201
|
Coales I, Tsartsalis S, Fancy N, Weinert M, Clode D, Owen D, Matthews PM. Alzheimer's disease-related transcriptional sex differences in myeloid cells. J Neuroinflammation 2022; 19:247. [PMID: 36199077 PMCID: PMC9535846 DOI: 10.1186/s12974-022-02604-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Sex differences have been identified in many diseases associated with dysregulated immune responses, including Alzheimer's disease (AD), for which approximately two-thirds of patients are women. An accumulating body of research indicates that microglia may play a causal role in the pathogenesis of this disease. We hypothesised that sex differences in the transcriptome of human myeloid cells may contribute to the sex difference observed in AD prevalence. To explore this, we assessed bulk and single-nuclear RNA sequencing data sets generated from four human derived myeloid cell populations: post-mortem microglial nuclei, peripheral monocytes, monocyte-derived macrophages (MDMs) and induced pluripotent stem cell derived microglial-like cells (MGLs). We found that expression of AD risk genes, gene signatures associated with the inflammatory response in AD, and genes related to proinflammatory immune responses were enriched in microglial nuclei isolated from aged female donors without ante-mortem neurological disease, relative to those from males. In addition, these inflammation-associated gene sets were found to be enriched in peripheral monocytes isolated from postmenopausal women and in MDMs obtained from premenopausal individuals relative to age-matched males. Expression of these gene sets did not differ in MDMs derived from women whose blood was sampled across the menstrual cycle or in MGLs cultured with 17β-oestradiol. This suggests that the observed gene set enrichments in myeloid cells from women were not being driven by acute hormonal influences. Together, these data support the hypothesis that the increased prevalence of AD in women may be partly explained by a myeloid cell phenotype biased towards expression of biological processes relevant to AD.
Collapse
Affiliation(s)
- Isabelle Coales
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Host Microbiome Interactions, King's College London, London, SE1 9RT, UK
| | - Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Nurun Fancy
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Centre at Imperial College London, London, UK
| | - Maria Weinert
- Department of Brain Sciences, Imperial College London, London, UK
| | - Daniel Clode
- UK Dementia Research Centre at Imperial College London, London, UK
| | - David Owen
- Department of Brain Sciences, Imperial College London, London, UK.
- Clinical Research Facility, Hammersmith Hospital, ICTM Building, DuCane Road, London, W12 0NN, UK.
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Centre at Imperial College London, London, UK.
- Hammersmith Hospital, E502, Burlington Danes Building, DuCane Road, London, W12 0NN, UK.
| |
Collapse
|
202
|
Shade RD, Ross JA, Van Bockstaele EJ. Targeting the cannabinoid system to counteract the deleterious effects of stress in Alzheimer’s disease. Front Aging Neurosci 2022; 14:949361. [PMID: 36268196 PMCID: PMC9577232 DOI: 10.3389/fnagi.2022.949361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder characterized histologically in postmortem human brains by the presence of dense protein accumulations known as amyloid plaques and tau tangles. Plaques and tangles develop over decades of aberrant protein processing, post-translational modification, and misfolding throughout an individual’s lifetime. We present a foundation of evidence from the literature that suggests chronic stress is associated with increased disease severity in Alzheimer’s patient populations. Taken together with preclinical evidence that chronic stress signaling can precipitate cellular distress, we argue that chronic psychological stress renders select circuits more vulnerable to amyloid- and tau- related abnormalities. We discuss the ongoing investigation of systemic and cellular processes that maintain the integrity of protein homeostasis in health and in degenerative conditions such as Alzheimer’s disease that have revealed multiple potential therapeutic avenues. For example, the endogenous cannabinoid system traverses the central and peripheral neural systems while simultaneously exerting anti-inflammatory influence over the immune response in the brain and throughout the body. Moreover, the cannabinoid system converges on several stress-integrative neuronal circuits and critical regions of the hypothalamic-pituitary-adrenal axis, with the capacity to dampen responses to psychological and cellular stress. Targeting the cannabinoid system by influencing endogenous processes or exogenously stimulating cannabinoid receptors with natural or synthetic cannabis compounds has been identified as a promising route for Alzheimer’s Disease intervention. We build on our foundational framework focusing on the significance of chronic psychological and cellular stress on the development of Alzheimer’s neuropathology by integrating literature on cannabinoid function and dysfunction within Alzheimer’s Disease and conclude with remarks on optimal strategies for treatment potential.
Collapse
Affiliation(s)
- Ronnie D. Shade
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jennifer A. Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
- *Correspondence: Jennifer A. Ross,
| | - Elisabeth J. Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
203
|
Somani A, Ahmed Sekh A, Opstad IS, Birna Birgisdottir Å, Myrmel T, Singh Ahluwalia B, Horsch A, Agarwal K, Prasad DK. Virtual labeling of mitochondria in living cells using correlative imaging and physics-guided deep learning. BIOMEDICAL OPTICS EXPRESS 2022; 13:5495-5516. [PMID: 36425635 PMCID: PMC9664879 DOI: 10.1364/boe.464177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Mitochondria play a crucial role in cellular metabolism. This paper presents a novel method to visualize mitochondria in living cells without the use of fluorescent markers. We propose a physics-guided deep learning approach for obtaining virtually labeled micrographs of mitochondria from bright-field images. We integrate a microscope's point spread function in the learning of an adversarial neural network for improving virtual labeling. We show results (average Pearson correlation 0.86) significantly better than what was achieved by state-of-the-art (0.71) for virtual labeling of mitochondria. We also provide new insights into the virtual labeling problem and suggest additional metrics for quality assessment. The results show that our virtual labeling approach is a powerful way of segmenting and tracking individual mitochondria in bright-field images, results previously achievable only for fluorescently labeled mitochondria.
Collapse
Affiliation(s)
- Ayush Somani
- Bio-AI Lab, Department of Computer Science,
UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Arif Ahmed Sekh
- Computer Science and Engineering, XIM University, Bhubaneswar, 751002, India
| | - Ida S. Opstad
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Åsa Birna Birgisdottir
- Cardiovascular group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Truls Myrmel
- Cardiovascular group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | | | - Alexander Horsch
- Bio-AI Lab, Department of Computer Science,
UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Krishna Agarwal
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Dilip K. Prasad
- Bio-AI Lab, Department of Computer Science,
UiT The Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
204
|
Jana A, Wang X, Leasure JW, Magana L, Wang L, Kim YM, Dodiya H, Toth PT, Sisodia SS, Rehman J. Increased Type I interferon signaling and brain endothelial barrier dysfunction in an experimental model of Alzheimer's disease. Sci Rep 2022; 12:16488. [PMID: 36182964 PMCID: PMC9526723 DOI: 10.1038/s41598-022-20889-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Blood-brain barrier (BBB) dysfunction is emerging as a key pathogenic factor in the progression of Alzheimer's disease (AD), where increased microvascular endothelial permeability has been proposed to play an important role. However, the molecular mechanisms leading to increased brain microvascular permeability in AD are not fully understood. We studied brain endothelial permeability in female APPswe/PS1∆E9 (APP/PS1) mice which constitute a transgenic mouse model of amyloid-beta (Aβ) amyloidosis and found that permeability increases with aging in the areas showing the greatest amyloid plaque deposition. We performed an unbiased bulk RNA-sequencing analysis of brain endothelial cells (BECs) in female APP/PS1 transgenic mice. We observed that upregulation of interferon signaling gene expression pathways in BECs was among the most prominent transcriptomic signatures in the brain endothelium. Immunofluorescence analysis of isolated BECs from female APP/PS1 mice demonstrated higher levels of the Type I interferon-stimulated gene IFIT2. Immunoblotting of APP/PS1 BECs showed downregulation of the adherens junction protein VE-cadherin. Stimulation of human brain endothelial cells with interferon-β decreased the levels of the adherens junction protein VE-cadherin as well as tight junction proteins Occludin and Claudin-5 and increased barrier leakiness. Depletion of the Type I interferon receptor in human brain endothelial cells prevented interferon-β-induced VE-cadherin downregulation and restored endothelial barrier integrity. Our study suggests that Type I interferon signaling contributes to brain endothelial dysfunction in AD.
Collapse
Affiliation(s)
- Arundhati Jana
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Xinge Wang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA.,Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Joseph W Leasure
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Lissette Magana
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Li Wang
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois, Chicago, IL, 60612, USA.,Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Young-Mee Kim
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois, Chicago, IL, 60612, USA.,Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA
| | - Hemraj Dodiya
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA.,The Microbiome Center, University of Chicago, Chicago, IL, 60637, USA
| | - Peter T Toth
- Research Resources Center, University of Chicago, Chicago, IL, 60612, USA.,Department of Pharmacology and Regenerative Medicine, University of Chicago, Chicago, IL, 60612, USA
| | - Sangram S Sisodia
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA.,The Microbiome Center, University of Chicago, Chicago, IL, 60637, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois, Chicago, IL, 60612, USA. .,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA. .,Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, 60607, USA. .,Department of Pharmacology and Regenerative Medicine, University of Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
205
|
Welch GM, Boix CA, Schmauch E, Davila-Velderrain J, Victor MB, Dileep V, Bozzelli PL, Su Q, Cheng JD, Lee A, Leary NS, Pfenning AR, Kellis M, Tsai LH. Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration. SCIENCE ADVANCES 2022; 8:eabo4662. [PMID: 36170369 PMCID: PMC9519048 DOI: 10.1126/sciadv.abo4662] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/26/2022] [Indexed: 05/13/2023]
Abstract
DNA double-strand breaks (DSBs) are linked to neurodegeneration and senescence. However, it is not clear how DSB-bearing neurons influence neuroinflammation associated with neurodegeneration. Here, we characterize DSB-bearing neurons from the CK-p25 mouse model of neurodegeneration using single-nucleus, bulk, and spatial transcriptomic techniques. DSB-bearing neurons enter a late-stage DNA damage response marked by nuclear factor κB (NFκB)-activated senescent and antiviral immune pathways. In humans, Alzheimer's disease pathology is closely associated with immune activation in excitatory neurons. Spatial transcriptomics reveal that regions of CK-p25 brain tissue dense with DSB-bearing neurons harbor signatures of inflammatory microglia, which is ameliorated by NFκB knockdown in neurons. Inhibition of NFκB in DSB-bearing neurons also reduces microglia activation in organotypic mouse brain slice culture. In conclusion, DSBs activate immune pathways in neurons, which in turn adopt a senescence-associated secretory phenotype to elicit microglia activation. These findings highlight a previously unidentified role for neurons in the mechanism of disease-associated neuroinflammation.
