201
|
Comparative Genomics Guides Elucidation of Vitamin B 12 Biosynthesis in Novel Human-Associated Akkermansia Strains. Appl Environ Microbiol 2020; 86:AEM.02117-19. [PMID: 31757822 PMCID: PMC6974653 DOI: 10.1128/aem.02117-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
There is significant interest in the therapeutic and probiotic potential of the common gut bacterium Akkermansia muciniphila. However, knowledge of both the genomic and physiological diversity of this bacterial lineage is limited. Using a combination of genomic, molecular biological, and traditional microbiological approaches, we identified at least four species-level phylogroups with differing functional potentials that affect how these bacteria interact with both their human host and other members of the human gut microbiome. Specifically, we identified and isolated Akkermansia strains that were able to synthesize vitamin B12. The ability to synthesize this important cofactor broadens the physiological capabilities of human-associated Akkermansia strains, fundamentally altering our understanding of how this important bacterial lineage may affect human health. Akkermansia muciniphila is a mucin-degrading bacterium found in the gut of most humans and is considered a “next-generation probiotic.” However, knowledge of the genomic and physiological diversity of human-associated Akkermansia sp. strains is limited. Here, we reconstructed 35 metagenome-assembled genomes and combined them with 40 publicly available genomes for comparative genomic analysis. We identified at least four species-level phylogroups (AmI to AmIV), with distinct functional potentials. Most notably, we identified genes for cobalamin (vitamin B12) biosynthesis within the AmII and AmIII phylogroups. To verify these predictions, 10 Akkermansia strains were isolated from adults and screened for vitamin B12 biosynthesis genes via PCR. Two AmII strains were positive for the presence of cobalamin biosynthesis genes, while all 9 AmI strains tested were negative. To demonstrate vitamin B12 biosynthesis, we measured the production of acetate, succinate, and propionate in the presence and absence of vitamin supplementation in representative strains of the AmI and AmII phylogroups, since cobalamin is an essential cofactor in propionate metabolism. Results showed that the AmII strain produced acetate and propionate in the absence of supplementation, which is indicative of vitamin B12 biosynthesis. In contrast, acetate and succinate were the main fermentation products for the AmI strains when vitamin B12 was not supplied in the culture medium. Lastly, two bioassays were used to confirm vitamin B12 production by the AmII phylogroup. This novel physiological trait of human-associated Akkermansia strains may affect how these bacteria interact with the human host and other members of the human gut microbiome. IMPORTANCE There is significant interest in the therapeutic and probiotic potential of the common gut bacterium Akkermansia muciniphila. However, knowledge of both the genomic and physiological diversity of this bacterial lineage is limited. Using a combination of genomic, molecular biological, and traditional microbiological approaches, we identified at least four species-level phylogroups with differing functional potentials that affect how these bacteria interact with both their human host and other members of the human gut microbiome. Specifically, we identified and isolated Akkermansia strains that were able to synthesize vitamin B12. The ability to synthesize this important cofactor broadens the physiological capabilities of human-associated Akkermansia strains, fundamentally altering our understanding of how this important bacterial lineage may affect human health.
Collapse
|
202
|
Cooper RO, Cressler CE. Characterization of key bacterial species in the Daphnia magna microbiota using shotgun metagenomics. Sci Rep 2020; 10:652. [PMID: 31959775 PMCID: PMC6971282 DOI: 10.1038/s41598-019-57367-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/24/2019] [Indexed: 12/28/2022] Open
Abstract
The keystone zooplankton Daphnia magna has recently been used as a model system for understanding host-microbiota interactions. However, the bacterial species present and functions associated with their genomes are not well understood. In order to understand potential functions of these species, we combined 16S rRNA sequencing and shotgun metagenomics to characterize the whole-organism microbiota of Daphnia magna. We assembled five potentially novel metagenome-assembled genomes (MAGs) of core bacteria in Daphnia magna. Genes involved in host colonization and immune system evasion were detected across the MAGs. Some metabolic pathways were specific to some MAGs, including sulfur oxidation, nitrate reduction, and flagellar assembly. Amino acid exporters were identified in MAGs identified as important for host fitness, and pathways for key vitamin biosynthesis and export were identified across MAGs. In total, our examination of functions in these MAGs shows a diversity of nutrient acquisition and metabolism pathways present that may benefit the host, as well as genomic signatures of host association and immune system evasion.
Collapse
Affiliation(s)
- Reilly O Cooper
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
| | | |
Collapse
|
203
|
Ciobârcă D, Cătoi AF, Copăescu C, Miere D, Crișan G. Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status. Nutrients 2020; 12:E235. [PMID: 31963247 PMCID: PMC7019602 DOI: 10.3390/nu12010235] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with reduced gut microbial diversity and a high rate of micronutrient deficiency. Bariatric surgery, the therapy of choice for severe obesity, produces sustained weight loss and improvements in obesity-related comorbidities. Also, it significantly alters the gut microbiota (GM) composition and function, which might have an important impact on the micronutrient status as GM is able to synthesize certain vitamins, such as riboflavin, folate, B12, or vitamin K2. However, recent data have reported that GM is not fully restored after bariatric surgery; therefore, manipulation of GM through probiotics represents a promising therapeutic approach in bariatric patients. In this review, we discuss the latest evidence concerning the relationship between obesity, GM and micronutrients, the impact of bariatric surgery on GM in relation with micronutrients equilibrium, and the importance of the probiotics' supplementation in obese patients submitted to surgical treatment.
Collapse
Affiliation(s)
- Daniela Ciobârcă
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Adriana Florinela Cătoi
- Department of Physiopathology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-4 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Cătălin Copăescu
- General Surgery Department, Ponderas Hospital, 85A Nicolae G. Caramfil Street, 014142 Bucharest, Romania;
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania;
| |
Collapse
|
204
|
Flexible Cobamide Metabolism in Clostridioides ( Clostridium) difficile 630 Δ erm. J Bacteriol 2020; 202:JB.00584-19. [PMID: 31685533 DOI: 10.1128/jb.00584-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/26/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridioides (Clostridium) difficile is an opportunistic pathogen known for its ability to colonize the human gut under conditions of dysbiosis. Several aspects of its carbon and amino acid metabolism have been investigated, but its cobamide (vitamin B12 and related cofactors) metabolism remains largely unexplored. C. difficile has seven predicted cobamide-dependent pathways encoded in its genome in addition to a nearly complete cobamide biosynthesis pathway and a cobamide uptake system. To address the importance of cobamides to C. difficile, we studied C. difficile 630 Δerm and mutant derivatives under cobamide-dependent conditions in vitro Our results show that C. difficile can use a surprisingly diverse array of cobamides for methionine and deoxyribonucleotide synthesis and can use alternative metabolites or enzymes, respectively, to bypass these cobamide-dependent processes. C. difficile 630 Δerm produces the cobamide pseudocobalamin when provided the early precursor 5-aminolevulinic acid or the late intermediate cobinamide (Cbi) and produces other cobamides if provided an alternative lower ligand. The ability of C. difficile 630 Δerm to take up cobamides and Cbi at micromolar or lower concentrations requires the transporter BtuFCD. Genomic analysis revealed genetic variations in the btuFCD loci of different C. difficile strains, which may result in differences in the ability to take up cobamides and Cbi. These results together demonstrate that, like other aspects of its physiology, cobamide metabolism in C. difficile is versatile.IMPORTANCE The ability of the opportunistic pathogen Clostridioides difficile to cause disease is closely linked to its propensity to adapt to conditions created by dysbiosis of the human gut microbiota. The cobamide (vitamin B12) metabolism of C. difficile has been underexplored, although it has seven metabolic pathways that are predicted to require cobamide-dependent enzymes. Here, we show that C. difficile cobamide metabolism is versatile, as it can use a surprisingly wide variety of cobamides and has alternative functions that can bypass some of its cobamide requirements. Furthermore, C. difficile does not synthesize cobamides de novo but produces them when given cobamide precursors. A better understanding of C. difficile cobamide metabolism may lead to new strategies to treat and prevent C. difficile-associated disease.
Collapse
|
205
|
Quigley EMM. The Microbiota-Gut-Liver Axis: Implications for the Pathophysiology of Liver Disease. LIVER IMMUNOLOGY 2020:125-137. [DOI: 10.1007/978-3-030-51709-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
206
|
Kumar M, Singh P, Murugesan S, Vetizou M, McCulloch J, Badger JH, Trinchieri G, Al Khodor S. Microbiome as an Immunological Modifier. Methods Mol Biol 2020; 2055:595-638. [PMID: 31502171 PMCID: PMC8276114 DOI: 10.1007/978-1-4939-9773-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Manoj Kumar
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Selvasankar Murugesan
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Marie Vetizou
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souhaila Al Khodor
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
207
|
Wang T, Zhang T, Sun L, Li W, Zhang C, Yu L, Guan Y. Gestational B-vitamin supplementation alleviates PM 2.5-induced autism-like behavior and hippocampal neurodevelopmental impairment in mice offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109686. [PMID: 31546205 DOI: 10.1016/j.ecoenv.2019.109686] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Gestational exposure to PM2.5 is a worldwide environmental issue associated with long-lasting behavior abnormalities and neurodevelopmental impairments in the hippocampus of offspring. PM2.5 may induce hippocampus injury and lead to autism-like behavior such as social communication deficits and stereotyped repetitive behavior in children through neuroinflammation and neurodegeneration. Here, we investigated the preventive effect of B-vitamin on PM2.5-induced deleterious effects by focusing on anti-inflammation, antioxidant, synaptic remodeling and neurodevelopment. Pregnant mice were randomly divided into three groups including control group (mice subject to PBS only), model group (mice subject to both 30 μL PM2.5 of 3.456 μg/μL and 10 mL/(kg·d) PBS), and intervention group (mice subject to both 30 μL PM2.5 of 3.456 μg/μL and 10 mL/(kg·d) B-vitamin supplementation (folic acid, vitamin B6 and vitamin B12 with concentrations at 0.06, 1.14 and 0.02 mg/mL, respectively)). In the current study B-vitamin significantly alleviated neurobehavioral impairment reflected in reduced social communication disorders, stereotyped repetitive behavior, along with learning and spatial memory impairment in PM2.5-stimulated mice offspring. Next, B-vitamin corrected synaptic loss and reduced mitochondrial damage in hippocampus of mice offspring, demonstrated by normalized synapse quantity, synaptic cleft, postsynaptic density (PSD) thickness and length of synaptic active area. Furthermore, significantly down-regulated expression of pro-inflammatory cytokines including NF-κB, TNF-α and IL-1β, and lipid peroxidation were found. We observed elevated levels of oxidant-related genes (SOD, GSH and GSH-Px). Moreover, decreased cleaved caspase-3 and TUNEL-positive cells suggested inhibited PM2.5-induced apoptosis by B-vitamin. Furthermore, B-vitamin increased neurogenesis by increasing EdU-positive cells in the subgranular zone (SGZ) of offspring. Collectively, our results suggest that B-vitamin supplementation exerts preventive effect on autism-like behavior and neurodevelopmental impairment in hippocampus of mice offspring gestationally exposed to PM2.5, to which alleviated mitochondrial damage, increased anti-inflammatory and antioxidant capacity and synaptic efficiency, reduced neuronal apoptosis and improved hippocampal neurogenesis may contribute.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Weifang Medical University, Weifang, China
| | - Lijuan Sun
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Wanwei Li
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Li Yu
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| | - Yingjun Guan
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| |
Collapse
|
208
|
Regulating vitamin B12 biosynthesis via the cbiMCbl riboswitch in Propionibacterium strain UF1. Proc Natl Acad Sci U S A 2019; 117:602-609. [PMID: 31836694 DOI: 10.1073/pnas.1916576116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vitamin B12 (VB12) is a critical micronutrient that controls DNA metabolic pathways to maintain the host genomic stability and tissue homeostasis. We recently reported that the newly discovered commensal Propionibacterium, P. UF1, regulates the intestinal immunity to resist pathogen infection, which may be attributed in part to VB12 produced by this bacterium. Here we demonstrate that VB12 synthesized by P. UF1 is highly dependent on cobA gene-encoding uroporphyrinogen III methyltransferase, and that this vitamin distinctively regulates the cobA operon through its 5' untranslated region (5' UTR). Furthermore, conserved secondary structure and mutagenesis analyses revealed a VB12-riboswitch, cbiMCbl (140 bp), within the 5' UTR that controls the expression of downstream genes. Intriguingly, ablation of the cbiMCbl significantly dysregulates the biosynthesis of VB12, illuminating the significance of this riboswitch for bacterial VB12 biosynthesis. Collectively, our finding is an in-depth report underscoring the regulation of VB12 within the beneficial P. UF1 bacterium, through which the commensal metabolic network may improve gut bacterial cross-feeding and human health.
