201
|
Qu X, Wang Y, Jiang Q, Ren T, Guo C, Hua K, Qiu J. Interactions of Indoleamine 2,3-dioxygenase-expressing LAMP3 + dendritic cells with CD4 + regulatory T cells and CD8 + exhausted T cells: synergistically remodeling of the immunosuppressive microenvironment in cervical cancer and therapeutic implications. Cancer Commun (Lond) 2023; 43:1207-1228. [PMID: 37794698 PMCID: PMC10631485 DOI: 10.1002/cac2.12486] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the fourth most common cancer in women worldwide. Although immunotherapy has been applied in clinical practice, its therapeutic efficacy remains far from satisfactory, necessitating further investigation of the mechanism of CC immune remodeling and exploration of novel treatment targets. This study aimed to investigate the mechanism of CC immune remodeling and explore potential therapeutic targets. METHODS We conducted single-cell RNA sequencing on a total of 17 clinical specimens, including normal cervical tissues, high-grade squamous intraepithelial lesions, and CC tissues. To validate our findings, we conducted multicolor immunohistochemical staining of CC tissues and constructed a subcutaneous tumorigenesis model in C57BL/6 mice using murine CC cell lines (TC1) to evaluate the effectiveness of combination therapy involving indoleamine 2,3-dioxygenase 1 (IDO1) inhibition and immune checkpoint blockade (ICB). We used the unpaired two-tailed Student's t-test, Mann-Whitney test, or Kruskal-Wallis test to compare continuous data between two groups and one-way ANOVA with Tukey's post hoc test to compare data between multiple groups. RESULTS Malignant cervical epithelial cells did not manifest noticeable signs of tumor escape, whereas lysosomal-associated membrane protein 3-positive (LAMP3+ ) dendritic cells (DCs) in a mature state with immunoregulatory roles were found to express IDO1 and affect tryptophan metabolism. These cells interacted with both tumor-reactive exhausted CD8+ T cells and CD4+ regulatory T cells, synergistically forming a vicious immunosuppressive cycle and mediating CC immune escape. Further validation through multicolor immunohistochemical staining showed co-localization of neoantigen-reactive T cells (CD3+ , CD4+ /CD8+ , and PD-1+ ) and LAMP3+ DCs (CD80+ and PD-L1+ ). Additionally, a combination of the IDO1 inhibitor with an ICB agent significantly reduced tumor volume in the mouse model of CC compared with an ICB agent alone. CONCLUSIONS Our study suggested that a combination treatment consisting of targeting IDO1 and ICB agent could improve the therapeutic efficacy of current CC immunotherapies. Additionally, our results provided crucial insights for designing drugs and conducting future clinical trials for CC.
Collapse
Affiliation(s)
- Xinyu Qu
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Yumeng Wang
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Qian Jiang
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Tingting Ren
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Chenyan Guo
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Keqin Hua
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Junjun Qiu
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| |
Collapse
|
202
|
Hoeijmakers LL, Reijers ILM, Blank CU. Biomarker-Driven Personalization of Neoadjuvant Immunotherapy in Melanoma. Cancer Discov 2023; 13:2319-2338. [PMID: 37668337 DOI: 10.1158/2159-8290.cd-23-0352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
The introduction of immunotherapy has ushered in a new era of anticancer therapy for many cancer types including melanoma. Given the increasing development of novel compounds and combinations and the investigation in earlier disease stages, the need grows for biomarker-based treatment personalization. Stage III melanoma is one of the front-runners in the neoadjuvant immunotherapy field, facilitating quick biomarker identification by its immunogenic capacity, homogeneous patient population, and reliable efficacy readout. In this review, we discuss potential biomarkers for response prediction to neoadjuvant immunotherapy, and how the neoadjuvant melanoma platform could pave the way for biomarker identification in other tumor types. SIGNIFICANCE In accordance with the increasing rate of therapy development, the need for biomarker-driven personalized treatments grows. The current landscape of neoadjuvant treatment and biomarker development in stage III melanoma can function as a poster child for these personalized treatments in other tumors, assisting in the development of new biomarker-based neoadjuvant trials. This will contribute to personalized benefit-risk predictions to identify the most beneficial treatment for each patient.
Collapse
Affiliation(s)
- Lotte L Hoeijmakers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| | - Irene L M Reijers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Molecular Oncology and Immunology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| |
Collapse
|
203
|
Meng XY, Wu QJ. Tumor mutation burden as a marker for molecularly matched therapy: more evidence needed. Epigenomics 2023; 15:1175-1178. [PMID: 37965682 DOI: 10.2217/epi-2023-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Affiliation(s)
- Xiang-Yu Meng
- Health Science Center, Hubei Minzu University, Enshi, 445000, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, 445000, China
| | - Qiu-Ji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumour Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
204
|
Martynchyk A, Chowdhury R, Hawkes EA, Keane C. Prognostic Markers within the Tumour Microenvironment in Classical Hodgkin Lymphoma. Cancers (Basel) 2023; 15:5217. [PMID: 37958391 PMCID: PMC10649036 DOI: 10.3390/cancers15215217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) accounts for 0.4% of all new cancer cases globally. Despite high cure rates with standard treatment, approximately 15% of patients still experience relapsed or refractory (RR) disease, and many of these eventually die from lymphoma-related causes. Exciting new targeted agents such as anti-PD-1 agents and brentuximab vedotin have changed the therapeutic paradigm beyond chemotherapy and radiotherapy alone. Advances in understanding of the molecular biology are providing insights in the context of novel therapies. The signature histology of cHL requires the presence of scant malignant Hodgkin Reed-Sternberg cells (HRSCs) surrounded by a complex immune-rich tumour microenvironment (TME). The TME cellular composition strongly influences outcomes, yet knowledge of the precise characteristics of TME cells and their interactions with HRSCs is evolving. Novel high-throughput technologies and single-cell sequencing allow deeper analyses of the TME and mechanisms elicited by HRSCs to propagate growth and avoid immune response. In this review, we explore the evolution of knowledge on the prognostic role of immune cells within the TME and provide an up-to-date overview of emerging prognostic data on cHL from new technologies that are starting to unwind the complexity of the cHL TME and provide translational insights into how to improve therapy in the clinic.
Collapse
Affiliation(s)
- Arina Martynchyk
- Olivia Newton-John Cancer Research & Wellness Centre, Austin Health, 145 Studley Rd., Heidelberg, VIC 3084, Australia; (A.M.); (E.A.H.)
| | - Rakin Chowdhury
- Princess Alexandra Hospital, 199 Ipswich Rd., Woolloongabba, QLD 4102, Australia;
- Frazer Institute, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Eliza A. Hawkes
- Olivia Newton-John Cancer Research & Wellness Centre, Austin Health, 145 Studley Rd., Heidelberg, VIC 3084, Australia; (A.M.); (E.A.H.)
- School of Public Health & Preventive Medicine, Monash University, 553 St Kilda Rd., Melbourne, VIC 3004, Australia
| | - Colm Keane
- Princess Alexandra Hospital, 199 Ipswich Rd., Woolloongabba, QLD 4102, Australia;
- Frazer Institute, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
205
|
Zhao S, Chen DP, Fu T, Yang JC, Ma D, Zhu XZ, Wang XX, Jiao YP, Jin X, Xiao Y, Xiao WX, Zhang HY, Lv H, Madabhushi A, Yang WT, Jiang YZ, Xu J, Shao ZM. Single-cell morphological and topological atlas reveals the ecosystem diversity of human breast cancer. Nat Commun 2023; 14:6796. [PMID: 37880211 PMCID: PMC10600153 DOI: 10.1038/s41467-023-42504-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Digital pathology allows computerized analysis of tumor ecosystem using whole slide images (WSIs). Here, we present single-cell morphological and topological profiling (sc-MTOP) to characterize tumor ecosystem by extracting the features of nuclear morphology and intercellular spatial relationship for individual cells. We construct a single-cell atlas comprising 410 million cells from 637 breast cancer WSIs and dissect the phenotypic diversity within tumor, inflammatory and stroma cells respectively. Spatially-resolved analysis identifies recurrent micro-ecological modules representing locoregional multicellular structures and reveals four breast cancer ecotypes correlating with distinct molecular features and patient prognosis. Further analysis with multiomics data uncovers clinically relevant ecosystem features. High abundance of locally-aggregated inflammatory cells indicates immune-activated tumor microenvironment and favorable immunotherapy response in triple-negative breast cancers. Morphological intratumor heterogeneity of tumor nuclei correlates with cell cycle pathway activation and CDK inhibitors responsiveness in hormone receptor-positive cases. sc-MTOP enables using WSIs to characterize tumor ecosystems at the single-cell level.
Collapse
Affiliation(s)
- Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - De-Pin Chen
- Institute for Artificial Intelligence in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Tong Fu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing-Cheng Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiu-Zhi Zhu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiang-Xue Wang
- Institute for Artificial Intelligence in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yi-Ping Jiao
- Institute for Artificial Intelligence in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wen-Xuan Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hu-Yunlong Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Anant Madabhushi
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Jun Xu
- Institute for Artificial Intelligence in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
206
|
Tsai YY, Qu C, Bonner JD, Sanz-Pamplona R, Lindsey SS, Melas M, McDonnell KJ, Idos GE, Walker CP, Tsang KK, Da Silva DM, Moratalla-Navarro F, Maoz A, Rennert HS, Kast WM, Greenson JK, Moreno V, Rennert G, Gruber SB, Schmit SL. Heterozygote advantage at HLA class I and II loci and reduced risk of colorectal cancer. Front Immunol 2023; 14:1268117. [PMID: 37942321 PMCID: PMC10627840 DOI: 10.3389/fimmu.2023.1268117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Objective Reduced diversity at Human Leukocyte Antigen (HLA) loci may adversely affect the host's ability to recognize tumor neoantigens and subsequently increase disease burden. We hypothesized that increased heterozygosity at HLA loci is associated with a reduced risk of developing colorectal cancer (CRC). Methods We imputed HLA class I and II four-digit alleles using genotype data from a population-based study of 5,406 cases and 4,635 controls from the Molecular Epidemiology of Colorectal Cancer Study (MECC). Heterozygosity at each HLA locus and the number of heterozygous genotypes at HLA class -I (A, B, and C) and HLA class -II loci (DQB1, DRB1, and DPB1) were quantified. Logistic regression analysis was used to estimate the risk of CRC associated with HLA heterozygosity. Individuals with homozygous genotypes for all loci served as the reference category, and the analyses were adjusted for sex, age, genotyping platform, and ancestry. Further, we investigated associations between HLA diversity and tumor-associated T cell repertoire features, as measured by tumor infiltrating lymphocytes (TILs; N=2,839) and immunosequencing (N=2,357). Results Individuals with all heterozygous genotypes at all three class I genes had a reduced odds of CRC (OR: 0.74; 95% CI: 0.56-0.97, p= 0.031). A similar association was observed for class II loci, with an OR of 0.75 (95% CI: 0.60-0.95, p= 0.016). For class-I and class-II combined, individuals with all heterozygous genotypes had significantly lower odds of developing CRC (OR: 0.66, 95% CI: 0.49-0.87, p= 0.004) than those with 0 or one heterozygous genotype. HLA class I and/or II diversity was associated with higher T cell receptor (TCR) abundance and lower TCR clonality, but results were not statistically significant. Conclusion Our findings support a heterozygote advantage for the HLA class-I and -II loci, indicating an important role for HLA genetic variability in the etiology of CRC.