Collapse
Affiliation(s)
- Gwyneth M. Welch
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carles A. Boix
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eloi Schmauch
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jose Davila-Velderrain
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matheus B. Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P. Lorenzo Bozzelli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiao Su
- Departments of Computational Biology and Biology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jemmie D. Cheng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Audrey Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noelle S. Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andreas R. Pfenning
- Departments of Computational Biology and Biology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
206
|
Bishop ES, Namkoong H, Aurelian L, McCarthy M, Nallagatla P, Zhou W, Neshatian L, Gurland B, Habtezion A, Becker L. Age-dependent Microglial Disease Phenotype Results in Functional Decline in Gut Macrophages. GASTRO HEP ADVANCES 2022; 2:261-276. [PMID: 36908772 PMCID: PMC10003669 DOI: 10.1016/j.gastha.2022.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND AIMS Muscularis macrophages (MMs) are tissue-resident macrophages in the gut muscularis externa which play a supportive role to the enteric nervous system. We have previously shown that age-dependent MM alterations drive low-grade enteric nervous system inflammation, resulting in neuronal loss and disruption of gut motility. The current studies were designed to identify the MM genetic signature involved in these changes, with particular emphasis on comparison to genes in microglia, the central nervous system macrophage population involved in age-dependent cognitive decline. METHODS Young (3 months) and old (16-24 months) C57BL/6 mice and human tissue were studied. Immune cells from mouse small intestine, colon, and spinal cord and human colon were dissociated, immunophenotyped by flow cytometry, and examined for gene expression by single-cell RNA sequencing and quantitative real-time PCR. Phagocytosis was assessed by in vivo injections of pHrodo beads (Invitrogen). Macrophage counts were performed by immunostaining of muscularis whole mounts. RESULTS MMs from young and old mice express homeostatic microglial genes, including Gpr34, C1qc, Trem2, and P2ry12. An MM subpopulation that becomes more abundant with age assumes a geriatric state (GS) phenotype characterized by increased expression of disease-associated microglia genes including Cd9, Clec7a, Itgax (CD11c), Bhlhe40, Lgals3, IL-1β, and Trem2 and diminished phagocytic activity. Acquisition of the GS phenotype is associated with clearance of α-synuclein aggregates. Human MMs demonstrate a similar age-dependent acquisition of the GS phenotype associated with intracellular α-synuclein accumulation. CONCLUSION MMs demonstrate age-dependent genetic changes that mirror the microglial disease-associated microglia phenotype and result in functional decline.
Collapse
Affiliation(s)
- Estelle Spear Bishop
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Hong Namkoong
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Laure Aurelian
- Stanford University School of Medicine OFDD, Stanford, California
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Madison McCarthy
- Department of Surgery, Stanford University, Stanford, California
| | - Pratima Nallagatla
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, California
| | - Wenyu Zhou
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Leila Neshatian
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Brooke Gurland
- Department of Surgery, Stanford University, Stanford, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Laren Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| |
Collapse
|
207
|
Zhang X, Pearsall VM, Carver CM, Atkinson EJ, Clarkson BDS, Grund EM, Baez-Faria M, Pavelko KD, Kachergus JM, White TA, Johnson RK, Malo CS, Gonzalez-Suarez AM, Ayasoufi K, Johnson KO, Tritz ZP, Fain CE, Khadka RH, Ogrodnik M, Jurk D, Zhu Y, Tchkonia T, Revzin A, Kirkland JL, Johnson AJ, Howe CL, Thompson EA, LeBrasseur NK, Schafer MJ. Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance. Nat Commun 2022; 13:5671. [PMID: 36167854 PMCID: PMC9515187 DOI: 10.1038/s41467-022-33226-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain. We show that senescence and inflammatory expression profiles increase with age and are brain region- and sex-specific. p16-positive myeloid cells exhibiting senescent and disease-associated activation signatures, including upregulation of chemoattractant factors, accumulate in the aged mouse brain. Senescent brain myeloid cells promote peripheral immune cell chemotaxis in vitro. Activated resident and infiltrating immune cells increase in the aged brain and are partially restored to youthful levels through p16-positive senescent cell clearance in female p16-InkAttac mice, which is associated with preservation of cognitive function. Our study reveals dynamic remodeling of the brain immune cell landscape in aging and suggests senescent cell targeting as a strategy to counter inflammatory changes and cognitive decline.
Collapse
Affiliation(s)
- Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth J Atkinson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Benjamin D S Clarkson
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ethan M Grund
- Mayo Graduate School and Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Michelle Baez-Faria
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Jennifer M Kachergus
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Kurt O Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | | - Cori E Fain
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Roman H Khadka
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Mikolaj Ogrodnik
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
- Division of Experimental Neurology, Mayo Clinic, Rochester, MN, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
208
|
Hemonnot-Girard AL, Meersseman C, Pastore M, Garcia V, Linck N, Rey C, Chebbi A, Jeanneteau F, Ginsberg SD, Lachuer J, Reynes C, Rassendren F, Hirbec H. Comparative analysis of transcriptome remodeling in plaque-associated and plaque-distant microglia during amyloid-β pathology progression in mice. J Neuroinflammation 2022; 19:234. [PMID: 36153535 PMCID: PMC9508749 DOI: 10.1186/s12974-022-02581-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Research in recent years firmly established that microglial cells play an important role in the pathogenesis of Alzheimer's disease (AD). In parallel, a series of studies showed that, under both homeostatic and pathological conditions, microglia are a heterogeneous cell population. In AD, amyloid-β (Aβ) plaque-associated microglia (PAM) display a clearly distinct phenotype compared to plaque-distant microglia (PCM), suggesting that these two microglia subtypes likely differently contribute to disease progression. So far, molecular characterization of PAM was performed indirectly using single cell RNA sequencing (scRNA-seq) approaches or based on markers that are supposedly up-regulated in this microglia subpopulation. METHODS In this study based on a well-characterized AD mouse model, we combined cell-specific laser capture microdissection and RNA-seq analysis to i) identify, without preconceived notions of the molecular and/or functional changes that would affect these cells, the genes and gene networks that are dysregulated in PAM or PCM at three critical stages of the disease, and ii) to investigate the potential contribution of both plaque-associated and plaque-distant microglia. RESULTS First, we established that our approach allows selective isolation of microglia, while preserving spatial information and preventing transcriptome changes induced by classical purification approaches. Then, we identified, in PAM and PCM subpopulations, networks of co-deregulated genes and analyzed their potential functional roles in AD. Finally, we investigated the dynamics of microglia transcriptomic remodeling at early, intermediate and late stages of the disease and validated select findings in postmortem human AD brain. CONCLUSIONS Our comprehensive study provides useful transcriptomic information regarding the respective contribution of PAM and PCM across the Aβ pathology progression. It highlights specific pathways that would require further study to decipher their roles across disease progression. It demonstrates that the proximity of microglia to Aβ-plaques dramatically alters the microglial transcriptome and reveals that these changes can have both positive and negative impacts on the surrounding cells. These opposing effects may be driven by local microglia heterogeneity also demonstrated by this study. Our approach leads to molecularly define the less well studied plaque-distant microglia. We show that plaque-distant microglia are not bystanders of the disease, although the transcriptomic changes are far less striking compared to what is observed in plaque-associated microglia. In particular, our results suggest they may be involved in Aβ oligomer detection and in Aβ-plaque initiation, with increased contribution as the disease progresses.
Collapse
Affiliation(s)
- Anne-Laure Hemonnot-Girard
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Lyon, France
| | - Cédric Meersseman
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Lyon, France
| | - Manuela Pastore
- Université de Montpellier, CNRS, INSERM, BioCampus UAR3426, Montpellier, France
| | - Valentin Garcia
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Lyon, France
| | - Nathalie Linck
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Lyon, France
| | - Catherine Rey
- ProfileXpert, SFR santé Lyon-Est, CNRS UMR-S3453, Inserm US7, Lyon, France
| | - Amine Chebbi
- ProfileXpert, SFR santé Lyon-Est, CNRS UMR-S3453, Inserm US7, Lyon, France
| | | | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New-York, USA
- Department of Psychiatry, Department of Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Joël Lachuer
- University Lyon1, CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France
- ProfileXpert, SFR santé Lyon-Est, CNRS UMR-S3453, Inserm US7, Lyon, France
| | - Christelle Reynes
- Université de Montpellier, CNRS, INSERM, BioCampus UAR3426, Montpellier, France
| | - François Rassendren
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Lyon, France
| | - Hélène Hirbec
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.
- LabEx Ion Channel Science and Therapeutics, Lyon, France.
| |
Collapse
|
209
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
210
|
Xiong W, Liu Y, Zhou H, Jing S, He Y, Ye Q. Alzheimer’s disease: Pathophysiology and dental pulp stem cells therapeutic prospects. Front Cell Dev Biol 2022; 10:999024. [PMID: 36187488 PMCID: PMC9520621 DOI: 10.3389/fcell.2022.999024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a destructive neurodegenerative disease with the progressive dysfunction, structural disorders and decreased numbers of neurons in the brain, which leads to long-term memory impairment and cognitive decline. There is a growing consensus that the development of AD has several molecular mechanisms similar to those of other neurodegenerative diseases, including excessive accumulation of misfolded proteins and neurotoxic substances produced by hyperactivated microglia. Nonetheless, there is currently a lack of effective drug candidates to delay or prevent the progression of the disease. Based on the excellent regenerative and reparative capabilities of stem cells, the application of them to repair or replace injured neurons carries enormous promise. Dental pulp stem cells (DPSCs), originated from ectomesenchyme of the cranial neural crest, hold a remarkable potential for neuronal differentiation, and additionally express a variety of neurotrophic factors that contribute to a protective effect on injured neuronal cells. Notably, DPSCs can also express immunoregulatory factors to control neuroinflammation and potentiate the regeneration and recovery of injured neurons. These extraordinary features along with accessibility make DPSCs an attractive source of postnatal stem cells for the regeneration of neurons or protection of existing neural circuitry in the neurodegenerative diseases. The present reviews the latest research advance in the pathophysiology of AD and elaborate the neurodifferentiation and neuroprotective properties of DPSCs as well as their application prospects in AD.
Collapse
Affiliation(s)
- Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|
211
|
Gabrielli M, Raffaele S, Fumagalli M, Verderio C. The multiple faces of extracellular vesicles released by microglia: Where are we 10 years after? Front Cell Neurosci 2022; 16:984690. [PMID: 36176630 PMCID: PMC9514840 DOI: 10.3389/fncel.2022.984690] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
As resident component of the innate immunity in the central nervous system (CNS), microglia are key players in pathology. However, they also exert fundamental roles in brain development and homeostasis maintenance. They are extremely sensitive and plastic, as they assiduously monitor the environment, adapting their function in response to stimuli. On consequence, microglia may be defined a heterogeneous community of cells in a dynamic equilibrium. Extracellular vesicles (EVs) released by microglia mirror the dynamic nature of their donor cells, exerting important and versatile functions in the CNS as unbounded conveyors of bioactive signals. In this review, we summarize the current knowledge on EVs released by microglia, highlighting their heterogeneous properties and multifaceted effects.
Collapse
Affiliation(s)
- Martina Gabrielli
- CNR Institute of Neuroscience, Vedano al Lambro, Italy
- *Correspondence: Martina Gabrielli,
| | - Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Vedano al Lambro, Italy
- Claudia Verderio,
| |
Collapse
|
212
|
Li C, Ren J, Zhang M, Wang H, Yi F, Wu J, Tang Y. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell Mol Life Sci 2022; 79:511. [PMID: 36066650 PMCID: PMC11803019 DOI: 10.1007/s00018-022-04536-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.