Collapse
|
209
|
Martinez AJ, Onchuru TO, Ingham CS, Sandoval‐Calderón M, Salem H, Deckert J, Kaltenpoth M. Angiosperm to Gymnosperm host‐plant switch entails shifts in microbiota of the
Welwitschia
bug,
Probergrothius angolensis
(Distant, 1902). Mol Ecol 2019; 28:5172-5187. [DOI: 10.1111/mec.15281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Adam Javier Martinez
- Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Germany
| | - Thomas Ogao Onchuru
- Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Germany
| | - Chantal Selina Ingham
- Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Germany
| | | | - Hassan Salem
- Developmental Biology Max Planck Institute Tübingen Germany
- Department of Entomology Smithsonian National Museum of Natural History Washington DC USA
| | - Jürgen Deckert
- Museum for Natural History Leibniz Institute for Research on Evolution and Biodiversity Science Berlin Germany
| | - Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Germany
| |
Collapse
|
210
|
A High Level of Circulating Valine Is a Biomarker for Type 2 Diabetes and Associated with the Hypoglycemic Effect of Sitagliptin. Mediators Inflamm 2019; 2019:8247019. [PMID: 31827381 PMCID: PMC6885205 DOI: 10.1155/2019/8247019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/08/2019] [Indexed: 01/16/2023] Open
Abstract
Background High levels of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) were associated with an increased risk of hyperglycemia and the onset of diabetes. This study is aimed at assessing circulating valine concentrations in subjects with type 2 diabetes (T2D) and in T2D patients and high-fat diet- (HFD-) fed mice treated with the hypoglycemic agent sitagliptin (Sit) and analyzing the association of valine concentrations with metabolic parameters. Methods Metabolomics in HFD-fed mice were analyzed by gas chromatography-mass spectrometry (GC-MS) systems. Plasma valine concentrations were detected with a commercial kit in 53 subjects with normal glucose levels (n = 19), newly diagnosed T2D (n = 20), placebo-treated T2D (n = 7), or Sit-treated T2D (n = 7). Biochemical parameters were also assessed in all participants. Results Sit treatment markedly changed the pattern of amino acid in HFD-fed mice, especially by reducing the level of the BCAA valine. Compared with the healthy controls, the plasma valine concentrations were significantly higher in the T2D patients (p < 0.05). Correlation analysis showed that the plasma valine concentration was positively correlated with the level of fasting plasma glucose (p < 0.05). Moreover, the plasma valine concentrations were notably reduced after Sit treatment in T2D patients (p < 0.05). Conclusions Our findings demonstrate an important effect of Sit on the BCAA valine in T2D patients and HFD-fed mice, revealing a new hypoglycemic mechanism of it. Furthermore, the results suggest that the circulating valine level might be a novel biomarker for T2D and restoring the level of valine might be a potential strategy for diabetes therapy.
Collapse
|
211
|
Aron-Wisnewsky J, Clément K. A place for vitamin supplementation and functional food in bariatric surgery? Curr Opin Clin Nutr Metab Care 2019; 22:442-448. [PMID: 31589176 DOI: 10.1097/mco.0000000000000602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This article summarizes recent literature concerning vitamin deficiency and required supplementation post-bariatric surgery, focusing on vitamin D (and associated clinical adverse effect on bone loss) and on the potential implication of the gut microbiota. RECENT FINDINGS Bariatric surgery induces weight loss and metabolic improvements yet with major inter-individual variability. If it is efficient in most patients, some display poor response (i.e. patients with the lowest weight loss at 1 year or weight regain afterwards, or patients without metabolic disease remission). Despite systematic vitamin supplementation, some patients develop vitamin deficiencies leading to poor clinical outcomes, among which vitamin D deficiency associated with observed bone mass loss and fractures. Recent mechanistic studies led to understand better the involved physiopathology. Furthermore, different intervention studies tested on top of bariatric surgery (using vitamin, diet, or nutrients acting as functional food) have evaluated whether nutritional adverse outcomes could be improved. Importantly, gut microbiota involved in food digestion and metabolization and vitamin synthesis is largely perturbed during severe obesity and is partially restored post-surgery, yet again with large interindividual variability. Whether differential gut microbiota modification could be associated with vitamin deficiencies is an open question. SUMMARY Future clinical research studies will need to evaluate whether add-on intervention to bariatric surgery using vitamin, diet, or specific food items could help prevent nutritional deficiencies and improve clinical response observed post-surgery. Importantly, personalizing the add-on intervention post-surgery upon gut microbiota composition should be tested in predicted poor-responders to surgery as already performed during diet intervention to further improve metabolic health.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics)
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics)
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| |
Collapse
|
212
|
Ma AT, Tyrell B, Beld J. Specificity of cobamide remodeling, uptake and utilization in Vibrio cholerae. Mol Microbiol 2019; 113:89-102. [PMID: 31609521 DOI: 10.1111/mmi.14402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Cobamides are a group of compounds including vitamin B12 that can vary at the lower base position of the nucleotide loop. They are synthesized de novo by only a subset of prokaryotes, but some organisms encode partial biosynthesis pathways for converting one variant to another (remodeling) or completing biosynthesis from an intermediate (corrinoid salvaging). Here, we explore the cobamide specificity in Vibrio cholerae through examination of three natural variants representing major cobamide groups: commercially available cobalamin, and isolated pseudocobalamin and p-cresolylcobamide. We show that BtuB, the outer membrane corrinoid transporter, mediates the uptake of all three variants and the intermediate cobinamide. Our previous work suggested that V. cholerae could convert pseudocobalamin produced by cyanobacteria into cobalamin. In this work, cobamide specificity in V. cholerae is demonstrated by remodeling of pseudocobalamin and salvaging of cobinamide to produce cobalamin. Cobamide remodeling in V. cholerae is distinct from the canonical pathway requiring amidohydrolase CbiZ, and heterologous expression of V. cholerae CobS was sufficient for remodeling. Furthermore, function of V. cholerae cobamide-dependent methionine synthase MetH was robustly supported by cobalamin and p-cresolylcobamide, but not pseudocobalamin. Notably, the inability of V. cholerae to produce and utilize pseudocobalamin contrasts with enteric bacteria like Salmonella.
Collapse
Affiliation(s)
- Amy T Ma
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Breanna Tyrell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| |
Collapse
|
213
|
Brito A, Habeych E, Silva-Zolezzi I, Galaffu N, Allen LH. Methods to assess vitamin B12 bioavailability and technologies to enhance its absorption. Nutr Rev 2019; 76:778-792. [PMID: 29931214 DOI: 10.1093/nutrit/nuy026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vitamin B12 (B-12) deficiency is still relatively common in low-, medium-, and high-income countries, mainly because of dietary inadequacy and, to a lesser extent, malabsorption. This narrative review is based on a systematic search of evidence on methods to assess B-12 bioavailability and technologies to enhance its absorption. A total of 2523 scientific articles identified in PubMed and 1572 patents identified in Orbit Intelligence were prescreened. Among the reviewed methods, Schilling's test and/or its food-based version (using cobalamin-labeled egg yolk) were used for decades but have been discontinued, largely because they required radioactive cobalt. The qualitative CobaSorb test, based on changes in circulating holo-transcobalamin before and after B-12 administration, and the 14C-labeled B-12 test for quantitative measurement of absorption of a low-dose radioactive tracer are currently the best available methods. Various forms of B-12 co-formulated with chemical enhancers (ie, salcaprozate sodium, 8-amino caprylate) or supplied via biotechnological methods (ie, microbiological techniques, plant cells expressing cobalamin binding proteins), encapsulation techniques (ie, emulsions, use of chitosan particles), and alternative routes of administration (ie, intranasal, transdermal administration) were identified as potential technologies to enhance B-12 absorption in humans. However, in most cases the evidence of absorption enhancement is limited.