Collapse
Affiliation(s)
- Ya-Yu Tsai
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chenxu Qu
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Joseph D. Bonner
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Rebeca Sanz-Pamplona
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Hospital Universitario Lozano Blesa, Aragon Health Research Institute (IISA), ARAID Foundation, Aragon Government, Zaragoza, Spain
| | - Sidney S. Lindsey
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Marilena Melas
- Molecular Diagnostics, New York Genome Center, New York, NY, United States
| | - Kevin J. McDonnell
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Gregory E. Idos
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Christopher P. Walker
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Kevin K. Tsang
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Diane M. Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Ferran Moratalla-Navarro
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - Asaf Maoz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Hedy S. Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - W. Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Joel K. Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Victor Moreno
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - Gad Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - Stephen B. Gruber
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Stephanie L. Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
| |
Collapse
|
207
|
Zhao J, Dong Y, Bai H, Bai F, Yan X, Duan J, Wan R, Xu J, Fei K, Wang J, Wang Z. Multi-omics indicators of long-term survival benefits after immune checkpoint inhibitor therapy. CELL REPORTS METHODS 2023; 3:100596. [PMID: 37738982 PMCID: PMC10626191 DOI: 10.1016/j.crmeth.2023.100596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Molecular indicators of long-term survival (LTS) in response to immune-checkpoint inhibitor (ICI) treatment have the potential to provide both mechanistic and therapeutic insights. In this study, we construct predictive models of LTS following ICI therapy based on data from 158 clinical trials involving 21,023 patients of 25 cancer types with available 1-year overall survival (OS) rates. We present evidence for the use of 1-year OS rate as a surrogate for LTS. Based on these and corresponding TCGA multi-omics data, total neoantigen, metabolism score, CD8+ T cell, and MHC_score were identified as predictive biomarkers. These were integrated into a Gaussian process regression model that estimates "long-term survival predictive score of immunotherapy" (iLSPS). We found that iLSPS outperformed the predictive capabilities of individual biomarkers and successfully predicted LTS of patient groups with melanoma and lung cancer. Our study explores the feasibility of modeling LTS based on multi-omics indicators and machine-learning methods.
Collapse
Affiliation(s)
- Jie Zhao
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yiting Dong
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Hua Bai
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100021, China
| | - Xiaoyan Yan
- Clinical Research Institute, Peking University, Beijing 100021, China
| | - Jianchun Duan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Rui Wan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jiachen Xu
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Kailun Fei
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Zhijie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
208
|
Adeuyan O, Gordon ER, Kenchappa D, Bracero Y, Singh A, Espinoza G, Geskin LJ, Saenger YM. An update on methods for detection of prognostic and predictive biomarkers in melanoma. Front Cell Dev Biol 2023; 11:1290696. [PMID: 37900283 PMCID: PMC10611507 DOI: 10.3389/fcell.2023.1290696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
The approval of immunotherapy for stage II-IV melanoma has underscored the need for improved immune-based predictive and prognostic biomarkers. For resectable stage II-III patients, adjuvant immunotherapy has proven clinical benefit, yet many patients experience significant adverse events and may not require therapy. In the metastatic setting, single agent immunotherapy cures many patients but, in some cases, more intensive combination therapies against specific molecular targets are required. Therefore, the establishment of additional biomarkers to determine a patient's disease outcome (i.e., prognostic) or response to treatment (i.e., predictive) is of utmost importance. Multiple methods ranging from gene expression profiling of bulk tissue, to spatial transcriptomics of single cells and artificial intelligence-based image analysis have been utilized to better characterize the immune microenvironment in melanoma to provide novel predictive and prognostic biomarkers. In this review, we will highlight the different techniques currently under investigation for the detection of prognostic and predictive immune biomarkers in melanoma.
Collapse
Affiliation(s)
- Oluwaseyi Adeuyan
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Emily R. Gordon
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Divya Kenchappa
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yadriel Bracero
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ajay Singh
- Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Larisa J. Geskin
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States
| | | |
Collapse
|
209
|
Hernando-Calvo A, Vila-Casadesús M, Bareche Y, Gonzalez-Medina A, Abbas-Aghababazadeh F, Lo Giacco D, Martin A, Saavedra O, Brana I, Vieito M, Fasani R, Stagg J, Mancuso F, Haibe-Kains B, Han M, Berche R, Pugh TJ, Mirallas O, Jimenez J, Gonzalez NS, Valverde C, Muñoz-Couselo E, Suarez C, Diez M, Élez E, Capdevila J, Oaknin A, Saura C, Macarulla T, Galceran JC, Felip E, Dienstmann R, Bedard PL, Nuciforo P, Seoane J, Tabernero J, Garralda E, Vivancos A. A pan-cancer clinical platform to predict immunotherapy outcomes and prioritize immuno-oncology combinations in early-phase trials. MED 2023; 4:710-727.e5. [PMID: 37572657 DOI: 10.1016/j.medj.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/01/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Immunotherapy is effective, but current biomarkers for patient selection have proven modest sensitivity. Here, we developed VIGex, an optimized gene signature based on the expression level of 12 genes involved in immune response with RNA sequencing. METHODS We implemented VIGex using the nCounter platform (Nanostring) on a large clinical cohort encompassing 909 tumor samples across 45 tumor types. VIGex was developed as a continuous variable, with cutoffs selected to detect three main categories (hot, intermediate-cold and cold) based on the different inflammatory status of the tumor microenvironment. FINDINGS Hot tumors had the highest VIGex scores and exhibited an increased abundance of tumor-infiltrating lymphocytes as compared with the intermediate-cold and cold. VIGex scores varied depending on tumor origin and anatomic site of metastases, with liver metastases showing an immunosuppressive tumor microenvironment. The predictive power of VIGex-Hot was observed in a cohort of 98 refractory solid tumor from patients treated in early-phase immunotherapy trials and its clinical performance was confirmed through an extensive metanalysis across 13 clinically annotated gene expression datasets from 877 patients treated with immunotherapy agents. Last, we generated a pan-cancer biomarker platform that integrates VIGex categories with the expression levels of immunotherapy targets under development in early-phase clinical trials. CONCLUSIONS Our results support the clinical utility of VIGex as a tool to aid clinicians for patient selection and personalized immunotherapy interventions. FUNDING BBVA Foundation; 202-2021 Division of Medical Oncology and Hematology Fellowship award; Princess Margaret Cancer Center.
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain; Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G2C4, Canada; Departamento de Medicina, Universidad Autónoma de Barcelona (UAB), 08035 Barcelona, Spain
| | | | - Yacine Bareche
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X0A9, Canada; Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T1J4, Canada
| | | | | | | | - Agatha Martin
- Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Omar Saavedra
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Irene Brana
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Maria Vieito
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Roberta Fasani
- Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - John Stagg
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X0A9, Canada; Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T1J4, Canada
| | | | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S2E4, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5G1M1, Canada
| | - Ming Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Roger Berche
- Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Oriol Mirallas
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Jose Jimenez
- Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Nadia Saoudi Gonzalez
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Claudia Valverde
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Eva Muñoz-Couselo
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Cristina Suarez
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Marc Diez
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Elena Élez
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Jaume Capdevila
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Ana Oaknin
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Cristina Saura
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Teresa Macarulla
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Joan Carles Galceran
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Enriqueta Felip
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | | | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G2C4, Canada
| | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Josep Tabernero
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Elena Garralda
- Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain.
| |
Collapse
|
210
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
211
|
Fridman WH, Meylan M, Pupier G, Calvez A, Hernandez I, Sautès-Fridman C. Tertiary lymphoid structures and B cells: An intratumoral immunity cycle. Immunity 2023; 56:2254-2269. [PMID: 37699391 DOI: 10.1016/j.immuni.2023.08.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023]
Abstract
The generation of anti-tumor immunity in the draining lymph nodes is known as the cancer immunity cycle. Accumulating evidence supports the occurrence of such a cycle at tumor sites in the context of chronic inflammation. Here, we review the role of tertiary lymphoid structures (TLS) in the generation of T and B cell immunities, focusing on the impact of B cells that undergo full maturation, resulting in the generation of plasma cells (PCs) producing high-affinity IgG and IgA antibodies. In this context, we propose that antibodies binding to tumor cells induce macrophage or natural killer (NK)-cell-dependent apoptosis. Subsequently, released antigen-antibody complexes are internalized and processed by dendritic cells (DCs), amplifying antigen presentation to T cells. Immune complexes may also be fixed by follicular DCs (FDCs) in TLS, thereby increasing memory B cell responses. This amplification loop creates an intra-tumoral immunity cycle, capable of increasing sensitivity of tumors to immunotherapy even in cancers with low mutational burden.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France.
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| | - Guilhem Pupier
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| | - Anne Calvez
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| | - Isaïas Hernandez
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| |
Collapse
|
212
|
Abascal J, Oh MS, Liclican EL, Dubinett SM, Salehi-Rad R, Liu B. Dendritic Cell Vaccination in Non-Small Cell Lung Cancer: Remodeling the Tumor Immune Microenvironment. Cells 2023; 12:2404. [PMID: 37830618 PMCID: PMC10571973 DOI: 10.3390/cells12192404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.
Collapse
Affiliation(s)
- Jensen Abascal
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Michael S. Oh
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Elvira L. Liclican
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Steven M. Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095-1690, USA
| | - Ramin Salehi-Rad
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bin Liu
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| |
Collapse
|
213
|
Valero C, Golkaram M, Vos JL, Xu B, Fitzgerald C, Lee M, Kaplan S, Han CY, Pei X, Sarkar R, Boe LA, Pandey A, Koh ES, Zuur CL, Solit DB, Pawlowski T, Liu L, Ho AL, Chowell D, Riaz N, Chan TA, Morris LG. Clinical-genomic determinants of immune checkpoint blockade response in head and neck squamous cell carcinoma. J Clin Invest 2023; 133:e169823. [PMID: 37561583 PMCID: PMC10541199 DOI: 10.1172/jci169823] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUNDRecurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) is generally an incurable disease, with patients experiencing median survival of under 10 months and significant morbidity. While immune checkpoint blockade (ICB) drugs are effective in approximately 20% of patients, the remaining experience limited clinical benefit and are exposed to potential adverse effects and financial costs. Clinically approved biomarkers, such as tumor mutational burden (TMB), have a modest predictive value in HNSCC.METHODSWe analyzed clinical and genomic features, generated using whole-exome sequencing, in 133 ICB-treated patients with R/M HNSCC, of whom 69 had virus-associated and 64 had non-virus-associated tumors.RESULTSHierarchical clustering of genomic data revealed 6 molecular subtypes characterized by a wide range of objective response rates and survival after ICB therapy. The prognostic importance of these 6 subtypes was validated in an external cohort. A random forest-based predictive model, using several clinical and genomic features, predicted progression-free survival (PFS), overall survival (OS), and response with greater accuracy than did a model based on TMB alone. Recursive partitioning analysis identified 3 features (systemic inflammatory response index, TMB, and smoking signature) that classified patients into risk groups with accurate discrimination of PFS and OS.CONCLUSIONThese findings shed light on the immunogenomic characteristics of HNSCC tumors that drive differential responses to ICB and identify a clinical-genomic classifier that outperformed the current clinically approved biomarker of TMB. This validated predictive tool may help with clinical risk stratification in patients with R/M HNSCC for whom ICB is being considered.FUNDINGFundación Alfonso Martín Escudero, NIH R01 DE027738, US Department of Defense CA210784, The Geoffrey Beene Cancer Research Center, The MSKCC Population Science Research Program, the Jayme Flowers Fund, the Sebastian Nativo Fund, and the NIH/NCI Cancer Center Support Grant P30 CA008748.
Collapse
Affiliation(s)
- Cristina Valero
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | | | - Joris L. Vos
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Bin Xu
- Department of Pathology and Laboratory Medicine
| | - Conall Fitzgerald
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Mark Lee
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | | | - Catherine Y. Han
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Xin Pei
- Department of Radiation Oncology, and
| | | | - Lillian A. Boe
- Department of Biostatistics and Epidemiology, MSKCC, New York, New York, USA
| | - Abhinav Pandey
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Elizabeth S. Koh
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Charlotte L. Zuur
- Department of Head and Neck Oncology and Surgery, Antoni van Leeuwenhoek Hospital–Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Li Liu
- Illumina Inc., San Diego, California, USA
| | - Alan L. Ho
- Department of Medicine, MSKCC, New York, New York, USA
| | - Diego Chowell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Timothy A. Chan
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Luc G.T. Morris
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| |
Collapse
|
214
|
Westcott PMK, Muyas F, Hauck H, Smith OC, Sacks NJ, Ely ZA, Jaeger AM, Rideout WM, Zhang D, Bhutkar A, Beytagh MC, Canner DA, Jaramillo GC, Bronson RT, Naranjo S, Jin A, Patten JJ, Cruz AM, Shanahan SL, Cortes-Ciriano I, Jacks T. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity. Nat Genet 2023; 55:1686-1695. [PMID: 37709863 PMCID: PMC10562252 DOI: 10.1038/s41588-023-01499-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
DNA mismatch repair deficiency (MMRd) is associated with a high tumor mutational burden (TMB) and sensitivity to immune checkpoint blockade (ICB) therapy. Nevertheless, most MMRd tumors do not durably respond to ICB and critical questions remain about immunosurveillance and TMB in these tumors. In the present study, we developed autochthonous mouse models of MMRd lung and colon cancer. Surprisingly, these models did not display increased T cell infiltration or ICB response, which we showed to be the result of substantial intratumor heterogeneity of mutations. Furthermore, we found that immunosurveillance shapes the clonal architecture but not the overall burden of neoantigens, and T cell responses against subclonal neoantigens are blunted. Finally, we showed that clonal, but not subclonal, neoantigen burden predicts ICB response in clinical trials of MMRd gastric and colorectal cancer. These results provide important context for understanding immune evasion in cancers with a high TMB and have major implications for therapies aimed at increasing TMB.