Collapse
Affiliation(s)
- Chaoyi Li
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Ren
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengfei Zhang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huakun Wang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Yi
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Tang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
213
|
Gao C, Shen X, Tan Y, Chen S. Pathogenesis, therapeutic strategies and biomarker development based on "omics" analysis related to microglia in Alzheimer's disease. J Neuroinflammation 2022; 19:215. [PMID: 36058959 PMCID: PMC9441025 DOI: 10.1186/s12974-022-02580-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the most common cause of dementia. Among various pathophysiological aspects, microglia are considered to play important roles in the pathogenesis of AD. Genome wide association studies (GWAS) showed that the majority of AD risk genes are highly or exclusively expressed in microglia, underscoring the critical roles of microglia in AD pathogenesis. Recently, omics technologies have greatly advanced our knowledge of microglia biology in AD. Omics approaches, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics/lipidomics, present remarkable opportunities to delineate the underlying mechanisms, discover novel diagnostic biomarkers, monitor disease progression, and shape therapeutic strategies for diseases. In this review, we summarized research based on microglial "omics" analysis in AD, especially the recent research advances in the identification of AD-associated microglial subsets. This review reinforces the important role of microglia in AD and advances our understanding of the mechanism of microglia in AD pathogenesis. Moreover, we proposed the value of microglia-based omics in the development of therapeutic strategies and biomarkers for AD.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
214
|
Fernández‐Arjona MDM, León‐Rodríguez A, Grondona JM, López‐Ávalos MD. Long-term priming of hypothalamic microglia is associated with energy balance disturbances under diet-induced obesity. Glia 2022; 70:1734-1761. [PMID: 35603807 PMCID: PMC9540536 DOI: 10.1002/glia.24217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022]
Abstract
Exposure of microglia to an inflammatory environment may lead to their priming and exacerbated response to future inflammatory stimuli. Here we aimed to explore hypothalamic microglia priming and its consequences on energy balance regulation. A model of intracerebroventricular administration of neuraminidase (NA, which is present in various pathogens such as influenza virus) was used to induce acute neuroinflammation. Evidences of primed microglia were observed 3 months after NA injection, namely (1) a heightened response of microglia located in the hypothalamic arcuate nucleus after an in vivo inflammatory challenge (high fat diet [HFD] feeding for 10 days), and (2) an enhanced response of microglia isolated from NA-treated mice and challenged in vitro to LPS. On the other hand, the consequences of a previous NA-induced neuroinflammation were further evaluated in an alternative inflammatory and hypercaloric scenario, such as the obesity generated by continued HDF feeding. Compared with sham-injected mice, NA-treated mice showed increased food intake and, surprisingly, reduced body weight. Besides, NA-treated mice had enhanced microgliosis (evidenced by increased number and reactive morphology of microglia) and a reduced population of POMC neurons in the basal hypothalamus. Thus, a single acute neuroinflammatory event may elicit a sustained state of priming in microglial cells, and in particular those located in the hypothalamus, with consequences in hypothalamic cytoarchitecture and its regulatory function upon nutritional challenges.
Collapse
Affiliation(s)
- María del Mar Fernández‐Arjona
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Grupo de investigación en Neuropsicofarmacología, Laboratorio de Medicina RegenerativaHospital Regional Universitario de MálagaMálagaSpain
| | - Ana León‐Rodríguez
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de CienciasUniversidad de Málaga, Campus de TeatinosMálagaSpain
| | - Jesús M. Grondona
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de CienciasUniversidad de Málaga, Campus de TeatinosMálagaSpain
| | - María D. López‐Ávalos
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de CienciasUniversidad de Málaga, Campus de TeatinosMálagaSpain
| |
Collapse
|
215
|
Dräger NM, Sattler SM, Huang CTL, Teter OM, Leng K, Hashemi SH, Hong J, Aviles G, Clelland CD, Zhan L, Udeochu JC, Kodama L, Singleton AB, Nalls MA, Ichida J, Ward ME, Faghri F, Gan L, Kampmann M. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat Neurosci 2022; 25:1149-1162. [PMID: 35953545 PMCID: PMC9448678 DOI: 10.1038/s41593-022-01131-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/24/2022] [Indexed: 12/12/2022]
Abstract
Microglia are emerging as key drivers of neurological diseases. However, we lack a systematic understanding of the underlying mechanisms. Here, we present a screening platform to systematically elucidate functional consequences of genetic perturbations in human induced pluripotent stem cell-derived microglia. We developed an efficient 8-day protocol for the generation of microglia-like cells based on the inducible expression of six transcription factors. We established inducible CRISPR interference and activation in this system and conducted three screens targeting the ‘druggable genome’. These screens uncovered genes controlling microglia survival, activation and phagocytosis, including neurodegeneration-associated genes. A screen with single-cell RNA sequencing as the readout revealed that these microglia adopt a spectrum of states mirroring those observed in human brains and identified regulators of these states. A disease-associated state characterized by osteopontin (SPP1) expression was selectively depleted by colony-stimulating factor-1 (CSF1R) inhibition. Thus, our platform can systematically uncover regulators of microglial states, enabling their functional characterization and therapeutic targeting. Dräger et al. establish a rapid, scalable platform for iPSC-derived microglia. CRISPRi/a screens uncover roles of disease-associated genes in phagocytosis, and regulators of disease-relevant microglial states that can be targeted pharmacologically.
Collapse
Affiliation(s)
- Nina M Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M Sattler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | | | - Olivia M Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sayed Hadi Hashemi
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason Hong
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Giovanni Aviles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Claire D Clelland
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Lihong Zhan
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Joe C Udeochu
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Lay Kodama
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Data Tecnica International, LLC, Glen Echo, MD, USA
| | - Justin Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Faraz Faghri
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Data Tecnica International, LLC, Glen Echo, MD, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA. .,Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
216
|
Park HJ, Jung H. Neuro-immune interactions at single-cell resolution in neurodevelopmental, infectious, and neurodegenerative diseases. Anim Cells Syst (Seoul) 2022; 26:137-147. [PMID: 36046030 PMCID: PMC9423835 DOI: 10.1080/19768354.2022.2110937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recent technological advance in single-cell and single-nucleus transcriptomics has made it possible to generate an unprecedentedly detailed landscape of neuro-immune interactions in healthy and diseased brains. In this review, we overview the recent literature that catalogs single-cell-level gene expression in brains with signs of inflammation, focusing on maternal immune activation, viral infection, and auto-immune diseases. The literature also includes a series of papers that provide strong evidence for immunological contributions to neurodegenerative diseases, which, in a strict sense, are not considered neuroinflammatory. To help with the discussion, we present a diagram of experimental and analytical flows in the single-cell analysis of the brain. We also discuss the recurring themes of neuro-immune interactions and suggest future research directions.
Collapse
Affiliation(s)
- Hyun Jung Park
- Samsung Medical Center, Samsung Genome Institute, Seoul, Republic of Korea
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
217
|
Silvin A, Uderhardt S, Piot C, Da Mesquita S, Yang K, Geirsdottir L, Mulder K, Eyal D, Liu Z, Bridlance C, Thion MS, Zhang XM, Kong WT, Deloger M, Fontes V, Weiner A, Ee R, Dress R, Hang JW, Balachander A, Chakarov S, Malleret B, Dunsmore G, Cexus O, Chen J, Garel S, Dutertre CA, Amit I, Kipnis J, Ginhoux F. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 2022; 55:1448-1465.e6. [PMID: 35931085 DOI: 10.1016/j.immuni.2022.07.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022]
Abstract
Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Aymeric Silvin
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Stefan Uderhardt
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum für Immuntherapie, FAU, 91054 Erlangen, Germany; Exploratory Research Unit, Optical Imaging Centre Erlangen, FAU, 91058 Erlangen, Germany
| | - Cecile Piot
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Sandro Da Mesquita
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katharine Yang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Laufey Geirsdottir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kevin Mulder
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - David Eyal
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Cecile Bridlance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Morgane Sonia Thion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Xiao Meng Zhang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Marc Deloger
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Vasco Fontes
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum für Immuntherapie, FAU, 91054 Erlangen, Germany; Exploratory Research Unit, Optical Imaging Centre Erlangen, FAU, 91058 Erlangen, Germany
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachel Ee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Regine Dress
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jing Wen Hang
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Akhila Balachander
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Olivier Cexus
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; School Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Charles Antoine Dutertre
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jonathan Kipnis
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908, USA; Center for Brain Immunology and Glia, Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore.
| |
Collapse
|
218
|
Profiling Microglia through Single-Cell RNA Sequencing over the Course of Development, Aging, and Disease. Cells 2022; 11:cells11152383. [PMID: 35954228 PMCID: PMC9368511 DOI: 10.3390/cells11152383] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Microglia are macrophages present in the brain that function as the primary and most important source of immune response in the central nervous system (CNS). Regardless of their multitasking role, our knowledge regarding their molecular heterogeneity is limited; due to technical restrictions, it is only possible to measure gene expression in cell populations, not individual cells, with the results reflecting average mRNA levels. Therefore, recent scientific approaches have focused on single-cell techniques such as single-cell RNA sequencing (scRNAseq), a powerful technique that enables the delineation of transcriptomic cell-to-cell differences, revealing subpopulations with distinct molecular and functional characteristics. Here, we summarize recent studies that focused on transcriptomic microglial subpopulation clustering and classify them into three distinct groups based on age, spatial distribution, and disease. Additionally, we cross-compare populations from different studies to identify expressional and functional overlaps between them.
Collapse
|
219
|
Huck NA, Donovan LJ, Shen H, Jordan CE, Muwanga GP, Bridges CM, Forman TE, Cordonnier SA, Haight ES, Dale-Huang F, Takemura Y, Tawfik VL. Sex-distinct microglial activation and myeloid cell infiltration in the spinal cord after painful peripheral injury. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100106. [PMID: 36531615 PMCID: PMC9755061 DOI: 10.1016/j.ynpai.2022.100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 05/26/2023]
Abstract
Chronic pain is a common and often debilitating problem that affects 100 million Americans. A better understanding of pain's molecular mechanisms is necessary for developing safe and effective therapeutics. Microglial activation has been implicated as a mediator of chronic pain in numerous preclinical studies; unfortunately, translational efforts using known glial modulators have largely failed, perhaps at least in part due to poor specificity of the compounds pursued, or an incomplete understanding of microglial reactivity. In order to achieve a more granular understanding of the role of microglia in chronic pain as a means of optimizing translational efforts, we utilized a clinically-informed mouse model of complex regional pain syndrome (CRPS), and monitored microglial activation throughout pain progression. We discovered that while both males and females exhibit spinal cord microglial activation as evidenced by increases in Iba1, activation is attenuated and delayed in females. We further evaluated the expression of the newly identified microglia-specific marker, TMEM119, and identified two distinct populations in the spinal cord parenchyma after peripheral injury: TMEM119+ microglia and TMEM119- infiltrating myeloid lineage cells, which are comprised of Ly6G + neutrophils and Ly6G- macrophages/monocytes. Neurons are sensitized by inflammatory mediators released in the CNS after injury; however, the cellular source of these cytokines remains somewhat unclear. Using multiplex in situ hybridization in combination with immunohistochemistry, we demonstrate that spinal cord TMEM119+ microglia are the cellular source of cytokines IL6 and IL1β after peripheral injury. Taken together, these data have important implications for translational studies: 1) microglia remain a viable analgesic target for males and females, so long as duration after injury is considered; 2) the analgesic properties of microglial modulators are likely at least in part related to their suppression of microglial-released cytokines, and 3) a limited number of neutrophils and macrophages/monocytes infiltrate the spinal cord after peripheral injury but have unknown impact on pain persistence or resolution. Further studies to uncover glial-targeted therapeutic interventions will need to consider sex, timing after injury, and the exact target population of interest to have the specificity necessary for translation.