Collapse
Affiliation(s)
- Alex Brito
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | - Lindsay H Allen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| |
Collapse
|
214
|
Sokolovskaya OM, Mok KC, Park JD, Tran JLA, Quanstrom KA, Taga ME. Cofactor Selectivity in Methylmalonyl Coenzyme A Mutase, a Model Cobamide-Dependent Enzyme. mBio 2019; 10:e01303-19. [PMID: 31551329 PMCID: PMC6759758 DOI: 10.1128/mbio.01303-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Cobamides, a uniquely diverse family of enzyme cofactors related to vitamin B12, are produced exclusively by bacteria and archaea but used in all domains of life. While it is widely accepted that cobamide-dependent organisms require specific cobamides for their metabolism, the biochemical mechanisms that make cobamides functionally distinct are largely unknown. Here, we examine the effects of cobamide structural variation on a model cobamide-dependent enzyme, methylmalonyl coenzyme A (CoA) mutase (MCM). The in vitro binding affinity of MCM for cobamides can be dramatically influenced by small changes in the structure of the lower ligand of the cobamide, and binding selectivity differs between bacterial orthologs of MCM. In contrast, variations in the lower ligand have minor effects on MCM catalysis. Bacterial growth assays demonstrate that cobamide requirements of MCM in vitro largely correlate with in vivo cobamide dependence. This result underscores the importance of enzyme selectivity in the cobamide-dependent physiology of bacteria.IMPORTANCE Cobamides, including vitamin B12, are enzyme cofactors used by organisms in all domains of life. Cobamides are structurally diverse, and microbial growth and metabolism vary based on cobamide structure. Understanding cobamide preference in microorganisms is important given that cobamides are widely used and appear to mediate microbial interactions in host-associated and aquatic environments. Until now, the biochemical basis for cobamide preferences was largely unknown. In this study, we analyzed the effects of the structural diversity of cobamides on a model cobamide-dependent enzyme, methylmalonyl-CoA mutase (MCM). We found that very small changes in cobamide structure could dramatically affect the binding affinity of cobamides to MCM. Strikingly, cobamide-dependent growth of a model bacterium, Sinorhizobium meliloti, largely correlated with the cofactor binding selectivity of S. meliloti MCM, emphasizing the importance of cobamide-dependent enzyme selectivity in bacterial growth and cobamide-mediated microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California, USA
| | - Kenny C Mok
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jong Duk Park
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jennifer L A Tran
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Kathryn A Quanstrom
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
215
|
Choi Y, Lee S, Kim S, Lee J, Ha J, Oh H, Lee Y, Kim Y, Yoon Y. Vitamin E (α-tocopherol) consumption influences gut microbiota composition. Int J Food Sci Nutr 2019; 71:221-225. [PMID: 31298050 DOI: 10.1080/09637486.2019.1639637] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study evaluated if vitamin E consumption affects gut microbiota. Mice were grouped into control, low vitamin E (LV), and high vitamin E (HV). LV and HV were fed DL-α-tocopherol at 0.06 mg/20 g and 0.18 mg/20 g of body weight per day, respectively, for 34 days. Body weight of mice was measured before and after vitamin E treatment. Animals were sacrificed, liver, spleen, small intestine and large intestine collected, and weight and length were measured. Composition of gut microbiota was determined by microbiome analysis. Spleen weight index of LV was the highest. However, liver weight indices and intestinal lengths were not different. Body weights of LV group were higher than those of control. Ratio of Firmicutes to Bacteroidetes was different in LV compared to control and HV. These results indicate that low-level consumption of vitamin E increases spleen and body weight, and changes gut microbiota.
Collapse
Affiliation(s)
- Yukyung Choi
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Soomin Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Sejeong Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Jeeyeon Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Jimyeong Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Hyemin Oh
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yewon Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yujin Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea.,Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
216
|
Rodionov DA, Arzamasov AA, Khoroshkin MS, Iablokov SN, Leyn SA, Peterson SN, Novichkov PS, Osterman AL. Micronutrient Requirements and Sharing Capabilities of the Human Gut Microbiome. Front Microbiol 2019; 10:1316. [PMID: 31275260 PMCID: PMC6593275 DOI: 10.3389/fmicb.2019.01316] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023] Open
Abstract
The human gut microbiome harbors a diverse array of metabolic pathways contributing to its development and homeostasis via a complex web of diet-dependent metabolic interactions within the microbial community and host. Genomics-based reconstruction and predictive modeling of these interactions would provide a framework for diagnostics and treatment of dysbiosis-related syndromes via rational selection of therapeutic prebiotics and dietary nutrients. Of particular interest are micronutrients, such as B-group vitamins, precursors of indispensable metabolic cofactors, that are produced de novo by some gut bacteria (prototrophs) but must be provided exogenously in the diet for many other bacterial species (auxotrophs) as well as for the mammalian host. Cross-feeding of B vitamins between prototrophic and auxotrophic species is expected to strongly contribute to the homeostasis of microbial communities in the distal gut given the efficient absorption of dietary vitamins in the upper gastrointestinal tract. To confidently estimate the balance of microbiome micronutrient biosynthetic capabilities and requirements using available genomic data, we have performed a subsystems-based reconstruction of biogenesis, salvage and uptake for eight B vitamins (B1, B2, B3, B5, B6, B7, B9, and B12) and queuosine (essential factor in tRNA modification) over a reference set of 2,228 bacterial genomes representing 690 cultured species of the human gastrointestinal microbiota. This allowed us to classify the studied organisms with respect to their pathway variants and infer their prototrophic vs. auxotrophic phenotypes. In addition to canonical vitamin pathways, several conserved partial pathways were identified pointing to alternative routes of syntrophic metabolism and expanding a microbial vitamin "menu" by several pathway intermediates (vitamers) such as thiazole, quinolinate, dethiobiotin, pantoate. A cross-species comparison was applied to assess the extent of conservation of vitamin phenotypes at distinct taxonomic levels (from strains to families). The obtained reference collection combined with 16S rRNA gene-based phylogenetic profiles was used to deduce phenotype profiles of the human gut microbiota across in two large cohorts. This analysis provided the first estimate of B-vitamin requirements, production and sharing capabilities in the human gut microbiome establishing predictive phenotype profiling as a new approach to classification of microbiome samples. Future expansion of our reference genomic collection of metabolic phenotypes will allow further improvement in coverage and accuracy of predictive phenotype profiling of the human microbiome.
Collapse
Affiliation(s)
- Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr A. Arzamasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Matvei S. Khoroshkin
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Stanislav N. Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Department of Physics, P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
| | - Semen A. Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Scott N. Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
217
|
Behrouzi A, Nafari AH, Siadat SD. The significance of microbiome in personalized medicine. Clin Transl Med 2019; 8:16. [PMID: 31081530 PMCID: PMC6512898 DOI: 10.1186/s40169-019-0232-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Considering the important role of microbiome, many of current investigations have focused on its beneficial aspects. Although, research explores new dimensions of the impact of microbiome and examines the differences in patients and healthy individuals for identifying biomarker patterns, but limited information is available, and investigation in this field seems to be of great value. On the other hand, new therapeutic approaches, called personalized medicine, have opened a new window in medical science, and the association between microbiome and personalized medicine seems to be one of the most interesting aspects of the subsequent research, and has a pivotal perspective on the treatment of diseases such as cancer. Accordingly, given the novelty of the relationship between these two axes, there are very few studies in this regard. The presence of specific strains may have the ability to modulate cancer progression and therapeutics; this increases the likelihood of precision medicine in relation to microbiota, in terms of treatment and prognosis, and therefore, microbiota is a next generation medicine and may develop a novel therapeutic action in this field.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Amir Hossein Nafari
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
218
|
Almeida D, Machado D, Andrade JC, Mendo S, Gomes AM, Freitas AC. Evolving trends in next-generation probiotics: a 5W1H perspective. Crit Rev Food Sci Nutr 2019; 60:1783-1796. [PMID: 31062600 DOI: 10.1080/10408398.2019.1599812] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, scientific community has been gathering increasingly more insight on the dynamics that are at play in metabolic and inflammatory disorders. These rapidly growing conditions are reaching epidemic proportions, bringing clinicians and researcher's new challenges. The specific roles and modulating properties that beneficial/probiotic bacteria hold in the context of the gut ecosystem seem to be key to avert these inflammatory and diet-related disorders. Faecalibacterium prausnitzii, Akkermansia muciniphila and Eubacterium hallii have been identified as candidates for next generation probiotics (NGPs) with exciting potential for the prevention and treatment of such of dysbiosis-associated diseases. The challenges of these non-conventional native gut bacteria lie mainly on their extreme sensitivity to O2 traces. If these strains are to be used successfully in food, supplements or drugs they need to be stable and active in humans. In the present review, we present an overall perspective of the most updated scientific literature on the newly called NGPs through the 5W1H (What, Why, Who, Where, When, and How) method, an innovative and attractive problem-solving approach that provides the reader an effective understanding of the issue at hand.
Collapse
Affiliation(s)
- Diana Almeida
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.,Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Daniela Machado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - José Carlos Andrade
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| | - Sónia Mendo
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Cristina Freitas
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
219
|
Kelly CJ, Alexeev EE, Farb L, Vickery TW, Zheng L, Eric L C, Kitzenberg DA, Battista KD, Kominsky DJ, Robertson CE, Frank DN, Stabler SP, Colgan SP. Oral vitamin B 12 supplement is delivered to the distal gut, altering the corrinoid profile and selectively depleting Bacteroides in C57BL/6 mice. Gut Microbes 2019; 10:654-662. [PMID: 31062653 PMCID: PMC6866687 DOI: 10.1080/19490976.2019.1597667] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vitamin B12 is a critical nutrient for humans as well as microbes. Due to saturable uptake, high dose oral B12 supplements are largely unabsorbed and reach the distal gut where they are available to interact with the microbiota. The aim of this study was to determine if oral B12 supplementation in mice alters 1) the concentration of B12 and related corrinoids in the distal gut, 2) the fecal microbiome, 3) short chain fatty acids (SCFA), and 4) susceptibility to experimental colitis. C57BL/6 mice (up to 24 animals/group) were supplemented with oral 3.94 µg/ml cyanocobalamin (B12), a dose selected to approximate a single 5 mg supplement for a human. Active vitamin B12 (cobalamin), and four B12-analogues ([ADE]CN-Cba, [2Me-ADE]CN-Cba, [2MeS-ADE]CN-Cba, CN-Cbi) were analyzed in cecal and fecal contents using liquid chromatography/mass spectrometry (LC/MS), in parallel with evaluation of fecal microbiota, cecal SCFA, and susceptibility to dextran sodium sulfate (DSS) colitis. At baseline, active B12 was a minor constituent of overall cecal (0.86%) and fecal (0.44%) corrinoid. Oral B12 supplementation increased active B12 at distal sites by >130-fold (cecal B12 increased from 0.08 to 10.60 ng/mg, fecal B12 increased from 0.06 to 7.81 ng/ml) and reduced microbe-derived fecal corrinoid analogues ([ADE]CN-Cba, [2Me-ADE]CN-Cba, [2MeS-ADE]CN-Cba). Oral B12 had no effect on cecal SCFA. Microbial diversity was unaffected by this intervention, however a selective decrease in Bacteroides was observed with B12 treatment. Lastly, no difference in markers of DSS-induced colitis were detected with B12 treatment.