Collapse
Affiliation(s)
- Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Haley Hauck
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivia C Smith
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathan J Sacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex M Jaeger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary C Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Canner
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel C Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abbey Jin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J J Patten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda M Cruz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
215
|
Reading JL, Caswell DR, Swanton C. Tumor heterogeneity impairs immunogenicity in mismatch repair deficient tumors. Nat Genet 2023; 55:1610-1612. [PMID: 37758959 DOI: 10.1038/s41588-023-01492-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Affiliation(s)
- James L Reading
- Pre-Cancer Immunology Laboratory, UCL Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Deborah R Caswell
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
216
|
Kisistók J, Christensen DS, Rasmussen MH, Duval L, Aggerholm-Pedersen N, Luczak AA, Sorensen BS, Jakobsen MR, Oellegaard TH, Birkbak NJ. Analysis of circulating tumor DNA during checkpoint inhibition in metastatic melanoma using a tumor-agnostic panel. Melanoma Res 2023; 33:364-374. [PMID: 37294123 PMCID: PMC10470440 DOI: 10.1097/cmr.0000000000000903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Immunotherapy has revolutionized treatment of patients diagnosed with metastatic melanoma, where nearly half of patients receive clinical benefit. However, immunotherapy is also associated with immune-related adverse events, which may be severe and persistent. It is therefore important to identify patients that do not benefit from therapy early. Currently, regularly scheduled CT scans are used to investigate size changes in target lesions to evaluate progression and therapy response. This study aims to explore if panel-based analysis of circulating tumor DNA (ctDNA) taken at 3-week intervals may provide a window into the growing cancer, can be used to identify nonresponding patients early, and determine genomic alterations associated with acquired resistance to checkpoint immunotherapy without analysis of tumor tissue biopsies. We designed a gene panel for ctDNA analysis and sequenced 4-6 serial plasma samples from 24 patients with unresectable stage III or IV melanoma and treated with first-line checkpoint inhibitors enrolled at the Department of Oncology at Aarhus University Hospital, Denmark. TERT was the most mutated gene found in ctDNA and associated with a poor prognosis. We detected more ctDNA in patients with high metastatic load, which indicates that more aggressive tumors release more ctDNA into the bloodstream. Although we did not find evidence of specific mutations associated with acquired resistance, we did demonstrate in this limited cohort of 24 patients that untargeted, panel-based ctDNA analysis has the potential to be used as a minimally invasive tool in clinical practice to identify patients where the benefits of immunotherapy outweigh the drawbacks.
Collapse
Affiliation(s)
- Judit Kisistók
- Department of Molecular Medicine, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
- Bioinformatics Research Center, Aarhus University
| | - Ditte Sigaard Christensen
- Department of Molecular Medicine, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
- Department of Oncology, Aarhus University Hospital, Aarhus
| | - Mads Heilskov Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| | - Lone Duval
- Department of Oncology, Goedstrup Hospital, Herning
| | | | | | | | | | - Trine Heide Oellegaard
- Department of Clinical Medicine, Aarhus University
- Department of Oncology, Goedstrup Hospital, Herning
| | - Nicolai Juul Birkbak
- Department of Molecular Medicine, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
- Bioinformatics Research Center, Aarhus University
| |
Collapse
|
217
|
Raj R, Aykun N, Wehrle CJ, Maspero M, Krishnamurthi S, Estfan B, Kamath S, Aucejo F. Immunotherapy for Advanced Hepatocellular Carcinoma-a Large Tertiary Center Experience. J Gastrointest Surg 2023; 27:2126-2134. [PMID: 37464142 DOI: 10.1007/s11605-023-05783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Combination of immune-checkpoint inhibitor (ICI) and vascular endothelial growth factor (VEGF) antagonist has become the first line systemic treatment for advanced hepatocellular carcinoma (HCC). However, two-thirds of patients do not respond to ICI-based treatments and biomarkers for response remain elusive. METHODS Patients with advanced HCC who received Atezolizumab/Bevacizumab combination or Nivolumab during 2016-2022 were identified in our Liver Cancer Database. Retrospective review of their clinical data was performed to investigate parameters that could be predictive of immunotherapy response. RESULTS 96 patients received Atezolizumab/Bevacizumab (n=60) or Nivolumab (n=36). Median age at diagnosis was 67.1 years. 70 patients had received treatment and 26 patients were treatment naïve before starting immunotherapy. Mean pre-treatment AFP was 9780.7 (±32035) ng/mL. Confirmed objective response (complete or partial) was seen in 29% of the population (n=27). Disease remained stable in 12% (n=11) and progressed in 60% (n=56). On univariate analysis, pre-treatment AFP>400 ng/mL was associated with objective response (OR=4.5, 95% CI:1.7-11.9, p=0.0015), while white race (OR=0.35, 95% CI:0.13-0.92, p=0.030) and prior radiotherapy (OR=0.14, 95% CI:0.01-1.1, p=0.033) or systemic therapy with TKIs (OR=0.25, 95% CI:0.08-0.81, p=0.017) were associated with poor response. On multivariate analysis only AFP>400 ng/mL remained associated with response (OR=3.7, 95% CI:1.3-10.5, p=0.014). Overall survival (OS) at one and three years was 86% and 43% in responders, and 45% and 29% in non-responders, respectively. CONCLUSION In our institutional experience, treatment naivety and pre-treatment AFP>400 ng/mL were associated with objective response. Prospective studies aimed at identifying factors associated with response to immunotherapy will aide patient selection.
Collapse
Affiliation(s)
- Roma Raj
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA.
| | - Nihal Aykun
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA
| | - Chase J Wehrle
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA
| | - Marianna Maspero
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA
| | - Smitha Krishnamurthi
- Cleveland Clinic Foundation, Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland, OH, USA
| | - Bassam Estfan
- Cleveland Clinic Foundation, Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland, OH, USA
| | - Suneel Kamath
- Cleveland Clinic Foundation, Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland, OH, USA
| | - Federico Aucejo
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA.
| |
Collapse
|
218
|
Roussot N, Lecuelle J, Dalens L, Truntzer C, Ghiringhelli F. FGF/FGFR genomic amplification as a predictive biomarker for immune checkpoint blockade resistance: a short report. J Immunother Cancer 2023; 11:e007763. [PMID: 37890888 PMCID: PMC10618988 DOI: 10.1136/jitc-2023-007763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
A novel crosstalk between immunogenic and oncometabolic pathways triggered by T cell-released interferon-gamma (IFN-ɣ) has been recently identified. This IFN-ɣ-pyruvate kinase M2-β-catenin axis relies on fibroblast growth factor 2 (FGF2) signaling in tumor cells and leads to hyperprogressive disease on immune checkpoint blockade (ICB) in preclinical models. This result underlines how IFN-ɣ signaling may have distinct effects on tumor cells depending on their oncogenic and metabolic features. On the basis of these data, this study aims to explore the relationship between genomic tumor FGF2 or FGF/FGF receptor (FGFR) amplification and immunotherapy response in patients with metastatic solid cancers. We used a large genomic data set of 545 ICB-treated patients and compared outcomes between those with and without FGF2 genomic amplification. Patients with no FGF2 genomic amplification had significantly longer progression-free survival (PFS) (HR=0.55 (95% CI 0.4, 0.8); p value=0.005) and overall survival (OS) (HR=0.56 (0.3, 0.9); p value=0.02) than patients harboring an FGF2 amplification. We next questioned whether such an observation may extend to genomic amplification of the FGF/FGFR pathway. Similarly, patients with no FGF/FGFR genomic amplification had longer PFS (HR=0.71 (0.8, 0.9), p value=0.004) and OS (HR=0.77 (0.6, 1); p value=0.06). RNA sequencing analysis of tumors between the amplified and non-amplified populations showed distinct expression profiles concerning oncogenic pathways. Importantly, using a cohort of patients untreated with ICB from the The Cancer Genome Atlas, we show that FGF2 and FGF/FGFR genomic amplification were not associated with prognosis, thus demonstrating that we identified a predictive biomarker of immunotherapy resistance.
Collapse
Affiliation(s)
- Nicolas Roussot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, Bourgogne-Franche-Comté, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, Bourgogne-Franche-Comté, France
- University of Bourgogne Franche-Comté, Dijon, France
- UMR INSERM 1231, Dijon, France
| | - Julie Lecuelle
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, Bourgogne-Franche-Comté, France
- University of Bourgogne Franche-Comté, Dijon, France
- UMR INSERM 1231, Dijon, France
| | - Lorraine Dalens
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, Bourgogne-Franche-Comté, France
| | - Caroline Truntzer
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, Bourgogne-Franche-Comté, France
- University of Bourgogne Franche-Comté, Dijon, France
- UMR INSERM 1231, Dijon, France
| | - Francois Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, Bourgogne-Franche-Comté, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, Bourgogne-Franche-Comté, France
- University of Bourgogne Franche-Comté, Dijon, France
- UMR INSERM 1231, Dijon, France
| |
Collapse
|
219
|
Lin X, Zong C, Zhang Z, Fang W, Xu P. Progresses in biomarkers for cancer immunotherapy. MedComm (Beijing) 2023; 4:e387. [PMID: 37799808 PMCID: PMC10547938 DOI: 10.1002/mco2.387] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Currently, checkpoint inhibitor-based immunotherapy has emerged as prevailing treatment modality for diverse cancers. However, immunotherapy as a first-line therapy has not consistently yielded durable responses. Moreover, the risk of immune-related adverse events increases with combination regimens. Thus, the development of predictive biomarkers is needed to optimize individuals benefit, minimize risk of toxicities, and guide combination approaches. The greatest focus has been on tumor programmed cell death-ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational burden (TMB). However, there remains a subject of debate due to thresholds variability and significant heterogeneity. Major unmet challenges in immunotherapy are the discovery and validation of predictive biomarkers. Here, we show the status of tumor PD-L1, MSI, TMB, and emerging data on novel biomarker strategies with oncogenic signaling and epigenetic regulation. Considering the exploration of peripheral and intestinal immunity has served as noninvasive alternative in predicting immunotherapy, this review also summarizes current data in systemic immunity, encompassing solute PD-L1 and TMB, circulating tumor DNA and infiltrating lymphocytes, routine emerging inflammatory markers and cytokines, as well as gut microbiota. This review provides up-to-date information on the evolving field of currently available biomarkers in predicting immunotherapy. Future exploration of novel biomarkers is warranted.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineShantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Chenyu Zong
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| | - Zhihan Zhang
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Weiyi Fang
- Cancer Research InstituteSchool of Basic Medical ScienceSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Ping Xu
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| |
Collapse
|
220
|
Schlößer HA, Schmidt T. Stellenwert der Checkpoint Therapie bei viszeral-onkologischen Erkrankungen. Zentralbl Chir 2023; 148:389-391. [PMID: 37846161 DOI: 10.1055/a-2148-1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Affiliation(s)
- Hans Anton Schlößer
- Zentrum für Molekulare Medizin, Uniklinik Köln, Köln
- Klinik für Allgemein-, Viszeral-, Tumor- und Transplantationschirurgie, Uniklinik Köln, Köln
| | - Thomas Schmidt
- Klinik für Allgemein-, Viszeral-, Tumor- und Transplantationschirurgie, Uniklinik Köln, Köln
| |
Collapse
|
221
|
Wong CW, Huang YY, Hurlstone A. The role of IFN-γ-signalling in response to immune checkpoint blockade therapy. Essays Biochem 2023; 67:991-1002. [PMID: 37503572 PMCID: PMC10539948 DOI: 10.1042/ebc20230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Treatment with immune checkpoint inhibitors, widely known as immune checkpoint blockade therapy (ICBT), is now the fourth pillar in cancer treatment, offering the chance of durable remission for patients with advanced disease. However, ICBT fails to induce objective responses in most cancer patients with still others progressing after an initial response. It is necessary, therefore, to elucidate the primary and acquired resistance mechanisms to ICBT to improve its efficacy. Here, we highlight the paradoxical role of the cytokine interferon-γ (IFN-γ) in ICBT response: on the one hand induction of IFN-γ signalling in the tumour microenvironment correlates with good ICBT response as it drives the cellular immune responses required for tumour destruction; nonetheless, IFN-γ signalling is implicated in ICBT acquired resistance. We address the negative feedback and immunoregulatory effects of IFN-γ signalling that promote immune evasion and resistance to ICBT and discuss how these can be targeted pharmacologically to restore sensitivity or circumvent resistance.