Collapse
Affiliation(s)
- Nolan A. Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lauren J. Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Huaishuang Shen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Orthopedic Surgery, First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Claire E. Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Gabriella P.B. Muwanga
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caldwell M. Bridges
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas E. Forman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stephanie A. Cordonnier
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Elena S. Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Fiona Dale-Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yoshinori Takemura
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Anesthesiology, University of Toyama, Toyama 930-0194, Japan
| | - Vivianne L. Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
220
|
Sreeram S, Ye F, Garcia-Mesa Y, Nguyen K, El Sayed A, Leskov K, Karn J. The potential role of HIV-1 latency in promoting neuroinflammation and HIV-1-associated neurocognitive disorder. Trends Immunol 2022; 43:630-639. [PMID: 35840529 PMCID: PMC9339484 DOI: 10.1016/j.it.2022.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Despite potent suppression of HIV-1 viral replication in the central nervous system (CNS) by antiretroviral therapy (ART), between 15% and 60% of HIV-1-infected patients receiving ART exhibit neuroinflammation and symptoms of HIV-1-associated neurocognitive disorder (HAND) - a significant unmet challenge. We propose that the emergence of HIV-1 from latency in microglia underlies both neuroinflammation in the CNS and the progression of HAND. Recent molecular studies of cellular silencing mechanisms of HIV-1 in microglia show that HIV-1 latency can be reversed both by proinflammatory cytokines and by signals from damaged neurons, potentially creating intermittent cycles of HIV-1 reactivation and silencing in the brain. We posit that anti-inflammatory agents that also block HIV-1 reactivation, such as nuclear receptor agonists, might provide new putative therapeutic avenues for the treatment of HAND.
Collapse
Affiliation(s)
- Sheetal Sreeram
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Ahmed El Sayed
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
221
|
Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infections. Front Immunol 2022; 13:907804. [PMID: 36052093 PMCID: PMC9425114 DOI: 10.3389/fimmu.2022.907804] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, United States
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| |
Collapse
|
222
|
Singh N, Das B, Zhou J, Hu X, Yan R. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance. SCIENCE ADVANCES 2022; 8:eabo3610. [PMID: 35857844 PMCID: PMC9299535 DOI: 10.1126/sciadv.abo3610] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/07/2022] [Indexed: 05/14/2023]
Abstract
Abnormal accumulation of β-amyloid (Aβ) peptides is a culprit in Alzheimer's disease (AD); blocking Aβ generation is therefore being explored as a logical approach for AD treatment. Here, we demonstrate that targeted inhibition of β-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE-1) in microglia has unique advantages. When Bace-1 was deleted in Alzheimer's 5xFAD microglia, fewer amyloid plaques developed, and this reduction was not due to changes in APP processing but rather to enhanced Aβ clearance, in line with the increase in a microglial gene signature favoring phagocytosis. Moreover, deletion of Bace-1 in microglia enhances functions of autophagolysosomes and Aβ-induced metabolic reprogramming necessary for Aβ degradation by favoring phosphorylation of mammalian target of rapamycin complex (mTOR) at Ser2448 and modulating the PI3K-mTOR-HIF-1α signaling pathways. Mice with deletion of Bace-1 in microglia showed no reduction in long-term potentiation, unlike global deletion of Bace-1. Our results suggest that targeted inhibition of BACE-1 in microglia is a superior strategy for AD treatment.
Collapse
Affiliation(s)
- Neeraj Singh
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | | - John Zhou
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | |
Collapse
|
223
|
Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration. Cell Death Dis 2022; 13:628. [PMID: 35859075 PMCID: PMC9300700 DOI: 10.1038/s41419-022-05058-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3. Representative examples of these phenotypes include disease-associated microglia (DAM) and white-associated microglia (WAM), whose role(s) in neuroprotection/neurotoxicity is a matter of high interest in the microglia community. In this review, we summarise the main findings that demonstrate the ability of galectin-3 to interact with key pattern recognition receptors, including, among others, TLR4 and TREM2 and the importance of galectin-3 in the regulation of microglia activation. Finally, we discuss increasing evidence supporting the involvement of this lectin in the main neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, and stroke.
Collapse
|
224
|
Karaahmet B, Le L, Mendes MS, Majewska AK, O'Banion MK. Repopulated microglia induce expression of Cxcl13 with differential changes in Tau phosphorylation but do not impact amyloid pathology. J Neuroinflammation 2022; 19:173. [PMID: 35787714 PMCID: PMC9252071 DOI: 10.1186/s12974-022-02532-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Adult microglia rely on self-renewal through division to repopulate and sustain their numbers. However, with aging, microglia display morphological and transcriptional changes that reflect a heightened state of neuroinflammation. This state threatens aging neurons and other cells and can influence the progression of Alzheimer's disease (AD). In this study, we sought to determine whether renewing microglia through a forced partial depletion/repopulation method could attenuate AD pathology in the 3xTg and APP/PS1 mouse models. METHODS We pharmacologically depleted the microglia of two cohorts of 21- to 22-month-old 3xTg mice and one cohort of 14-month-old APP/PS1 mice using PLX5622 formulated in chow for 2 weeks. Following depletion, we returned the mice to standard chow diet for 1 month to allow microglial repopulation. We assessed the effect of depletion and repopulation on AD pathology, microglial gene expression, and surface levels of homeostatic markers on microglia using immunohistochemistry, single-cell RNAseq and flow cytometry. RESULTS Although we did not identify a significant impact of microglial repopulation on amyloid pathology in either of the AD models, we observed differential changes in phosphorylated-Tau epitopes after repopulation in the 3xTg mice. We provide evidence that repopulated microglia in the hippocampal formation exhibited changes in the levels of homeostatic microglial markers. Lastly, we identified novel subpopulations of microglia by performing single-cell RNAseq analysis on CD45int/+ cells from hippocampi of control and repopulated 3xTg mice. In particular, one subpopulation induced after repopulation is characterized by heightened expression of Cxcl13. CONCLUSION Overall, we found that depleting and repopulating microglia causes overexpression of microglial Cxcl13 with disparate effects on Tau and amyloid pathologies.
Collapse
Affiliation(s)
- Berke Karaahmet
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Linh Le
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Monique S Mendes
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA.
| | - M Kerry O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA.
| |
Collapse
|
225
|
Singh N, Benoit MR, Zhou J, Das B, Davila-Velderrain J, Kellis M, Tsai LH, Hu X, Yan R. BACE-1 inhibition facilitates the transition from homeostatic microglia to DAM-1. SCIENCE ADVANCES 2022; 8:eabo1286. [PMID: 35714196 PMCID: PMC9205595 DOI: 10.1126/sciadv.abo1286] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/29/2022] [Indexed: 05/02/2023]
Abstract
BACE-1 is required for generating β-amyloid (Aβ) peptides in Alzheimer's disease (AD). Here, we report that microglial BACE-1 regulates the transition of homeostatic to stage 1 disease-associated microglia (DAM-1) signature. BACE-1 deficiency elevated levels of transcription factors including Jun, Jund, Btg2, Erg1, Junb, Fos, and Fosb in the transition signature, which transition from more homeostatic to highly phagocytic DAM-1. Consistently, similar transition-state microglia in human AD brains correlated with lowered levels of BACE-1 expression. Targeted deletion of Bace-1 in adult 5xFAD mice microglia elevated these phagocytic microglia, correlated with significant reduction in amyloid plaques without synaptic toxicity. Silencing or pharmacologically inhibiting BACE-1 in cultured microglia-derived cells shows higher phagocytic function in microglia. Mechanistic exploration suggests that abolished cleavage of IL-1R2 and Toll-like receptors via BACE-1 inhibition contributes to the enhanced signaling via the PI3K and p38 MAPK kinase pathway. Together, targeted inhibition of BACE-1 in microglia may offer AD treatment.
Collapse
Affiliation(s)
- Neeraj Singh
- Department of Neuroscience, UConn Health, Farmington, CT 06030-3401, USA
| | - Marc R. Benoit
- Department of Neuroscience, UConn Health, Farmington, CT 06030-3401, USA
| | - John Zhou
- Department of Neuroscience, UConn Health, Farmington, CT 06030-3401, USA
| | - Brati Das
- Department of Neuroscience, UConn Health, Farmington, CT 06030-3401, USA
| | - Jose Davila-Velderrain
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, Farmington, CT 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, Farmington, CT 06030-3401, USA
| |
Collapse
|
226
|
Xia D, Lianoglou S, Sandmann T, Calvert M, Suh JH, Thomsen E, Dugas J, Pizzo ME, DeVos SL, Earr TK, Lin CC, Davis S, Ha C, Leung AWS, Nguyen H, Chau R, Yulyaningsih E, Lopez I, Solanoy H, Masoud ST, Liang CC, Lin K, Astarita G, Khoury N, Zuchero JY, Thorne RG, Shen K, Miller S, Palop JJ, Garceau D, Sasner M, Whitesell JD, Harris JA, Hummel S, Gnörich J, Wind K, Kunze L, Zatcepin A, Brendel M, Willem M, Haass C, Barnett D, Zimmer TS, Orr AG, Scearce-Levie K, Lewcock JW, Di Paolo G, Sanchez PE. Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia. Mol Neurodegener 2022; 17:41. [PMID: 35690868 PMCID: PMC9188195 DOI: 10.1186/s13024-022-00547-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-β pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aβ content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aβ content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION Our findings demonstrate that fibrillar Aβ in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.
Collapse
Affiliation(s)
- Dan Xia
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Steve Lianoglou
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Thomas Sandmann
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Meredith Calvert
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Jung H. Suh
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Elliot Thomsen
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Jason Dugas
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Michelle E. Pizzo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Sarah L. DeVos
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Timothy K. Earr
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Chia-Ching Lin
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Sonnet Davis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Connie Ha
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Amy Wing-Sze Leung
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Hoang Nguyen
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Roni Chau
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Ernie Yulyaningsih
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Isabel Lopez
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Hilda Solanoy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Shababa T. Masoud
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Chun-chi Liang
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Karin Lin
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Giuseppe Astarita
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Nathalie Khoury
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Joy Yu Zuchero
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Robert G. Thorne
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
- Department of Pharmaceutics, University of Minnesota, 9-177 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN 55455 USA
| | - Kevin Shen
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | - Stephanie Miller
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | | | | | | | | | - Selina Hummel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lea Kunze
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Artem Zatcepin
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Michael Willem
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig- Maximilians-Universität, München, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Daniel Barnett
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY USA
| | - Till S. Zimmer
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - Anna G. Orr
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY USA
| | - Kimberly Scearce-Levie
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Joseph W. Lewcock
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Gilbert Di Paolo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Pascal E. Sanchez
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| |
Collapse
|
227
|
Xu YJ, Au NPB, Ma CHE. Functional and Phenotypic Diversity of Microglia: Implication for Microglia-Based Therapies for Alzheimer’s Disease. Front Aging Neurosci 2022; 14:896852. [PMID: 35693341 PMCID: PMC9178186 DOI: 10.3389/fnagi.2022.896852] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is closely associated with the accumulation of β-amyloid (Aβ) and neurofibrillary tangles (NFTs). Apart from Aβ and NFT pathologies, AD patients also exhibit a widespread microglial activation in various brain regions with elevated production of pro-inflammatory cytokines, a phenomenon known as neuroinflammation. In healthy central nervous system, microglia adopt ramified, “surveying” phenotype with compact cell bodies and elongated processes. In AD, the presence of pathogenic proteins such as extracellular Aβ plaques and hyperphosphorylated tau, induce the transformation of ramified microglia into amoeboid microglia. Ameboid microglia are highly phagocytic immune cells and actively secrete a cascade of pro-inflammatory cytokines and chemokines. However, the phagocytic ability of microglia gradually declines with age, and thus the clearance of pathogenic proteins becomes highly ineffective, leading to the accumulation of Aβ plaques and hyperphosphorylated tau in the aging brain. The accumulation of pathogenic proteins further augments the neuroinflammatory responses and sustains the activation of microglia. The excessive production of pro-inflammatory cytokines induces a massive loss of functional synapses and neurons, further worsening the disease condition of AD. More recently, the identification of a subset of microglia by transcriptomic studies, namely disease-associated microglia (DAM), the progressive transition from homeostatic microglia to DAM is TREM2-dependent and the homeostatic microglia gradually acquire the state of DAM during the disease progression of AD. Recent in-depth transcriptomic analysis identifies ApoE and Trem2 from microglia as the major risk factors for AD pathogenesis. In this review, we summarize current understandings of the functional roles of age-dependent microglial activation and neuroinflammation in the pathogenesis of AD. To this end, the exponential growth in transcriptomic data provides a solid foundation for in silico drug screening and gains further insight into the development of microglia-based therapeutic interventions for AD.