Collapse
Affiliation(s)
- Caleb J Kelly
- Mucosal Inflammation Program, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado, Aurora, CO, USA,Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA,CONTACT Sean P. Colgan Mucosal Inflammation Program, University of Colorado, 12700 East 19th Ave. MS B-146, Aurora, CO 80045, USA
| | - Erica E Alexeev
- Mucosal Inflammation Program, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Linda Farb
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Thad W Vickery
- Department of Medicine, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado Microbiome Research Consortium, Aurora, CO, USA
| | - Leon Zheng
- Mucosal Inflammation Program, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Campbell Eric L
- Mucosal Inflammation Program, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado, Aurora, CO, USA,Centre for Experimental Medicine, Queens University, Belfast, UK
| | - David A Kitzenberg
- Mucosal Inflammation Program, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Kayla D Battista
- Mucosal Inflammation Program, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado, Aurora, CO, USA,Centre for Experimental Medicine, Queens University, Belfast, UK,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Charles E Robertson
- Department of Medicine, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado Microbiome Research Consortium, Aurora, CO, USA
| | - Daniel N Frank
- Department of Medicine, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado Microbiome Research Consortium, Aurora, CO, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado, Aurora, CO, USA,Department of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
220
|
Abstract
Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes in human-associated microbial communities, guiding future enzyme characterization efforts.
Collapse
|
221
|
Dugué PA, Bassett JK, Brinkman MT, Southey MC, Joo JE, Wong EM, Milne RL, English DR, Giles GG, Boussioutas A, Mitchell H, Hodge AM. Dietary Intake of Nutrients Involved in One-Carbon Metabolism and Risk of Gastric Cancer: A Prospective Study. Nutr Cancer 2019; 71:605-614. [DOI: 10.1080/01635581.2019.1577982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pierre-Antoine Dugué
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
- cPrecision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Julie K. Bassett
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Maree T. Brinkman
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- dDepartment of Complex Genetics and Epidemiology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Melissa C. Southey
- cPrecision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jihoon E. Joo
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ee Ming Wong
- cPrecision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Roger L. Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Dallas R. English
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Graham G. Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Alex Boussioutas
- Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Hazel Mitchell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Allison M. Hodge
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
222
|
Das P, Babaei P, Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics 2019; 20:208. [PMID: 30866812 PMCID: PMC6417177 DOI: 10.1186/s12864-019-5591-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human gut microbial communities have been known to produce vitamins, which are subsequently absorbed by the host in the large intestine. However, the relationship between species with vitamin pathway associated functional features or their gene abundance in different states of health and disease is lacking. Here, we analyzed shotgun fecal metagenomes of individuals from four different countries for genes that are involved in vitamin biosynthetic pathways and transport mechanisms and corresponding species' abundance. RESULTS We found that the prevalence of these genes were found to be distributed across the dominant phyla of gut species. The number of positive correlations were high between species harboring genes related to vitamin biosynthetic pathways and transporter mechanisms than that with either alone. Although, the range of total gene abundances remained constant across healthy populations at the global level, species composition and their presence for metabolic pathway related genes determine the abundance and functional genetic content of vitamin metabolism. Based on metatranscriptomics data, the equation between abundance of vitamin-biosynthetic enzymes and vitamin-dependent enzymes suggests that the production and utilization potential of these enzymes seems way more complex usage allocations than just mere direct linear associations. CONCLUSIONS Our findings provide a rationale to examine and disentangle the interrelationship between B-vitamin dosage (dietary or microbe-mediated) on gut microbial members and the host, in the gut microbiota of individuals with under- or overnutrition.
Collapse
Affiliation(s)
- Promi Das
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Parizad Babaei
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
223
|
Neonatal intestinal immune regulation by the commensal bacterium, P. UF1. Mucosal Immunol 2019; 12:434-444. [PMID: 30647410 PMCID: PMC6375783 DOI: 10.1038/s41385-018-0125-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 02/04/2023]
Abstract
Newborns are highly susceptible to pathogenic infections with significant worldwide morbidity possibly due to an immature immune system. Recently, we reported that Propionibacterium strain, P. UF1, isolated from the gut microbiota of preterm infants, induced the differentiation of bacteria-specific Th17 cells. Here, we demonstrate that P. UF1 significantly increased the number of protective Th17 cells and maintained IL-10+ regulatory T cells (Tregs) in newborn mice. In addition, P. UF1 protected mice from intestinal Listeria monocytogenes (L. m) infection. P. UF1 also functionally sustained the gut microbiota and induced critical B vitamin metabolites implicated in the regulation of T cell immunity during L. m intestinal infection. Transcriptomic analysis of P. UF1-induced Th17 cells revealed genes involved in the differentiation and regulation of these cells. These results illustrate the potency of P. UF1 in the enhancement of neonatal host defense against intestinal pathogen infection.
Collapse
|
224
|
Polfus LM, Raffield LM, Wheeler MM, Tracy RP, Lange LA, Lettre G, Miller A, Correa A, Bowler RP, Bis JC, Salimi S, Jenny NS, Pankratz N, Wang B, Preuss MH, Zhou L, Moscati A, Nadkarni GN, Loos RJF, Zhong X, Li B, Johnsen JM, Nickerson DA, Reiner AP, Auer PL, NHLBI Trans-Omics for Precision Medicine Consortium. Whole genome sequence association with E-selectin levels reveals loss-of-function variant in African Americans. Hum Mol Genet 2019; 28:515-523. [PMID: 30307499 PMCID: PMC6337694 DOI: 10.1093/hmg/ddy360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022] Open
Abstract
E-selectin mediates the rolling of circulating leukocytes during inflammatory processes. Previous genome-wide association studies in European and Asian individuals have identified the ABO locus associated with E-selectin levels. Using Trans-Omics for Precision Medicine whole genome sequencing data in 2249 African Americans (AAs) from the Jackson Heart Study, we examined genome-wide associations with soluble E-selectin levels. In addition to replicating known signals at ABO, we identified a novel association of a common loss-of-function, missense variant in Fucosyltransferase 6 (FUT6; rs17855739,p.Glu274Lys, P = 9.02 × 10-24) with higher soluble E-selectin levels. This variant is considerably more common in populations of African ancestry compared to non-African ancestry populations. We replicated the association of FUT6 p.Glu274Lys with higher soluble E-selectin in an independent population of 748 AAs from the Women's Health Initiative and identified an additional pleiotropic association with vitamin B12 levels. Despite the broad role of both selectins and fucosyltransferases in various inflammatory, immune and cancer-related processes, we were unable to identify any additional disease associations of the FUT6 p.Glu274Lys variant in an electronic medical record-based phenome-wide association scan of over 9000 AAs.
Collapse
Affiliation(s)
- Linda M Polfus
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Marsha M Wheeler
- Department of Genome Sciences, University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Guillaume Lettre
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute, Montréal, QC, Canada
| | - Amanda Miller
- Zilber School of Public Health, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Adolfo Correa
- Department of Pediatrics and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Shabnam Salimi
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nancy Swords Jenny
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Biqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael H Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisheng Zhou
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arden Moscati
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish N Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xue Zhong
- Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Bingshan Li
- Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Jill M Johnsen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | | |
Collapse
|
225
|
Parkar SG, Kalsbeek A, Cheeseman JF. Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health. Microorganisms 2019; 7:microorganisms7020041. [PMID: 30709031 PMCID: PMC6406615 DOI: 10.3390/microorganisms7020041] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
This article reviews the current evidence associating gut microbiota with factors that impact host circadian-metabolic axis, such as light/dark cycles, sleep/wake cycles, diet, and eating patterns. We examine how gut bacteria possess their own daily rhythmicity in terms of composition, their localization to intestinal niches, and functions. We review evidence that gut bacteria modulate host rhythms via microbial metabolites such as butyrate, polyphenolic derivatives, vitamins, and amines. Lifestyle stressors such as altered sleep and eating patterns that may disturb the host circadian system also influence the gut microbiome. The consequent disruptions to microbiota-mediated functions such as decreased conjugation of bile acids or increased production of hydrogen sulfide and the resultant decreased production of butyrate, in turn affect substrate oxidation and energy regulation in the host. Thus, disturbances in microbiome rhythms may at least partially contribute to an increased risk of obesity and metabolic syndrome associated with insufficient sleep and circadian misalignment. Good sleep and a healthy diet appear to be essential for maintaining gut microbial balance. Manipulating daily rhythms of gut microbial abundance and activity may therefore hold promise for a chrononutrition-based approach to consolidate host circadian rhythms and metabolic homeorhesis.
Collapse
Affiliation(s)
- Shanthi G Parkar
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Andries Kalsbeek
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA Amsterdam, The Netherlands.
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - James F Cheeseman
- Department of Anaesthesiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
226
|
Zhu X, Xiang S, Feng X, Wang H, Tian S, Xu Y, Shi L, Yang L, Li M, Shen Y, Chen J, Chen Y, Han J. Impact of Cyanocobalamin and Methylcobalamin on Inflammatory Bowel Disease and the Intestinal Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:916-926. [PMID: 30572705 DOI: 10.1021/acs.jafc.8b05730] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Patients with inflammatory bowel disease (IBD) are usually advised to supplement various types of vitamin B12, because vitamin B12 is generally absorbed in the colon. Thus, in the current study, the influence of cyanocobalamin (CNCBL) or methylcobalamin (MECBL) ingestion on IBD symptoms will be investigated. Then, whether and how the application of various cobalamins would modify the taxonomic and functional composition of the gut microbiome in mice will be examined carefully. Dextran-sulfate-sodium-induced IBD mice were treated with MECBL or CNCBL; disease activity index (DAI) scores and intestinal inflammatory conditions of mice were evaluated. Fecal samples were collected; microbiota composition was determined with a 16s rRNA analysis; functional profiles were predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt); and short-chain fatty acids were measured. The consequence of higher relative abundances of Enterobacteriaceae and isomeric short-chain fatty acids by cobalamin treatment revealed that a high concentration of CNCBL but not MECBL supplementation obviously aggravated IBD. A microbial ecosystem rich in Escherichia/ Shigella and low in Lactobacillus, Blautia, and Clostridium XVIII was observed in IBD mice after a high concentration of CNCBL supplementation. In cobalamin-dependent enzymes, CNCBL was more efficient in the adenosylcobalamin system than MECBL and vice versa in the MECBL system. The distinct effects of various cobalamins were associated with the distribution and efficiency of vitamin-B12-dependent riboswitches. CNCBL had a strong inhibitory effect on all riboswitches, especially on btuB and pocR riboswitches from Enterobacteriaceae. CNCBL aggravated IBD via enhancing the proportion of Enterobacteriaceae organisms through riboswitch and enzyme systems. The present study provides a critical reference for offering a suitable amount and type of cobalamin during a symbiotic condition.