Collapse
Affiliation(s)
- Chun Wai Wong
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Yang Yu Huang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Adam Hurlstone
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
222
|
Elliot TAE, Lecky DAJ, Bending D. T-cell response to checkpoint blockade immunotherapies: from fundamental mechanisms to treatment signatures. Essays Biochem 2023; 67:967-977. [PMID: 37386922 PMCID: PMC10539945 DOI: 10.1042/ebc20220247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
Immune checkpoint immunotherapies act to block inhibitory receptors on the surface of T cells and other cells of the immune system. This can increase activation of immune cells and promote tumour clearance. Whilst this is very effective in some types of cancer, significant proportions of patients do not respond to single-agent immunotherapy. To improve patient outcomes, we must first mechanistically understand what drives therapy resistance. Many studies have utilised genetic, transcriptional, and histological signatures to find correlates of effective responses to treatment. It is key that we understand pretreatment predictors of response, but also to understand how the immune system becomes treatment resistant during therapy. Here, we review our understanding of the T-cell signatures that are critical for response, how these immune signatures change during treatment, and how this information can be used to rationally design therapeutic strategies. We highlight how chronic antigen recognition drives heterogeneous T-cell exhaustion and the role of T-cell receptor (TCR) signal strength in exhausted T-cell differentiation and molecular response to therapy. We explore how dynamic changes in negative feedback pathways can promote resistance to single-agent therapy. We speculate that this resistance may be circumvented in the future through identifying the most effective combinations of immunotherapies to promote sustained and durable antitumour responses.
Collapse
Affiliation(s)
- Thomas A E Elliot
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - David A J Lecky
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
223
|
Zhang X, Chen J, Zhang M, Liu S, Wang T, Wu T, Li B, Zhao S, Wang H, Li L, Wang C, Huang L. Single-cell and bulk sequencing analyses reveal the immune suppressive role of PTPN6 in glioblastoma. Aging (Albany NY) 2023; 15:9822-9841. [PMID: 37737713 PMCID: PMC10564408 DOI: 10.18632/aging.205052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Glioblastoma (GBM) is a highly malignant brain cancer with a poor prognosis despite standard treatments. This investigation aimed to explore the feasibility of PTPN6 to combat GBM with immunotherapy. Our study employed a comprehensive analysis of publicly available datasets and functional experiments to assess PTPN6 gene expression, prognostic value, and related immune characteristics in glioma. We evaluated the influence of PTPN6 expression on CD8+ T cell exhaustion, immune suppression, and tumor growth in human GBM samples and mouse models. Our findings demonstrated that PTPN6 overexpression played an oncogenic role in GBM and was associated with advanced tumor grades and unfavorable clinical outcomes. In human GBM samples, PTPN6 upregulation showed a strong association with immunosuppressive formation and CD8+ T cell dysfunction, whereas, in mice, it hindered CD8+ T cell infiltration. Moreover, PTPN6 facilitated cell cycle progression, inhibited apoptosis, and promoted glioma cell proliferation, tumor growth, and colony formation in mice. The outcomes of our study indicate that PTPN6 is a promising immunotherapeutic target for the treatment of GBM. Inhibition of PTPN6 could enhance CD8+ T cell infiltration and improve antitumor immune response, thus leading to better clinical outcomes for GBM patients.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Jie Chen
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Ming Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Saisai Liu
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Tao Wang
- Research Laboratory Centre, Guizhou Provincial People’s Hospital, Guizhou University, Nanming, Guiyang 550025, Guizhou, P.R. China
| | - Tianyu Wu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Li Li
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Chun Wang
- Department of General Practice, The Second Affiliated Hospital of Bengbu Medical College, Huaishang, Bengbu 233040, Anhui, P.R. China
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Huaishang, Bengbu 233040, Anhui, P.R. China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| |
Collapse
|
224
|
Boll LM, Perera-Bel J, Rodriguez-Vida A, Arpí O, Rovira A, Juanpere N, Vázquez Montes de Oca S, Hernández-Llodrà S, Lloreta J, Albà MM, Bellmunt J. The impact of mutational clonality in predicting the response to immune checkpoint inhibitors in advanced urothelial cancer. Sci Rep 2023; 13:15287. [PMID: 37714872 PMCID: PMC10504302 DOI: 10.1038/s41598-023-42495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment and can result in complete remissions even at advanced stages of the disease. However, only a small fraction of patients respond to the treatment. To better understand which factors drive clinical benefit, we have generated whole exome and RNA sequencing data from 27 advanced urothelial carcinoma patients treated with anti-PD-(L)1 monoclonal antibodies. We assessed the influence on the response of non-synonymous mutations (tumor mutational burden or TMB), clonal and subclonal mutations, neoantigen load and various gene expression markers. We found that although TMB is significantly associated with response, this effect can be mostly explained by clonal mutations, present in all cancer cells. This trend was validated in an additional cohort. Additionally, we found that responders with few clonal mutations had abnormally high levels of T and B cell immune markers, suggesting that a high immune cell infiltration signature could be a better predictive biomarker for this subset of patients. Our results support the idea that highly clonal cancers are more likely to respond to ICI and suggest that non-additive effects of different signatures should be considered for predictive models.
Collapse
Affiliation(s)
| | | | - Alejo Rodriguez-Vida
- Hospital del Mar Research Institute, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Barcelona, Spain
| | - Oriol Arpí
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Research Institute, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Barcelona, Spain
| | | | | | | | - Josep Lloreta
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Science, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M Mar Albà
- Hospital del Mar Research Institute, Barcelona, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Joaquim Bellmunt
- Hospital del Mar Research Institute, Barcelona, Spain.
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
225
|
Pang K, Yang Y, Tian D, Zeng N, Cao S, Ling S, Gao J, Zhao P, Wang H, Kong Y, Zhang J, Chen G, Deng W, Bai Z, Jin L, Wu G, Zhu D, Wang Y, Zhou J, Wu B, Lin G, Xiao Y, Gao Z, Ye Y, Wang X, Li A, Han J, Yao H, Yang Y, Zhang Z. Long-course chemoradiation plus concurrent/sequential PD-1 blockade as neoadjuvant treatment for MMR-status-unscreened locally advanced rectal cancer: protocol of a multicentre, phase 2, randomised controlled trial (the POLAR-STAR trial). BMJ Open 2023; 13:e069499. [PMID: 37699634 PMCID: PMC10503326 DOI: 10.1136/bmjopen-2022-069499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/26/2023] [Indexed: 09/14/2023] Open
Abstract
INTRODUCTION Recent preclinical studies have discovered unique synergism between radiotherapy and immune checkpoint inhibitors, which has already brought significant survival benefit in lung cancer. In locally advanced rectal cancer (LARC), neoadjuvant radiotherapy plus immune checkpoint inhibitors have also achieved surprisingly high pathological complete response (pCR) rates even in proficient mismatch-repair patients. As existing researches are all phase 2, single-cohort trials, we aim to conduct a randomised, controlled trial to further clarify the efficacy and safety of this novel combination therapy. METHODS AND ANALYSIS Eligible patients with LARC are randomised to three arms (two experiment arms, one control arm). Patients in all arms receive long-course radiotherapy plus concurrent capecitabine as neoadjuvant therapy, as well as radical surgery. Distinguishingly, patients in arm 1 also receive anti-PD-1 (Programmed Death 1) treatment starting at Day 8 of radiation (concurrent plan), and patients in arm 2 receive anti-PD-1 treatment starting 2 weeks after completion of radiation (sequential plan). Tislelizumab (anti-PD-1) is scheduled to be administered at 200 mg each time for three consecutive times, with 3-week intervals. Randomisation is stratified by different participating centres, with a block size of 6. The primary endpoint is pCR rate, and secondary endpoints include neoadjuvant-treatment-related adverse event rate, as well as disease-free and overall survival rates at 2, 3 and 5 years postoperation. Data will be analysed with an intention-to-treat approach. ETHICS AND DISSEMINATION This protocol has been approved by the institutional ethical committee of Beijing Friendship Hospital (the primary centre) with an identifying serial number of 2022-P2-050-01. Before publication to peer-reviewed journals, data of this research will be stored in a specially developed clinical trial database. TRIAL REGISTRATION NUMBER NCT05245474.
Collapse
Affiliation(s)
- Kai Pang
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Yun Yang
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Dan Tian
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Na Zeng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, Beijing, China
| | - Shun Cao
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Shen Ling
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Jiale Gao
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Pengfei Zhao
- Radiotherapy and Radiation Oncology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Hao Wang
- Statistics and Methodology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Yuanyuan Kong
- Statistics and Methodology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Jie Zhang
- Radiology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Guangyong Chen
- Clinical Pathology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Wei Deng
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Zhigang Bai
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Lan Jin
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Guoju Wu
- Gastrointestinal Surgery, Beijing Hospital, Beijing, Beijing, China
| | - Danyang Zhu
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Yue Wang
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Jiaolin Zhou
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Bin Wu
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Guole Lin
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Yi Xiao
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Zhidong Gao
- Gastrointestinal Surgery, Peking University People's Hospital, Beijing, Beijing, China
| | - Yingjiang Ye
- Gastrointestinal Surgery, Peking University People's Hospital, Beijing, Beijing, China
| | - Xin Wang
- General Surgery, Peking University First Hospital, Beijing, Beijing, China
| | - Ang Li
- General Surgery, Xuanwu Hospital Capital Medical University, Beijing, Beijing, China
| | - Jiagang Han
- General Surgery, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Hongwei Yao
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Yingchi Yang
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Zhongtao Zhang
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| |
Collapse
|
226
|
Nabbi A, Beck P, Delaidelli A, Oldridge DA, Sudhaman S, Zhu K, Yang SYC, Mulder DT, Bruce JP, Paulson JN, Raman P, Zhu Y, Resnick AC, Sorensen PH, Sill M, Brabetz S, Lambo S, Malkin D, Johann PD, Kool M, Jones DTW, Pfister SM, Jäger N, Pugh TJ. Transcriptional immunogenomic analysis reveals distinct immunological clusters in paediatric nervous system tumours. Genome Med 2023; 15:67. [PMID: 37679810 PMCID: PMC10486055 DOI: 10.1186/s13073-023-01219-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied to delineate determinants of immune response, the immune composition of paediatric solid tumours remains relatively uncharacterized calling for investigations to identify potential immune biomarkers. METHODS To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) spanning 12 cancer types from three publicly available data sets. RESULTS Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant (30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemistry, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, although molecular cancer entities were enriched within specific immune clusters. CONCLUSIONS Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Pengbo Beck
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Derek A Oldridge
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sumedha Sudhaman
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Kelsey Zhu
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - David T Mulder
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Joseph N Paulson
- Department of Biostatistics, Genentech Inc, San Francisco, CA, USA
| | - Pichai Raman
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuankun Zhu
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam C Resnick
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sebastian Brabetz
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sander Lambo
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Pascal D Johann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Ontario Institute for Cancer Research, Toronto, Canada.
| |
Collapse
|
227
|
Johansen AZ, Novitski SI, Hjaltelin JX, Theile S, Boisen MK, Brunak S, Madsen DH, Nielsen DL, Chen IM. Plasma YKL-40 is associated with prognosis in patients with metastatic pancreatic cancer receiving immune checkpoint inhibitors in combination with radiotherapy. Front Immunol 2023; 14:1228907. [PMID: 37744345 PMCID: PMC10513102 DOI: 10.3389/fimmu.2023.1228907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background YKL-40, also known as chitinase-3-like protein 1 (CHI3L1), is a secreted glycoprotein produced by various cell types including stromal, immune, and cancer cells. It contributes to cancer progression through tumor-promoting inflammation and has been shown to inhibit the cytotoxicity of T and NK lymphocytes. In vivo studies have demonstrated synergistic anti-cancer effects of blocking YKL-40 in combination with immune checkpoint inhibitors (ICIs). Biomarkers for the prediction of the response to ICIs are highly needed. We investigated the association between plasma YKL-40 and clinical benefit and survival in patients with metastatic pancreatic cancer (mPC) receiving ICIs and stereotactic body radiotherapy (SBRT). Methods Blood samples were collected from 84 patients with mPC who participated in the randomized phase II CheckPAC study, in which patients received nivolumab with or without ipilimumab combined with a single fraction of SBRT. Plasma YKL-40 was measured using a commercial ELISA kit. Results Elevated baseline plasma YKL-40 was an independent predictor of shorter overall survival (OS) (HR 2.19, 95% CI 1.21-3.95). A ≥ 40% decrease in plasma YKL-40 during treatment was associated with longer progression-free survival (p = 0.009) and OS (p = 0.0028). There was no correlation between plasma YKL-40 and the tumor burden marker CA19-9 at baseline or during treatment. Conclusion This study contributes new knowledge regarding YKL-40 as a predictor of clinical benefit from ICIs and radiotherapy. These exploratory results warrant further investigation of YKL-40 as a biomarker for patients treated with immunotherapies. Clinical trial registration Clinicaltrials.gov, identifier NCT02866383.