Collapse
Affiliation(s)
- Yi-Jun Xu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Chi Him Eddie Ma,
| |
Collapse
|
228
|
Wang J, Xu L, Lin W, Yao Y, Li H, Shen G, Cao X, He N, Chen J, Hu J, Zheng M, Song X, Ding Y, Shen Y, Zhong J, Wang LL, Chen YY, Zhu Y. Single-cell transcriptome analysis reveals the immune heterogeneity and the repopulation of microglia by Hif1α in mice after spinal cord injury. Cell Death Dis 2022; 13:432. [PMID: 35504882 PMCID: PMC9065023 DOI: 10.1038/s41419-022-04864-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is regarded as a vital pathological process in spinal cord injury (SCI), which removes damaged tissue, secretes cytokines, and facilitates regeneration. Repopulation of microglia has been shown to favor recovery from SCI. However, the origin and regulatory factors of microglia repopulation after SCI remain unknown. Here, we used single-cell RNA sequencing to portray the dynamic transcriptional landscape of immune cells during the early and late phases of SCI in mice. B cells and migDCs, located in the meninges under physiological conditions, are involved in immune surveillance. Microglia quickly reduced, and peripheral myeloid cells infiltrated three days-post-injury (dpi). At 14 dpi, microglia repopulated, myeloid cells were reduced, and lymphocytes infiltrated. Importantly, genetic lineage tracing of nestin+ and Cx3cr1+ cells in vivo showed that the repopulation of microglia was derived from residual microglia after SCI. We found that residual microglia regress to a developmental growth state in the early stages after SCI. Hif1α promotes microglial proliferation. Conditional ablation of Hif1α in microglia causes larger lesion sizes, fewer axon fibers, and impaired functional recovery in the late stages after SCI. Our results mapped the immune heterogeneity in SCI and raised the possibility that targeting Hif1α may help in axon regeneration and functional recovery after SCI.
Collapse
Affiliation(s)
- Jingyu Wang
- grid.412465.0Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China ,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Lintao Xu
- grid.412465.0Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China ,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Weiwei Lin
- grid.412465.0Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China ,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yin Yao
- grid.412465.0Department of Neurointensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Heyangzi Li
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Gerong Shen
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Cao
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning He
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chen
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Hu
- grid.506977.a0000 0004 1757 7957School of Basic Medical Sciences & Forensic Medicine of Hangzhou Medical College, Hangzhou, China
| | - Mingzhi Zheng
- grid.506977.a0000 0004 1757 7957School of Basic Medical Sciences & Forensic Medicine of Hangzhou Medical College, Hangzhou, China
| | - Xinghui Song
- grid.13402.340000 0004 1759 700XCore Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuemin Ding
- grid.13402.340000 0004 1759 700XSchool of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yueliang Shen
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjie Zhong
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-lin Wang
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-ying Chen
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongjian Zhu
- grid.412465.0Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China ,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
229
|
Takahashi F, Zhang C, Hohjoh H, Raveney B, Yamamura T, Hayashi N, Oki S. Immune-mediated neurodegenerative trait provoked by multimodal derepression of long-interspersed nuclear element-1. iScience 2022; 25:104278. [PMID: 35573205 PMCID: PMC9097630 DOI: 10.1016/j.isci.2022.104278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Neurodegeneration is a process involving both cell autonomous and non-cell autonomous neuron loss, followed by a collapse of neural networks, but its pathogenesis is poorly understood. We have previously demonstrated that Eomes-positive helper T (Eomes + Th) cells recognizing LINE-1(L1)-derived prototypic antigen ORF1 mediate neurotoxicity associated with the neurodegenerative pathology of experimental autoimmune encephalomyelitis (EAE). Here, we show that Eomes + Th cells accumulate in the CNS of mouse models of authentic neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), and secrete the neurotoxic granzyme B after encounter with ORF1 antigen. Multimodal derepression of neuronal L1 transcription is observed in EAE and ALS/AD models during neurodegeneration in active and cell cycle-mediated manner, respectively. These data suggest that the adventitious concurrence of immune-mediated neurodegenerative traits by Eomes + Th cells and ectopic expression of L1-derived antigen(s) in the inflamed CNS may materialize a communal and previously unappreciated pathogenesis of neurodegeneration. Eomes + Th cells accumulate in the CNS with undergoing neurodegeneration in common Multimodal L1 derepression is emerged in neuron cells under neurodegeneration Eomes + Th cells recognize L1-ORF1 antigen to exert neurotoxicity via granzyme B Immune-mediated neurotoxicity may embody a novel pathogenesis of neurodegeneration
Collapse
Affiliation(s)
- Fumio Takahashi
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Chenyang Zhang
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Ben Raveney
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Nobuhiro Hayashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinji Oki
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
- Corresponding author
| |
Collapse
|
230
|
Lu Y, Zhao Y, Zhang Q, Fang C, Bao A, Dong W, Peng Y, Peng H, Ju Z, He J, Zhang Y, Xu T, Zhong C. Soluble TREM2 is associated with death and cardiovascular events after acute ischemic stroke: an observational study from CATIS. J Neuroinflammation 2022; 19:88. [PMID: 35414082 PMCID: PMC9006629 DOI: 10.1186/s12974-022-02440-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background Soluble triggering receptor expressed on myeloid cells 2 (sTREM2), which reflects microglia activation, has been reported closely associated with neuronal injury and neuroinflammation. We aimed to prospectively investigate the associations between plasma sTREM2 and clinical outcomes in acute ischemic stroke (AIS) patients. Methods Study participants were from the China Antihypertensive Trial in Acute Ischemic Stroke, plasma sTREM2 levels in the acute phase of AIS were measured in 3285 participants. The study outcomes were death, cardiovascular events and severe disability at 1 year after AIS. Cox proportional hazards models or logistic regression models were performed to examine the associations of plasma sTREM2 and clinical outcomes. Results After 1-year follow-up, 288 participants (8.8%) experienced cardiovascular events or died. Multivariable-adjusted hazard ratios or odds ratios (95% confidence intervals) for the highest quartile of sTREM2 were 1.57 (1.11–2.21) for the composite outcome of death and cardiovascular events, 1.68 (1.09–2.60) for death, and 1.53 (1.08–2.18) for death or severe disability compared to the lowest quartile. Moreover, incorporation sTREM2 into traditional risk factors model significantly improved risk prediction of the composite outcome of death and cardiovascular events as evidenced by net reclassification index and integrated discrimination improvement (all p values < 0.05). There were joint effects of sTREM2 and galectin-3 on death and cardiovascular events. Participants with simultaneous elevation of sTREM2 and galectin-3 levels had the highest risk of the composite outcome of death and cardiovascular events. Conclusions Elevated sTREM2 levels were independently associated with increased risks of death and cardiovascular events after AIS.
Collapse
Affiliation(s)
- Yaling Lu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu, China
| | - Yu Zhao
- Department of Orthopaedics, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qi Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu, China
| | - Chongquan Fang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu, China
| | - Anran Bao
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu, China
| | - Wenjing Dong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu, China
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao, Inner Mongolia, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.,Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu, China.
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
231
|
Camacho-Morales A. Glycolytic metabolism supports microglia training during age-related neurodegeneration. Pharmacol Rep 2022; 74:818-831. [DOI: 10.1007/s43440-022-00363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
|
232
|
Han J, Chitu V, Stanley ER, Wszolek ZK, Karrenbauer VD, Harris RA. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci 2022; 79:219. [PMID: 35366105 PMCID: PMC8976111 DOI: 10.1007/s00018-022-04225-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microglia are specialized dynamic immune cells in the central nervous system (CNS) that plays a crucial role in brain homeostasis and in disease states. Persistent neuroinflammation is considered a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and primary progressive multiple sclerosis (MS). Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its expression is significantly increased in neurodegenerative diseases. Cumulative findings have indicated that CSF-1R inhibitors can have beneficial effects in preclinical neurodegenerative disease models. Research using CSF-1R inhibitors has now been extended into non-human primates and humans. This review article summarizes the most recent advances using CSF-1R inhibitors in different neurodegenerative conditions including AD, PD, HD, ALS and MS. Potential challenges for translating these findings into clinical practice are presented.
Collapse
Affiliation(s)
- Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
233
|
Cadiz MP, Jensen TD, Sens JP, Zhu K, Song WM, Zhang B, Ebbert M, Chang R, Fryer JD. Culture shock: microglial heterogeneity, activation, and disrupted single-cell microglial networks in vitro. Mol Neurodegener 2022; 17:26. [PMID: 35346293 PMCID: PMC8962153 DOI: 10.1186/s13024-022-00531-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microglia, the resident immune cells of the brain, play a critical role in numerous diseases, but are a minority cell type and difficult to genetically manipulate in vivo with viral vectors and other approaches. Primary cultures allow a more controlled setting to investigate these cells, but morphological and transcriptional changes upon removal from their normal brain environment raise many caveats from in vitro studies. METHODS To investigate whether cultured microglia recapitulate in vivo microglial signatures, we used single-cell RNA sequencing (scRNAseq) to compare microglia freshly isolated from the brain to primary microglial cultures. We performed cell population discovery, differential expression analysis, and gene co-expression module analysis to compare signatures between in vitro and in vivo microglia. We constructed causal predictive network models of transcriptional regulators from the scRNAseq data and identified a set of potential key drivers of the cultured phenotype. To validate this network analysis, we knocked down two of these key drivers, C1qc and Prdx1, in primary cultured microglia and quantified changes in microglial activation markers. RESULTS We found that, although often assumed to be a relatively homogenous population of cells in culture, in vitro microglia are a highly heterogeneous population consisting of distinct subpopulations of cells with transcriptional profiles reminiscent of macrophages and monocytes, and are marked by transcriptional programs active in neurodegeneration and other disease states. We found that microglia in vitro presented transcriptional activation of a set of "culture shock genes" not found in freshly isolated microglia, characterized by strong upregulation of disease-associated genes including Apoe, Lyz2, and Spp1, and downregulation of homeostatic microglial markers, including Cx3cr1, P2ry12, and Tmem119. Finally, we found that cultured microglia prominently alter their transcriptional machinery modulated by key drivers from the homeostatic to activated phenotype. Knockdown of one of these drivers, C1qc, resulted in downregulation of microglial activation genes Lpl, Lyz2, and Ccl4. CONCLUSIONS Overall, our data suggest that when removed from their in vivo home environment, microglia suffer a severe case of "culture shock", drastically modulating their transcriptional regulatory network state from homeostatic to activated through upregulation of modules of culture-specific genes. Consequently, cultured microglia behave as a disparate cell type that does not recapitulate the homeostatic signatures of microglia in vivo. Finally, our predictive network model discovered potential key drivers that may convert activated microglia back to their homeostatic state, allowing for more accurate representation of in vivo states in culture. Knockdown of key driver C1qc partially attenuated microglial activation in vitro, despite C1qc being only weakly upregulated in culture. This suggests that even genes that are not strongly differentially expressed across treatments or preparations may drive downstream transcriptional changes in culture.