Collapse
Affiliation(s)
- Xuan Zhu
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Shasha Xiang
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Xiao Feng
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Huanhuan Wang
- School of Medicine , Hangzhou Normal University , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Shiyi Tian
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Yuanyuan Xu
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Lihua Shi
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Lu Yang
- School of Medicine , Hangzhou Normal University , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Company, Limited , Kaihua, Quzhou , Zhejiang 324302 , People's Republic of China
| | - Yubiao Shen
- Yangtze Delta Region Institute of Tsinghua University , Zhejiang , Jiaxing , 314000 , China
| | - Jie Chen
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Yuewen Chen
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Jianzhong Han
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| |
Collapse
|
227
|
Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ, Chen GJ, Du ZJ. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. MICROBIOME 2018; 6:230. [PMID: 30587241 PMCID: PMC6307301 DOI: 10.1186/s40168-018-0613-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/04/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND The pure culture of prokaryotes remains essential to elucidating the role of these organisms. Scientists have reasoned that hard to cultivate microorganisms might grow in pure culture if provided with the chemical components of their natural environment. However, most microbial species in the biosphere that would otherwise be "culturable" may fail to grow because of their growth state in nature, such as dormancy. That means even if scientist would provide microorganisms with the natural environment, such dormant microorganisms probably still remain in a dormant state. RESULTS We constructed an enrichment culture system for high-efficiency isolation of uncultured strains from marine sediment. Degree of enrichment analysis, dormant and active taxa calculation, viable but non-culturable bacteria resuscitation analysis, combined with metatranscriptomic and comparative genomic analyses of the interactions between microbial communications during enrichment culture showed that the so-called enrichment method could culture the "uncultured" not only through enriching the abundance of "uncultured," but also through the resuscitation mechanism. In addition, the enrichment culture was a complicated mixed culture system, which contains the competition, cooperation, or coordination among bacterial communities, compared with pure cultures. CONCLUSIONS Considering that cultivation techniques must evolve further-from axenic to mixed cultures-for us to fully understand the microbial world, we should redevelop an understanding of the classic enrichment culture method. Enrichment culture methods can be developed and used to construct a model for analyzing mixed cultures and exploring microbial dark matter. This study provides a new train of thought to mining marine microbial dark matter based on mixed cultures.
Collapse
Affiliation(s)
- Da-Shuai Mu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
- College of Marine Science, Shandong University, Weihai, 264209, People's Republic of China
| | - Qi-Yun Liang
- College of Marine Science, Shandong University, Weihai, 264209, People's Republic of China
| | - Xiao-Man Wang
- College of Marine Science, Shandong University, Weihai, 264209, People's Republic of China
| | - De-Chen Lu
- College of Marine Science, Shandong University, Weihai, 264209, People's Republic of China
| | - Ming-Jing Shi
- College of Marine Science, Shandong University, Weihai, 264209, People's Republic of China
| | - Guan-Jun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
- College of Marine Science, Shandong University, Weihai, 264209, People's Republic of China
| | - Zong-Jun Du
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.
- College of Marine Science, Shandong University, Weihai, 264209, People's Republic of China.
| |
Collapse
|
228
|
Abstract
All animals have associated microbial communities called microbiomes that influence the physiology and fitness of their host. It is unclear to what extent individual microbial species versus interactions between them influence the host. Here, we mapped all possible interactions between individual species of bacteria against Drosophila melanogaster fruit fly fitness traits. Our approach revealed that the same bacterial interactions that shape microbiome abundances also shape host fitness traits. The fitness traits of lifespan and fecundity showed a life history tradeoff, where equal total fitness can be gotten by either high fecundity over a short life or low fecundity over a long life. The microbiome interactions are as important as the individual species in shaping these fundamental aspects of fly physiology. Gut bacteria can affect key aspects of host fitness, such as development, fecundity, and lifespan, while the host, in turn, shapes the gut microbiome. However, it is unclear to what extent individual species versus community interactions within the microbiome are linked to host fitness. Here, we combinatorially dissect the natural microbiome of Drosophila melanogaster and reveal that interactions between bacteria shape host fitness through life history tradeoffs. Empirically, we made germ-free flies colonized with each possible combination of the five core species of fly gut bacteria. We measured the resulting bacterial community abundances and fly fitness traits, including development, reproduction, and lifespan. The fly gut promoted bacterial diversity, which, in turn, accelerated development, reproduction, and aging: Flies that reproduced more died sooner. From these measurements, we calculated the impact of bacterial interactions on fly fitness by adapting the mathematics of genetic epistasis to the microbiome. Development and fecundity converged with higher diversity, suggesting minimal dependence on interactions. However, host lifespan and microbiome abundances were highly dependent on interactions between bacterial species. Higher-order interactions (involving three, four, and five species) occurred in 13–44% of possible cases depending on the trait, with the same interactions affecting multiple traits, a reflection of the life history tradeoff. Overall, we found these interactions were frequently context-dependent and often had the same magnitude as individual species themselves, indicating that the interactions can be as important as the individual species in gut microbiomes.
Collapse
|
229
|
Discovering radical-dependent enzymes in the human gut microbiota. Curr Opin Chem Biol 2018; 47:86-93. [DOI: 10.1016/j.cbpa.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
|
230
|
Xu Y, Xiang S, Ye K, Zheng Y, Feng X, Zhu X, Chen J, Chen Y. Cobalamin (Vitamin B12) Induced a Shift in Microbial Composition and Metabolic Activity in an in vitro Colon Simulation. Front Microbiol 2018; 9:2780. [PMID: 30505299 PMCID: PMC6250798 DOI: 10.3389/fmicb.2018.02780] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Cobalamin deficiency is believed to be related to disturbances in cell division, neuropathy, nervous system disease and pernicious anemia. Elderly people are usually advised to supplement their diets with cobalamin. As cobalamin has several forms, the effects of different forms of cobalamin on gut microbiota were investigated in this study. After 7 days of supplementation, methylcobalamin had reduced the diversity of gut microbiota compared to that in the control and cyanocobalamin groups. After supplementation with methylcobalamin, the percentage of Acinetobacter spp. had increased to 45.54%, while the percentages of Bacteroides spp., Enterobacteriaceae spp. and Ruminococcaceae spp. had declined to 11.15, 9.34, and 2.69%, respectively. However, cyanocobalamin had different influences on these bacteria. Both cobalamins increased the amount of short-chain fatty acids, particularly butyrate and propionic acid. The cyanocobalamin group showed increased activity of cellulase compared with that in the other two groups. According to CCA and PICRUSt analysis, methylcobalamin had a positive correlation with Pseudomonas bacteria, propionic acid, and butyrate. Methylcobalamin promoted lipid, terpenoid, and polyketide metabolism by gut bacteria, promoted the degradation of exogenous substances, and inhibited the synthesis of transcription factors and secondary metabolites. Our results indicate that the various forms of cobalamin in the food industry should be monitored and regulated, because the two types of cobalamin had different effects on the gut microbiome and on microbial metabolism, although they have equal bio-activity in humans. Given the effects of methylcobalamin on gut microbiota and microbial metabolism, methylcobalamin supplementation should be suggested as the first option.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shasha Xiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kun Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yiqing Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiao Feng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yuewen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
231
|
Selective colonization ability of human fecal microbes in different mouse gut environments. ISME JOURNAL 2018; 13:805-823. [PMID: 30442907 DOI: 10.1038/s41396-018-0312-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Mammalian hosts constantly interact with diverse exogenous microbes, but only a subset of the microbes manage to colonize due to selective colonization resistance exerted by host genetic factors as well as the native microbiota of the host. An important question in microbial ecology and medical science is if such colonization resistance can discriminate closely related microbial species, or even closely related strains of the same species. Using human-mouse fecal microbiota transplantation and metagenomic shotgun sequencing, we reconstructed colonization patterns of human fecal microbes in mice with different genotypes (C57BL6/J vs. NSG) and with or without an intact gut microbiota. We found that mouse genotypes and the native mouse gut microbiota both exerted different selective pressures on exogenous colonizers: human fecal Bacteroides successfully established in the mice gut, however, different species of Bacteroides selectively enriched under different gut conditions, potentially due to a multitude of functional differences, ranging from versatility in nutrient acquisition to stress responses. Additionally, different clades of Bacteroides cellulosilyticus strains were selectively enriched in different gut conditions, suggesting that the fitness of conspecific microbial strains in a novel host environment could differ.
Collapse
|
232
|
Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME JOURNAL 2018; 13:789-804. [PMID: 30429574 PMCID: PMC6461909 DOI: 10.1038/s41396-018-0304-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022]
Abstract
The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families, but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways, yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway. These predictions highlight the importance of cobamide and cobamide precursor salvaging as examples of nutritional dependencies in bacteria.
Collapse
|
233
|
Lombardi VC, De Meirleir KL, Subramanian K, Nourani SM, Dagda RK, Delaney SL, Palotás A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J Nutr Biochem 2018; 61:1-16. [PMID: 29886183 PMCID: PMC6195483 DOI: 10.1016/j.jnutbio.2018.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the enteric nervous system and the central nervous system. Mounting evidence supports the premise that the intestinal microbiota plays a pivotal role in its function and has led to the more common and perhaps more accurate term gut-microbiota-brain axis. Numerous studies have identified associations between an altered microbiome and neuroimmune and neuroinflammatory diseases. In most cases, it is unknown if these associations are cause or effect; notwithstanding, maintaining or restoring homeostasis of the microbiota may represent future opportunities when treating or preventing these diseases. In recent years, several studies have identified the diet as a primary contributing factor in shaping the composition of the gut microbiota and, in turn, the mucosal and systemic immune systems. In this review, we will discuss the potential opportunities and challenges with respect to modifying and shaping the microbiota through diet and nutrition in order to treat or prevent neuroimmune and neuroinflammatory disease.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA; University of Nevada, Reno, School of Medicine, Department of Pathology, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA.
| | - Kenny L De Meirleir
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Krishnamurthy Subramanian
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Sam M Nourani
- University of Nevada, Reno, School of Medicine, Department of Internal Medicine, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA; Advanced Therapeutic, General Gastroenterology & Hepatology Digestive Health Associates, Reno, NV, USA.
| | - Ruben K Dagda
- University of Nevada, Reno, School of Medicine, Department of Pharmacology, 1664 N. Virginia St. MS 0318, Reno, NV, 89557, USA.
| | | | - András Palotás
- Kazan Federal University, Institute of Fundamental Medicine and Biology, (Volga Region) 18 Kremlyovskaya St., Kazan, 420008, Republic of Tatarstan, Russian Federation; Asklepios-Med (private medical practice and research center), Kossuth Lajos sgt. 23, Szeged, H-6722, Hungary.