Collapse
Affiliation(s)
- Astrid Z. Johansen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Sif I. Novitski
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jessica X. Hjaltelin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susann Theile
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Mogens K. Boisen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel H. Madsen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte L. Nielsen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
228
|
Alspach E. So Grateful for My X: Sex Chromosomes Drive Differences in Glioblastoma Immunity. Cancer Discov 2023; 13:1966-1968. [PMID: 37671475 DOI: 10.1158/2159-8290.cd-23-0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
SUMMARY Males are at a greater risk of developing glioblastoma and face poorer prognoses compared with their female counterparts for reasons that are not well understood. Lee and colleagues uncover a role for sex-based differences in CD8+ T-cell function, which adds another layer to our growing understanding that antitumor immunity is not generated equivalently between males and females. See related article by Lee et al., p. 2090 (5).
Collapse
Affiliation(s)
- Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
229
|
Salehi-Rad R, Lim RJ, Du Y, Tran LM, Li R, Ong SL, Ling Huang Z, Dumitras C, Zhang T, Park SJ, Crosson W, Kahangi B, Abascal J, Seet C, Oh M, Shabihkhani M, Paul M, Krysan K, Lisberg AE, Garon EB, Liu B, Dubinett SM. CCL21-DC in situ vaccination in murine NSCLC overcomes resistance to immunotherapy and generates systemic tumor-specific immunity. J Immunother Cancer 2023; 11:e006896. [PMID: 37730274 PMCID: PMC10510892 DOI: 10.1136/jitc-2023-006896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Despite recent advances in immunotherapy, many patients with non-small cell lung cancer (NSCLC) do not respond to immune checkpoint inhibitors (ICI). Resistance to ICI may be driven by suboptimal priming of antitumor T lymphocytes due to poor antigen presentation as well as their exclusion and impairment by the immunosuppressive tumor microenvironment (TME). In a recent phase I trial in patients with NSCLC, in situ vaccination (ISV) with dendritic cells engineered to secrete CCL21 (CCL21-DC), a chemokine that facilitates the recruitment of T cells and DC, promoted T lymphocyte tumor infiltration and PD-L1 upregulation. METHODS Murine models of NSCLC with distinct driver mutations (KrasG12D/P53+/-/Lkb1-/- (KPL); KrasG12D/P53+/- (KP); and KrasG12D (K)) and varying tumor mutational burden were used to evaluate the efficacy of combination therapy with CCL21-DC ISV plus ICI. Comprehensive analyses of longitudinal preclinical samples by flow cytometry, single cell RNA-sequencing (scRNA-seq) and whole-exome sequencing were performed to assess mechanisms of combination therapy. RESULTS ISV with CCL21-DC sensitized immune-resistant murine NSCLCs to ICI and led to the establishment of tumor-specific immune memory. Immunophenotyping revealed that CCL21-DC obliterated tumor-promoting neutrophils, promoted sustained infiltration of CD8 cytolytic and CD4 Th1 lymphocytes and enriched progenitor T cells in the TME. Addition of ICI to CCL21-DC further enhanced the expansion and effector function of T cells both locally and systemically. Longitudinal evaluation of tumor mutation profiles revealed that CCL21-DC plus ICI induced immunoediting of tumor subclones, consistent with the broadening of tumor-specific T cell responses. CONCLUSIONS CCL21-DC ISV synergizes with anti-PD-1 to eradicate murine NSCLC. Our data support the clinical application of CCL21-DC ISV in combination with checkpoint inhibition for patients with NSCLC.
Collapse
Affiliation(s)
- Ramin Salehi-Rad
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Raymond J Lim
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yushen Du
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Linh M Tran
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Rui Li
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Stephanie L Ong
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zi Ling Huang
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Camelia Dumitras
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tianhao Zhang
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Stacy J Park
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William Crosson
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bitta Kahangi
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jensen Abascal
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christopher Seet
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael Oh
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Maryam Shabihkhani
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Manash Paul
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kostyantyn Krysan
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aaron E Lisberg
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Edward B Garon
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bin Liu
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Steven M Dubinett
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
230
|
Gusev A. Germline mechanisms of immunotherapy toxicities in the era of genome-wide association studies. Immunol Rev 2023; 318:138-156. [PMID: 37515388 PMCID: PMC11472697 DOI: 10.1111/imr.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Cancer immunotherapy has revolutionized the treatment of advanced cancers and is quickly becoming an option for early-stage disease. By reactivating the host immune system, immunotherapy harnesses patients' innate defenses to eradicate the tumor. By putatively similar mechanisms, immunotherapy can also substantially increase the risk of toxicities or immune-related adverse events (irAEs). Severe irAEs can lead to hospitalization, treatment discontinuation, lifelong immune complications, or even death. Many irAEs present with similar symptoms to heritable autoimmune diseases, suggesting that germline genetics may contribute to their onset. Recently, genome-wide association studies (GWAS) of irAEs have identified common germline associations and putative mechanisms, lending support to this hypothesis. A wide range of well-established GWAS methods can potentially be harnessed to understand the etiology of irAEs specifically and immunotherapy outcomes broadly. This review summarizes current findings regarding germline effects on immunotherapy outcomes and discusses opportunities and challenges for leveraging germline genetics to understand, predict, and treat irAEs.
Collapse
Affiliation(s)
- Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics, Brigham & Women's Hospital, Boston, Massachusetts, USA
- The Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
231
|
Gao Y, Shi H, Zhao H, Yao M, He Y, Jiang M, Li J, Li Z, Su S, Liu T, Yin C, Liao X, Yue W. Single-cell transcriptomics identify TNFRSF1B as a novel T-cell exhaustion marker for ovarian cancer. Clin Transl Med 2023; 13:e1416. [PMID: 37712139 PMCID: PMC10502459 DOI: 10.1002/ctm2.1416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) patients routinely show poor immunotherapeutic response due to the complex tumour microenvironment (TME). It is urgent to explore new immunotherapeutic markers. METHODS Through the single-cell RNA sequencing (scRNA-seq) analyses on high-grade serous OC (HGSOC), moderate severity borderline tumour and matched normal ovary, we identified a novel exhausted T cells subpopulation that related to poor prognosis in OC. Histological staining, multiple immunofluorescences, and flow cytometry were applied to validate some results from scRNA-seq. Furthermore, a tumour-bearing mice model was constructed to investigate the effects of TNFRSF1B treatment on tumour growth in vivo. RESULTS Highly immunosuppressive TME in HGSOC is displayed compared to moderate severity borderline tumour and matched normal ovary. Subsequently, a novel exhausted subpopulation of CD8+ TNFRSF1B+ T cells is identified, which is associated with poor survival. In vitro experiments demonstrate that TNFRSF1B is specifically upregulated on activated CD8+ T cells and suppressed interferon-γ secretion. The expression of TNFRSF1B on CD8+ T cells is closely related to OC clinical malignancy and is a marker of poor prognosis through 140 OC patients' verification. In addition, the blockade of TNFRSF1B inhibits tumour growth via profoundly remodeling the immune microenvironment in the OC mouse model. CONCLUSIONS Our transcriptomic results analyzed by scRNA-seq delineate a high-resolution snapshot of the entire tumour ecosystem of OC TME. The major applications of our findings were an exhausted subpopulation of CD8+ TNFRSF1B+ T cells for predicting OC patient prognosis and the potential therapeutic value of TNFRSF1B. These findings demonstrated the clinical value of TNFRSF1B as a potential immunotherapy target and extended our understanding of factors contributing to immunotherapy failure in OC.
Collapse
Affiliation(s)
- Yan Gao
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Hui Shi
- School of Pharmaceutical SciencesBeijing Advanced Innovation Center for Human Brain ProtectionKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingChina
- Joint Graduate Program of Peking‐Tsinghua‐NIBS, School of Life SciencesTsinghua UniversityBeijingChina
| | - Hongyu Zhao
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Mengcheng Yao
- Bioinformatics departmentAnnoroad Gene Technology Co., LtdBeijingChina
| | - Yue He
- Department of Gynecology and OncologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Mei Jiang
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Jie Li
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Zhefeng Li
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Shaofei Su
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Tao Liu
- Bioinformatics departmentAnnoroad Gene Technology Co., LtdBeijingChina
| | - Chenghong Yin
- Department of Internal MedicineBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Xuebin Liao
- School of Pharmaceutical SciencesBeijing Advanced Innovation Center for Human Brain ProtectionKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingChina
| | - Wentao Yue
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| |
Collapse
|
232
|
Yang K, Halima A, Chan TA. Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 2023; 20:604-623. [PMID: 37328642 DOI: 10.1038/s41571-023-00789-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour-immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
233
|
Reynolds G. Rheumatic complications of checkpoint inhibitors: Lessons from autoimmunity. Immunol Rev 2023; 318:51-60. [PMID: 37435963 PMCID: PMC10952967 DOI: 10.1111/imr.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Immune checkpoint inhibitors are now an established treatment in the management of a range of cancers. Their success means that their use is likely to increase in future in terms of the numbers of patients treated, the indications and the range of immune checkpoints targeted. They function by counteracting immune evasion by the tumor but, as a consequence, can breach self-tolerance at other sites leading to a range of immune-related adverse events. Included among these complications are a range of rheumatologic complications, including inflammatory arthritis and keratoconjunctivitis sicca. These superficially resemble immune-mediated rheumatic diseases (IMRDs) such as rheumatoid arthritis and Sjogren's disease but preliminary studies suggest they are clinically and immunologically distinct entities. However, there appear to be common processes that predispose to the development of both that may inform preventative interventions and predictive tools. Both groups of conditions highlight the centrality of immune checkpoints in controlling tolerance and how it can be restored. Here we will discuss some of these commonalities and differences between rheumatic irAEs and IMRDs.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
- Center for Immunology and Inflammatory DiseasesMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
234
|
Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin 2023; 44:1879-1889. [PMID: 37055532 PMCID: PMC10462766 DOI: 10.1038/s41401-023-01079-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Immune-checkpoint inhibitors show promising effects in the treatment of multiple tumor types. Biomarkers are biological indicators used to select patients for a systemic anticancer treatment, but there are only a few clinically useful biomarkers such as PD-L1 expression and tumor mutational burden, which can be used to predict immunotherapy response. In this study, we established a database consisting of both gene expression and clinical data to identify biomarkers of response to anti-PD-1, anti-PD-L1, and anti-CTLA-4 immunotherapies. A GEO screening was executed to identify datasets with simultaneously available clinical response and transcriptomic data regardless of cancer type. The screening was restricted to the studies involving administration of anti-PD-1 (nivolumab, pembrolizumab), anti-PD-L1 (atezolizumab, durvalumab) or anti-CTLA-4 (ipilimumab) agents. Receiver operating characteristic (ROC) analysis and Mann-Whitney test were executed across all genes to identify features related to therapy response. The database consisted of 1434 tumor tissue samples from 19 datasets with esophageal, gastric, head and neck, lung, and urothelial cancers, plus melanoma. The strongest druggable gene candidates linked to anti-PD-1 resistance were SPIN1 (AUC = 0.682, P = 9.1E-12), SRC (AUC = 0.667, P = 5.9E-10), SETD7 (AUC = 0.663, P = 1.0E-09), FGFR3 (AUC = 0.657, P = 3.7E-09), YAP1 (AUC = 0.655, P = 6.0E-09), TEAD3 (AUC = 0.649, P = 4.1E-08) and BCL2 (AUC = 0.634, P = 9.7E-08). In the anti-CTLA-4 treatment cohort, BLCAP (AUC = 0.735, P = 2.1E-06) was the most promising gene candidate. No therapeutically relevant target was found to be predictive in the anti-PD-L1 cohort. In the anti-PD-1 group, we were able to confirm the significant correlation with survival for the mismatch-repair genes MLH1 and MSH6. A web platform for further analysis and validation of new biomarker candidates was set up and available at https://www.rocplot.com/immune . In summary, a database and a web platform were established to investigate biomarkers of immunotherapy response in a large cohort of solid tumor samples. Our results could help to identify new patient cohorts eligible for immunotherapy.
