for advances in biomedical research.
Collapse
Affiliation(s)
- Catherine Mooser
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Mercedes Gomez de Agüero
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.
| |
Collapse
|
247
|
Affiliation(s)
- Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
248
|
Tarakhovsky A, Prinjha RK. Drawing on disorder: How viruses use histone mimicry to their advantage. J Exp Med 2018; 215:1777-1787. [PMID: 29934321 PMCID: PMC6028506 DOI: 10.1084/jem.20180099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Humans carry trillions of viruses that thrive because of their ability to exploit the host. In this exploitation, viruses promote their own replication by suppressing the host antiviral response and by inducing changes in host biosynthetic processes, often with extremely small genomes of their own. In the review, we discuss the phenomenon of histone mimicry by viral proteins and how this mimicry allows the virus to dial in to the cell's transcriptional processes and establish a cell state that promotes infection. We suggest that histone mimicry is part of a broader viral strategy to use intrinsic protein disorder as a means to overcome the size limitations of its own genome and to maximize its impact on host protein networks. In particular, we discuss how intrinsic protein disorder may enable viral proteins to interfere with phase-separated host protein condensates, including those that contribute to chromatin-mediated control of gene expression.
Collapse
Affiliation(s)
- Alexander Tarakhovsky
- Laboratory of the Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY
| | - Rab K Prinjha
- Epigenetics DPU, Oncology and Immuno-inflammation TA Units, GlaxoSmithKline Medicines Research Centre, Stevenage, England, UK
| |
Collapse
|
249
|
Abstract
In the 21st century, urbanization represents a major demographic shift in developed and developing countries. Rapid urbanization in the developing world has been associated with an increasing incidence of several autoimmune diseases, including IBD. Patients with IBD exhibit a decrease in the diversity and richness of the gut microbiota, while urbanization attenuates the gut microbial diversity and might have a role in the pathogenesis of IBD. Environmental exposures during urbanization, including Westernization of diet, increased antibiotic use, pollution, improved hygiene status and early-life microbial exposure, have been shown to affect the gut microbiota. The disparate patterns of the gut microbiota composition in rural and urban areas offer an opportunity to understand the contribution of a 'rural microbiome' in potentially protecting against the development of IBD. This Perspective discusses the effect of urbanization and its surrogates on the gut microbiome (bacteriome, virome, mycobiome and helminths) in both human health and IBD and how such changes might be associated with the development of IBD.
Collapse
|
250
|
Chatterjee A, Duerkop BA. Beyond Bacteria: Bacteriophage-Eukaryotic Host Interactions Reveal Emerging Paradigms of Health and Disease. Front Microbiol 2018; 9:1394. [PMID: 29997604 PMCID: PMC6030379 DOI: 10.3389/fmicb.2018.01394] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
For decades, a wealth of information has been acquired to define how host associated microbial communities contribute to health and disease. Within the human microbiota this has largely focused on bacteria, yet there is a myriad of viruses that occupy various tissue sites, the most abundant being bacteriophages that infect bacteria. Animal hosts are colonized with niche specific microbial communities where bacteria are continuously co-evolving with phages. Bacterial growth, metabolic activity, pathogenicity, antibiotic resistance, interspecies competition and evolution can all be influenced by phage infection and the beneficial nature of such interactions suggests that to an extent phages are tolerated by their hosts. With the understanding that phage-specific host–microbe interactions likely contribute to bacterial interactions with their mammalian hosts, phages and their communities may also impact aspects of mammalian health and disease that have gone unrecognized. Here, we review recent progress in understanding how bacteria acquire and tolerate phage in both pure culture and within complex communities. We apply these findings to discuss how intra-body phages interact with bacteria to influence their eukaryotic hosts through potential contributions to microbial homeostasis, mucosal immunity, immune tolerance and autoimmunity.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|