| |
Collapse
|
234
|
Microbial Functional Responses to Cholesterol Catabolism in Denitrifying Sludge. mSystems 2018; 3:mSystems00113-18. [PMID: 30417110 PMCID: PMC6208644 DOI: 10.1128/msystems.00113-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
Steroids are ubiquitous and abundant natural compounds that display recalcitrance. Biodegradation via sludge communities in wastewater treatment plants is the primary removal process for steroids. To date, compared to studies for aerobic steroid degradation, the knowledge of anaerobic degradation of steroids has been based on only a few model organisms. Due to the increase of anthropogenic impacts, steroid inputs may affect microbial diversity and functioning in ecosystems. Here, we first investigated microbial functional responses to cholesterol, the most abundant steroid in sludge, at the community level. Our metagenomic and metatranscriptomic analyses revealed that the capacities for cholesterol approach, uptake, and degradation are unique traits of certain low-abundance betaproteobacteria, indicating the importance of the rare biosphere in bioremediation. Apparent expression of genes involved in cofactor de novo synthesis and salvage pathways suggests that these micronutrients play important roles for cholesterol degradation in sludge communities. The 2,3-seco pathway, the pathway for anaerobic cholesterol degradation, has been established in the denitrifying betaproteobacterium Sterolibacterium denitrificans. However, knowledge of how microorganisms respond to cholesterol at the community level is elusive. Here, we applied mesocosm incubation and 16S rRNA sequencing to reveal that, in denitrifying sludge communities, three betaproteobacterial operational taxonomic units (OTUs) with low (94% to 95%) 16S rRNA sequence similarity to Stl. denitrificans are cholesterol degraders and members of the rare biosphere. Metatranscriptomic and metabolite analyses show that these degraders adopt the 2,3-seco pathway to sequentially catalyze the side chain and sterane of cholesterol and that two molybdoenzymes—steroid C25 dehydrogenase and 1-testosterone dehydrogenase/hydratase—are crucial for these bioprocesses, respectively. The metatranscriptome further suggests that these betaproteobacterial degraders display chemotaxis and motility toward cholesterol and that FadL-like transporters may be the key components for substrate uptake. Also, these betaproteobacteria are capable of transporting micronutrients and synthesizing cofactors essential for cellular metabolism and cholesterol degradation; however, the required cobalamin is possibly provided by cobalamin-de novo-synthesizing gamma-, delta-, and betaproteobacteria via the salvage pathway. Overall, our results indicate that the ability to degrade cholesterol in sludge communities is reserved for certain rare biosphere members and that C25 dehydrogenase can serve as a biomarker for sterol degradation in anoxic environments. IMPORTANCE Steroids are ubiquitous and abundant natural compounds that display recalcitrance. Biodegradation via sludge communities in wastewater treatment plants is the primary removal process for steroids. To date, compared to studies for aerobic steroid degradation, the knowledge of anaerobic degradation of steroids has been based on only a few model organisms. Due to the increase of anthropogenic impacts, steroid inputs may affect microbial diversity and functioning in ecosystems. Here, we first investigated microbial functional responses to cholesterol, the most abundant steroid in sludge, at the community level. Our metagenomic and metatranscriptomic analyses revealed that the capacities for cholesterol approach, uptake, and degradation are unique traits of certain low-abundance betaproteobacteria, indicating the importance of the rare biosphere in bioremediation. Apparent expression of genes involved in cofactor de novo synthesis and salvage pathways suggests that these micronutrients play important roles for cholesterol degradation in sludge communities.
Collapse
|
235
|
Oliai Araghi S, Kiefte-de Jong JC, van Dijk SC, Swart KMA, van Laarhoven HW, van Schoor NM, de Groot LCPGM, Lemmens V, Stricker BH, Uitterlinden AG, van der Velde N. Folic Acid and Vitamin B12 Supplementation and the Risk of Cancer: Long-term Follow-up of the B Vitamins for the Prevention of Osteoporotic Fractures (B-PROOF) Trial. Cancer Epidemiol Biomarkers Prev 2018; 28:275-282. [PMID: 30341095 DOI: 10.1158/1055-9965.epi-17-1198] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/21/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Folic acid and vitamin B12 play key roles in one-carbon metabolism. Disruption of one-carbon metabolism may be involved in the risk of cancer. Our aim was to assess the long-term effect of supplementation with both folic acid and vitamin B12 on the incidence of overall cancer and on colorectal cancer in the B Vitamins for the Prevention of Osteoporotic Fractures (B-PROOF) trial. METHODS Long-term follow-up of B-PROOF trial participants (N = 2,524), a multicenter, double-blind randomized placebo-controlled trial designed to assess the effect of 2 to 3 years daily supplementation with folic acid (400 μg) and vitamin B12 (500 μg) versus placebo on fracture incidence. Information on cancer incidence was obtained from the Netherlands cancer registry (Integraal Kankercentrum Nederland), using the International Statistical Classification of Disease (ICD-10) codes C00-C97 for all cancers (except C44 for skin cancer), and C18-C20 for colorectal cancer. RESULTS Allocation to B vitamins was associated with a higher risk of overall cancer [171 (13.6%) vs. 143 (11.3%); HR 1.25; 95% confidence interval (CI), 1.00-1.53, P = 0.05]. B vitamins were significantly associated with a higher risk of colorectal cancer [43(3.4%) vs. 25(2.0%); HR 1.77; 95% CI, 1.08-2.90, P = 0.02]. CONCLUSIONS Folic acid and vitamin B12 supplementation was associated with an increased risk of colorectal cancer. IMPACT Our findings suggest that folic acid and vitamin B12 supplementation may increase the risk of colorectal cancer. Further confirmation in larger studies and in meta-analyses combining both folic acid and vitamin B12 are needed to evaluate whether folic acid and vitamin B12 supplementation should be limited to patients with a known indication, such as a proven deficiency.
Collapse
Affiliation(s)
- Sadaf Oliai Araghi
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jessica C Kiefte-de Jong
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands. .,Leiden University College, The Hague, the Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Center/LUMC Campus, The Hague, the Netherlands
| | - Suzanne C van Dijk
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karin M A Swart
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | | | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | | | - Valery Lemmens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Research, Netherlands Comprehensive Cancer Organisation, Utrecht, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
236
|
D'hoe K, Vet S, Faust K, Moens F, Falony G, Gonze D, Lloréns-Rico V, Gelens L, Danckaert J, De Vuyst L, Raes J. Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. eLife 2018; 7:37090. [PMID: 30322445 PMCID: PMC6237439 DOI: 10.7554/elife.37090] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022] Open
Abstract
The composition of the human gut microbiome is well resolved, but predictive understanding of its dynamics is still lacking. Here, we followed a bottom-up strategy to explore human gut community dynamics: we established a synthetic community composed of three representative human gut isolates (Roseburia intestinalis L1-82, Faecalibacterium prausnitzii A2-165 and Blautia hydrogenotrophica S5a33) and explored their interactions under well-controlled conditions in vitro. Systematic mono- and pair-wise fermentation experiments confirmed competition for fructose and cross-feeding of formate. We quantified with a mechanistic model how well tri-culture dynamics was predicted from mono-culture data. With the model as reference, we demonstrated that strains grown in co-culture behaved differently than those in mono-culture and confirmed their altered behavior at the transcriptional level. In addition, we showed with replicate tri-cultures and simulations that dominance in tri-culture sensitively depends on the initial conditions. Our work has important implications for gut microbial community modeling as well as for ecological interaction detection from batch cultures. Our gut is home to trillions of microorganisms, most of them bacteria, which have an important impact on our body. During healthy periods, these microorganisms help our digestion, protect our cells, and compete against disease-causing bacteria. But specific communities of gut bacteria are linked to many diseases. We already have a good knowledge of the bacterial composition present in a wide range of human guts, but how the different bacterial species within such communities affect each other, has so far been unclear. Future disease treatments may be able to steer ‘bad’ communities to healthier mixtures. For this to happen we need to know how species interact and how these interactions change the behavior of the whole community. To investigate this further, D'hoe, Vet, Faust et al. studied three common species of gut bacteria under controlled conditions in the laboratory. The different species were either grown alone, in pairs or together, and the number of bacteria and the concentration of nutrients were measured over time. The results showed that when grown alone or together, their behavior changed. D'hoe et al. then used a mathematical model to estimate the rates at which species multiplied and consumed nutrients. This model was able to predict the dynamics of each of the species grown alone. However, the data from bacteria grown in pairs was needed to predict the dynamics of bacteria grown as a group of three. Next, D'hoe et al. compared the activity of genes between bacteria grown alone or together, and discovered several differences. This suggests that bacterial species affect each other greatly, and community behavior cannot be predicted from knowledge of its members alone. Therefore, studying bacteria in isolation is not enough to understand the complex environments of our guts, which are inhabited not by three but hundreds of bacterial species. In future, interactions between bacteria will need to be studied to ultimately be able to shift the gut community into better shapes.
Collapse
Affiliation(s)
- Kevin D'hoe
- Laboratory of Molecular Bacteriology, KU Leuven Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,Jeroen Raes Lab, VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Vet
- Applied Physics Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,Unité de Chronobiologie Théorique, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology, KU Leuven Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium
| | - Frédéric Moens
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, KU Leuven Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,Jeroen Raes Lab, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Verónica Lloréns-Rico
- Laboratory of Molecular Bacteriology, KU Leuven Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,Jeroen Raes Lab, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, KU Leuven, Leuven, Belgium
| | - Jan Danckaert
- Applied Physics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, KU Leuven Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,Jeroen Raes Lab, VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
237
|
Ikeda-Ohtsubo W, Brugman S, Warden CH, Rebel JMJ, Folkerts G, Pieterse CMJ. How Can We Define "Optimal Microbiota?": A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Front Nutr 2018; 5:90. [PMID: 30333981 PMCID: PMC6176000 DOI: 10.3389/fnut.2018.00090] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
All multicellular organisms benefit from their own microbiota, which play important roles in maintaining the host nutritional health and immunity. Recently, the number of studies on the microbiota of animals, fish, and plants of economic importance is rapidly expanding and there are increasing expectations that productivity and sustainability in agricultural management can be improved by microbiota manipulation. However, optimizing microbiota is still a challenging task because of the lack of knowledge on the dominant microorganisms or significant variations between microbiota, reflecting sampling biases, different agricultural management as well as breeding backgrounds. To offer a more generalized view on microbiota in agriculture, which can be used for defining criteria of “optimal microbiota” as the goal of manipulation, we summarize here current knowledge on microbiota on animals, fish, and plants with emphasis on bacterial community structure and metabolic functions, and how microbiota can be affected by domestication, conventional agricultural practices, and use of antimicrobial agents. Finally, we discuss future tasks for defining “optimal microbiota,” which can improve host growth, nutrition, and immunity and reduce the use of antimicrobial agents in agriculture.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Craig H Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Johanna M J Rebel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
238
|
Balakrishnan B, Taneja V. Microbial modulation of the gut microbiome for treating autoimmune diseases. Expert Rev Gastroenterol Hepatol 2018; 12:985-996. [PMID: 30146910 DOI: 10.1080/17474124.2018.1517044] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many studies have shown the relationship between autoimmune diseases and the gut microbiome in humans: those with autoimmune conditions display gut microbiome dysbiosis. The big question that needs to be addressed is if restoring eubiosis of the gut microbiota can help suppress the autoimmune condition by activating various immune regulatory mechanisms. Inducing these self-healing mechanisms should prolong good health in affected individuals. Area covered: Here, we review the available clinical and preclinical studies that have used selective bacteria for modulating gut microbiota for treating autoimmune diseases. The potential bacterial candidates and their mechanism of action in treating autoimmune diseases will be discussed. We searched for genetically modified and potential probiotics for diseases and discuss the most likely candidates. Expert commentary: To achieve eubiosis, manipulation of the gut microbiota must occur in some form. Several approaches for modulating gut microbiota include prebiotic diets, antimicrobial interventions, fecal microbiota transplants, and selective probiotics. One novel approach showing promising results is the use of selective bacterial candidates to modulate microbial composition. Use of single microbe for treatment has an advantage as compared to multi-species as microbes grow at different rates and if needed, a single microbe is easy to target.