Collapse
Affiliation(s)
- Szonja Anna Kovács
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
| | - János Tibor Fekete
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
- Research Centre for Natural Sciences, Oncology Biomarker Research Group, Institute of Enzymology, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
- Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
| |
Collapse
|
235
|
House IG, Derrick EB, Sek K, Chen AXY, Li J, Lai J, Todd KL, Munoz I, Michie J, Chan CW, Huang YK, Chan JD, Petley EV, Tong J, Nguyen D, Engel S, Savas P, Hogg SJ, Vervoort SJ, Kearney CJ, Burr ML, Lam EYN, Gilan O, Bedoui S, Johnstone RW, Dawson MA, Loi S, Darcy PK, Beavis PA. CRISPR-Cas9 screening identifies an IRF1-SOCS1-mediated negative feedback loop that limits CXCL9 expression and antitumor immunity. Cell Rep 2023; 42:113014. [PMID: 37605534 DOI: 10.1016/j.celrep.2023.113014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
CXCL9 expression is a strong predictor of response to immune checkpoint blockade therapy. Accordingly, we sought to develop therapeutic strategies to enhance the expression of CXCL9 and augment antitumor immunity. To perform whole-genome CRISPR-Cas9 screening for regulators of CXCL9 expression, a CXCL9-GFP reporter line is generated using a CRISPR knockin strategy. This approach finds that IRF1 limits CXCL9 expression in both tumor cells and primary myeloid cells through induction of SOCS1, which subsequently limits STAT1 signaling. Thus, we identify a subset of STAT1-dependent genes that do not require IRF1 for their transcription, including CXCL9. Targeting of either IRF1 or SOCS1 potently enhances CXCL9 expression by intratumoral macrophages, which is further enhanced in the context of immune checkpoint blockade therapy. We hence show a non-canonical role for IRF1 in limiting the expression of a subset of STAT1-dependent genes through induction of SOCS1.
Collapse
Affiliation(s)
- Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Emily B Derrick
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jasmine Li
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Isabelle Munoz
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jessica Michie
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Cheok Weng Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yu-Kuan Huang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jack D Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Junming Tong
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - DatMinh Nguyen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sven Engel
- Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Peter Savas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Simon J Hogg
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Stephin J Vervoort
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Conor J Kearney
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marian L Burr
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Department of Anatomical Pathology, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Enid Y N Lam
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Omer Gilan
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Mark A Dawson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC 3052, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sherene Loi
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology, Monash University, Clayton, VIC, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
236
|
Konda P, Garinet S, Van Allen EM, Viswanathan SR. Genome-guided discovery of cancer therapeutic targets. Cell Rep 2023; 42:112978. [PMID: 37572322 DOI: 10.1016/j.celrep.2023.112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
The success of precision oncology-which aims to match the right therapies to the right patients based on molecular status-is predicated on a robust pipeline of molecular targets against which therapies can be developed. Recent advances in genomics and functional genetics have enabled the unbiased discovery of novel molecular targets at scale. We summarize the promise and challenges in integrating genomic and functional genetic landscapes of cancer to establish the next generation of cancer targets.
Collapse
Affiliation(s)
- Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simon Garinet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
237
|
Sun R, Zhao H, Gao DS, Ni A, Li H, Chen L, Lu X, Chen K, Lu B. Amphiregulin couples IL1RL1 + regulatory T cells and cancer-associated fibroblasts to impede antitumor immunity. SCIENCE ADVANCES 2023; 9:eadd7399. [PMID: 37611111 PMCID: PMC10446484 DOI: 10.1126/sciadv.add7399] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/27/2023] [Indexed: 08/25/2023]
Abstract
Regulatory T (Treg) cells and cancer-associated fibroblasts (CAFs) jointly promote tumor immune tolerance and tumorigenesis. The molecular apparatus that drives Treg cell and CAF coordination in the tumor microenvironment (TME) remains elusive. Interleukin 33 (IL-33) has been shown to enhance fibrosis and IL1RL1+ Treg cell accumulation during tumorigenesis and tissue repair. We demonstrated that IL1RL1 signaling in Treg cells greatly dampened the antitumor activity of both IL-33 and PD-1 blockade. Whole tumor single-cell RNA sequencing (scRNA-seq) analysis and blockade experiments revealed that the amphiregulin (AREG)-epidermal growth factor receptor (EGFR) axis mediated cross-talk between IL1RL1+ Treg cells and CAFs. We further demonstrated that the AREG/EGFR axis enables Treg cells to promote a profibrotic and immunosuppressive functional state of CAFs. Moreover, AREG mAbs and IL-33 concertedly inhibited tumor growth. Our study reveals a previously unidentified AREG/EGFR-mediated Treg/CAF coupling that controls the bifurcation of fibroblast functional states and is a critical barrier for cancer immunotherapy.
Collapse
Affiliation(s)
- Runzi Sun
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hongyu Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - David Shihong Gao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew Ni
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haochen Li
- Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lujia Chen
- Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xinghua Lu
- Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kong Chen
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| |
Collapse
|
238
|
Miyashita H, Kurzrock R, Bevins NJ, Thangathurai K, Lee S, Pabla S, Nesline M, Glenn ST, Conroy JM, DePietro P, Rubin E, Sicklick JK, Kato S. T-cell priming transcriptomic markers: implications of immunome heterogeneity for precision immunotherapy. NPJ Genom Med 2023; 8:19. [PMID: 37553332 PMCID: PMC10409760 DOI: 10.1038/s41525-023-00359-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/14/2023] [Indexed: 08/10/2023] Open
Abstract
Immune checkpoint blockade is effective for only a subset of cancers. Targeting T-cell priming markers (TPMs) may enhance activity, but proper application of these agents in the clinic is challenging due to immune complexity and heterogeneity. We interrogated transcriptomics of 15 TPMs (CD137, CD27, CD28, CD80, CD86, CD40, CD40LG, GITR, ICOS, ICOSLG, OX40, OX40LG, GZMB, IFNG, and TBX21) in a pan-cancer cohort (N = 514 patients, 30 types of cancer). TPM expression was analyzed for correlation with histological type, microsatellite instability high (MSI-H), tumor mutational burden (TMB), and programmed death-ligand 1 (PD-L1) expression. Among 514 patients, the most common histological types were colorectal (27%), pancreatic (11%), and breast cancer (10%). No statistically significant association between histological type and TPM expression was seen. In contrast, expression of GZMB (granzyme B, a serine protease stored in activated T and NK cells that induces cancer cell apoptosis) and IFNG (activates cytotoxic T cells) were significantly higher in tumors with MSI-H, TMB ≥ 10 mutations/mb and PD-L1 ≥ 1%. PD-L1 ≥ 1% was also associated with significantly higher CD137, GITR, and ICOS expression. Patients' tumors were classified into "Hot", "Mixed", or "Cold" clusters based on TPM expression using hierarchical clustering. The cold cluster showed a significantly lower proportion of tumors with PD-L1 ≥ 1%. Overall, 502 patients (98%) had individually distinct patterns of TPM expression. Diverse expression patterns of TPMs independent of histological type but correlating with other immunotherapy biomarkers (PD-L1 ≥ 1%, MSI-H and TMB ≥ 10 mutations/mb) were observed. Individualized selection of patients based on TPM immunomic profiles may potentially help with immunotherapy optimization.
Collapse
Affiliation(s)
- Hirotaka Miyashita
- Department of Hematology and Oncology, Dartmouth Cancer Center, Lebanon, NH, USA.
| | - Razelle Kurzrock
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Paris, France
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicholas J Bevins
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Kartheeswaran Thangathurai
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Physical Science, University of Vavuniya, Vavuniya, Sri Lanka
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC, San Diego Moores Cancer Center, La Jolla, CA, USA
| | | | | | - Sean T Glenn
- Roswell Park Comprehensive Cancer Center, Center for Personalized Medicine, Buffalo, NY, USA
| | | | | | - Eitan Rubin
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jason K Sicklick
- Division of Surgical Oncology, Department of Surgery, and Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC, San Diego Moores Cancer Center, La Jolla, CA, USA.
| |
Collapse
|
239
|
Tretter C, de Andrade Krätzig N, Pecoraro M, Lange S, Seifert P, von Frankenberg C, Untch J, Zuleger G, Wilhelm M, Zolg DP, Dreyer FS, Bräunlein E, Engleitner T, Uhrig S, Boxberg M, Steiger K, Slotta-Huspenina J, Ochsenreither S, von Bubnoff N, Bauer S, Boerries M, Jost PJ, Schenck K, Dresing I, Bassermann F, Friess H, Reim D, Grützmann K, Pfütze K, Klink B, Schröck E, Haller B, Kuster B, Mann M, Weichert W, Fröhling S, Rad R, Hiltensperger M, Krackhardt AM. Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification. Nat Commun 2023; 14:4632. [PMID: 37532709 PMCID: PMC10397250 DOI: 10.1038/s41467-023-39570-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 patients across 25 tumor types for proteogenomic-based discovery of neoantigens. By using an optimized computational approach, we discover a large number of tumor-specific and tumor-associated antigens. To create a pipeline for the identification of neoantigens in our cohort, we combine DNA and RNA sequencing with MS-based immunopeptidomics of tumor specimens, followed by the assessment of their immunogenicity and an in-depth validation process. We detect a broad variety of non-canonical HLA-binding peptides in the majority of patients demonstrating partially immunogenicity. Our validation process allows for the selection of 32 potential neoantigen candidates. The majority of neoantigen candidates originates from variants identified in the RNA data set, illustrating the relevance of RNA as a still understudied source of cancer antigens. This study underlines the importance of RNA-centered variant detection for the identification of shared biomarkers and potentially relevant neoantigen candidates.
Collapse
Affiliation(s)
- Celina Tretter
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Niklas de Andrade Krätzig
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IInd Medical Department, Munich, Germany
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, TUM School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Matteo Pecoraro
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Munich, Germany
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sebastian Lange
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IInd Medical Department, Munich, Germany
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, TUM School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Philipp Seifert
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Clara von Frankenberg
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Johannes Untch
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Gabriela Zuleger
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Mathias Wilhelm
- Technical University of Munich, TUM School of Life Sciences, Chair of Proteomics and Bioanalytics, Freising, Germany
- Technical University of Munich, TUM School of Life Sciences, Computational Mass Spectrometry, Freising, Germany
| | - Daniel P Zolg
- Technical University of Munich, TUM School of Life Sciences, Chair of Proteomics and Bioanalytics, Freising, Germany
| | - Florian S Dreyer
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Eva Bräunlein
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Thomas Engleitner
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, TUM School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Sebastian Uhrig
- German Cancer Consortium (DKTK), partner site Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Precision Oncology Program, NCT Heidelberg, Heidelberg, Germany
| | - Melanie Boxberg
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Julia Slotta-Huspenina
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Sebastian Ochsenreither
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nikolas von Bubnoff
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology and Oncology, Medical Center, University of Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Sebastian Bauer
- German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp J Jost
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- University Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria
| | - Kristina Schenck
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Iska Dresing
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Florian Bassermann
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Helmut Friess
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Department of Surgery, Munich, Germany
| | - Daniel Reim
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Department of Surgery, Munich, Germany
| | - Konrad Grützmann
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Core Unit Molecular Tumor Diagnostics (CMTD), NCT Dresden, Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Katrin Pfütze
- German Cancer Consortium (DKTK), partner site Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Klink
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Evelin Schröck
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bernhard Haller
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of AI and Informatics in Medicine, Munich, Germany
| | - Bernhard Kuster
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Life Sciences, Chair of Proteomics and Bioanalytics, Freising, Germany
- Technical University of Munich, TUM School of Life Sciences, Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Freising, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Munich, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), partner site Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IInd Medical Department, Munich, Germany
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, TUM School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Michael Hiltensperger
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Angela M Krackhardt
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany.