Collapse
Affiliation(s)
- Mika P. Cadiz
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Tanner D. Jensen
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
| | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Kuixi Zhu
- Department of Neurology, University of Arizona, Tucson, AZ 85721 USA
| | - Won-Min Song
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mark Ebbert
- Sanders-Brown Center on Aging, Biomedical Informatics, and Department of Neuroscience, University of Kentucky, Lexington, KY 40536 USA
| | - Rui Chang
- Department of Neurology, University of Arizona, Tucson, AZ 85721 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| |
Collapse
|
234
|
Wang M, Song WM, Ming C, Wang Q, Zhou X, Xu P, Krek A, Yoon Y, Ho L, Orr ME, Yuan GC, Zhang B. Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease: review, recommendation, implementation and application. Mol Neurodegener 2022; 17:17. [PMID: 35236372 PMCID: PMC8889402 DOI: 10.1186/s13024-022-00517-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. Extensive clinical and genomic studies have revealed biomarkers, risk factors, pathways, and targets of AD in the past decade. However, the exact molecular basis of AD development and progression remains elusive. The emerging single-cell sequencing technology can potentially provide cell-level insights into the disease. Here we systematically review the state-of-the-art bioinformatics approaches to analyze single-cell sequencing data and their applications to AD in 14 major directions, including 1) quality control and normalization, 2) dimension reduction and feature extraction, 3) cell clustering analysis, 4) cell type inference and annotation, 5) differential expression, 6) trajectory inference, 7) copy number variation analysis, 8) integration of single-cell multi-omics, 9) epigenomic analysis, 10) gene network inference, 11) prioritization of cell subpopulations, 12) integrative analysis of human and mouse sc-RNA-seq data, 13) spatial transcriptomics, and 14) comparison of single cell AD mouse model studies and single cell human AD studies. We also address challenges in using human postmortem and mouse tissues and outline future developments in single cell sequencing data analysis. Importantly, we have implemented our recommended workflow for each major analytic direction and applied them to a large single nucleus RNA-sequencing (snRNA-seq) dataset in AD. Key analytic results are reported while the scripts and the data are shared with the research community through GitHub. In summary, this comprehensive review provides insights into various approaches to analyze single cell sequencing data and offers specific guidelines for study design and a variety of analytic directions. The review and the accompanied software tools will serve as a valuable resource for studying cellular and molecular mechanisms of AD, other diseases, or biological systems at the single cell level.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Yonejung Yoon
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Lap Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Miranda E. Orr
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| |
Collapse
|
235
|
Marsh SE, Walker AJ, Kamath T, Dissing-Olesen L, Hammond TR, de Soysa TY, Young AMH, Murphy S, Abdulraouf A, Nadaf N, Dufort C, Walker AC, Lucca LE, Kozareva V, Vanderburg C, Hong S, Bulstrode H, Hutchinson PJ, Gaffney DJ, Hafler DA, Franklin RJM, Macosko EZ, Stevens B. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat Neurosci 2022; 25:306-316. [PMID: 35260865 PMCID: PMC11645269 DOI: 10.1038/s41593-022-01022-8] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
A key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses. To address this issue, we present a rigorously validated protocol that preserves both in vivo transcriptional profiles and cell-type diversity and yield across tissue types and species. We also identify a similar signature in postmortem human brain single-nucleus RNA-sequencing datasets, and show that this signature is induced in freshly isolated human tissue by exposure to elevated temperatures ex vivo. Together, our results provide a methodological solution for preventing artifactual gene expression changes during fresh tissue digestion and a reference for future deeper analysis of the potential confounding states present in postmortem human samples.
Collapse
Affiliation(s)
- Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alec J Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tushar Kamath
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lasse Dissing-Olesen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy R Hammond
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam M H Young
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sarah Murphy
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Abdulraouf Abdulraouf
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Naeem Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Connor Dufort
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Alicia C Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Liliana E Lucca
- Department of Neurology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Velina Kozareva
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soyon Hong
- UK Dementia Research Institute, University College London, London, UK
| | - Harry Bulstrode
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - David A Hafler
- Department of Neurology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Evan Z Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
236
|
Cowan MN, Sethi I, Harris TH. Microglia in CNS infections: insights from Toxoplasma gondii and other pathogens. Trends Parasitol 2022; 38:217-229. [PMID: 35039238 PMCID: PMC8852251 DOI: 10.1016/j.pt.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are poised to respond to neuropathology. Microglia play multiple roles in maintaining homeostasis and promoting inflammation in numerous disease states. The study of microglial innate immune programs has largely focused on exploring neurodegenerative disease states with the use of genetic targeting approaches. Our understanding of how microglia participate in immune responses against pathogens is just beginning to take shape. Here, we review existing animal models of CNS infection, with a focus on how microglial physiology and inflammatory processes control protozoan and viral infections of the brain. We further discuss how microglial participation in over-exuberant immune responses can drive immunopathology that is detrimental to CNS health and homeostasis.
Collapse
Affiliation(s)
- Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Ish Sethi
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States,Correspondence: (T. H. Harris)
| |
Collapse
|
237
|
Markwell SM, Ross JL, Olson CL, Brat DJ. Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathol 2022; 143:291-310. [PMID: 35039931 DOI: 10.1007/s00401-021-02401-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most common primary brain tumor and has a dismal prognosis. The development of central necrosis represents a tipping point in the evolution of these tumors that foreshadows aggressive expansion, swiftly leading to mortality. The onset of necrosis, severe hypoxia and associated radial glioma expansion correlates with dramatic tumor microenvironment (TME) alterations that accelerate tumor growth. In the past, most have concluded that hypoxia and necrosis must arise due to "cancer outgrowing its blood supply" when rapid tumor growth outpaces metabolic supply, leading to diffusion-limited hypoxia. However, growing evidence suggests that microscopic intravascular thrombosis driven by the neoplastic overexpression of pro-coagulants attenuates glioma blood supply (perfusion-limited hypoxia), leading to TME restructuring that includes breakdown of the blood-brain barrier, immunosuppressive immune cell accumulation, microvascular hyperproliferation, glioma stem cell enrichment and tumor cell migration outward. Cumulatively, these adaptations result in rapid tumor expansion, resistance to therapeutic interventions and clinical progression. To inform future translational investigations, the complex interplay among environmental cues and myriad cell types that contribute to this aggressive phenotype requires better understanding. This review focuses on contributions from intratumoral thrombosis, the effects of hypoxia and necrosis, the adaptive and innate immune responses, and the current state of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Steven M Markwell
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - James L Ross
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Cheryl L Olson
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA.
| |
Collapse
|
238
|
Hulse J, Bhaskar K. Crosstalk Between the NLRP3 Inflammasome/ASC Speck and Amyloid Protein Aggregates Drives Disease Progression in Alzheimer's and Parkinson's Disease. Front Mol Neurosci 2022; 15:805169. [PMID: 35185469 PMCID: PMC8850380 DOI: 10.3389/fnmol.2022.805169] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Two key pathological hallmarks of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are the accumulation of misfolded protein aggregates and the chronic progressive neuroinflammation that they trigger. Numerous original research and reviews have provided a comprehensive understanding of how aggregated proteins (amyloid β, pathological tau, and α-synuclein) contribute to the disease, including driving sterile inflammation, in part, through the aggregation of multi-protein inflammasome complexes and the ASC speck [composed of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), Apoptosis-associated speck-like protein containing a C-terminal caspase activation and recruitment domain (ASC), and inflammatory caspase-1] involved in innate immunity. Here, we provide a unique perspective on the crosstalk between the aggregation-prone proteins involved in AD/PD and the multi-protein inflammasome complex/ASC speck that fuels feed-forward exacerbation of each other, driving neurodegeneration. Failed turnover of protein aggregates (both AD/PD related aggregates and the ASC speck) by protein degradation pathways, prionoid propagation of inflammation by the ASC speck, cross-seeding of protein aggregation by the ASC speck, and pro-aggregatory cleavage of proteins by caspase-1 are some of the mechanisms that exacerbate disease progression. We also review studies that provide this causal framework and highlight how the ASC speck serves as a platform for the propagation and spreading of inflammation and protein aggregation that drives AD and PD.
Collapse
Affiliation(s)
- Jonathan Hulse
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, United States
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, United States,Department of Neurology, University of New Mexico, Albuquerque, NM, United States,*Correspondence: Kiran Bhaskar,
| |
Collapse
|
239
|
Mishra A, Wang Y, Yin F, Vitali F, Rodgers KE, Soto M, Mosconi L, Wang T, Brinton RD. A tale of two systems: Lessons learned from female mid-life aging with implications for Alzheimer's prevention & treatment. Ageing Res Rev 2022; 74:101542. [PMID: 34929348 PMCID: PMC8884386 DOI: 10.1016/j.arr.2021.101542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Neurological aging is frequently viewed as a linear process of decline, whereas in reality, it is a dynamic non-linear process. The dynamic nature of neurological aging is exemplified during midlife in the female brain. To investigate fundamental mechanisms of midlife aging that underlie risk for development of Alzheimer's disease (AD) in late life, we investigated the brain at greatest risk for the disease, the aging female brain. Outcomes of our research indicate that mid-life aging in the female is characterized by the emergence of three phases: early chronological (pre-menopause), endocrinological (peri-menopause) and late chronological (post-menopause) aging. The endocrinological aging program is sandwiched between early and late chronological aging. Throughout the three stages of midlife aging, two systems of biology, metabolic and immune, are tightly integrated through a network of signaling cascades. The network of signaling between these two systems of biology underlie an orchestrated sequence of adaptative starvation responses that shift the brain from near exclusive dependence on a single fuel, glucose, to utilization of an auxiliary fuel derived from lipids, ketone bodies. The dismantling of the estrogen control of glucose metabolism during mid-life aging is a critical contributor to the shift in fuel systems and emergence of dynamic neuroimmune phenotype. The shift in fuel reliance, puts the largest reservoir of local fatty acids, white matter, at risk for catabolism as a source of lipids to generate ketone bodies through astrocytic beta oxidation. APOE4 genotype accelerates the tipping point for emergence of the bioenergetic crisis. While outcomes derived from research conducted in the female brain are not directly translatable to the male brain, the questions addressed in a female centric program of research are directly applicable to investigation of the male brain. Like females, males with AD exhibit deficits in the bioenergetic system of the brain, activation of the immune system and hallmark Alzheimer's pathologies. The drivers and trajectory of mechanisms underlying neurodegeneration in the male brain will undoubtedly share common aspects with the female in addition to factors unique to the male. Preclinical and clinical evidence indicate that midlife endocrine aging can also be a transitional bridge to autoimmune disorders. Collectively, the data indicate that endocrinological aging is a critical period "tipping point" in midlife which can initiate emergence of the prodromal stage of late-onset-Alzheimer's disease. Interventions that target both immune and metabolic shifts that occur during midlife aging have the potential to alter the trajectory of Alzheimer's risk in late life. Further, to achieve precision medicine for AD, chromosomal sex is a critical variable to consider along with APOE genotype, other genetic risk factors and stage of disease.