Collapse
Affiliation(s)
| | - Veena Taneja
- a Department of Immunology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
239
|
Colonetti K, Roesch LF, Schwartz IVD. The microbiome and inborn errors of metabolism: Why we should look carefully at their interplay? Genet Mol Biol 2018; 41:515-532. [PMID: 30235399 PMCID: PMC6136378 DOI: 10.1590/1678-4685-gmb-2017-0235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Research into the influence of the microbiome on the human body has been shedding new light on diseases long known to be multifactorial, such as obesity, mood disorders, autism, and inflammatory bowel disease. Although inborn errors of metabolism (IEMs) are monogenic diseases, genotype alone is not enough to explain the wide phenotypic variability observed in patients with these conditions. Genetics and diet exert a strong influence on the microbiome, and diet is used (alone or as an adjuvant) in the treatment of many IEMs. This review will describe how the effects of the microbiome on the host can interfere with IEM phenotypes through interactions with organs such as the liver and brain, two of the structures most commonly affected by IEMs. The relationships between treatment strategies for some IEMs and the microbiome will also be addressed. Studies on the microbiome and its influence in individuals with IEMs are still incipient, but are of the utmost importance to elucidating the phenotypic variety observed in these conditions.
Collapse
Affiliation(s)
- Karina Colonetti
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Luiz Fernando Roesch
- Interdisciplinary Research Center on Biotechnology-CIP-Biotec, Universidade Federal do Pampa, Bagé, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
240
|
Wexler AG, Schofield WB, Degnan PH, Folta-Stogniew E, Barry NA, Goodman AL. Human gut Bacteroides capture vitamin B 12 via cell surface-exposed lipoproteins. eLife 2018; 7:37138. [PMID: 30226189 PMCID: PMC6143338 DOI: 10.7554/elife.37138] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/26/2018] [Indexed: 01/02/2023] Open
Abstract
Human gut Bacteroides use surface-exposed lipoproteins to bind and metabolize complex polysaccharides. Although vitamins and other nutrients are also essential for commensal fitness, much less is known about how commensal bacteria compete with each other or the host for these critical resources. Unlike in Escherichia coli, transport loci for vitamin B12 (cobalamin) and other corrinoids in human gut Bacteroides are replete with conserved genes encoding proteins whose functions are unknown. Here we report that one of these proteins, BtuG, is a surface-exposed lipoprotein that is essential for efficient B12 transport in B. thetaiotaomicron. BtuG binds B12 with femtomolar affinity and can remove B12 from intrinsic factor, a critical B12 transport protein in humans. Our studies suggest that Bacteroides use surface-exposed lipoproteins not only for capturing polysaccharides, but also to acquire key vitamins in the gut. Eating is the first step in an hours-long process that extracts the nutrients we need to live. It not only nourishes us, but also a vast community of bacteria in our gut called the microbiota. The gut microbiota acts like an extension of our immune system and helps us stay healthy in many ways. For example, it blocks pathogens from making us sick. But too many gut bacteria in the wrong parts of our intestines can be harmful. Some people are prone to developing a dangerous overgrowth of bacteria in their small intestine where most of our dietary nutrients get absorbed. This overgrowth can lead to many problems including vitamin B12 deficiency even when they eat plenty of it. To understand why, scientists must learn how microbes affect our ability to absorb nutrients from food and how the microbes themselves capture nutrients like vitamin B12 as they pass through our digestive tract. Now, Wexler et al. show that some gut microbes may be able to pirate vitamin B12 from us as it passes through the digestive tract. Wexler et al. showed that a protein called BtuG on the surface of a type of gut bacteria called Bacteriodes grabs onto vitamin B12 with extraordinary strength. In fact, these bacterial proteins bind to vitamin B12 so strongly that they can even pry it away from our own vitamin B12 collecting protein. When Bacteriodes with and without BtuG were placed in mice with no gut bacteria of their own, bacteria with BtuG rapidly outcompeted those lacking the protein. The experiments suggest that competition for vitamin B12 among microbes has favored bacteria that are better at capturing the nutrient. More studies are needed to learn whether BtuG contributes to vitamin B12 deficiencies in humans with gut bacteria overgrowth and determine the best ways to combat such deficiencies.
Collapse
Affiliation(s)
- Aaron G Wexler
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| | - Whitman B Schofield
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| | - Patrick H Degnan
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| | - Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, United States
| | - Natasha A Barry
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| |
Collapse
|
241
|
Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front Microbiol 2018; 9:2013. [PMID: 30258412 PMCID: PMC6143810 DOI: 10.3389/fmicb.2018.02013] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Stress, a ubiquitous part of daily human life, has varied biological effects which are increasingly recognized as including modulation of commensal microorganisms residing in the gastrointestinal tract, the gut microbiota. In turn, the gut microbiota influences the host stress response and associated sequelae, thereby implicating the gut microbiota as an important mediator of host health. This narrative review aims to summarize evidence concerning the impact of psychological, environmental, and physical stressors on gut microbiota composition and function. The stressors reviewed include psychological stress, circadian disruption, sleep deprivation, environmental extremes (high altitude, heat, and cold), environmental pathogens, toxicants, pollutants, and noise, physical activity, and diet (nutrient composition and food restriction). Stressors were selected for their direct relevance to military personnel, a population that is commonly exposed to these stressors, often at extremes, and in combination. However, the selected stressors are also common, alone or in combination, in some civilian populations. Evidence from preclinical studies collectively indicates that the reviewed stressors alter the composition, function and metabolic activity of the gut microbiota, but that effects vary across stressors, and can include effects that may be beneficial or detrimental to host health. Translation of these findings to humans is largely lacking at present. This gap precludes concluding with certainty that transient or cumulative exposures to psychological, environmental, and physical stressors have any consistent, meaningful impact on the human gut microbiota. However, provocative preclinical evidence highlights a need for translational research aiming to elucidate the impact of stressors on the human gut microbiota, and how the gut microbiota can be manipulated, for example by using nutrition, to mitigate adverse stress responses.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adrienne M. Hatch
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Steven M. Arcidiacono
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Sarah C. Pearce
- Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Ida G. Pantoja-Feliciano
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Laurel A. Doherty
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Jason W. Soares
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
242
|
Kumar M, Ji B, Babaei P, Das P, Lappa D, Ramakrishnan G, Fox TE, Haque R, Petri WA, Bäckhed F, Nielsen J. Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metab Eng 2018; 49:128-142. [PMID: 30075203 PMCID: PMC6871511 DOI: 10.1016/j.ymben.2018.07.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
Malnutrition is a severe non-communicable disease, which is prevalent in children from low-income countries. Recently, a number of metagenomics studies have illustrated associations between the altered gut microbiota and child malnutrition. However, these studies did not examine metabolic functions and interactions between individual species in the gut microbiota during health and malnutrition. Here, we applied genome-scale metabolic modeling to model the gut microbial species, which were selected from healthy and malnourished children from three countries. Our analysis showed reduced metabolite production capabilities in children from two low-income countries compared with a high-income country. Additionally, the models were also used to predict the community-level metabolic potentials of gut microbes and the patterns of pairwise interactions among species. Hereby we found that due to bacterial interactions there may be reduced production of certain amino acids in malnourished children compared with healthy children from the same communities. To gain insight into alterations in the metabolism of malnourished (stunted) children, we also performed targeted plasma metabolic profiling in the first 2 years of life of 25 healthy and 25 stunted children. Plasma metabolic profiling further revealed that stunted children had reduced plasma levels of essential amino acids compared to healthy controls. Our analyses provide a framework for future efforts towards further characterization of gut microbial metabolic capabilities and their contribution to malnutrition.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden
| | - Parizad Babaei
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden
| | - Promi Das
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden
| | - Dimitra Lappa
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden
| | - Girija Ramakrishnan
- Department of Medicine/Division of Infectious Diseases, and University of Virginia, Charlottesville, VA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Rashidul Haque
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - William A Petri
- Department of Medicine/Division of Infectious Diseases, and University of Virginia, Charlottesville, VA, USA
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark.
| |
Collapse
|
243
|
Romano KA, Rey FE. Is maternal microbial metabolism an early-life determinant of health? Lab Anim (NY) 2018; 47:239-243. [PMID: 30143761 DOI: 10.1038/s41684-018-0129-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Mounting evidence suggests that environmental stress experienced in utero (for example, maternal nutritional deficits) establishes a predisposition in the newborn to the development of chronic diseases later in life. This concept is often referred to as the "fetal origins hypothesis" or "developmental origins of health and disease". Since its first proposal, epigenetics has emerged as an underlying mechanism explaining how environmental cues become gestationally "encoded". Many of the enzymes that impart and maintain epigenetic modifications are highly sensitive to nutrient availability, which can be influenced by the metabolic activities of the intestinal microbiota. Therefore, the maternal microbiome has the potential to influence epigenetics in utero and modulate offspring's long-term health trajectories. Here we summarize the current understanding of the interactions that occur between the maternal gut microbiome and the essential nutrient choline, that is not only required for fetal development and epigenetic regulation but is also a growth substrate for some microbes. Bacteria able to metabolize choline benefit from the presence of this nutrient and compete with the host for its access, which under extreme conditions may elicit signatures of choline deficiency. Another consequence of bacterial choline metabolism is the accumulation of the pro-inflammatory, pro-thrombotic metabolite trimethylamine-N-oxide (TMAO). Finally, we discuss how these different facets of microbial choline metabolism may influence infant development and health trajectories via epigenetic mechanisms and more broadly place a call to action to better understand how maternal microbial metabolism can shape their offspring's propensity to chronic disease development later in life.