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany.
- Malteser Krankenhaus St. Franziskus-Hospital, Flensburg, Germany.
| |
Collapse
|
240
|
Schina A, Sztupinszki Z, Marie Svane I, Szallasi Z, Jönsson G, Donia M. Intratumoral T-cell and B-cell receptor architecture associates with distinct immune tumor microenvironment features and clinical outcomes of anti-PD-1/L1 immunotherapy. J Immunother Cancer 2023; 11:e006941. [PMID: 37604641 PMCID: PMC10445359 DOI: 10.1136/jitc-2023-006941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Effective cooperation between B-cells and T-cells within the tumor microenvironment may lead to the regression of established tumors. B-cells and T-cells can recognize tumor antigens with exquisite specificity via their receptor complexes. Nevertheless, whether a diverse intratumoral B-cells and T-cell receptor (BCR, TCR) repertoire affects the tumor immune microenvironment (TIME) and clinical outcomes in patients treated with immunotherapy is unclear. METHODS We extracted information on BCR and TCR repertoire diversity from large clinical datasets and measured the association between immune receptor diversity features, the TIME, and clinical outcomes of patients treated with anti-PD-1/PD-L1 immunotherapy. RESULTS In multiple tumor types, an increasingly diverse TCR repertoire was strongly associated with a highly activated TIME, while BCR diversity was more associated with antibody responses but not with the overall B-cell infiltration nor with measures related to intratumoral CD8+T cell activity. Neither TCR nor BCR diversity was independent prognostic biomarkers of survival across multiple cancer types. However, both TCR and BCR diversity improved the performance of predictive models combined with established biomarkers of response to immunotherapy. CONCLUSION Overall, these data indicate a currently unexplored immunological role of intratumoral B-cells associated with BCR diversity and antibody responses but independent of classical anticancer T-cells intratumoral activities.
Collapse
Affiliation(s)
- Aimilia Schina
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Herlev, Denmark
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Herlev, Denmark
| | | | - Göran Jönsson
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Herlev, Denmark
| |
Collapse
|
241
|
Kaya NA, Tai D, Lim X, Lim JQ, Lau MC, Goh D, Phua CZJ, Wee FYT, Joseph CR, Lim JCT, Neo ZW, Ye J, Cheung L, Lee J, Loke KSH, Gogna A, Yao F, Lee MY, Shuen TWH, Toh HC, Hilmer A, Chan YS, Lim TKH, Tam WL, Choo SP, Yeong J, Zhai W. Multimodal molecular landscape of response to Y90-resin microsphere radioembolization followed by nivolumab for advanced hepatocellular carcinoma. J Immunother Cancer 2023; 11:e007106. [PMID: 37586766 PMCID: PMC10432632 DOI: 10.1136/jitc-2023-007106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Combination therapy with radioembolization (yttrium-90)-resin microspheres) followed by nivolumab has shown a promising response rate of 30.6% in a Phase II trial (CA209-678) for advanced hepatocellular carcinoma (HCC); however, the response mechanisms and relevant biomarkers remain unknown. METHODS By collecting both pretreatment and on-treatment samples, we performed multimodal profiling of tissue and blood samples and investigated molecular changes associated with favorable responses in 33 patients from the trial. RESULTS We found that higher tumor mutation burden, NCOR1 mutations and higher expression of interferon gamma pathways occurred more frequently in responders. Meanwhile, non-responders tended to be enriched for a novel Asian-specific transcriptomic subtype (Kaya_P2) with a high frequency of chromosome 16 deletions and upregulated cell cycle pathways. Strikingly, unlike other cancer types, we did not observe any association between T-cell populations and treatment response, but tumors from responders had a higher proportion of CXCL9+/CXCR3+ macrophages. Moreover, biomarkers discovered in previous immunotherapy trials were not predictive in the current cohort, suggesting a distinctive molecular landscape associated with differential responses to the combination therapy. CONCLUSIONS This study unraveled extensive molecular changes underlying distinctive responses to the novel treatment and pinpointed new directions for harnessing combination therapy in patients with advanced HCC.
Collapse
Affiliation(s)
- Neslihan Arife Kaya
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | - David Tai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Duke NUS Medical School, Singapore
| | - Xinru Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jia Qi Lim
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Bioinformatics Institute (BII), Agency of Science Technology and Research, Singapore
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | - Felicia Yu Ting Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Craig Ryan Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Zhen Wei Neo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Lawrence Cheung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joycelyn Lee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Duke NUS Medical School, Singapore
| | - Kelvin S H Loke
- Duke NUS Medical School, Singapore
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore
| | - Apoorva Gogna
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore
| | - Fei Yao
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | | | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Axel Hilmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Cologne, Germany
| | - Yun Shen Chan
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Tony Kiat-Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Joe Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
242
|
Ratovomanana T, Nicolle R, Cohen R, Diehl A, Siret A, Letourneur Q, Buhard O, Perrier A, Guillerm E, Coulet F, Cervera P, Benusiglio P, Labrèche K, Colle R, Collura A, Despras E, Le Rouzic P, Renaud F, Cros J, Alentorn A, Touat M, Ayadi M, Bourgoin P, Prunier C, Tournigand C, Fouchardière CDL, Tougeron D, Jonchère V, Bennouna J, de Reynies A, Fléjou JF, Svrcek M, André T, Duval A. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability. Ann Oncol 2023; 34:703-713. [PMID: 37269904 DOI: 10.1016/j.annonc.2023.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Mismatch repair-deficient (dMMR) tumors displaying microsatellite instability (MSI) represent a paradigm for the success of immune checkpoint inhibitor (ICI)-based immunotherapy, particularly in patients with metastatic colorectal cancer (mCRC). However, a proportion of patients with dMMR/MSI mCRC exhibit resistance to ICI. Identification of tools predicting MSI mCRC patient response to ICI is required for the design of future strategies further improving this therapy. PATIENTS AND METHODS We combined high-throughput DNA and RNA sequencing of tumors from 116 patients with MSI mCRC treated with anti-programmed cell death protein 1 ± anti-cytotoxic T-lymphocyte-associated protein 4 of the NIPICOL phase II trial (C1, NCT03350126, discovery set) and the ImmunoMSI prospective cohort (C2, validation set). The DNA/RNA predictors whose status was significantly associated with ICI status of response in C1 were subsequently validated in C2. Primary endpoint was progression-free survival by immune RECIST (iRECIST) (iPFS). RESULTS Analyses showed no impact of previously suggested DNA/RNA indicators of resistance to ICI, e.g. MSIsensor score, tumor mutational burden, or specific cellular and molecular tumoral contingents. By contrast, iPFS under ICI was shown in C1 and C2 to depend both on a multiplex MSI signature involving the mutations of 19 microsatellites hazard ratio cohort C2 (HRC2) = 3.63; 95% confidence interval (CI) 1.65-7.99; P = 1.4 × 10-3] and the expression of a set of 182 RNA markers with a non-epithelial transforming growth factor beta (TGFB)-related desmoplastic orientation (HRC2 = 1.75; 95% CI 1.03-2.98; P = 0.035). Both DNA and RNA signatures were independently predictive of iPFS. CONCLUSIONS iPFS in patients with MSI mCRC can be predicted by simply analyzing the mutational status of DNA microsatellite-containing genes in epithelial tumor cells together with non-epithelial TGFB-related desmoplastic RNA markers.
Collapse
Affiliation(s)
- T Ratovomanana
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - R Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris
| | - R Cohen
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Diehl
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - A Siret
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - Q Letourneur
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - O Buhard
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - A Perrier
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - E Guillerm
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - F Coulet
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - P Cervera
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - P Benusiglio
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - K Labrèche
- CinBioS, MS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, Sorbonne Université et SIRIC CURAMUS, Paris
| | - R Colle
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Collura
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - E Despras
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - P Le Rouzic
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - F Renaud
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - J Cros
- Department of Pathology, Beaujon Hospital, AP-HP, Clichy
| | - A Alentorn
- Service de Neurologie 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, 47-83 boulevard de l'Hôpital, Paris
| | - M Touat
- Service de Neurologie 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, 47-83 boulevard de l'Hôpital, Paris
| | - M Ayadi
- Programme "Cartes d'Identité des Tumeurs", Ligue Nationale Contre le Cancer, Paris
| | - P Bourgoin
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - C Prunier
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Signalisation TGFB, plasticité cellulaire et Cancer, Paris
| | - C Tournigand
- Department of Medical Oncology, Hôpital Henri-Mondor, APHP, Université Paris Est Creteil, INSERM U955, Créteil
| | | | - D Tougeron
- ProDicET, UR 24144, University of Poitiers and Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers
| | - V Jonchère
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - J Bennouna
- Centre De Recherche En Cancérologie Et Immunologie Nantes-Angers (CRCINA), INSERM, Université d'Angers, Université De Nantes, Nantes
| | - A de Reynies
- Cartes d'Identité des Tumeurs Program, Ligue Nationale Contre Cancer, Paris, France
| | - J-F Fléjou
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - M Svrcek
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - T André
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Duval
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris.
| |
Collapse
|
243
|
Pan M, Wei X, Xiang X, Liu Y, Zhou Q, Yang W. Targeting CXCL9/10/11-CXCR3 axis: an important component of tumor-promoting and antitumor immunity. Clin Transl Oncol 2023; 25:2306-2320. [PMID: 37076663 DOI: 10.1007/s12094-023-03126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 04/21/2023]
Abstract
Chemokines are chemotactic-competent molecules composed of a family of small cytokines, playing a key role in regulating tumor progression. The roles of chemokines in antitumor immune responses are of great interest. CXCL9, CXCL10, and CXCL11 are important members of chemokines. It has been widely investigated that these three chemokines can bind to their common receptor CXCR3 and regulate the differentiation, migration, and tumor infiltration of immune cells, directly or indirectly affecting tumor growth and metastasis. Here, we summarize the mechanism of how the CXCL9/10/11-CXCR3 axis affects the tumor microenvironment, and list the latest researches to find out how this axis predicts the prognosis of different cancers. In addition, immunotherapy improves the survival of tumor patients, but some patients show drug resistance. Studies have found that the regulation of CXCL9/10/11-CXCR3 on the tumor microenvironment is involved in the process of changing immunotherapy resistance. Here we also describe new approaches to restoring sensitivity to immune checkpoint inhibitors through the CXCL9/10/11-CXCR3 axis.
Collapse
Affiliation(s)
- Minjie Pan
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yanhong Liu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Weibing Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
244
|
Martin SD, Bhuiyan I, Soleimani M, Wang G. Biomarkers for Immune Checkpoint Inhibitors in Renal Cell Carcinoma. J Clin Med 2023; 12:4987. [PMID: 37568390 PMCID: PMC10419620 DOI: 10.3390/jcm12154987] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized renal cell carcinoma treatment. Patients previously thought to be palliative now occasionally achieve complete cures from ICI. However, since immunotherapies stimulate the immune system to induce anti-tumor immunity, they often lead to adverse autoimmunity. Furthermore, some patients receive no benefit from ICI, thereby unnecessarily risking adverse events. In many tumor types, PD-L1 expression levels, immune infiltration, and tumor mutation burden predict the response to ICI and help inform clinical decision making to better target ICI to patients most likely to experience benefits. Unfortunately, renal cell carcinoma is an outlier, as these biomarkers fail to discriminate between positive and negative responses to ICI therapy. Emerging biomarkers such as gene expression profiles and the loss of pro-angiogenic proteins VHL and PBRM-1 show promise for identifying renal cell carcinoma cases likely to respond to ICI. This review provides an overview of the mechanistic underpinnings of different biomarkers and describes the theoretical rationale for their use. We discuss the effectiveness of each biomarker in renal cell carcinoma and other cancer types, and we introduce novel biomarkers that have demonstrated some promise in clinical trials.