Collapse
Affiliation(s)
- Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Kathleen E Rodgers
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Maira Soto
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tian Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Roberta D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA.
| |
Collapse
|
240
|
Altmann A, Ryten M, Di Nunzio M, Ravizza T, Tolomeo D, Reynolds RH, Somani A, Bacigaluppi M, Iori V, Micotti E, Di Sapia R, Cerovic M, Palma E, Ruffolo G, Botía JA, Absil J, Alhusaini S, Alvim MKM, Auvinen P, Bargallo N, Bartolini E, Bender B, Bergo FPG, Bernardes T, Bernasconi A, Bernasconi N, Bernhardt BC, Blackmon K, Braga B, Caligiuri ME, Calvo A, Carlson C, Carr SJ, Cavalleri GL, Cendes F, Chen J, Chen S, Cherubini A, Concha L, David P, Delanty N, Depondt C, Devinsky O, Doherty CP, Domin M, Focke NK, Foley S, Franca W, Gambardella A, Guerrini R, Hamandi K, Hibar DP, Isaev D, Jackson GD, Jahanshad N, Kalviainen R, Keller SS, Kochunov P, Kotikalapudi R, Kowalczyk MA, Kuzniecky R, Kwan P, Labate A, Langner S, Lenge M, Liu M, Martin P, Mascalchi M, Meletti S, Morita-Sherman ME, O’Brien TJ, Pariente JC, Richardson MP, Rodriguez-Cruces R, Rummel C, Saavalainen T, Semmelroch MK, Severino M, Striano P, Thesen T, Thomas RH, Tondelli M, Tortora D, Vaudano AE, Vivash L, von Podewils F, Wagner J, Weber B, Wiest R, Yasuda CL, Zhang G, Zhang J, ENIGMA-Epilepsy Working Group, Leu C, Avbersek A, EpiPGX Consortium, Thom M, Whelan CD, Thompson P, McDonald CR, et alAltmann A, Ryten M, Di Nunzio M, Ravizza T, Tolomeo D, Reynolds RH, Somani A, Bacigaluppi M, Iori V, Micotti E, Di Sapia R, Cerovic M, Palma E, Ruffolo G, Botía JA, Absil J, Alhusaini S, Alvim MKM, Auvinen P, Bargallo N, Bartolini E, Bender B, Bergo FPG, Bernardes T, Bernasconi A, Bernasconi N, Bernhardt BC, Blackmon K, Braga B, Caligiuri ME, Calvo A, Carlson C, Carr SJ, Cavalleri GL, Cendes F, Chen J, Chen S, Cherubini A, Concha L, David P, Delanty N, Depondt C, Devinsky O, Doherty CP, Domin M, Focke NK, Foley S, Franca W, Gambardella A, Guerrini R, Hamandi K, Hibar DP, Isaev D, Jackson GD, Jahanshad N, Kalviainen R, Keller SS, Kochunov P, Kotikalapudi R, Kowalczyk MA, Kuzniecky R, Kwan P, Labate A, Langner S, Lenge M, Liu M, Martin P, Mascalchi M, Meletti S, Morita-Sherman ME, O’Brien TJ, Pariente JC, Richardson MP, Rodriguez-Cruces R, Rummel C, Saavalainen T, Semmelroch MK, Severino M, Striano P, Thesen T, Thomas RH, Tondelli M, Tortora D, Vaudano AE, Vivash L, von Podewils F, Wagner J, Weber B, Wiest R, Yasuda CL, Zhang G, Zhang J, ENIGMA-Epilepsy Working Group, Leu C, Avbersek A, EpiPGX Consortium, Thom M, Whelan CD, Thompson P, McDonald CR, Vezzani A, Sisodiya SM. A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathol Appl Neurobiol 2022; 48:e12758. [PMID: 34388852 PMCID: PMC8983060 DOI: 10.1111/nan.12758] [Show More Authors] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 02/03/2023]
Abstract
AIMS The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.
Collapse
Affiliation(s)
- Andre Altmann
- Centre for Medical Image Computing, University College London, London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Di Nunzio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Alyma Somani
- Division of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Marco Bacigaluppi
- Department of Neurology, San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Valentina Iori
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Milica Cerovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome, Sapienza
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome, Sapienza
| | - Juan A. Botía
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,Departamento de Ingeniería de la Información y las Comunicaciones. Universidad de Murcia, Murcia, Spain
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Pia Auvinen
- Epilepsy Center, Department of Neurology, Kuopio University, Kuopio, Finland.,Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Nuria Bargallo
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain.,Centre de Diagnostic Per la Imatge (CDIC), Hospital Clinic, Barcelona, Spain
| | - Emanuele Bartolini
- Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | | | - Tauana Bernardes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C. Bernhardt
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Multimodal Imaging and Connectome Analysis Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Karen Blackmon
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Department of Physiology, Neuroscience and Behavioral Science, St. George’s University, Grenada, West Indies
| | - Barbara Braga
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Maria Eugenia Caligiuri
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
| | - Anna Calvo
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - Chad Carlson
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Medical College of Wisconsin, Department of Neurology, Milwaukee, WI, USA
| | - Sarah J. Carr
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Gianpiero L. Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Jian Chen
- Department of Computer Science and Engineering, The Ohio State University, USA
| | - Shuai Chen
- Cognitive Science Department, Xiamen University, Xiamen, China.,Fujian Key Laboratory of the Brain-like Intelligent Systems, China
| | - Andrea Cherubini
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - Philippe David
- Department of Radiology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Division of Neurology, Beaumont Hospital, Dublin 9, Ireland
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA
| | - Colin P. Doherty
- FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Neurology Department, St. James’s Hospital, Dublin 8, Ireland
| | - Martin Domin
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Niels K. Focke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Clinical Neurophysiology, University Medicine Göttingen, Göttingen, Germany
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Wales, UK
| | - Wendy Franca
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy.,Institute of Neurology, University ‚ “Magna Græcia”, Catanzaro, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Khalid Hamandi
- Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Maindy Road, Cardiff, UK.,Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Derrek P. Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Dmitry Isaev
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Graeme D. Jackson
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Reetta Kalviainen
- Epilepsy Center, Department of Neurology, Kuopio University, Kuopio, Finland.,Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Simon S. Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Maryland, USA
| | - Raviteja Kotikalapudi
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany.,Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Magdalena A. Kowalczyk
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia
| | - Ruben Kuzniecky
- Department of Neurology, Zucker Hofstra School of Medicine, New York, NY 10075, USA
| | - Patrick Kwan
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia
| | - Angelo Labate
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy.,Institute of Neurology, University ‚ “Magna Græcia”, Catanzaro, Italy
| | - Soenke Langner
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Matteo Lenge
- Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence, Italy
| | - Min Liu
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Mario Mascalchi
- Neuroradiology Unit, Children’s Hospital A. Meyer, Florence, Italy.,“Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | | | - Terence J. O’Brien
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jose C. Pariente
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - Mark P. Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK.,Department of Neurology, King’s College Hospital, London, UK
| | - Raul Rodriguez-Cruces
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Taavi Saavalainen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Central Finland Central Hospital, Medical Imaging Unit, Jyväskylä, Finland
| | - Mira K. Semmelroch
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia
| | - Mariasavina Severino
- Neuroradiology Unit, Department of Head and Neck and Neurosciences, Istituto Giannina Gaslini, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Thomas Thesen
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Department of Physiology, Neuroscience and Behavioral Science, St. George’s University, Grenada, West Indies
| | - Rhys H. Thomas
- Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Maindy Road, Cardiff, UK.,Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Manuela Tondelli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | - Domenico Tortora
- Neuroradiology Unit, Department of Head and Neck and Neurosciences, Istituto Giannina Gaslini, Genova, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | - Lucy Vivash
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia.,Melbourne Brain Centre, Department of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Jan Wagner
- Department of Neurology, University of Ulm and Universitäts- and Rehabilitationskliniken Ulm, Germany
| | - Bernd Weber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Department of Neurocognition / Imaging, Life & Brain Research Centre, Bonn, Germany
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | | | - Guohao Zhang
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, USA
| | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China.,Fujian Key Laboratory of the Brain-like Intelligent Systems, China
| | | | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Andreja Avbersek
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | | | - Maria Thom
- Division of Neuropathology, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Christopher D Whelan
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Carrie R McDonald
- Multimodal Imaging Laboratory, University of California San Diego, San Diego, California, USA.,Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.,To whom correspondence may be addressed
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK.,To whom correspondence may be addressed
| |
Collapse
|
241
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
242
|
Prater KE, Latimer CS, Jayadev S. Glial TDP-43 and TDP-43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia 2022; 70:239-255. [PMID: 34558120 PMCID: PMC8722378 DOI: 10.1002/glia.24096] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Since its discovery in 2006, TAR DNA binding protein 43 (TDP-43) has driven rapidly evolving research in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). TDP-43 mislocalization or aggregation is the hallmark of TDP-43 proteinopathy and is associated with cognitive impairment that can be mapped to its regional deposition. Studies in human tissue and model systems demonstrate that TDP-43 may potentiate other proteinopathies such as the amyloid or tau pathology seen in Alzheimer's Disease (AD) in the combination of AD+LATE. Despite this growing body of literature, there remain gaps in our understanding of whether there is heterogeneity in TDP-43 driven mechanisms across cell types. The growing observations of correlation between TDP-43 proteinopathy and glial pathology suggest a relationship between the two, including pathogenic glial cell-autonomous dysfunction and dysregulated glial immune responses to neuronal TDP-43. In this review, we discuss the available data on TDP-43 in glia within the context of the neurodegenerative diseases ALS and FTLD and highlight the current lack of information about glial TDP-43 interaction in AD+LATE. TDP-43 has proven to be a significant modulator of cognitive and neuropathological outcomes. A deeper understanding of its role in diverse cell types may provide relevant insights into neurodegenerative syndromes.
Collapse
Affiliation(s)
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195,Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
243
|
Manjally AV, Tay TL. Attack of the Clones: Microglia in Health and Disease. Front Cell Neurosci 2022; 16:831747. [PMID: 35173585 PMCID: PMC8841846 DOI: 10.3389/fncel.2022.831747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Amritha Vinayak Manjally
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany
- Department of Biology, Boston University, Boston, MA, United States
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany
- Department of Biology, Boston University, Boston, MA, United States
- Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Tuan Leng Tay
| |
Collapse
|
244
|
Garcia P, Jürgens‐Wemheuer W, Uriarte Huarte O, Michelucci A, Masuch A, Brioschi S, Weihofen A, Koncina E, Coowar D, Heurtaux T, Glaab E, Balling R, Sousa C, Kaoma T, Nicot N, Pfander T, Schulz‐Schaeffer W, Allouche A, Fischer N, Biber K, Kleine‐Borgmann F, Mittelbronn M, Ostaszewski M, Schmit KJ, Buttini M. Neurodegeneration and neuroinflammation are linked, but independent of alpha‐synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia 2022; 70:935-960. [PMID: 35092321 PMCID: PMC9305192 DOI: 10.1002/glia.24149] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α‐synuclein. Alpha‐synuclein (α‐syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α‐syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α‐syn induced by striatal injection of α‐syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α‐syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α‐syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α‐syn inclusion formation is not the major driver in the early phases of PD‐like neurodegeneration, but that microglia, activated by diffusible, oligomeric α‐syn, may play a key role in this process. Our findings uncover new features of α‐syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α‐syn spreading.