Collapse
Affiliation(s)
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
244
|
Kho ZY, Lal SK. The Human Gut Microbiome - A Potential Controller of Wellness and Disease. Front Microbiol 2018; 9:1835. [PMID: 30154767 PMCID: PMC6102370 DOI: 10.3389/fmicb.2018.01835] [Citation(s) in RCA: 632] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Interest toward the human microbiome, particularly gut microbiome has flourished in recent decades owing to the rapidly advancing sequence-based screening and humanized gnotobiotic model in interrogating the dynamic operations of commensal microbiota. Although this field is still at a very preliminary stage, whereby the functional properties of the complex gut microbiome remain less understood, several promising findings have been documented and exhibit great potential toward revolutionizing disease etiology and medical treatments. In this review, the interactions between gut microbiota and the host have been focused on, to provide an overview of the role of gut microbiota and their unique metabolites in conferring host protection against invading pathogen, regulation of diverse host physiological functions including metabolism, development and homeostasis of immunity and the nervous system. We elaborate on how gut microbial imbalance (dysbiosis) may lead to dysfunction of host machineries, thereby contributing to pathogenesis and/or progression toward a broad spectrum of diseases. Some of the most notable diseases namely Clostridium difficile infection (infectious disease), inflammatory bowel disease (intestinal immune-mediated disease), celiac disease (multisystemic autoimmune disorder), obesity (metabolic disease), colorectal cancer, and autism spectrum disorder (neuropsychiatric disorder) have been discussed and delineated along with recent findings. Novel therapies derived from microbiome studies such as fecal microbiota transplantation, probiotic and prebiotics to target associated diseases have been reviewed to introduce the idea of how certain disease symptoms can be ameliorated through dysbiosis correction, thus revealing a new scientific approach toward disease treatment. Toward the end of this review, several research gaps and limitations have been described along with suggested future studies to overcome the current research lacunae. Despite the ongoing debate on whether gut microbiome plays a role in the above-mentioned diseases, we have in this review, gathered evidence showing a potentially far more complex link beyond the unidirectional cause-and-effect relationship between them.
Collapse
Affiliation(s)
- Zhi Y Kho
- School of Science, Tropical Medicine and Biology Platform, Monash University, Subang Jaya, Malaysia
| | - Sunil K Lal
- School of Science, Tropical Medicine and Biology Platform, Monash University, Subang Jaya, Malaysia
| |
Collapse
|
245
|
Atashgahi S, Shetty SA, Smidt H, de Vos WM. Flux, Impact, and Fate of Halogenated Xenobiotic Compounds in the Gut. Front Physiol 2018; 9:888. [PMID: 30042695 PMCID: PMC6048469 DOI: 10.3389/fphys.2018.00888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
Humans and their associated microbiomes are exposed to numerous xenobiotics through drugs, dietary components, personal care products as well as environmental chemicals. Most of the reciprocal interactions between the microbiota and xenobiotics, such as halogenated compounds, occur within the human gut harboring diverse and dense microbial communities. Here, we provide an overview of the flux of halogenated compounds in the environment, and diverse exposure routes of human microbiota to these compounds. Subsequently, we review the impact of halogenated compounds in perturbing the structure and function of gut microbiota and host cells. In turn, cultivation-dependent and metagenomic surveys of dehalogenating genes revealed the potential of the gut microbiota to chemically alter halogenated xenobiotics and impact their fate. Finally, we provide an outlook for future research to draw attention and attract interest to study the bidirectional impact of halogenated and other xenobiotic compounds and the gut microbiota.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sudarshan A Shetty
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands.,Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, Helsinki, Finland
| |
Collapse
|
246
|
Calder PC, Carding SR, Christopher G, Kuh D, Langley-Evans SC, McNulty H. A holistic approach to healthy ageing: how can people live longer, healthier lives? J Hum Nutr Diet 2018; 31:439-450. [PMID: 29862589 DOI: 10.1111/jhn.12566] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although lifespan is increasing, there is no evidence to suggest that older people are experiencing better health in their later years than previous generations. Nutrition, at all stages of life, plays an important role in determining health and wellbeing. METHODS A roundtable meeting of UK experts on nutrition and ageing considered key aspects of the diet-ageing relationship and developed a consensus position on the main priorities for research and public health actions that are required to help people live healthier lives as they age. RESULTS The group consensus highlighted the requirement for a life course approach, recognising the multifactorial nature of the impact of ageing. Environmental and lifestyle influences at any life stage are modified by genetic factors and early development. The response to the environment at each stage of life can determine the impact of lifestyle later on. There are no key factors that act in isolation to determine patterns of ageing and it is a combination of environmental and social factors that drives healthy or unhealthy ageing. Too little is known about how contemporary dietary patterns and sedentary lifestyles will impact upon healthy ageing in future generations and this is a priority for future research. CONCLUSIONS There is good evidence to support change to lifestyle (i.e. diet, nutrition and physical) activity in relation to maintaining or improving body composition, cognitive health and emotional intelligence, immune function and vascular health. Lifestyle change at any stage of life may extend healthy lifespan, although the impact of early changes appears to be greatest.
Collapse
Affiliation(s)
- P C Calder
- Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - S R Carding
- Quadram Institute Bioscience and Norwich Medical School, University of East Anglia, Norwich, UK
| | - G Christopher
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - D Kuh
- Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, UK
| | - S C Langley-Evans
- School of Biosciences, University of Nottingham, Sutton Bonnington, UK
| | - H McNulty
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
247
|
Microbial Metabolism in the Mammalian Gut: Molecular Mechanisms and Clinical Implications. J Pediatr Gastroenterol Nutr 2018; 66 Suppl 3:S72-S79. [PMID: 29762384 DOI: 10.1097/mpg.0000000000001857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human intestinal microbes participate actively at the interface of diet, nutrition, and overall health status. These biodiverse communities of microorganisms have a broader metabolic repertoire compared with their host, and they are able to synthesize and degrade substrates that would be otherwise unavailable. In recent years, we have recognized that healthy microbial communities are important for energy harvest and the regulation of body systems outside the digestive tract. Microbial dysbiosis, however, has been implicated in a number of human disorders, including obesity and inflammation. This dichotomy highlights the need to understand the factors that determine the composition and metabolic output of our resident and transient microbes. Throughout the human lifespan, we know that diet plays a major role in shaping gut microbial communities, as well as directing the types and amounts of metabolites produced. Understanding the factors that affect microbial metabolic output within the host may help identify the roles of microbes in health, as well as new targets for treatment in disease. In this article, we review facets of the assembly and activities of the healthy human intestinal microbiome, as well as ways that the microbiota has been shown to influence the host via metabolism of two dietary macronutrients: carbohydrates and amino acids.
Collapse
|
248
|
Chia LW, Hornung BVH, Aalvink S, Schaap PJ, de Vos WM, Knol J, Belzer C. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 2018; 111:859-873. [PMID: 29460206 PMCID: PMC5945754 DOI: 10.1007/s10482-018-1040-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/02/2018] [Indexed: 12/26/2022]
Abstract
Host glycans are paramount in regulating the symbiotic relationship between humans and their gut bacteria. The constant flux of host-secreted mucin at the mucosal layer creates a steady niche for bacterial colonization. Mucin degradation by keystone species subsequently shapes the microbial community. This study investigated the transcriptional response during mucin-driven trophic interaction between the specialised mucin-degrader Akkermansia muciniphila and a butyrogenic gut commensal Anaerostipes caccae. A. muciniphila monocultures and co-cultures with non-mucolytic A. caccae from the Lachnospiraceae family were grown anaerobically in minimal media supplemented with mucin. We analysed for growth, metabolites (HPLC analysis), microbial composition (quantitative reverse transcription PCR), and transcriptional response (RNA-seq). Mucin degradation by A. muciniphila supported the growth of A. caccae and concomitant butyrate production predominantly via the acetyl-CoA pathway. Differential expression analysis (DESeq 2) showed the presence of A. caccae induced changes in the A. muciniphila transcriptional response with increased expression of mucin degradation genes and reduced expression of ribosomal genes. Two putative operons that encode for uncharacterised proteins and an efflux system, and several two-component systems were also differentially regulated. This indicated A. muciniphila changed its transcriptional regulation in response to A. caccae. This study provides insight to understand the mucin-driven microbial ecology using metatranscriptomics. Our findings show that the expression of mucolytic enzymes by A. muciniphila increases upon the presence of a community member. This could indicate its role as a keystone species that supports the microbial community in the mucosal environment by increasing the availability of mucin sugars.
Collapse
Affiliation(s)
- Loo Wee Chia
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Bastian V H Hornung
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- RPU Immunobiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
249
|
Zengler K, Zaramela LS. The social network of microorganisms - how auxotrophies shape complex communities. Nat Rev Microbiol 2018; 16:383-390. [PMID: 29599459 PMCID: PMC6059367 DOI: 10.1038/s41579-018-0004-5] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microorganisms engage in complex interactions with other organisms and their environment. Recent studies have shown that these interactions are not limited to the exchange of electron donors. Most microorganisms are auxotrophs, thus relying on external nutrients for growth, including the exchange of amino acids and vitamins. Currently, we lack a deeper understanding of auxotrophies in microorganisms and how nutrient requirements differ between different strains and different environments. In this Opinion article, we describe how the study of auxotrophies and nutrient requirements among members of complex communities will enable new insights into community composition and assembly. Understanding this complex network over space and time is crucial for developing strategies to interrogate and shape microbial communities.
Collapse
Affiliation(s)
- Karsten Zengler
- Department of Pediatrics, Division of Host-Microbe Systems & Therapeutics, University of California, San Diego, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| | - Livia S Zaramela
- Department of Pediatrics, Division of Host-Microbe Systems & Therapeutics, University of California, San Diego, CA, USA
| |
Collapse
|
250
|
Lawrence AD, Nemoto-Smith E, Deery E, Baker JA, Schroeder S, Brown DG, Tullet JMA, Howard MJ, Brown IR, Smith AG, Boshoff HI, Barry CE, Warren MJ. Construction of Fluorescent Analogs to Follow the Uptake and Distribution of Cobalamin (Vitamin B 12) in Bacteria, Worms, and Plants. Cell Chem Biol 2018; 25:941-951.e6. [PMID: 29779954 DOI: 10.1016/j.chembiol.2018.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/18/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
Vitamin B12 is made by only certain prokaryotes yet is required by a number of eukaryotes such as mammals, fish, birds, worms, and Protista, including algae. There is still much to learn about how this nutrient is trafficked across the domains of life. Herein, we describe ways to make a number of different corrin analogs with fluorescent groups attached to the main tetrapyrrole-derived ring. A further range of analogs were also constructed by attaching similar fluorescent groups to the ribose ring of cobalamin, thereby generating a range of complete and incomplete corrinoids to follow uptake in bacteria, worms, and plants. By using these fluorescent derivatives we were able to demonstrate that Mycobacterium tuberculosis is able to acquire both cobyric acid and cobalamin analogs, that Caenorhabditis elegans takes up only the complete corrinoid, and that seedlings of higher plants such as Lepidium sativum are also able to transport B12.
Collapse
Affiliation(s)
- Andrew D Lawrence
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Emi Nemoto-Smith
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Joseph A Baker
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Susanne Schroeder
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - David G Brown
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | - Mark J Howard
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Ian R Brown
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Helena I Boshoff
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Clifton E Barry
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|