Collapse
Affiliation(s)
- Spencer D. Martin
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Ishmam Bhuiyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Maryam Soleimani
- Division of Medical Oncology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- British Columbia Cancer Vancouver Centre, Vancouver, BC V5Z 4E6, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- British Columbia Cancer Vancouver Centre, Vancouver, BC V5Z 4E6, Canada
| |
Collapse
|
245
|
Limeta A, Gatto F, Herrgård MJ, Ji B, Nielsen J. Leveraging high-resolution omics data for predicting responses and adverse events to immune checkpoint inhibitors. Comput Struct Biotechnol J 2023; 21:3912-3919. [PMID: 37602228 PMCID: PMC10432706 DOI: 10.1016/j.csbj.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/22/2023] Open
Abstract
A long-standing goal of personalized and precision medicine is to enable accurate prediction of the outcomes of a given treatment regimen for patients harboring a disease. Currently, many clinical trials fail to meet their endpoints due to underlying factors in the patient population that contribute to either poor responses to the drug of interest or to treatment-related adverse events. Identifying these factors beforehand and correcting for them can lead to an increased success of clinical trials. Comprehensive and large-scale data gathering efforts in biomedicine by omics profiling of the healthy and diseased individuals has led to a treasure-trove of host, disease and environmental factors that contribute to the effectiveness of drugs aiming to treat disease. With increasing omics data, artificial intelligence allows an in-depth analysis of big data and offers a wide range of applications for real-world clinical use, including improved patient selection and identification of actionable targets for companion therapeutics for improved translatability across more patients. As a blueprint for complex drug-disease-host interactions, we here discuss the challenges of utilizing omics data for predicting responses and adverse events in cancer immunotherapy with immune checkpoint inhibitors (ICIs). The omics-based methodologies for improving patient outcomes as in the ICI case have also been applied across a wide-range of complex disease settings, exemplifying the use of omics for in-depth disease profiling and clinical use.
Collapse
Affiliation(s)
- Angelo Limeta
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department of Oncology-Pathology, Karolinska Institute, 171 64 Stockholm, Sweden
| | | | - Boyang Ji
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| |
Collapse
|
246
|
Xia ZA, Lu C, Pan C, Li J, Li J, Mao Y, Sun L, He J. The expression profiles of signature genes from CD103 +LAG3 + tumour-infiltrating lymphocyte subsets predict breast cancer survival. BMC Med 2023; 21:268. [PMID: 37488535 PMCID: PMC10367329 DOI: 10.1186/s12916-023-02960-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Tumour-infiltrating lymphocytes (TILs), including T and B cells, have been demonstrated to be associated with tumour progression. However, the different subpopulations of TILs and their roles in breast cancer remain poorly understood. Large-scale analysis using multiomics data could uncover potential mechanisms and provide promising biomarkers for predicting immunotherapy response. METHODS Single-cell transcriptome data for breast cancer samples were analysed to identify unique TIL subsets. Based on the expression profiles of marker genes in these subsets, a TIL-related prognostic model was developed by univariate and multivariate Cox analyses and LASSO regression for the TCGA training cohort containing 1089 breast cancer patients. Multiplex immunohistochemistry was used to confirm the presence of TIL subsets in breast cancer samples. The model was validated with a large-scale transcriptomic dataset for 3619 breast cancer patients, including the METABRIC cohort, six chemotherapy transcriptomic cohorts, and two immunotherapy transcriptomic cohorts. RESULTS We identified two TIL subsets with high expression of CD103 and LAG3 (CD103+LAG3+), including a CD8+ T-cell subset and a B-cell subset. Based on the expression profiles of marker genes in these two subpopulations, we further developed a CD103+LAG3+ TIL-related prognostic model (CLTRP) based on CXCL13 and BIRC3 genes for predicting the prognosis of breast cancer patients. CLTRP-low patients had a better prognosis than CLTRP-high patients. The comprehensive results showed that a low CLTRP score was associated with a high TP53 mutation rate, high infiltration of CD8 T cells, helper T cells, and CD4 T cells, high sensitivity to chemotherapeutic drugs, and a good response to immunotherapy. In contrast, a high CLTRP score was correlated with a low TP53 mutation rate, high infiltration of M0 and M2 macrophages, low sensitivity to chemotherapeutic drugs, and a poor response to immunotherapy. CONCLUSIONS Our present study showed that the CLTRP score is a promising biomarker for distinguishing prognosis, drug sensitivity, molecular and immune characteristics, and immunotherapy outcomes in breast cancer patients. The CLTRP could serve as a valuable tool for clinical decision making regarding immunotherapy.
Collapse
Affiliation(s)
- Zi-An Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, XiangyaHospital, Central South University, Changsha, 410008, China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Can Pan
- School of Clinical Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Jia Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Li
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Guangdong, 518036, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Lunquan Sun
- National Clinical Research Center for Geriatric Disorders, XiangyaHospital, Central South University, Changsha, 410008, China.
- Department of Oncology, Xiangya Cancer Center, XiangyaHospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central, South University, Xiangya Hospital, Changsha, 410008, China.
| | - Jiang He
- National Clinical Research Center for Geriatric Disorders, XiangyaHospital, Central South University, Changsha, 410008, China.
- Department of Oncology, Xiangya Cancer Center, XiangyaHospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
| |
Collapse
|
247
|
Han JW, Jang JW. Predicting Outcomes of Atezolizumab and Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:11799. [PMID: 37511558 PMCID: PMC10380709 DOI: 10.3390/ijms241411799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
A combination of atezolizumab with bevacizumab (AB) is the first regimen that has shown superiority compared to sorafenib and is now being used as the systemic treatment of choice for hepatocellular carcinoma (HCC) patients with Barcelona Liver Cancer Clinic stage C. However, a considerable number of patients do not achieve survival or significant responses, indicating the need to identify predictive biomarkers for initial and on-treatment decisions in HCC patients receiving AB. In this manuscript, we summarized the current data from both experimental and clinical studies. This review will be beneficial for both clinicians and researchers in clinical practice as well as those designing experimental, translational, or clinical studies.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
248
|
Ascierto PA, Avallone A, Bifulco C, Bracarda S, Brody JD, Emens LA, Ferris RL, Formenti SC, Hamid O, Johnson DB, Kirchhoff T, Klebanoff CA, Lesinski GB, Monette A, Neyns B, Odunsi K, Paulos CM, Powell DJ, Rezvani K, Segal BH, Singh N, Sullivan RJ, Fox BA, Puzanov I. Perspectives in Immunotherapy: meeting report from Immunotherapy Bridge (Naples, November 30th-December 1st, 2022). J Transl Med 2023; 21:488. [PMID: 37475035 PMCID: PMC10360352 DOI: 10.1186/s12967-023-04329-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
The discovery and development of novel treatments that harness the patient's immune system and prevent immune escape has dramatically improved outcomes for patients across cancer types. However, not all patients respond to immunotherapy, acquired resistance remains a challenge, and responses are poor in certain tumors which are considered to be immunologically cold. This has led to the need for new immunotherapy-based approaches, including adoptive cell transfer (ACT), therapeutic vaccines, and novel immune checkpoint inhibitors. These new approaches are focused on patients with an inadequate response to current treatments, with emerging evidence of improved responses in various cancers with new immunotherapy agents, often in combinations with existing agents. The use of cell therapies, drivers of immune response, and trends in immunotherapy were the focus of the Immunotherapy Bridge (November 30th-December 1st, 2022), organized by the Fondazione Melanoma Onlus, Naples, Italy, in collaboration with the Society for Immunotherapy of Cancer.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumor IRCCS "Fondazione G. Pascale", Naples, Italy.
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Carlo Bifulco
- Translational Molecular Pathology and Molecular Genomics, Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Sergio Bracarda
- Department of Oncology, Medical and Translational Oncology, Azienda Ospedaliera Santa Maria, Terni, Italy
| | - Joshua D Brody
- Tisch Cancer Institute, Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leisha A Emens
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Ankyra Therapeutics, Cambridge, MA, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tomas Kirchhoff
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Bart Neyns
- Department of Medical Oncology, University Hospital Brussel, Brussels, Belgium
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Chrystal M Paulos
- Department of Surgery and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Translational Research for Cutaneous Malignancies, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brahm H Segal
- Department of Internal Medicine and Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nathan Singh
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ryan J Sullivan
- Melanoma Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Bernard A Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
249
|
O'Meara CH, Jafri Z, Khachigian LM. Immune Checkpoint Inhibitors, Small-Molecule Immunotherapies and the Emerging Role of Neutrophil Extracellular Traps in Therapeutic Strategies for Head and Neck Cancer. Int J Mol Sci 2023; 24:11695. [PMID: 37511453 PMCID: PMC10380483 DOI: 10.3390/ijms241411695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of many cancer types, including head and neck cancers (HNC). When checkpoint and partner proteins bind, these send an "off" signal to T cells, which prevents the immune system from destroying tumor cells. However, in HNC, and indeed many other cancers, more people do not respond and/or suffer from toxic effects than those who do respond. Hence, newer, more effective approaches are needed. The challenge to durable therapy lies in a deeper understanding of the complex interactions between immune cells, tumor cells and the tumor microenvironment. This will help develop therapies that promote lasting tumorlysis by overcoming T-cell exhaustion. Here we explore the strengths and limitations of current ICI therapy in head and neck squamous cell carcinoma (HNSCC). We also review emerging small-molecule immunotherapies and the growing promise of neutrophil extracellular traps in controlling tumor progression and metastasis.
Collapse
Affiliation(s)
- Connor H O'Meara
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Zuhayr Jafri
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
250
|
Shi H, Huang J, Wang X, Li R, Shen Y, Jiang B, Ran J, Cai R, Guo F, Wang Y, Ren G. Development and validation of a copper-related gene prognostic signature in hepatocellular carcinoma. Front Cell Dev Biol 2023; 11:1157841. [PMID: 37534104 PMCID: PMC10393034 DOI: 10.3389/fcell.2023.1157841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction: Reliable biomarkers are in need to predict the prognosis of hepatocellular carcinoma (HCC). Whilst recent evidence has established the critical role of copper homeostasis in tumor growth and progression, no previous studies have dealt with the copper-related genes (CRGs) signature with prognostic potential in HCC. Methods: To develop and validate a CRGs prognostic signature for HCC, we retrospectively included 353 and 142 patients as the development and validation cohort, respectively. Copper-related Prognostic Signature (Copper-PSHC) was developed using differentially expressed CRGs with prognostic value. The hazard ratio (HR) and the area under the time-dependent receiver operating characteristic curve (AUC) during 3-year follow-up were utilized to evaluate the performance. Additionally, the Copper-PSHC was combined with age, sex, and cancer stage to construct a Copper-clinical-related Prognostic Signature (Copper-CPSHC), by multivariate Cox regression. We further explored the underlying mechanism of Copper-PSHC by analyzing the somatic mutation, functional enrichment, and tumor microenvironment. Potential drugs for the high-risk group were screened. Results: The Copper-PSHC was constructed with nine CRGs. Patients in the high-risk group demonstrated a significantly reduced overall survival (OS) (adjusted HR, 2.65 [95% CI, 1.83-3.84] and 3.30, [95% CI, 1.27-8.60] in the development and validation cohort, respectively). The Copper-PSHC achieved a 3-year AUC of 0.74 [95% CI, 0.67-0.82] and 0.71 [95% CI, 0.56-0.86] for OS in the development and validation cohort, respectively. Copper-CPSHC yield a 3-year AUC of 0.73 [95% CI, 0.66-0.80] and 0.72 [95% CI, 0.56-0.87] for OS in the development and validation cohort, respectively. Higher tumor mutation burden, downregulated metabolic processes, hypoxia status and infiltrated stroma cells were found for the high-risk group. Six small molecular drugs were screened for the treatment of the high-risk group. Conclusion: Copper-PSHC services as a promising tool to identify HCC with poor prognosis and to improve disease outcomes by providing potential clinical decision support in treatment.
Collapse
Affiliation(s)
- Haoting Shi
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxuan Huang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runchuan Li
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing Shen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Bowen Jiang
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Cai
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Guo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yufei Wang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Ren
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|