Collapse
Affiliation(s)
- Pierre Garcia
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Wiebke Jürgens‐Wemheuer
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | - Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Annette Masuch
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Simone Brioschi
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | | | - Eric Koncina
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Carole Sousa
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tony Kaoma
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Nathalie Nicot
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tatjana Pfander
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | | | | | | | - Knut Biber
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Felix Kleine‐Borgmann
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Kristopher J. Schmit
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| |
Collapse
|
245
|
Application of QPLEXTM biomarkers in cognitively normal individuals across a broad age range and diverse regions with cerebral amyloid deposition. Exp Mol Med 2022; 54:61-71. [PMID: 35058557 PMCID: PMC8814000 DOI: 10.1038/s12276-021-00719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
The deposition of beta-amyloid (Aβ) in the brain precedes the onset of symptoms such as cognitive impairment in Alzheimer’s disease (AD); therefore, the early detection of Aβ accumulation is crucial. We previously reported the applicability of the QPLEXTM Alz plus assay kit for the prescreening of Aβ accumulation. Here, we tested the specific application of the kit in a large cohort of cognitively normal (CN) individuals of varying ages for the early detection of Aβ accumulation. We included a total of 221 CN participants with or without brain Aβ. The QPLEXTM biomarkers were characterized based on age groups (1st–3rd tertile) and across various brain regions with cerebral amyloid deposition. The 3rd tertile group (>65 years) was found to be the most suitable age group for the application of our assay kit. Receiver operating characteristic curve analysis showed that the area under the curve (AUC, discrimination power) was 0.878 with 69.7% sensitivity and 98.4% specificity in the 3rd tertile group. Additionally, specific correlations between biomarkers and cerebral amyloid deposition in four different brain regions revealed an overall correlation with general amyloid deposition, consistent with previous findings. Furthermore, the combinational panel with plasma Aβ1–42 levels maximized the discrimination efficiency and achieved an AUC of 0.921 with 95.7% sensitivity and 67.3% specificity. Thus, we suggest that the QPLEXTM Alz plus assay is useful for prescreening brain Aβ levels in CN individuals, especially those aged >65 years, to prevent disease progression via the early detection of disease initiation. A novel assay kit called QPLEXTM Alz plus assay offers a convenient method for assessing brain levels of the beta-amyloid proteins implicated in Alzheimer’s disease in people with normal cognitive abilities, especially those aged over 65. South Korean researchers led by Inhee Mook-Jung at Seoul National University assessed the efficacy of blood tests using the QPLEXTM kit on 221 participants in the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer’s Disease (KBASE). The researchers developed the assay to identify several circulating biomarkers of brain beta-amyloid accumulation. They found the test can distinguish between people known to either have or not have beta-amyloid deposits in their brain. This suggests QPLEXTM Alz plus assay could offer an improved procedure for easy and early diagnosis of Alzheimer’s, increasing the opportunities for effective early treatment.
Collapse
|
246
|
Eastman G, Sharlow ER, Lazo JS, Bloom GS, Sotelo-Silveira JR. Transcriptome and Translatome Regulation of Pathogenesis in Alzheimer's Disease Model Mice. J Alzheimers Dis 2022; 86:365-386. [PMID: 35034904 DOI: 10.3233/jad-215357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Defining cellular mechanisms that drive Alzheimer's disease (AD) pathogenesis and progression will be aided by studies defining how gene expression patterns change during pre-symptomatic AD and ensuing periods of declining cognition. Previous studies have emphasized changes in transcriptome, but not translatome regulation, leaving the ultimate results of gene expression alterations relatively unexplored in the context of AD. OBJECTIVE To identify genes whose expression might be regulated at the transcriptome and translatome levels in AD, we analyzed gene expression in cerebral cortex of two AD model mouse strains, CVN (APPSwDI;NOS2 -/- ) and Tg2576 (APPSw), and their companion wild type (WT) strains at 6 months of age by tandem RNA-Seq and Ribo-Seq (ribosome profiling). METHODS Identical starting pools of bulk RNA were used for RNA-Seq and Ribo-Seq. Differential gene expression analysis was performed at the transcriptome, translatome, and translational efficiency levels. Regulated genes were functionally evaluated by gene ontology tools. RESULTS Compared to WT mice, AD model mice had similar levels of transcriptome regulation, but differences in translatome regulation. A microglial signature associated with early stages of Aβ accumulation was upregulated at both levels in CVN mice. Although the two mice strains did not share many regulated genes, they showed common regulated pathways related to AβPP metabolism associated with neurotoxicity and neuroprotection. CONCLUSION This work represents the first genome-wide study of brain translatome regulation in animal models of AD and provides evidence of a tight and early translatome regulation of gene expression controlling the balance between neuroprotective and neurodegenerative processes in brain.
Collapse
Affiliation(s)
- Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
247
|
Paasila PJ, Aramideh JA, Sutherland GT, Graeber MB. Synapses, Microglia, and Lipids in Alzheimer's Disease. Front Neurosci 2022; 15:778822. [PMID: 35095394 PMCID: PMC8789683 DOI: 10.3389/fnins.2021.778822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by synaptic dysfunction accompanied by the microscopically visible accumulation of pathological protein deposits and cellular dystrophy involving both neurons and glia. Late-stage AD shows pronounced loss of synapses and neurons across several differentially affected brain regions. Recent studies of advanced AD using post-mortem brain samples have demonstrated the direct involvement of microglia in synaptic changes. Variants of the Apolipoprotein E and Triggering Receptors Expressed on Myeloid Cells gene represent important determinants of microglial activity but also of lipid metabolism in cells of the central nervous system. Here we review evidence that may help to explain how abnormal lipid metabolism, microglial activation, and synaptic pathophysiology are inter-related in AD.
Collapse
Affiliation(s)
- Patrick J. Paasila
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Jason A. Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
248
|
Wang H. Microglia Heterogeneity in Alzheimer's Disease: Insights From Single-Cell Technologies. Front Synaptic Neurosci 2022; 13:773590. [PMID: 35002670 PMCID: PMC8735255 DOI: 10.3389/fnsyn.2021.773590] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system and play critical roles in brain immunity, development, and homeostasis. The pathology of Alzheimer’s disease (AD) triggers activation of microglia. Microglia express many AD risk genes, suggesting that their response to AD pathology can affect disease progression. Microglia have long been considered a homogenous cell population. The diversity of microglia has gained great interest in recent years due to the emergence of novel single-cell technologies, such as single-cell/nucleus RNA sequencing and single-cell mass cytometry by time-of-flight. This review summarizes the current knowledge about the diversity/heterogeneity of microglia and distinct microglia states in the brain of both AD mouse models and patients, as revealed by single-cell technologies. It also discusses the future developments for application of single-cell technologies and the integration of these technologies with functional studies to further dissect microglia biology in AD. Defining the functional correlates of distinct microglia states will shed new light on the pathological roles of microglia and might uncover new relevant therapeutic targets for AD.
Collapse
Affiliation(s)
- Hansen Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
249
|
Bedolla A, Taranov A, Luo F, Wang J, Turcato F, Fugate EM, Greig NH, Lindquist DM, Crone SA, Goto J, Luo Y. Diphtheria toxin induced but not CSF1R inhibitor mediated microglia ablation model leads to the loss of CSF/ventricular spaces in vivo that is independent of cytokine upregulation. J Neuroinflammation 2022; 19:3. [PMID: 34983562 PMCID: PMC8728932 DOI: 10.1186/s12974-021-02367-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Two recently developed novel rodent models have been reported to ablate microglia, either by genetically targeting microglia (via Cx3cr1-creER: iDTR + Dtx) or through pharmacologically targeting the CSF1R receptor with its inhibitor (PLX5622). Both models have been widely used in recent years to define essential functions of microglia and have led to high impact studies that have moved the field forward. Methods Using either Cx3cr1-iDTR mice in combination with Dtx or via the PLX5622 diet to pharmacologically ablate microglia, we compared the two models via MRI and histology to study the general anatomy of the brain and the CSF/ventricular systems. Additionally, we analyzed the cytokine profile in both microglia ablation models. Results We discovered that the genetic ablation (Cx3cr1-iDTR + Dtx), but not the pharmacological microglia ablation (PLX5622), displays a surprisingly rapid pathological condition in the brain represented by loss of CSF/ventricles without brain parenchymal swelling. This phenotype was observed both in MRI and histological analysis. To our surprise, we discovered that the iDTR allele alone leads to the loss of CSF/ventricles phenotype following diphtheria toxin (Dtx) treatment independent of cre expression. To examine the underlying mechanism for the loss of CSF in the Cx3cr1-iDTR ablation and iDTR models, we additionally investigated the cytokine profile in the Cx3cr1-iDTR + Dtx, iDTR + Dtx and the PLX models. We found increases of multiple cytokines in the Cx3cr1-iDTR + Dtx but not in the pharmacological ablation model nor the iDTR + Dtx mouse brains at the time of CSF loss (3 days after the first Dtx injection). This result suggests that the upregulation of cytokines is not the cause of the loss of CSF, which is supported by our data indicating that brain parenchyma swelling, or edema are not observed in the Cx3cr1-iDTR + Dtx microglia ablation model. Additionally, pharmacological inhibition of the KC/CXCR2 pathway (the most upregulated cytokine in the Cx3cr1-iDTR + Dtx model) did not resolve the CSF/ventricular loss phenotype in the genetic microglia ablation model. Instead, both the Cx3cr1-iDTR + Dtx ablation and iDTR + Dtx models showed increased activated IBA1 + cells in the choroid plexus (CP), suggesting that CP-related pathology might be the contributing factor for the observed CSF/ventricular shrinkage phenotype. Conclusions Our data, for the first time, reveal a robust and global CSF/ventricular space shrinkage pathology in the Cx3cr1-iDTR genetic ablation model caused by iDTR allele, but not in the PLX5622 ablation model, and suggest that this pathology is not due to brain edema formation but to CP related pathology. Given the wide utilization of the iDTR allele and the Cx3cr1-iDTR model, it is crucial to fully characterize this pathology to understand the underlying causal mechanisms. Specifically, caution is needed when utilizing this model to interpret subtle neurologic functional changes that are thought to be mediated by microglia but could, instead, be due to CSF/ventricular loss in the genetic ablation model.
Collapse
Affiliation(s)
- Alicia Bedolla
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Aleksandr Taranov
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Fucheng Luo
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jiapeng Wang
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Flavia Turcato
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth M Fugate
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Department of Radiology, University of Cincinnati, Cincinnati, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, USA
| | - Diana M Lindquist
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Department of Radiology, University of Cincinnati, Cincinnati, USA
| | - Steven A Crone
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Neurosurgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - June Goto
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Neurosurgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Yu Luo
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
250
|
Durmaz A, Scott JG. Stability of scRNA-Seq Analysis Workflows is Susceptible to Preprocessing and is Mitigated by Regularized or Supervised Approaches. Evol Bioinform Online 2022; 18:11769343221123050. [PMID: 36199555 PMCID: PMC9527995 DOI: 10.1177/11769343221123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022] Open
Abstract
Background: Statistical methods developed to address various questions in single-cell datasets show increased variability to different parameter regimes. In order to delineate further the robustness of commonly utilized methods for single-cell RNA-Seq, we aimed to comprehensively review scRNA-Seq analysis workflows in the setting of dimension reduction, clustering, and trajectory inference. Methods: We utilized datasets with temporal single-cell transcriptomics profiles from public repositories. Combining multiple methods at each level of the workflow, we have performed over 6 k analysis and evaluated the results of clustering and pseudotime estimation using adjusted rand index and rank correlation metrics. We have further integrated neural network methods to assess whether models with increased complexity can show increased bias/variance trade-off. Results: Combinatorial workflows showed that utilizing non-linear dimension reduction techniques such as t-SNE and UMAP are sensitive to initial preprocessing steps hence clustering results on dimension reduced space of single-cell datasets should be utilized carefully. Similarly, pseudotime estimation methods that depend on previous non-linear dimension reduction steps can result in highly variable trajectories. In contrast, methods that avoid non-linearity such as WOT can result in repeatable inferences of temporal gene expression dynamics. Furthermore, imputation methods do not improve clustering or trajectory inference results substantially in terms of repeatability. In contrast, the selection of the normalization method shows an increased effect on downstream analysis where ScTransform reduces variability overall.
Collapse
Affiliation(s)
- Arda Durmaz
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, Cleveland, OH, USA
| | - Jacob G Scott
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|